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Introduction

The second half of the XXth century saw the flowering of observational cosmology. The
detection of the cosmic microwave background (CMB) in 1964, along with the discovery of
its structure and anisotropies in 1992; the observed abundances of light elements (hydrogen,
deuterium, helium, and lithium) and the accelerating expansion of the Universe, measured
and confirmed in 1998 with distant type Ia supernovae (SNe); and its large-scale structure
constitute the outstanding observational pieces of evidence that support the ΛCDM model
of cosmology. This parametric model, often referred to as the cosmological standard model,
asserts that three main components exist in the Universe: first, the dark energy, which
seems to behave like a cosmological constant (Λ) throughout space; second, the cold dark
matter; and third, the ordinary matter. According to the last measurements of the CMB
anisotropies (Planck Collaboration, 2020), which combine information from temperature
and polarization maps with the reconstruction of the gravitational lensing effect suffered
by the CMB signal, only 4.9% of the energy density in the Universe belongs to baryonic
matter. The so-called dark matter, non-baryonic weakly interacting matter, represents
26.4%, while the remaning 68.7% of the energy density in the Universe is identified as dark
energy.

Dark energy is responsible for the current accelerated expansion of the Universe (Riess
et al., 1998; Perlmutter et al., 1999). Regardless of the fact that the dark energy equation
of state has proven to be consistent with the cosmological constant Λ, and that the ΛCDM
model fits the data well, this constant is still a phenomenological parameter, without
any underlying theoretical explanation for its value (Weinberg, 1987). In addition, the
empirically needed value of Λ marks our age as a special time in the evolution of the
Universe. The Universe did not always expand at the rate it does today for the mere reason
that its composition has changed throughout its history. Although now it is dominated
by dark energy, the early Universe was dominated by radiation (photons and neutrinos),
and so was the expansion. This radiation-dominated era lasted from the Big Bang until
z ∼ 3300. Then after this period of about 47,000 years, the Universe cooled enough
so the density of matter (both ordinary and dark) outreached the density of radiation,

1
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Figure 0.1: The evolution of the Universe as it is seen by the ΛCDM model. Courtesy of
NASA/WMAP Science team.

and became dominant. During this matter-dominated era, which extended to z ∼ 0.3,
the expansion of the Universe began to slow down, as gravity countered the outward
expansion. However, since the Universe continued to expand, the matter density kept on
decreasing. Eventually, there came a point where the matter density dropped to such
a low value that the contribution of another form of energy, the already mentioned dark
energy, became significant enough, starting the dark-energy-dominated era we live in. This
moment occurred when the Universe was about 9.8 billion years old, and since then the
expansion rate of space began again to accelerate outwards, under the influence of the dark
energy. As time goes on, the matter density will continue to drop, while the dark energy
density will remain constant, which means that dark energy will become more and more
dominant (see Huterer and Shafer, 2017, for a full review).

The accelerated expansion is one of the most mysterious phenomena in the Universe,
but this is just one of the several consequences of the few we know about dark energy
and dark matter. And thus, we are still far from having a deep enough knowledge of our
Universe. For this reason, several attempts are being made in developing theories and
models that agree with all the evidence that supports the standard model of cosmology
but shed light where it nowadays does not. Disclosing the properties of this two dark
components of the Universe is one of the challenges of cosmology for the years to come.
This defiant task requires to be able to probe the early Universe in great detail. In this
context, the development and testing of detection techniques of weak astronomical objects
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at high redshift becomes a matter of great importance. In this thesis we will focus on the
use of filtering techniques and on the exploitation of gravitation lensing to advance in our
knowledge of the distant Universe.

Multifrequency detection of compact extragalactic sources

Over the last few decades, advances in the sensitivity of observations (especially in the
infrared part of the spectrum) and progress in data processing have allowed us to probe the
high redshift Universe in greater depth. The direct observation of galaxies in the redshift
range z ∼ 1 − 10 gives us the opportunity to study the cosmic history of galaxy and star
formation at different cosmic epochs (see for example de Zotti et al., 2010; Eales, 2015).
However, despite the constant increase in sensitivity of the detectors and in diameter of the
telescopes, observations of the distant Universe are still flux-limited, rendering only those
objects that are above the detection threshold of the instrument. In a Universe in which the
inverse-square law prevails, a flux limit implies that the highest redshift galaxies accessible
to any observatory will be among its faintest detectable objects. This situation is relieved
for sources selected in the submillimetric range of the electromagnetic spectrum thanks to
the strong, negative K correction, which leads to high-redshift galaxies being relatively easy
to detect at submm wavelengths as compared with their low-redshift counterparts (Blain
and Longair, 1993). In addition, lucky alignments of background objects with foreground
lenses can push the limits further by enhancing the flux of objects that could not be
detected otherwise. But even with the aid of the negative K correction and gravitational
lensing, signal processing techniques are a fundamental tool to reach the faintest and most
distant galaxies. This is particularly true in the microwave and far infrared (IR) parts of
the electromagnetic spectrum, where the fluctuations from the cosmic infrared background
(CIB) create a confusion noise whose level is comparable to the flux density of the typical
high redshift galaxies.

The standard single-frequency detection methods for point sources in the CMB and far
IR are based on wavelet techniques (Vielva et al., 2003; Barnard et al., 2004; González-
Nuevo et al., 2006) or on the matched filter (or MF hereafter, Tegmark and de Oliveira-
Costa, 1998; Herranz et al., 2002; Barreiro et al., 2003; López-Caniego et al., 2006, see
also Herranz and Vielva (2010) for a review). Wavelets are well suited for the detection of
compact sources due to their good position-scale determination properties, whereas the MF
is the optimal linear detector-estimator because it provides the maximum signal-to-noise
amplification for a source with a known shape (usually the point-spread function, or PSF
hereafter, of the telescope) embedded in statistically homogeneous and spatially correlated
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noise. By default, these techniques are only applicable to single-frequency sky images: even
for multiwavelength observatories such as the Herschel Space Observatory (Pilbratt et al.,
2010) or Planck (Tauber et al., 2010), the standard detection pipelines have produced
individual source catalogs for each frequency band (see e.g., Planck Collaboration, 2011,
2014, 2016; Maddox et al., 2018). The next logical step is to boost the signal of faint sources
by combining the different bands into a single detection, that is, “multifrequency detection”.
Most of the blind component separation algorithms that are used for diffuse components in
microwave and far IR astronomy cannot deal with the high diversity of spectral behaviors
associated to the different populations of extragalactic compact sources (see for example
Leach et al., 2008). However, over the last few years a number of multifrequency compact
source detection techniques have been proposed in the literature (Herranz and Sanz, 2008;
Herranz et al., 2009; Lanz et al., 2010, 2013; Planck Collaboration, 2018). A review on
the topic can be found in Herranz et al. (2012). In particular, if the spatial profile and
the spectral energy distribution (SED) of the sources are known, and if the cross-power
spectrum is known, or can be estimated from the data, the optimal linear detection method
is the matched multifilter (or MMF hereafter, Herranz et al., 2002). This generalization
outperforms the single-frequency MF in terms of signal-to-noise ratio.

The first of the works presented in this thesis consists of applying a matched multi-
filter to the first and second data releases of the Herschel Astrophysical Terahertz Large
Area Survey (the Herschel -ATLAS or H-ATLAS, Eales et al., 2010), the largest single key
project carried out in open time with the Herschel Space Observatory. We restrict our
multifrequency analysis to the three wavelength bands covered by the SPIRE instrument
aboard Herschel (Griffin et al., 2010), centered around 250, 350 and 500 µm. With this
work we seeked to enhance the significance of detection of high-redshift extragalactic point
sources in H-ATLAS, as well as to provide a sample of gravitational lens candidates.

Dark matter distribution in galaxy clusters

Dark matter constitutes one of the unknown components in the Universe. Since the mid-
30s, it has been known that a meaningful fraction of the mass in the Universe is not tied
up to the luminous stars, that once were thought to comprise most of the mass of galaxies
(Zwicky, 1933). Observations of several galactic rotation curves (i.e., velocity distributions
of stars and gas as they orbit the galactic center versus the distance to the center) lead
to the conclusion that these velocity distributions cannot be explained theoretically only
taking into account ordinary matter. The most straightforward explanation is that the
mass of a galaxy has a significant non-luminous component, dark matter, and that the
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visible matter represents just a small piece of the galaxy.

Even though it has not been directly detected yet, other indirect observations such as
its influence on the large-scale structure of the Universe, its effects on the CMB and the
temperature distribution of hot gas within galaxies and clusters, as well as the gravitational
lensing effect by clusters of galaxies, also point to the presence of dark matter in the
Universe. The only source of information to date for dark matter is due to its gravitational
interaction with large concentrations of visible matter, such as stars or galaxies. If there are
other types of interactions between visible and dark matter, they must be awfully weak
as they have not yet been directly detected through experiments on Earth. Moreover,
according to CMB spectrum, dark matter does not seem to self-interact or annihilates
much either, supposing it does.

Although most of the matter in the Universe is dark matter, its underlying particle
nature remains undisclosed. It is not even known if it consists of only one type of particle.
What we know is that it cannot be made of ordinary particles, since otherwise the expected
outcome from the early Universe nucleosynthesis would dissent with the current observed
data. It does not absorb, reflect or emit any kind of electromagnetic radiation. Since
dark matter forms part of the large structures we observe nowadays, such as galaxies and
clusters, it must be mostly cold, in the sense of being a low-energy or non-relativistic
particle. If dark matter was hot or warm, its presence in these gravitationally collapsed
structures would be less noticeable than observed. Pursuant to most popular dark matter
models, it must be very stable, i.e., if it decays, it must do so very slowly. This is owing
to the fact that it is known that the proportion of dark matter in the early Universe was
about the same as it is today. In this scenario, the mean lifetime of a dark matter particle
would be at least 13.8 billion years.

The most broadly accepted hypothesis for dark matter nature is that it is composed of
weakly interacting massive particles (WIMPs) that interact only through the weak force
and gravity. There are other candidates for dark matter that include ordinary and heavy
neutrinos, other postulated elementary particles like axions, light supersymmetric particles
such as the neutralino, or massive astronomical bodies difficult to detect known as MA-
CHOs (Massive Astrophysical Compact Halo Objects). There are also models built upon
the assumption that the gravitation theory is wrong and they look for other alternatives
so as to explain dark matter.

As it was mentioned above, the mass of the galaxies is dominated by dark matter,
and the most revealing evidence we have for its existence has its origin in the gravitational
interaction. Therefore, one of the ways of studying dark matter properties is to examine this
interaction wherever the concentration of dark matter is large enough. Galaxy clusters seem
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to be an excellent choice. And, indeed they are (see Kravtsov and Borgani, 2012). They are
the most massive systems in dynamical equilibrium, and thus are highly sensitive and useful
cosmological probes of gravitational structure formation and galaxy evolution throughout
the history of the Universe. Given that galaxy clusters are believed to be dominated
by dark matter, the measurement of their internal mass distribution can be helpful to
constrain the physical properties of dark matter (Arabadjis et al., 2002; Markevitch et al.,
2004; Serra and Domínguez Romero, 2011), and to distinguish between dark matter and
alternative gravity theories (Clowe et al., 2006).

In this thesis we constrain the inner dark matter distribution of galaxy cluster MACS
J1206.2-0847 through an analysis based on strong lensing data. Strong lensing is a gravita-
tional lensing regime in which the light from a distant source, such as a quasar or galaxy, is
deflected by a foreground galaxy or cluster of galaxies, resulting in multiple images of the
background source. These images are also usually heavily distorted, acquiring the shape of
rings or arcs. Studying these images provides us with unique information about how dark
matter is distributed in galaxies and clusters, and helps us set limits on its self-interaction
capacity. Independent measures of cosmological parameters, like the Hubble constant, have
been made by measuring time delays in strong lensing events. The magnification effect
of strong lensing, as can be appreciated in Fig. 0.2, enables us to observe and study faint
and distant objects that otherwise would be inaccessible to observations. Strong lensing
is, therefore, a major cosmological tool.

Figure 0.2: Hubble Space Telescope image of GAL–CLUS-022058s, the largest and one
of the most complete Einstein rings discovered. It is nicknamed by astronomers as the
‘Molten ring’ due to its appearance. Credit to ESA/Hubble & NASA, S. Jha and L. Shatz.
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Automatic identification of strong lenses

Gravitational lensing effect analyses would not be feasible if we could not detect it. The
amount of data to be analyzed in astronomy is growing at a rate hard to follow with
traditional approaches. World-class missions like Euclid, DES, SKA, LSST or J-PAS will
provide images covering huge patches of the sky containing billions of galaxies. These large
samples will supply us with more examples of rare events taking place in the Universe,
from which we will be able to learn more. Strong gravitational lenses are among these rare
events. Traditional search of lens features (arcs and rings) has relied exclusively on the
visual inspection of the targets. However, this is an extremely time-consuming task for the
current and future large-scale imaging surveys, given the much larger number of targets to
be inspected. Therefore, finding strong gravitational lenses in this manner is difficult.

The development of automatic lens finder techniques has acquired great importance
in recent years. Machine learning methods have been proven highly successful and can
be used for a great variety of scientific purposes in extragalactic astronomy. We have
found in Convolutional Neural Networks (CNNs) a good starting point to automatically
recognize arc and ring patterns in images, and thus identify strong lensing systems. The
last part of this thesis is focused on developing CNN-based models capable of identifying
strong gravitational lenses in astronomical images from different kinds of surveys, with the
highest possible precision. This work is still unpublished. In first place, we considered
mock galaxy-galaxy lensing data, mimicking a ground-based, multi-band survey, roughly
modeled on the Kilo-Degree Survey (KiDS). We have also trained a CNN with lensing
simulations inspired in the observations expected from the Euclid satellite, both using
only a single visible band and four different frequencies (VIS, J, Y, and H bands). Finally,
we created galaxy-quasar strong lensing simulations based on the Javalambre Physics of
the Accelerating Universe Astrophysical Survey (J-PAS). J-PAS is a unique survey with
54 narrow band filters, that will survey over 8000 square degrees and observe, among other
objects, over half a million quasars, some of them strongly lensed. For our simulations we
used mock quasars based on the J-PAS photometric system, along with galaxies, stars and
quasars observed in a ∼ 1 deg2 area already explored.
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The outline of this thesis is as follows. An overview of filtering aimed at the detection of
point sources with the matched multifilter is shown in Chapter 1. Chapter 2 addresses
the implementation of the MMF over H-ATLAS and details the results obtained (as it
was published in Manjón-García et al., 2019). The basic theory of gravitational lensing
required to understand the content of this thesis is depicted in Chapter 3. In Chapter 4
we present the free-form strong lensing analysis of galaxy cluster MACS J1206.2–0847 (as
it was shown in Manjón-García et al., 2020). The theory behind the operation of artificial
neural networks appears in Chapter 5. Chapter 6 displays the results obtained with our
CNN in searching strong lenses using Euclid-like and KiDS-like mock lensing data. The
preliminary performance of the CNN in searching lensed quasars using real and mock data
based on J-PAS is shown in Chapter 7. Finally, in Chapter 8 we present a brief review
of the conclusions reached in this thesis aimed to state its relevance for future work. A
summary of this thesis written in Spanish is included in the last chapter.



Chapter 1

Filtering and detection methods

Filtering is a class of signal processing tool that allows to select the desired frequencies,
or remove the unwanted ones, from raw data in order to favour the detection of a specific
signal. From the mathematical point of view, a filter corresponds to the following operator:

L : f(x)→ g(x) = Lf(x) (1.1)

where f is the input signal, L represents the filter, g is the output signal obtained after
applying the filter, and x is the independent variable. A linear filter is one in which the
filtered signal is a linear function of the input signal. The filter is homogeneous, or invariant
in time, if the output is delayed by certain time τ when the input signal is also delayed
by the same time. The homogeneity of a filter can be expressed as g(x− τ) = Lf(x− τ).
Most of the filters used in a wide range of scientific fields are linear and homogeneous.
Any linear, time-invariant filter is completely characterized by its impulse response. This
means that for any input, the output can be derived in terms of the input and the impulse
response. The impulse response function of a filter is its output when a brief input signal,
called impulse, is received. This impulse is usually modeled for continuous signals as a
Dirac-δ distribution, whose value at x is obtained by the integral:

f(x) =

∫
f(u)δ(x− u)du (1.2)

The linearity and continuity of the filter L imply that

Lf(x) =

∫
f(u)Lδ(x− u)du (1.3)

9
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We use h(x) = Lδ(x) to denote the impulse response of the filter L, so Eq. (1.3) can be
written as follows:

Lf(x) =

∫ ∞
−∞

f(u)h(x− u)du =

∫ ∞
−∞

h(u)f(x− u)du = h⊗ f (1.4)

where ⊗ stands for a convolution. This equation shows that a linear homogeneous filter
equates to a convolution with the filter’s impulse response h. The convolution theorem
establishes that the convolution of two functions, h and f , at a coordinate point x can be
expressed as:

Lf(x) = h(x)⊗ f(x) =

∫ ∞
−∞

ĥ(q)f̂(q)e−iqxdq (1.5)

where ĥ(q) and f̂(q) are the corresponding Fourier transforms of h(x) and f(x), respec-
tively, according to the following convention of the Fourier transform:

f̂(q) =
1

2π

∫ ∞
−∞

f(x)eiqxdx

f(x) =
1

2π

∫ ∞
−∞

f̂(q)e−iqxdq

(1.6)

The Fourier transform ĥ(q) of the impulse response h(x) is also known as the transfer
function of the filter L. These considerations are valid for continuous signals. All in all,
we see that the process of filtering an image with a linear homogeneous filter is equivalent
to multiply the Fourier transform of the image with this transfer function. This transfer
function can be considered then as a frequency selective device, in the sense of Fourier
modes. This property makes working in the Fourier domain the best choice. In addition,
the signals we want to detect belong to compact or point sources, whose profiles are well
known. The Fourier modes of these compact sources are easily obtained from their profiles.
For these reasons, filtering has proven to be very well suited for the detection of compact
sources embedded in a noisy background. We only have to design transfer functions able
to reduce the contribution of the frequencies responsible for the noise while preserving the
characteristic frequencies corresponding to the compact sources. The widely used band-
pass filters, where the filter is set to zero outside the range of frequencies we want to
preserve, are built on the basis of this idea:
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ĥ(q) =

1 if |q|< qc

0 if |q|≥ qc

where qc is the cutoff frequency. The region |q|< qc is the pass-band of the filter, while the
region |q|≥ qc is the stop-band. The impulse response of a band-pass filter is:

h(x) = 2qc
sin(qcx)

x
(1.7)

Other related filters are the low-pass and the high-pass filters. Low-pass filters, which
remove the higher frequencies, are useful to smooth images since the small scale details
come from high frequencies in the Fourier domain. On the contrary, high-pass filters, which
remove the low frequencies, are used to mitigate the effect of large-scale contaminants.
However, the discontinuous shape of the transfer function in these filters can introduce
ring-shaped artifacts in the image in the real space. After the filtering process, this effect
gives rise to spurious compact objects, which can be mistaken as real objects. Despite the
fact that band-pass filters are used in many disciplines of signal processing, they are not
suited for the detection of compact sources in astronomical images due to this reason. The
kind of filter proper for filtering astronomical images must start by being continuous in the
Fourier space, in order to avoid this type of contamination. The next step is to find a filter
that improves the detection of compact sources embedded in a background by reducing the
background noise and preserving the signal. The most commonly used criterion to achieve
this seeks to increase as much as possible the signal-to-noise ratio (S/N) of the sources we
are trying to detect. Let us assume a signal s with amplitude A at the position x0 inlaid
in a noisy background n with dispersion σ. The S/N of this signal is defined as the ratio
between its amplitude and the standard deviation of the whole field:

S/N =
s(x0)

σ
=
A

σ
(1.8)

Obviously, the S/N of the field will change depending on the filter considered. Therefore,
it is essential to be able to measure the performance of any filter used. The gain or
amplification λ of the signal achieved with a given filter is defined as:

λ =
S/Nψ

S/N
=
sψ(x0)/σψ
s(x0)/σ

=
sψ(x0)σ

s(x0)σψ
(1.9)

where sψ(x0) = ψ ⊗ s(x0) is the filtered map at the position of the source and σψ is the
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standard deviation of the filtered map. If the amplification is greater than one, the chances
to detect the sought signal increase. In this sense, the optimal filter for the detection of
compact sources would be the one that maximizes Eq. (1.9).

We introduce in the following pages the matched filter, one of the standard single-
frequency detection methods for compact sources. A single-frequency technique is only able
to filter images taken at different frequencies separately. Therefore, the filtered maps must
be combined a posteriori in order to perform a multifrequency-like analysis. Afterwards,
we approach the multifrequency methods, starting with the matched matrix filters, and
ending with the matched multifilter explored in this work.

1.1 Matched filter

The way of maximizing the gain λ of a filter, defined in Eq. (1.9), is to minimize σψ while
preserving the signal of interest, sψ(x0) = s(x0). The filter that has proven to be able to
maximize the S/N of a signal in a single frequency channel, and therefore can provide the
highest possible gain, is the matched filter (MF). In the following lines, we are deriving the
expression of the two-dimensional MF. Although this is a single-frequency method, here
we will already consider the existence of observations at various frequencies. We do this
in order to lay the foundation for the later introduction of the matched multifilter, which
is based on the MF method.

First of all, let us assume that several images at N different frequencies are taken of the
same area of the sky. For simplicity, we also assume that there is only one point source,
of amplitude Aν at each frequency, centered at the coordinate origin of these images. The
signal in these images can be described as:

yν(x) = fνsν(x) + nν(x) (1.10)

where yν is the total signal in the pixel x, fν is the frequency dependence of the point
source, sν is the contribution of the point source to the total signal, and nν represents the
background noise in each pixel, containing both the instrumental noise as the one belonging
to other contributions detected. These variables are measured at every observing frequency
ν = 1, ..., N considered.

Before getting any image, the signal from this point source reaches a detector. The
angular resolution of this detector is greater than the intrinsic angular size of such point
source. Its signal is then convolved, at each observing frequency ν, with the corresponding
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antenna beam. We assume, again for simplicity, that the antenna beams can be well
described by symmetric 2D Gaussian functions. The signal from the point source can then
be written as:

sν(x) = Aντν(x) (1.11)

where τν(x) is the spatial profile of the source, and x = |x| due to the assumption that
the beams considered are symmetric. The background noise nν(x) can be modeled as a
homogeneous and isotropic random field with average value equal to zero and whose power
spectrum Pν is defined by:

〈nν(q)n∗ν(q′)〉 = Pν(q)δ2
D(q− q′) (1.12)

where nν(q) is the Fourier transform of nν(x), δ2
D is the 2D Dirac distribution, and the

symbol ∗ denotes complex conjugation.

Hereinafter, we will focus solely on the signal from one of the ν frequencies observed.
According to the convention of the Fourier transform chosen in Eq. (1.6) and the convo-
lution theorem declared in Eq. (1.5), if we decide to apply an unknown filter ψ on the
image signal from Eq. (1.10), the resulting filtered field at a certain coordinate point b is
described by:

ωψ(b) = Aωτ (b) + ωn(b) =

∫
y(q)ψ∗(q)e−iq·bdq (1.13)

where

ωτ (b) =

∫
τ(q)ψ∗(q)e−iq·bdq (1.14)

ωn(b) =

∫
n(q)ψ∗(q)e−iq·bdq (1.15)

Given that both the source profile and the filter are assumed to be circularly symmetric
(ψ(q) = ψ(q)), and since the only point source is placed at the coordinate origin, i.e., b = 0,
the filtered field at the position of the source is given by:

ωψ(0) = ωτ (0) = 2π

∫ ∞
0

τ(q)ψ∗(q) q dq (1.16)
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And the variance of the filtered field is

σ2
ψ =

∫ ∞
0

P (q)|ψ|2(q) dq = 2π

∫ ∞
0

P (q)|ψ|2(q) q dq (1.17)

Now it only remains to find the filter ψ that provides a total filtered field ωψ optimal
for the detection of the sources. This filter must meet the following two requirements:

1. The filter must be an unbiased estimator of the source amplitude. This means that,
after filtering the image, the amplitude value A of the source has to be recovered, on
average over many realizations, at the source position. In a specific case, even after
filtering, there will always be some contribution of the noise.

2. The filter must be a maximum efficiency estimator. This means that the variance
σ2
ψ around the average amplitude value A recovered has to be as small as possible.

The condition (1), written above, to be met by the filter can be expressed as:

〈ωψ(0)〉 = A〈ωτ (0)〉+ 〈ωn(0)〉 = A (1.18)

Since the noise has zero mean, 〈n(x)〉 = 0, it is also true that 〈n(q)〉 = 0, and therefore

〈ωn(0)〉 = 〈
∫
n(q)ψ∗(q)dq 〉 =

∫
〈n(q)〉ψ(q)dq = 0 (1.19)

Consequently, Eq (1.18) is only satisfied if

2π

∫ ∞
0

τ(q)ψ∗(q) q dq = 1 (1.20)

Regarding the condition (2) of maximum efficiency, the variance σ2
ψ comes only from

the noise component (n) because the signal component (Aτ) is always the same. Thus, we
have to minimize Eq. (1.17) while satisfying Eq. (1.20). The way of minimizing a function
with a ligation is through the method of Lagrange multipliers. We define a Lagrangian
that depends on the still-unknown filter ψ:

L(ψ) = σ2
ψ + λ

[
2π

∫ ∞
0

τ(q)ψ∗(q) q dq − 1
]

= 2π

∫ ∞
0

P (q)|ψ|2(q) q dq + λ
[
2π

∫ ∞
0

τ(q)ψ∗(q) q dq − 1
] (1.21)

Taking variations with respect to ψ we get:
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L(ψ + δψ)− L(ψ) = 4π

∫ ∞
0

P (q) ψ∗ δψ∗ q dq + 2πλ

∫ ∞
0

τ(q)δψ∗ q dq (1.22)

We can equal the result to zero in order to get:

2π

∫ ∞
0

[2P (q)ψ(q) + λτ(q)]δψ∗ q dq = 0 (1.23)

A sufficient condition for this last equation to be satisfied is:

ψ(q) =
λτ(q)

2P (q)
(1.24)

Taking into account that τ(x) and τ(q) are both real functions with radial symmetry, the
value of λ can be obtained substituting the filter expression above in Eq. (1.20):

λ =
(
π

∫ ∞
0

τ2(q)

P (q)
q dq

)−1
(1.25)

Finally, all this leads us to the formula of the matched filter in the Fourier space:

ψ(q) =
1

α

τ(q)

P (q)
(1.26)

where α is a normalization factor that preserves the source amplitude after the filtering
process:

α = 2π

∫ ∞
0

τ2(q)

P (q)
q dq (1.27)

The matched filter (Tegmark and de Oliveira-Costa, 1998; Barreiro et al., 2003; López-
Caniego et al., 2006) is established in the literature as the standard single frequency method
for the detection of point sources. This filter gives the maximum S/N in the presence of
additive stochastic noise, which makes it the optimal linear detector for single frequency
maps. In any single frequency approach, each frequency channel is processed separately
and independently from the other channels. The robustness of this approach is that no a
priori assumption about the spectral behavior of the sources considered is required in order
to be successfully applied. However, its main drawback is the loss of the potential noise
reduction that could be obtained by using the spectral information at different frequencies.
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We want to end the explanation of the MF, recalling that the impulse response of any
linear, time-invariant filter, such as the MF, can be characterized when a brief input signal
is received. Let us consider then a Dirac-δ signal from a compact object in the sky. This
signal is observed with a detector whose PSF is a Gaussian of width σ. Due to the intrinsic
characteristics of the measurement procedure, after passing through the detector the signal
becomes a Gaussian, centered at the position of the original one, but surrounded by white
instrumental noise that makes it more difficult to be detected. Now, let us assume that
the signal received is dominated by the noise and the contribution of the point source is
minimal. Therefore, the power spectrum of the noise is a good approximation of the power
spectrum P (q) of the whole signal. As it is white noise, P (q) is approximately constant.
Under all these circumstances, the MF, given by Eq. (1.26), suitable to filter the signal will
be proportional to the Gaussian of the PSF. This important result can be stated as the
following: the optimal filter to denoise a signal with a Gaussian profile embedded in white
noise is a Gaussian filter. Signals in scales lower than the σ of the Gaussian, responsible
for the noise, are removed while signals at larger scales, belonging to compact sources, and
whose shape is closer to the PSF of the detector, are preserved.

In a more realistic scenario than the one depicted above, the MF is not free of some
drawbacks which deserve to be mentioned. In order to construct the MF properly, it is
necessary to estimate the power spectrum for all the Fourier modes in the signal. Despite
the fact that this power spectrum, shown in Eq. (1.12), can be approximated from the
generalised noise, it is particularly difficult to carry it out for the low modes, which are
pretty noisy. The use of these noisy modes to design the MF often results in a discontinuous
filter in the Fourier space. These discontinuities turn into ring-shaped effects when the
image is filtered. These effects can be mitigated by smoothing the spectrum before building
up the filter, but we are inevitably manipulating the input image. Lastly, there will be
times when some of the Fourier modes could not be estimated, and will therefore have to
be guessed.

1.2 Matched matrix filters

The moment has come to address the multifrequency techniques. In a multifrequency
approach, the frequency dependence of the sources and statistical correlation of the noise
between the N different observing frequencies are taken into account. Unlike the single
frequency approach, an important noise reduction can be achieved this way, provided that
there is a noise correlation between the different maps. As stated earlier for the matched
filter in Sec. 1.1, the signal yν(x) in N two-dimensional images can be described with
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Eq. (1.10) and the background noise nν(x), in which there is an unknown number of point
sources, can be modeled as a homogeneous and isotropic random field with average value
equal to zero. The cross-power spectrum P = (Pν1ν2) between the noises at any two of
these frequencies, ν1 and ν2, is defined by:

〈nν1(q)n∗ν2(q′)〉 = Pν1ν2δ
2
D(q− q′) (1.28)

The matched matrix filters is a linear filtering technique (Herranz and Sanz, 2008; Her-
ranz et al., 2009, MTXF) that maximizes the signal-to-interference ratio of compact sources
embedded in a set of images by taking advantage of the background’s power spectrum for
each channel and its cross-correlation among the different channels. The MTXF does not
make any a priori assumption about the spectral behavior of the sources. The other two
basic underlying ideas of this method are that the same source will appear in the same
position in all the images, and that although the spatial profile of the sources may differ
from channel to channel, it is a priori known. In order to achieve an accurate photometry
in all available channels, it is required a transformation in which the number of output
maps processed is equal to that of the input images. And, as a multifrequency approach,
all N channels have to contribute in the elaboration of each one of the output maps. The
possibility proposed in Herranz and Sanz (2008) is to define a set of N × N filters such
that the processed maps are described by:

ων1(x) =
∑
ν2

∫
Ψν1ν2(q)yν2(q)e−iq·xdq (1.29)

where Ψ = Ψν1ν2 is the matrix of filters. This matrix filter must satisfy the two optimality
requirements, (1) and (2), for the detection of point sources detailed in Sec. 1.1. These
two conditions ensure that the filtered maps ωνi are both unbiased and efficient. The set
of filters that minimize the variance σωνi at each frequency νi while keeping the individual
amplitudes Aνi constant for all point sources, independently of their frequency dependence,
can be shown to be given by the following expression:

Ψ∗ = FP−1 (1.30)

where F = (Fν1ν2) = (λν1ν2τν2), being λ = (λν1ν2) = H−1 = (Hν1ν2)−1, and

Hν1ν2 =

∫
τν1(q)P−1

ν1ν2(q)τ∗ν2(q) dq (1.31)
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It is pretty straightforward to see from Equations (1.30) and (1.31) that, for the case
where the noise is completely uncorrelated between channels, the matrix filter Ψ∗ becomes
a diagonal matrix whose non-zero elements are the complex conjugates of the matched fil-
ters corresponding to each input channel. For sources with circularly symmetric profiles,
the filters are real-valued and the whole process is equivalent fo filter each channel indepen-
dently with the proper matched filter defined in Eq. (1.26). However, when there is noise
correlation between channels, a substantial reduction of the background is achieved with
the MTXF thanks to the optimal combination of the filtered maps. This technique has
been tested on CMB simulations at different wavelengths outperforming (or at least equal-
ing) the results obtained with the standard mono-frequency MF, introduced in Sec. 1.1, in
terms of reliability, completeness and flux accuracy.

1.3 Matched multifilter

In Sec. 1.2 we said that the MTXF does not make any a priori assumption about the
spectral behavior of the point sources. As a consequence, this filtering results in a N ×N
matrix of filters which generates a filtered map for each value of Aν . When a priori
assumption about the spectral behavior of the sources is made, Aν consists of a single
value (A), and the matrix can be reduced to a N× 1 vector of filters. The optimal filters
for the detection of point sources belonging to this vector are what we know as the matched
multifilter (MMF). This is the multifrequency method explored in this work. A detailed
derivation of the MMF formula, which is strongly based on the derivation of the MF shown
in Sec. 1.1, is presented in Appendix A. Under the same assumptions for a multifrequency
approach, regarding the treatment of the signal and the noise, established in sections 1.1
and 1.2, the set of N linear time-invariant filters ψν that made up the MMF are defined as

ωψν (b) =

∫
yν(x)ψν(x; b)dx =

∫
yν(q)ψν(q)e−iq·bdq (1.32)

where b defines a translation from the coordinate origin, ων(b) represents each filtered
image at frequency ν in the position b, and yν(q) and ψν(q) are the corresponding Fourier
transforms of yν(x) and ψν(x), respectively, according to the Fourier transform convention
defined in Eq. (1.6). The first step in this multifrequency method is thus to filter each
image yν with one of these linear filters ψν . In the next step, all the filtered maps ωψν
from Eq. (1.32) are combined according to:
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ωψ(b) =
∑
ν

ωψν (b) (1.33)

This total filtered map is an image in which the signal s(x) has been enhanced while
the noise n(x) has been significantly decreased. The two necessary requirements to ensure
that the filtered field is optimal for the detection of point sources in this multifrequency
approach are the same as those, (1) and (2), explained in Sec. 1.1. On the one hand, the
total filtered map must be an unbiased estimator of the amplitude of the source, so the
filters ψν must be unbiased. On the other hand, the variance of the total filtered map ωψ
has to be as small as possible, i.e., the filters must be maximum efficiency estimators.

As we said at the beginning of this section, the filter we are looking for is called matched
multifilter (MMF) and was introduced for the first time for the detection of Sunyaev-
Zel’dovich (SZ) clusters in multifrequency maps Herranz et al. (2002). The MMF is the
optimal linear detection method when the frequency dependence and the spatial profile of
the sources are known, or considered known, and the cross-power spectrum of the noise is
known or can be estimated from the data. In the Fourier space the MMF can be written
as follows:

Ψ(q) = αP−1F,

α−1 ≡
∫

FtP−1 F dq,

σ2 =

∫
ΨtPΨ dq = α

(1.34)

where Ψ(q) = [ψν(q)] is the column vector of the filters; F = [fντν ], being fν the frequency
dependence and τν the source profile at each frequency ν; P−1 is the inverse matrix of the
cross-power spectrum P; and σ2 is the variance of the output-filtered image. In Eq. (1.34)
and in the following discussion, q ≡ |q| is the modulus of the Fourier wave vector since
we are assuming circularly symmetric source profiles. And since the cross-power spectrum
only depends on the modulus q, all the formulas can be expressed in terms of q instead of
the full vector. However, it would be easy to generalize our formulas for non-symmetric
profiles just by replacing q by q in the equations. Finally, α in Eq. (1.34) can be interpreted
as the normalization that is requested in order to guarantee that the filters ψν are unbiased
estimators of the flux density of the sources under study. Further details can be found in
Herranz et al. (2002); Lanz et al. (2010, 2013).
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It can be easily seen the formal similarity between the MMF formula and the expres-
sion for the MF shown in Eq. (1.26). Both are directly proportional to the profile τ of
the source, and inversely proportional to the power spectrum P of the noise. In fact, as
we pointed out for the MTXF expression (see Eq. 1.30), the MMF reduces to a diagonal
matrix of N matched filters, one at each frequency, if the maps considered do not have an
underlying noise correlation between different frequencies. Therefore, a proper multifre-
quency approach can only be carried out as long as the maps considered show correlations
among them. The spectral behavior fν of the sources is not known a priori just with the
information of the images. Therefore, some way to model this unknown frequency depen-
dence needs to be found. Lanz et al. (2010) showed that the MMF could be generalized
for the case where this dependence is not known. Despite this, in this work we will incor-
porate a specific SED to the MMF in order to derive photometric redshift estimations of
the extragalactic sources under study. In order to address this problem, it is very useful
to rewrite the vector F = [fντν ] in the matrix form F = T(q)f(ν), with diagonal matrix
T(q) = [τ1(q),..., τN (q)] and the vector of frequency dependence f(ν) = [fν ]. Thereby, we
are able to include all the dependence of q in the matrix T, pulling it completely apart
from the dependence in ν. This way Eq. (1.34) can be rewritten as:

Ψf (q) = αf P−1Tf , α−1
f =

∫
f tTP−1 Tfdq = f tHf (1.35)

where matrix H =
∫

TP−1 Tdq and we based on the fact that Tt = T and that vector f
does not depend on q. This reformulation of the MMF is very convenient for its implemen-
tation. The most time-consuming part of the filtering is the calculation of the matrices P

and T since they must be calculated for all values of q. In the case we are considering in
this work the only quantity that varies during the maximization process is the redshift of
the source we want to estimate. This allows us to compute the integrals of matrix H only
once for each set of images of the source considered. The estimation of the amplitude A
of a point source present in a set of images after applying these filters is given by:

AΨf = ωΨf (0) = αfAf
tHf (1.36)



Chapter 2

Application of the MMF over
H-ATLAS sources

In this chapter, we apply the matched multifilter technique to the multi-band infrared
astronomical images of the Herschel -ATLAS survey, aiming at producing a catalog of
distant and faint IR sources. Despite the fact that Lanz et al. (2010) showed that the
MMF can be generalized for the case where the SED of the sources is not known, we will
incorporate here a specific SED so as to derive photometric redshift estimations of high-
redshift dusty star-forming galaxies (DSFGs) detected in the IR part of the spectrum1. We
restrict our multifrequency analysis to the three wavelength bands covered by the SPIRE
instrument aboard Herschel (Griffin et al., 2010), centered around 250, 350 and 500 µm.
As discussed in Negrello et al. (2010), Lapi et al. (2011), González-Nuevo et al. (2012),
Pearson et al. (2013) and Donevski et al. (2018), the SPIRE bands are ideal for capturing
the peak in the SED corresponding to the dust emission of SFGs at z ∼ 2. The dust
absorbs the light from their stars and reemits it at longer wavelengths. Therefore, their
emission is redshifted from its rest-frame wavelength around 70–100 µm to the SPIRE
wavelengths. Although galaxies have formed most of their stars at this redshift range, at
higher redshifts DSFGs occupy the most massive halos and are among the most luminous
objects found at z ∼ 4 (Michałowski et al., 2014; Oteo et al., 2016; Ikarashi et al., 2017).
These high-redshift DSFGs have markedly red colors as seen by SPIRE, with rising flux
densities from 250 to 500 µm (the so-called “500 µm-risers”), and have received a great
deal of attention in the recent years (see for example Ivison et al., 2016; Negrello et al.,
2017; Strandet et al., 2017). The DSFGs, and particularly the 500 µm risers uncovered by
Herschel, are providing much insight into the early star forming history of the Universe.

1As measured at the observer’s rest frame.
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However, limited angular resolution and sensitivity severely constrain the power of this
type of objects as astrophysical probes. The sensitivity of SPIRE allows for the direct
detection of only the brightest, and thus rarest objects, at the bright end of the luminosity
function (Negrello et al., 2017). By means of our multifrequency MMF technique, we
intend to enhance the detectability and statistical significance of very faint red objects in
the H-ATLAS source catalog and so expand the list of reliable 500 µm-riser candidates.

From the catalog of distant and faint sources derived, we also select a sample with
those that are more likely to be gravitationally lensed. Although a non-negligible part of
the faint H-ATLAS sources at z > 1 could be detected thanks to having been amplified
by weak lensing (González-Nuevo et al., 2014, 2017), most of the faint high-z candidates
in the H-ATLAS catalog have not been strongly lensed (with magnification factors larger
than a few) by foreground halos (Negrello et al., 2017). In the other end of the flux density
distribution, gravitational lensing plays an important role by magnifying distant galaxies
that could be otherwise below the detection threshold or, at the very least, be observed
with a significantly smaller flux (González-Nuevo et al., 2012; Bussmann et al., 2012, 2013;
Messias et al., 2014). Gravitational lensing is a powerful astrophysical and cosmological
probe, particularly rewarding at submillimeter wavelengths (Negrello et al., 2007; Vieira
et al., 2013). As mentioned earlier, submillimeter telescopes such as Herschel have lim-
ited spatial resolution and consequently high source confusion, which makes probing the
DSFGs difficult. By increasing the apparent angular size and brightness of the sources,
gravitational lensing helps to detect and carry out follow-up observations of distant galax-
ies obscured by dust (Cox et al., 2011; Conley et al., 2011; Negrello et al., 2014; Nayyeri
et al., 2016; Spilker et al., 2016). Even though, the identification of gravitational lenses is
tricky and usually results in few candidates due to the relatively low probability of lensing,
wide-area submillimeter surveys can simply, and easily detect strong gravitational lensing
events at high fluxes, with nearly full efficiency, as was proved by Negrello et al. (2010).
These are often strongly lensed galaxies (SLGs) with magnification factors of order ten
that can be more easily detected owing to their magnified flux (Wardlow et al., 2013). The
identification of these lenses is of great interest for multiple reasons. They offer the possi-
bility to study in greater detail distant galaxies and resolve some of their features (Canalog
et al., 2014; Dye et al., 2015). Also, the background galaxies can be used to reveal the
internal structure of the lenses. Having a large catalog of SLGs will be important in future
studies. For example, caustic crossing events on these galaxies can be used to study, not
only distant luminous stars, but also the constituents of the lens itself. If a sizable fraction
of dark matter is made of compact objects, caustic crossing events can be used to set limits
in their fraction on a range of masses from subsolar to tens of solar masses. This mass
range can be difficult to probe otherwise (see for instance Diego et al., 2018b).
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2.1 H-ATLAS

Herschel -ATLAS is an extragalactic survey covering the widest area undertaken with Her-
schel Space Observatory (Pilbratt et al., 2010), imaging 659.25 deg2 of the sky distributed
in five fields: three (GAMA9 with 53.43 deg2, GAMA12 with 53.56 deg2 and GAMA15
with 54.56 deg2) on the celestial equator, a large field (180.1 deg2) centered on the north
Galactic pole (NGP), and an even larger field (317.6 deg2) centered on the south Galactic
pole (SGP). Images have been taken in five far-IR to sub-mm photometric bands using the
PACS (100 and 160 µm) and SPIRE (250, 350 and 500 µm) instruments in parallel mode.
PACS measurements have not been used in the analysis performed in this work. The main
reason is that the SED model assumed to estimate the redshifts of the H-ATLAS sources,
see Eq. (2.1), has been developed to use only the SPIRE fluxes. This was owing to the fact
that not all H-ATLAS sources have flux measurements at PACS wavelengths and only a
few per cent of them were detected at greater than 5σ in these bands. However, SPIRE
bands themselves are ideal for capturing the emission peak belonging to the high-redshift
sources aimed in this work. The maps at different bands produced from SPIRE are close
in terms of frequency and show noise correlation between them, allowing to perform a
multifrequency approach.

Both Data Release 1 (DR1) and the subsequently released Data Release 2 (DR2) have
been used in this analysis. Herschel -ATLAS DR1 includes the three equatorial fields cov-
ered by the Galaxy And Mass Assembly (GAMA) (Driver et al., 2009, 2016) spectroscopic
survey. The three fields are ∼162 deg2 combined, and are approximately located around
9h, 12h and 15h in α. The associated catalog, described in Valiante et al. (2016) and
Bourne et al. (2016), covers all three regions and includes 120,230 SPIRE sources, which
have at least a S/N = 4σ (including confusion noise) in any of the 250, 350 or 500 µm
maps. Herschel -ATLAS DR2 covers the two fields centered in the NGP and SGP, which
are about 450 deg2 combined. The maps are described in Smith et al. (2017) while the
submillimeter catalog is described in Maddox et al. (2018)2 and include 118,980 (NGP)
and 193,527 (SGP) sources, respectively. These sources also have at least a S/N = 4σ
detection in all of the SPIRE bands. The complete H-ATLAS catalog contains a total of
432,737 sources, most of them being point sources. The resulting catalog after removing
extended sources and stars still has 410,997 sources.

As it is explained in greater detail in Valiante et al. (2016), sources were detected
using the MADX algorithm (Multiband Algorithm for source Detection and eXtraction)
applied to the SPIRE maps. The first step of this method is to use Nebuliser to remove the

2H-ATLAS catalogs are public and available at http://www.h-atlas.org/public-data/download.

http://www.h-atlas.org/public-data/download
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diffuse Galactic dust emission from all maps in the three bands, resulting in raw images
with the local large-scale background subtracted (“backsub” maps). Then the images are
convolved with a proper matched-filter for each band (Chapin et al., 2011). Maps of the
variance in each of these convolved maps are also created. During the convolution, the
contribution of each pixel of the input image is weighted by the inverse of the square of the
instrumental noise in that pixel. The resulting maps are background subtracted maps and
noise-weighted maps filtered with a customized matched filter (“fbacksub” maps). In the
next step (in MADX), the maps at 350 and 500 µm are interpolated onto images with the
same pixel scale as the 250 µm one, and the three images and their corresponding variance
maps are then combined together to form a single signal-to-noise or detection image. In
practice, images at 350 and 500 µm are given a zero weighting regarding source detection,
that is, the detection image in MADX is simply the 250 µm image. The position of the
source in this image will be used to estimate the fluxes of the source in the 350 and 500
µm maps. A list of potential sources is produced by finding all peaks in the detection
image with S/N > 2.5σ. A Gaussian fit is carried out in each of these peaks to provide
an estimate of the source position and their flux densities are measured at the positions of
those peaks in all the SPIRE bands. Finally, only sources with S/N > 4σ in at least one
of the three SPIRE bands are kept in the final catalog.

We have worked with the backsub maps instead of the fbacksub ones in order to test
our own multifrequency matched-filter’s performance without any other alteration but the
subtraction of the large-scale background emission. The method used to subtract this
large-scale emission does not affect the flux density of point sources. The units of the
maps are Jy/beam. We converted these fluxes to Jy/pixel by dividing the values in the
maps by the ratio between the beam area and the pixel area in arcsec2 (469/36, 831/64
and 1804/144 at 250, 350 and 500 µm, respectively). The maps have pixel sizes of 6, 8 and
12 arcsec at 250, 350 and 500 µm, respectively. All maps must have the same pixel size so
as to be able to combine the three-channel images of a source into one single filtered image.
Thus we re-binned 350 and 500 µm maps to a pixel size of 6 arcsec, the same pixel size as
the 250 µm map. This repixelization may cause small alignment errors between the pixel
positions of the center of the source in the different channels. These pixel misalignments
have already been considered and monitored in the method. We have achieved a perfect
alignment for ∼ 90% of the H-ATLAS sources, leaving the rest with deviations not greater
than 2 pixels in one or some of the channels.
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2.2 Choosing the frequency dependence

The frequency dependence fν of the sources is not known a priori just with the information
of the images. For that reason, we have to model the spectral behavior of the sources
somehow. The following template model from Pearson et al. (2013) has been used as
frequency dependence for all the sources considered:

Sν = An

[
Bν(1+z)(Th)[ν · (1 + z)]β + aBν(1+z)(Tc)[ν · (1 + z)]β

]
(2.1)

where Sν is the flux at a redshift frequency ν(1+z), z is the unknown redshift of the source,
An is a normalization factor, Bν(1+z) is the Planck function, β = 2 is the emissivity index,
Th = 46.9 K and Tc = 23.9 K are the temperatures of the hot and cold dust components,
and a = 30.1 is the ratio between cold and hot dust masses.

This template has been developed to estimate redshifts using only the SPIRE fluxes
from Herschel. It has emerged from a subset of 40 bright Herschel -ATLAS sources with
very well known redshifts in the range 0.5 < z < 4.3. The redshifts of 25 of them, with
z < 1, were obtained through optical spectroscopy. The redshifts of the other 15 objects,
in the range 0.8 < z < 4.3, were estimated from CO observations. This SED has already
been used and studied in several previous works, among which we can cite Eales (2015);
Ivison et al. (2016); Bianchini et al. (2016, 2018); Negrello et al. (2017); Fudamoto et al.
(2017); Bakx et al. (2018); Donevski et al. (2018).

Given that all the sources used to build this model are among the most luminous H-
ATLAS sources at their respective redshifts, a bias may arise from the fact that the model
may not be representative of the less luminous sources. For instance, low-z H-ATLAS
sources have cooler SEDs than the template derived in Pearson et al. (2013) from their
high-z spectroscopic sample. It is important to bear in mind that the many different types
of sources distributed in the sky constitute a very heterogeneous set of objects that do not
have a common spectral behavior. This is the reason why the detection and estimation
of the flux of point sources is a difficult task. In this sense, it should be noted that this
template model is not expected to be a physically real SED but simply a representative
model that can be used as a statistical tool for estimating redshifts from SPIRE fluxes.
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2.3 Implementation of the MMF

Once all maps have the same pixel size and are in units of Jy/pixel, we can apply the MMF
on the positions of the 4σ detections produced by the MADX algorithm. Positions (α and
δ) of all point sources identified in the maps are known and taken from the H-ATLAS
catalog, converted from degrees into pixels and used to select the objects in the backsub
maps. We extract square patches of 256×256 pixels centered on the position of the source
for the three bands (250, 350 and 500 µm) and align them to run our MMF algorithm.
When a H-ATLAS source is close to the edge of the H-ATLAS footprint, the zeros in the
map are replaced by white noise generated with the same mean and standard deviation as
that of the rest of the map (within the footprint). The MMF takes as an argument this
set of N = 3 images corresponding to the same area of the sky and returns a single filtered
image where the source is optimally enhanced with respect to the noise. For N images,
the frequency dependence fν has N degrees of freedom. Choosing one of the frequencies
under consideration as fiducial frequency of reference allows reducing to N -1 the number
of independent degrees of freedom. We decided to choose the 250 µm channel as fiducial
frequency.

The final filtered image is the result of a two-phase process. The first phase is the slowest
one but, having separated the dependence in q from the dependence in ν in Eq. (1.35), it
only needs to be done once for each set of images of the source considered. It consists of
the calculation of a prefiltered map without any frequency dependence information. This
prefiltered map is built using the Fourier transforms of the N = 3 image patches and the
matrix H. The cross-power spectrum of the images and matrices T are needed in the
calculation of the matrix H. T matrices are derived using the corresponding PSFs at 250,
350 and 500 µm as source profiles at each frequency. And the inverse of the cross-power
spectrum matrix is calculated for every pixel in the images.

The second phase is faster and requires only the calculation of the normalization factor
α and the linear combination of the prefiltered maps using the frequency dependence fν
shown in Eq.(2.1). For each source we seek to maximize the S/N of the final filtered map
with respect to the frequency dependence fν . For the frequency dependence considered,
the only free parameters in this optimization process are the source amplitude A and its
redshift z. In fact, the amplitude is not really a variable, because for any given set of images
it is determined by z for any iteration of the filter through Eq. (1.34). By construction, the
resulting A coincides with the source’s flux density when the optimization is completed.
Therefore, the only variable in the optimization is z and the maximization of the filtered
S/N of a given source is tantamount to finding its redshift. Since the redshift z of the
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source is unknown, this last step is repeated for equally distributed redshift values in the
range 0 ≤ z ≤ 7, with a step of 0.007 until the redshift which maximizes the S/N defined
in Eq. (1.8), that is, the optimal redshift, for the considered source is found. In the end,
we have an estimation of the redshift of the source, its frequency dependence vector fν ,
and a maximized filtered image of the source, whose amplitude A corresponds directly
to the source flux density in the chosen fiducial frequency (250 µm). The fluxes of the
source at the other two frequencies (350 and 500 µm ) can be obtained by multiplying
this amplitude by the corresponding components of fν , which is normalized to the fiducial
frequency. This method is robust only in the case of point sources, that is, those sources
whose spatial profile in each frequency agrees with the beam profile in that frequency.

2.4 Simulations

In order to test our method, we used simulated data with a well known SED. Simulations
are useful for both, identifying possible biases and estimating the errors in the reconstructed
redshift. Simulations were done using only GAMA’s backsub maps from H-ATLAS DR1.
The recently released NGP and SGP fields from H-ATLAS DR2 were not used for the
simulations, but this should have no impact on our results.

We started each simulation with a randomly chosen square patch of the desired size
(256 × 256 pixels in our case) from any of the three equatorial fields surveyed (GAMA9,
GAMA12 or GAMA15). The same patch region was selected for the three sub-mm pho-
tometric bands. Since the three SPIRE channels have different pixel sizes, and the MMF
needs to work with a common pixel size, we re-bin the 350 and 500 µm maps to have the
same pixel size as the 250 µm map. Alignment errors between the pixel positions of the
source in the different channels (which may harm the MMF filtering result), can take place
due to this repixelization but, as we already explained in Sec. 2.1, they have already been
considered for the H-ATLAS sources, as they are for simulated sources. Thus, all maps
used in simulations have a pixel size of 6 arcsec and are in units of Jy/pixel. Then a source
with the corresponding beam profile (according to the PSF of the channel), an adequate
amplitude (in order to obtain fluxes like the H-ATLAS ones), a fixed redshift, and known
SED (Eq. 2.1), is placed in the middle of each one of the three patches. From this moment
we followed the same procedure, described in Sec. 2.3, as with any H-ATLAS source. As it
is done with the H-ATLAS sources, if the selected map patch contains zeros (i.e., it is near
the edge of one of the GAMA fields), these are replaced by white noise with dispersion
given by the map background. We performed 5000 simulations, as described before, for
each one of the redshifts considered within the ranges 1 ≤ z ≤ 4.5, with a 0.1 step, and
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4.5 ≤ z ≤ 7, with a 0.5 step. For each input redshift value considered, zin, we compute the
mean value of the 5000 output redshift values, zout, and the standard deviation. The dif-
ference between the redshifts estimated after applying our MMF method to the simulated
sources and the input redshift is shown in Fig. 2.1 as a function of zin.

The bias observed above z ' 4 could be due (in part) to the fact that the Pearson model
(Eq. 2.1) is built based on some of the most luminous H-ATLAS sources and a restricted
range in redshift (0.5 ≤ z ≤ 4.3). However, more importantly, photometric redshifts
derived from a SED have problems when the peak of the IR emission is not bracketed by
the three SPIRE bands. This peak falls in the SPIRE bands between z ≈ 1 and z ≈ 4,
and it is precisely in this redshift range where our method seems more robust returning
unbiased redshift estimates. Beyond z ≈ 4 a positive bias can be appreciated which can
be as high as ≈ 0.6 at z ≈ 7. Using a polynomial fit, we find that our estimations of the
redshift after applying the MMF can be corrected through:

ztrue = 0.0013 · z4
out − 0.018 · z3

out + 0.056 · z2
out + 0.943 · zout + 0.057 (2.2)

where ztrue is the unbiased redshift estimation of the corresponding H-ATLAS source.

1 2 3 4 5 6 7
zin

0.4

0.2

0.0

0.2

0.4

0.6

0.8

z o
ut

 - 
z i

n

Figure 2.1: Difference between the redshift recovered with our MMF method (zout) and
the input redshift (zin) as a function of zin. 5000 simulations are run for each zin value in
the range 1 ≤ zin ≤ 7. The mean value (zout) is computed and shown as blue dots. The
solid red line shows a polynomial fit to these mean values. This fit is later used to correct
for this bias. zout-zin errors (1σ) are plotted as a shaded region.



Application of the MMF over H-ATLAS sources 29

2.5 Comparison with known-redshift H-ATLAS sources

We compare the redshifts obtained by the MMF method with a set of 32 Herschel -ATLAS
sources with known spectroscopic redshifts from Pearson et al. (2013), Negrello et al. (2017)
and Bakx et al. (2018). Several of the sources selected are ubiquitous in all these references.
Ten of these 32 sources are chosen from Negrello et al. (2017), 17 are sources with zspec

> 0.8 used in Pearson et al. (2013) to build their template and five are taken from Bakx
et al. (2018). Redshifts and flux densities estimated with the MMF for these sources are
shown in Table 2.1.

The differences between photometric redshifts estimated with the MMF and the mea-
sured spectroscopic redshifts for these 32 objects are shown in Fig. 2.2. The top plot shows
∆z/(1 + zspec) = (zphoto−zspec)/(1 + zspec) before the bias correction. The mean and me-
dian are µ = 0.004 and µ1/2 = -0.017, respectively, with a rms scatter of σ = 0.143. The
bottom plot shows the same quantity after the bias correction. Since at z < 4 the bias
correction is small, the improvement is small in this redshift range. Nevertheless, the mean
and median (µ = 0.009, µ1/2 = -0.003), and scatter (σ = 0.138) are slightly better than in
the sample without bias correction. These statistical parameters are also included in the
corresponding redshift column of Table 2.1. If we take the definition for outliers (those
with |∆z / (1+zspec)| > 0.3) used in Ivison et al. (2016), only one of the objects considered
is identified as an outlier both for the analysis with biased and unbiased redshifts. Error
bars in the top panel are calculated by using Eqs. 1.34 and 2.1, while error bars in the
bottom panel are derived from simulations described in Sec. 2.4. We note how the error
bars in the bottom panel are more representative of the dispersion around the zero value
than the error bars in the top plot. This result indirectly confirms that the error bars
derived from the simulations are the most meaningful ones for our estimated redshifts.

Despite this result, it is worth to clarify something more about the errors here calcu-
lated. From Eq. (1.34), and using a parametric SED such as Eq. (2.1) it is possible, under
some general (but not necessarily true) assumptions, such as the statistical independence
of the background noise at the three different SPIRE channels, to estimate the degree of
uncertainty of our photometric redshift zMMF . The error bars of all redshift estimations
from tables 2.1 to 2.3, except for zunbiasedMMF , have been obtained this way. However, the
statistical uncertainty of an estimator and its actual error with respect to the groundtruth
are not necessarily the same thing. The uncertainty given to an estimator can be under,
or overestimated depending on the validity of the statistical assumptions made. On the
other hand, the estimator may be biased and this bias may not be accounted for in the
calculation of the uncertainty. When possible, it is preferable to calculate the error of the
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estimator using real, already known values of zspec or, if few spectroscopic redshifts are
available, by means of realistic simulations. This is the approach followed in this section
to obtain the errors of the unbiased redshifts zunbiasedMMF from Table 2.1, showing that for
SPIRE, and in the redshift range 1 ≤ z ≤ 7, the actual average error of the estimation of z
is under control and typically smaller than the uncertainty calculated from Eq. (1.34) and
Eq. (2.1).

In order to test the robustness of our results, we have repeated the comparison with
the spectroscopic sources, but changing the maps from which we extract these sources and
the convolution functions used. We run our method, but using several combinations of
the backsub and fbacksub maps as well as SPIRE’s PSFs and MFs. The results obtained
with the different configurations are shown in Table 2.2. We also obtain redshift estimates
for these configurations by applying the Pearson’s χ2 test statistic, but without using the
MMF, and taking into account only the flux density measurements from different maps
or the tabulated fluxes from the H-ATLAS catalog, and comparing them with the fluxes
predicted by the Pearson et al. (2013) SED. These last results are shown in Table 2.3.

As can be seen by comparing the redshift estimations for the 32 known-spectroscopic
sources from tables 2.1 to 2.3, both our unbiased and biased estimates, obtained with the
MMF method on the backsub maps and using the SPIRE PSFs, outperform all the other
redshift estimations derived with the alternative combinations of maps and convolution
functions. Only redshifts estimated by applying a Pearson’s χ2 test statistic with flux
measurements from fbacksub maps (zfb

χ2) and with tabulated fluxes from the H-ATLAS
catalog (ztχ2) get comparable results. Nevertheless, our unbiased MMF redshifts are the
ones which get lower offsets and scatter, and agree with spectroscopic redshifts with the
greatest accuracy.

Focusing now our attention on flux densities, practically all fluxes recovered with the
MMF (SMMF ) are consistent with the corresponding tabulated fluxes from H-ATLAS
catalog (SSPIRE), in the sense that the IR peak is recovered at the right corresponding
wavelength for 29 out of the 32 sources considered from Table 2.1. On the other hand, and
as expected, all IR peaks are recovered in the right band for the flux densities Sfb

χ2 taken
from the fbacksub maps (see Table 2.3). The comparison between our MMF estimates
of the flux densities and those from the H-ATLAS catalog is shown in Fig. 2.3. It can
be seen how our flux estimations seem to be systematically below the values from the
H-ATLAS catalog. This slight underestimate is expected since the noise reduction carried
out by the MMF must lead to flux densities lower than those of H-ATLAS. The average
flux underestimates between the flux densities estimated with our MMF and the H-ATLAS
fluxes are 17 ± 13 mJy (250 µm), 18 ± 9 mJy (350 µm) and 14 ± 14 mJy (500 µm).
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Figure 2.2: Difference, ∆z/(1 + zspec), as a function of zspec between the biased (top) or
unbiased (bottom) photometric redshifts estimated with our matched multifilter (MMF)
and the spectroscopic redshifts from sources in Table 2.1. The statistical parameters noted
illustrate the systematic overestimates or underestimates, mean µ and median µ1/2, and
the degree of scatter, σ, of the photometric redshifts (zbiasedMMF and zunbiasedMMF ) found using
the MMF and the Pearson et al. (2013) SED. Error bars in the top panel are calculated
from using Eq. (1.34) and Eq. (2.1) while error bars in the bottom panel are derived from
simulations described in Sec. 2.4. The gray band depicts the 1σ region centered in the
median µ1/2 value for each distribution.
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Figure 2.3: Flux measurements in the 250 (top), 350 (middle), and 500 µm (bottom)
SPIRE channels derived with the MMF versus the corresponding tabulated H-ATLAS
fluxes for the 32 known-spectroscopic sources from Table 2.1. The dashed line marks
perfect correlation. All fluxes are in units of mJy/beam, according to the beam profile of
the respective channel.
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2.6 High-z candidates in H-ATLAS

In this section we describe our strategy to find high-z candidates in the H-ATLAS data.
In the two subsections below, we explore two different strategies. A first subsample
(Sec. 2.6.1) is defined, where the candidates have to be visible in all three SPIRE bands
(this will define our bright subsample of high-z candidates) and for which a more reliable
estimate of the redshift can be obtained. In the second subsample (Sec. 2.6.2), we focus on
the 500-µm risers where the highest flux is found in the band with the longest wavelength.
Although this does not guarantee that the source is at high redshift, all of the most dis-
tant objects in H-ATLAS will be 500-µm risers, as the peak of the IR emission will be at
wavelengths longer than 500-µm.

2.6.1 The bright subsample

In order to define a sample of reliable high-z candidates in the H-ATLAS, and motivated
by the work exposed in Negrello et al. (2017), we follow a strategy based on applying
different cuts to the official photometric catalog and the results of running the MMF. This
strategy is based on flux cuts, color cuts, and agreement of fit between the photometric
measurements and the SED assumed. By applying a series of cuts to the full sample, we
reduce the number of candidates until we arrive to a small subsample of objects which
meet all our criteria. Since we focus on high-z candidates, some of the cuts are designed
to remove low-z sources. We describe these cuts in detail below:

i) Since our method only works for the case of strictly point sources and high-z galaxies
will appear as unresolved, first we discard all sources we know for sure are not point-like,
that is, sources that have aperture fluxes at the three SPIRE wavelengths different from
the point source fluxes. We retain only those sources for which their aperture radius has
‘-99’-value in the H-ATLAS catalog, which means that the aperture flux and the point
source flux are the same. We also remove sources identified as stars and those with null
or negative fluxes in any of the channels. This results in a sample of 410,997 objects from
H-ATLAS (see Fig. 2.4a), on all of which our MMF method is applied.

The redshift distribution found for these H-ATLAS objects is shown in Fig. 2.5. An
important peak close to zero-redshift can be seen. This figure shows clearly that there are
many sources that could be either, a) low redshift sources or, b) sources for which their
frequency dependence does not resemble the SED considered. They are not adequate to
be used with our method since they would result in erroneous redshifts and fluxes.
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(a) Removal of stars and extended sources.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
S250 / S350

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

S 3
50

 / 
S 5

00

9159 H-ATLAS sources selected

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

(b) S/N ≥ 5σ in the three SPIRE channels.
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(c) Exclusion of local galaxies at low redshifts.
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(d) Closeness to the SED model.
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(e) Exclusion of possible blazars.
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(f) S/N ≥ 15σ except if there is an association.

Figure 2.4: Evolution of the color-color diagram of the H-ATLAS sources studied as cuts
are applied in order to get a sample of robust high-z candidates. The dashed pink line is
the track of the Pearson et al. (2013) SED for redshifts in the range [0.5,4.5] (in increasing
order from the top-right to the bottom-left corner). The vertical lateral colored bar present
in all plots is a scale of the S/N of the sources exhibited, achieved with the MMF.
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Figure 2.5: Redshift distribution, according to the redshift estimates obtained with the
MMF method, of the 410,997 sources from H-ATLAS selected after removing the non
point-like objects and those identified as stars.
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ii) After removing stars and non-point sources, we proceed to make a preselection using
the photometric information of the H-ATLAS catalog. We want our sources to be at high
redshift and bright enough so our redshift estimations are robust. Thus we select those
which have a S/N greater than 5σ in all three SPIRE channels, which leaves us with just
9,159 sources, 2.2% of the total (see Fig. 2.4b). This is the most stringent cut.

iii) Good candidates are required to have a flux ratio between 250 and 350 µm bands
less than or equal to 1.5 (i.e., S250/S350 ≤ 1.5). This cut has the effect of excluding local
galaxies at low redshifts. (see Fig. 2.4c).

iv) One important requirement for our preselection is to ensure that the chosen sources
have a photometric behavior close to the response offered by the Pearson model (Eq. 2.1)
used to estimate their redshifts, since, as we discussed earlier in Sec. 2.2, the method does
not work equally well for all H-ATLAS sources (see Fig. 2.6). This can clearly be seen
reflected in the large number of sources far away from the Pearson et al. (2013) SED model
in Fig. 2.4a. We discard sources that are at a distance larger than 0.3 from the SED model
in the color-color diagram (see Fig. 2.4d), according to:

√(
SSPIRE250

SSPIRE350

− SMMF
250

SMMF
350

)2

+

(
SSPIRE350

SSPIRE500

− SMMF
350

SMMF
500

)2

< 0.3 (2.3)

The number 0.3 is a compromise between a more stringent requirement that would result
in a smaller number of candidates and a more relaxed requirement that would increase
the number of candidates but at the expense of increasing the number of sources with
unreliable redshift estimations.

v) The last requirement in our preselection is to exclude the presence of possible blazars.
As showed in Negrello et al. (2017), the leaking of blazars into a catalog of high-z candidates
can be reduced by demanding our sources to have S350/S500 > 1, unless this ratio is already
above the Pearson model in the color-color diagram (see Fig. 2.4e).

At this point, after the cuts i) through v), 5,079 sources remain in the sample. Since this
sample will be used later, we denote it the “full high-z” sample. These cuts are not perfect
at removing low-z objects but the sample should be dominated by high-z candidates.

vi) Finally, to reduce this level of contamination, and select high-S/N sources for which
photometry is expected to be robust (and consequently the photometric redshift as well),
we impose the condition that the S/N defined in Eq. (1.8) must be greater than or equal
to 15σ in the filtered image after our MMF has been applied, except if the H-ATLAS
SPIRE position has an association with a galaxy of known spectroscopic redshift within a
separation of 5 arcsec. This cut leaves 370 objects (see Fig. 2.4f). This selection constitutes
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our “robust high-z” sample of high-z candidates, with a redshift distribution of z = 2.13
and σz = 0.65, and will be used later to identify possible lensed systems.

This sample is fully shown in Appendix B, including the estimated redshifts and flux
densities. We have performed an additional study for the objects within this sample by
comparing the Pearson’s χ2 value obtained considering only the SPIRE flux densities with
that obtained taking into account also the PACS flux densities. For this we have used
the flux densities from the H-ATLAS catalog as the observed data and the frequency
dependence provided by the Pearson SED (Eq. 2.1), at the photometric redshift estimated
by our MMF, as the theoretical data. The result of this study is also shown in Appendix B
through the flag ‘Reliability’. Those sources for which the χ2 improves or remains the
same when using PACS fluxes are flagged with a ‘0’, whether the χ2 worsens slightly but
it is still acceptable they are flagged with a ‘1’, if the χ2 is much worse, we use ‘2’, and
those sources without PACS flux measurements available are flagged with a ‘-1’.

Within this sample, 201 candidates are in the GAMA fields (60 in the GAMA9, 58 in
the GAMA12 and 83 in the GAMA15), 82 in the NGP and 87 in the SGP. The number
density of sources in the GAMA fields is higher than in NGP and SGP after this last cut
because the number of associations with objects having spectroscopic redshifts is higher in
the GAMA fields. 21 out of the 32 spectroscopic redshift sources shown in tables 2.1 to 2.3
(highlighted in bold) are included in this sample. Among all the objects of this sample we
find 35 QSOs. Fig. 2.7 shows the redshift distribution of the robust high-z sample in order
to compare it with the redshift distribution of the initial sample, shown in Fig. 2.5.

A direct comparison between our estimates of the flux densities in all channels and the
tabulated fluxes from the H-ATLAS catalog is shown in Fig. 2.8. A clear linear trend is
observed and the agreement is pretty good. As happens with the spectroscopic redshift
sources from Fig. 2.3, an overall underestimation of our MMF flux densities, greater for
fainter sources, can be observed. As the number of sources is greater, here the effect is most
remarkable. The average flux underestimates between the flux densities estimated from the
MMF method and the H-ATLAS fluxes are 10 ± 9 mJy at 250 µm, 12 ± 9 mJy at 350 µm
and 9± 8 mJy at 500 µm. Since the MMF combines information from all three wavelengths,
which allows to reduce the background and boost the signal, instrumental, foreground
and confusion noises are better removed so flux density estimates are less affected by
Eddington bias than H-ATLAS flux densities. This underestimation with respect to H-
ATLAS flux densities is stronger toward low flux densities, which supports the Eddington
bias hypothesis. However, it is also observed to a lesser extent for high flux densities,
suggesting a possible degradation of the MMF photometry that could be related to the
way we re-pixelize and combine 350 and 500 µm images in the filtering step (see Sec. 2.3).
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Figure 2.6: Normalized SED from Pearson et al. (2013), as defined in Eq. (2.1), at z = 2
in contrast with the normalized tabulated fluxes at 250, 350 and 500 µm (vertical dotted
lines) of two H-ATLAS sources at zMMF = 2: one (J144102.9+012805) that fits well to
the model and other one (J233138.6-354345), whose points have been slightly shifted in
the x-axis to get better clarity, that does not fit properly to the model, according to our
criteria.

Fig. 2.9 shows the improvement in S/N achieved with our MMF method for the robust
high-z sample in contrast with the S/N of the three µm SPIRE bands. An average im-
provement of 76% in the S/N has been achieved for this sample with our MMF technique
compared to the 500 µm band. Besides, an average improvement of 16% and a slight
improve of 0.2% have been obtained for the 350 µm and 250 µm, respectively.

In the end, we have a selected sample that includes several hundreds of interesting
objects from H-ATLAS, which both agree with the Pearson et al. (2013) SED used to
estimate the redshift and have high redshifts and signal-to-noise ratios.
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Figure 2.7: Redshift distribution, according to the redshift estimates obtained with the
MMF method, of the 370 high-z H-ATLAS sources from the robust high-z sample selected
after imposing all cuts enumerated in Sec. 2.6.1.
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Figure 2.8: Flux measurements in the 250 (top), 350 (middle), and 500 µm (bottom) SPIRE
channels derived with the MMF versus the corresponding tabulated H-ATLAS fluxes for
the 370 objects in the robust high-z sample. The dashed line marks perfect correlation. All
fluxes are in units of mJy/beam, according to the beam profile of the respective channel.
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Figure 2.9: S/N in the filtered image derived with the MMF versus the S/Ns in the 250
(top), 350 (middle) and 500 µm (bottom) SPIRE channels for the 370 sources in the robust
high-z sample. The linear behavior with zero-intercept is drawn with a black dashed line.
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2.6.2 The faint subsample: “500 µm-risers”

Apart from the robust high-z sample explained above in Sec. 2.6.1, we also searched for
faint sources at 250 and 350 µm but bright at 500 µm in the H-ATLAS data, the so-
called “500 µ-risers”. Our selection criteria looks for sources whose detection is at least
significant at 500 µm but are not clearly detected at 250 and 350 µm. We select objects
with S/N500 ≥ 4σ, S/N250 ≤ 4σ and S/N350 ≤ 4σ in the H-ATLAS catalog and apply
our multifrequency MMF filter to them, in order to enhance the statistical signification
of those detection candidates. Those sources with S/N ≥ 5σ after the MMF filtering,
and that satisfy the condition S250 ≤ S350 ≤ S500, are considered statistically significant
enough to be firm 500 µm-riser candidates. This way, we get a sample of 695 reddened
SPIRE objects. However, we must not forget the limitations of the Pearson et al. (2013)
SED assumed to estimate the redshifts. Thus, selecting again the sources that best suit
the model in the color-color diagram (Eq. 2.3), we are left out with 237 objects. This
selection constitutes our 500 µm-riser sample of robust high-z candidates, which have a
redshift distribution characterized by z = 4.62 and σz = 0.71. This entire sample is shown
in Appendix B, including the redshift and flux density estimates. The same additional χ2

study, considering PACS flux densities, performed for the “robust high-z” sample has been
applied here, and the result is shown in the appendix through the same flags explained in
Sec. 2.6.1. Within this sample, 97 objects are from the GAMA fields (27 in the GAMA9,
37 in the GAMA12 and 33 in the GAMA15), 68 from the NGP and 135 from the SGP.

The comparison between our estimates of the flux densities in all channels and the tab-
ulated fluxes from the H-ATLAS catalog for the 500 µm-riser sample is shown in Fig. 2.10.
A much larger scattering than the one seen in Fig. 2.8 for the robust high-z sample can be
observed. But this behavior was expected as we are aiming to sources that have a barely
significant detection at 500 µm and are not detected at 250 and 350 µm. The average
flux underestimates between the flux densities estimated from the MMF method and the
H-ATLAS fluxes are 4 ± 4 mJy at 250 µm, 0.4 ± 4 mJy at 350 µm and 3 ± 5 mJy at 500
µm. Fig. 2.11 shows the comparison between the S/N reached with our MMF method and
the S/N in all three SPIRE channels. It seems logical that the improvement achieved with
our method in S/N for these 500 µm-riser objects (Fig. 2.11) should be better than for the
objects from the robust high-z sample (Fig. 2.9), as they are near the H-ATLAS detection
limit. This is confirmed since we have achieved average improvements of 25%, 55%, and
76% in the S/N for the 500, 350 and 250 µm, respectively. This clearly reflects that it is in
this kind of faint objects where our MMF method accomplishes a bigger impact in terms
of signal significance.
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Unlike the previous robust high-z sample that sought to select bright objects in all
bands, among which the probability of finding lensed systems is relatively high, now we
pursue faint high-z objects. Most of them are not expected to be lensed by foreground
sources but to be intrinsically luminous. These robust high-z and 500 µm-riser samples
are, in fact, built from starting requirements mutually excluding. Sources from the robust
high-z sample are initially required to have S/N250, S/N350 and S/N500 greater than 4σ
while sources from the 500 µm-riser sample are demanded to have S/N500 ≥ 4σ, S/N250

≤ 4σ, and S/N350 ≤ 4σ. But this does not mean, for example, that there are not lensed
sources candidates among 500 µm-riser galaxies. It should be pointed out, for instance, the
case of J090045.4+004125 (α = 135.191, δ = 0.6897), a DSFG at z = 6, revealed by strong
lensing and detected in the GAMA field as part of a subsample of 500 µm-riser galaxies
(Zavala et al., 2018). This object is part of our 500 µm-riser sample under the identifying
name J090045.5+004131 with a redshift estimation of z = 6.35 via our MMF technique.

An important effort was made recently by Ivison et al. (2016) in order to take advan-
tage of the 250, 350 and 500 µm Herschel -ATLAS imaging survey and select extremely red
objects. That work focused on studying the space density of luminous DSFGs at z > 4
by selecting galaxies from the H-ATLAS survey with extremely red far-infrared colors and
faint 350 and 500 µm flux densities, called ultra-red galaxies. It is important to bear in
mind that they used a modified version of the MADX algorithm to identify their sources,
so some of their sources are not in the official H-ATLAS catalog. This fact explains why
we have been able to locate in the H-ATLAS catalog only 78 of the 109 sources shown in
their sample. These ultra-red galaxies were required to be above 3.5σ in any of the three
SPIRE bands. None of these 78 red sources is in our robust high-z sample. Instead, and
as expected, there is an overlap between our 500 µm-riser sample and these red sources.
We remind that our 500 µm-riser sample was built demanding S/N500 ≥ 4σ, S/N250 ≤ 4σ

and S/N350 ≤ 4σ. To begin with, 54 out of those 78 objects are strangers to the 500
µm-riser sample because they all have S/N350 > 4, and thus are excluded by our criterion,
which leaves us with 24 possible objects. Only nine of these remaining 24 objects from
Ivison et al. (2016) (J090045.5+004131, J090304.5-004616, J114038.8-022804, J114350.3-
005210, J114353.5+001250, J114412.1+001812, J115614.0+013900, J142710.6+013806
and J004615.0-321825) are included in our 500 µm-riser sample. If sources were not de-
manded to behave like the specific SED, their number would increase to 16 objects.

In the next section, we will search for possible lensed systems involving our high-z
sources. We will focus on the robust sample because we find no significant correlation for
the case of the 500 µm-riser sample. This suggests us that this last sample is mostly not
lensed as expected due to the lower flux criterion used to select its sources.
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Figure 2.10: Flux measurements in the 250 (top), 350 (middle) and 500 µm (bottom)
SPIRE channels derived with the MMF versus the corresponding tabulated H-ATLAS
fluxes for the 237 objects in the 500 µm-riser sample. The dashed line marks perfect
correlation. All fluxes are in units of mJy/beam, according to the beam profile of the
respective channel.
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Figure 2.11: S/N in the filtered image derived with the MMF versus the S/Ns in the 250
(top), 350 (middle) and 500 µm (bottom) SPIRE channels for the 237 objects in the 500
µm-riser sample. The dashed line marks perfect correlation.
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2.7 Possible lensed galaxies

2.7.1 Preliminary comparison with previous works

In the previous section, we presented our samples of high-redshift candidates (full, robust
high-z, and 500 µm-riser samples). Since the optical depth of strong lensing grows with the
redshift of the background source, these samples of high-z candidates may contain some
lensed galaxies. In fact, this is known to be particularly true for Herschel sources, where
the brightest high-z sources correspond to SLGs (Negrello et al., 2007, 2010, 2014, 2017;
Cox et al., 2011; Conley et al., 2011; Lapi et al., 2011; González-Nuevo et al., 2012; Messias
et al., 2014; Dye et al., 2015).

Here we compare the robust high-z sample (370 candidates) with similar catalogs found
in the literature. Our robust high-z sample contains 62 of the 80 SLGs candidates with flux
densities above 100 mJy at 500 µm presented in Negrello et al. (2017). 17 of the candidates
in the robust high-z sample are part of the sample of 20 confirmed SLGs. The only three
confirmed strong lens systems that are not included in our sample are: J085358.9+015537
(flagged as a star), J142935.3-002836 (which is a major merger system at z = 1.027 (Messias
et al., 2014) and is excluded by our cut iii), and J125135.3+261457 (excluded by our cut
v). Among the confirmed lensed galaxies, J114637.9-001132 at z = 3.26 is interesting since
it is associated to a high-z proto-cluster candidate3(Fu et al., 2012; Herranz et al., 2013;
Clements et al., 2016; Greenslade et al., 2018).

In addition, six of the eight objects labeled in Negrello et al. (2017) as likely to be lensed,
and 39 of the 51 objects defined as unclear are included in our robust high-z sample of 370
candidates. The two missed objects labeled as likely to be lensed were excluded in our cut
iv. The only one object from Negrello et al. (2017) confirmed to not be a strongly lensed
galaxy (J084933.4+021442) is nor part of our sample because it is flagged as a star in
the H-ATLAS catalog. It is indeed a binary system of Hyper Luminous Infrared Galaxies
(HyLIRGs) at z = 2.410 (Ivison et al., 2013). Our sample also contains five sources from
the SGP field (J004736.0-272951, J011424.0-333614, J235623.1-354119, J001010.5-360237
and J014849.3-331820) which meet the flux criterion demanded by Negrello et al. (2017)
but are not in their proposal.

In González-Nuevo et al. (2012), the authors applied to the H-ATLAS Science Demon-
stration Phase field (' 14.4 deg2), which covers part of the GAMA9 field, a method
for efficiently selecting faint SLGs candidates. This method was called HALOS (Her-

3We have recently submitted an ALMA proposal to confirm the redshifts of the objects associated to
this possible proto-cluster.
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schel -ATLAS Lensed Objects Selection). They found 31 SLGs candidates, whose respec-
tive lens candidates were identified in the VIKING near-infrared catalog, and proposed
that the application of HALOS over the full H-ATLAS surveyed area would increase the
size of the sample up to ∼ 1000 SLGs. Eight of these sources are included in our ro-
bust high-z sample: J090302.9-014127, J090311.6+003906, J090740.0-004200, J091043.0-
000321, J091304.9-005343 (all of them confirmed as strongly lensed in Negrello et al. 2017),
J085855.3+013728, J090957.6-003619 and J091331.4-003644.

The H-ATLAS catalog can be used to find potential lens systems (lens plus lensed
galaxy) using the already available optical associations with SDSS (Blanton et al., 2017)
for each SPIRE source (Bourne et al., 2016). These associations are sought via a Likelihood-
Ratio analysis of optical candidates within 10 arcsec of all SPIRE sources with S/N ≥ 4
at 250 µm. Bourne et al. (2014) studied the fact that redder and brighter sub-mm sources
have optical associations with greater positional offsets than would be expected if they were
due to random positional errors. They concluded that lensing is the most plausible cause
for increased offsets of red sub-mm sources and that the problem of misidentifying a galaxy
in a lensing structure as the counterpart to a higher redshift submillimeter galaxy may be
more common than it was previously thought. Most of these optical associations do not
have spectroscopic information (i.e., secure redshift). However, there are 180 objects in
our robust high-z sample for which this condition is fulfilled (mostly because of the cut vi).
Spectroscopic redshifts are obtained from many different surveys, like SDSS DR7, SDSS
DR10, 6dFGS, 2SLAQ or GAMA. 138 sources out of these 180 have a reliable spectroscopic
redshift (Z_QUAL ≥ 3) in the range 0.1 ≤ z ≤ 1.1, which is significantly smaller than
the photometric redshift estimated by our MMF method. Hence, these associations may
correspond to possible lens systems since the redshifts of the alleged lens and the high-z
candidate are so different. In those cases where the optical association is not the same
object as the SPIRE source, it will be an object at a smaller redshift and close (in angular
separation) to the SPIRE source. The conditions would be given for the lens effect to
take place and these cases should be studied in detail to confirm it. However, since these
associations are already given in the catalogs themselves and their spectroscopic redshifts
come from many different sources, we are going to proceed to look for our own associations.

The above discussion shows how our robust high-z sample has the potential to host
many unknown lensed galaxies. Most of the previously known Herschel lensed galaxies
were unveiled by the 500 µm flux density criterion (S500 > 100 mJy), which has proven to
be a simple, but powerful, method of selecting strongly lensed candidates. Here we rely on
a cross-correlation study based on matching distant IR sources with foreground potential
lenses located at distances that make them consistent with being a lens system.
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2.7.2 Statistical lensing analysis. Correlation analysis with SDSS

Additional evidence for significant lensing in our two samples (full and robust high-z) can
be obtained through a simple correlation analysis with a catalog of foreground galaxies.
If the Herschel sources are tracing the magnification pattern produced by a population
of lenses at z < 1, one would expect an excess of IR sources detected around regions of
magnification larger than one. Alternatively, the alleged high-z source could be instead a
lower redshift associated with the lens. In this case, the excess found in the correlation
would be produced by contamination of our sample (i.e., low-z sources being misinterpreted
as high-z sources).

For the catalog of potential foreground lenses (z < 1), we use lenses extracted from
the SDSS. By lenses, we mean here either individual galaxies or groups of galaxies (see
below). Since SDSS does not cover the SGP field, we consider only the IR sources that
come from the GAMA and NGP fields. After removing IR high-z candidates from the
SGP field, the full high-z sample is reduced to 2828 candidates while the robust high-z
sample is left with 283 candidates. For a simple estimation of the correlation, we compare
the number of matches found within an aperture and for different aperture radii, Nm(R),
with the expected number from a random distribution (Nr(R), see Eq. 2.4). This random
number is obtained by the following equation:

Nr (R) = NH
Ac (R)

AH
(2.4)

where NH is the number of H-ATLAS high-z candidates, Ac(R) is the total area covered
(within the footprint of H-ATLAS) by the disks of radius R around the SDSS sources, and
AH = 341.65 square degrees is the total area of H-ATLAS survey excluding the SGP field.
By construction, Nr(R) ≤ NH .

On the other hand, the number of matches (Nm(R)) between the H-ATLAS sources and
the SDSS lenses is obtained by computing the number of associations between both catalogs
as a function of radius, by centering disks of radius R on the SDSS lenses and counting
the number of H-ATLAS sources which fall within the disk. Any significant excess over
the expected value in the random case is evidence for either lensing or contamination. The
uncertainty, or significance, with respect to the random case is given by the Poissonian error
(i.e., the uncertainty is given by σr(R) =

√
Nr(R)). If the excess is due to contamination,

this hypothesis can be tested, since one would expect the separation between the positions
of the Herschel sources and the SDSS lenses to be comparable to the positional error
in Herschel (which is significantly larger than the corresponding error in SDSS), that is
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2–3 arcsec. In these cases, the Herschel source may actually be the SDSS lens. If, on
the contrary, a high-z Herschel candidate is found at more than 3 arcsec from the SDSS
source, lensing is possibly responsible for that association. Some of the associations should
be due to pure random alignments, but this number can be estimated by the Poissonian
expectation number discussed above.

For the SDSS lenses, we use two catalogs of potential lenses derived from SDSS. The
first catalog focuses on rare but massive potential lenses at z ≤ 0.6, while the second catalog
focuses on less massive, but more abundant, potential lenses with z ≤ 1.1. We set a lower
limit to the redshift of the potential lenses since below certain redshift, strong lensing
becomes inefficient due to the increase in the critical surface mass density (zmin ∼ 0.1).

For the association with massive lenses, we use the SDSS DR8 redMaPPer cluster cat-
alog with 26111 objects (Rykoff et al., 2014). This catalog is the result of applying the
Red-sequence Matched-filter Probabilistic Percolation (redMaPPer) cluster finding algo-
rithm to the 10400 deg2 of photometric data from the Eighth Data Release (DR8, SDSS-III
collaboration, 2011) of the SDSS. The redMaPPer algorithm has been designed to handle
an arbitrary photometric galaxy catalog, with an arbitrary number of photometric bands
(≥ 3), and performs well provided the photometric bands span the 4000 Å break over the
redshift range of interest. It adapts therefore well to a survey such as the Sloan Digital Sky
Survey. Because the number of objects in this catalog is not very large, we use all of them
in the cross-correlation which cover a range of 0.08 ≤ z ≤ 0.6 in redshift and 19.85 ≤ λ ≤
299.46 in cluster richness. NH = 881 of the 26111 halos fall in the footprint of H-ATLAS.
We find no significant excess when cross-correlating redMaPPer with our catalog of high-z
H-ATLAS sources. Given the fact that 17 of the 20 strongly lensed candidates from Ne-
grello et al. (2017) (confirmed as such) are in our selected sample, and none of them has
a match with redMaPPer, this confirms that the lenses in Negrello et al. (2017) are not
massive halos, but rather relatively small halos (like elliptical galaxies for instance).

Our second search for potential lensed galaxies focuses on the low-mass regime of the
lenses. From SDSS DR14 (Abolfathi et al., 2018) we select a larger catalog of galaxies
with known spectroscopic redshifts. We focus on galaxies with known redshift in order to
minimize possible contamination from galaxies that are misinterpreted as having z > 0.15

and also to reduce the computation time. The sample contains 1,776,242 galaxies from the
Sloan Digital Sky Survey Data Release 14 with 0.15 ≤ z ≤ 1.1. As mentioned above, we
limit the minimum redshift to 0.15 since below this redshift most galaxies are expected to
be subcritical (and not produce strong lensing effects). Among all of them, NH = 50175
are the galaxies that fall in the footprint of H-ATLAS. We cross-correlate our full high-z
subsample of 2828 H-ATLAS sources with the SDSS catalog of galaxies and compare it



Application of the MMF over H-ATLAS sources 53

0 100 200 300 400 500 600
R / "

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

N
m

 (R
) /

 N
r (

R)

Figure 2.12: Ratio between the number of matches found (Nm(R)), after cross-matching
the full high-z subsample of 2828 H-ATLAS sources with a sample of 1,776,242 known-
redshift galaxies from SDSS DR14, and the number of matches expected (Nr(R)) from a
random distribution (Eq. 2.4) for different aperture radii R around the SDSS sources.

with the expected number in the case of no correlation (i.e., the random case described
above). The ratio of the observed (Nm(R)) and random matches (Nr(R)) between this
catalog and our full high-z selection sample is shown in Fig. 2.12 for different radii. In
Fig. 2.13 we exhibit the same but for our robust high-z subsample of 283 candidates.
Both Fig. 2.12 and Fig. 2.13 show a non-one signal for aperture radii of several arcminutes,
which is unexpected and an example of the lensing-induced cross-correlations between high-
z submillimeter galaxies and low-z galaxy population (Wang et al., 2011; González-Nuevo
et al., 2014, 2017; Bourne et al., 2014).

There is a clear increase in significance when considering the robust high-z subsample
of 283 candidates. A sharp increase in the excess of matches is found at distances below
60 arcsec. The smaller amplitude of the excess in the full high-z sample with 2828 sources
suggests that this sample may be more contaminated by low-z candidates.
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Figure 2.13: Ratio between the number of matches found (Nm(R)), after cross-matching
the robust high-z subsample of 283 candidates with a sample of 1,776,242 known-redshift
galaxies from SDSS DR14, and the number of matches expected (Nr(R)) from a random
distribution (Eq. 2.4) for different aperture radii R around the SDSS sources.
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No. H-ATLAS name α (deg) δ (deg) zunbiasedMMF zH−ATLASspec SDSS ID α (deg) δ (deg) zSDSSspec R (arcsec) θE (arcsec)

1 J083726.1+015641 129.358797 1.944871 1.86 ± 0.28 0.396 1237653622837216254 129.359078 1.944271 0.396 2.4 3.9
2 J085229.0+010217 133.121072 1.038117 2.46 ± 0.30 0.492 1237650797288031084 133.120142 1.038521 0.492 3.7 6.9
3 J085250.9-010000 133.21219 -1.000204 1.13 ± 0.26 0.581 1237673709866321335 133.213142 -1.000520 0.583 3.6 2.3
4 J085855.4+013729 134.731174 1.624899 2.36 ± 0.30 0.665 1237651753990489111 134.729564 1.626498 0.658 8.1 26.6
5 J090038.0-003522 135.158643 -0.589715 1.54 ± 0.27 0.407 1237674460412707797 135.154630 -0.586598 0.570 18.3 4.5
6 J090311.6+003907 135.798682 0.652064 3.17 ± 0.34 0.300 1237648722285101574 135.798225 0.651815 0.300 1.9 1.4
7 J091331.4-003644 138.380891 -0.612341 1.49 ± 0.27 0.296 1237648720675668446 138.383247 -0.610143 0.499 11.6 3.4
8 J092348.4+011907 140.952056 1.318877 1.44 ± 0.27 0.590 1237653664181126111 140.952085 1.319323 0.590 1.6 5.4
9* J114512.9-002446 176.303787 -0.412797 3.13 ± 0.34 0.444 1237671140943987623 176.308407 -0.412486 0.629 16.7 5.6
10 J115101.7-020024 177.757213 -2.006799 1.89 ± 0.28 0.264 1237650762389586324 177.760981 -2.006413 0.454 13.6 6.3
11 J115819.5-000127 179.581642 -0.024356 2.32 ± 0.29 0.597 1237648721230561969 179.579745 -0.026204 0.597 9.5 6.8
12 J120656.4+012641 181.735018 1.444872 2.11 ± 0.28 0.637 1237651752400454138 181.733129 1.443833 0.637 7.8 5.6
13 J120932.7+002517 182.386595 0.421524 1.51 ± 0.27 0.470 1237674651003454270 182.385894 0.420998 0.471 3.2 5.4
14 J125233.5+331031 193.139528 33.175366 2.05 ± 0.28 0.490 1237665331465945161 193.139024 33.175429 0.490 1.5 4.8
15 J130138.7+302808 195.411281 30.468764 2.03 ± 0.28 0.166 1237665443126575176 195.410385 30.468297 0.166 3.3 2.3
16 J130152.8+245012 195.469976 24.836605 2.28 ± 0.29 0.519 1237667911671153185 195.469452 24.836544 0.519 1.7 3.7
17* J131407.0+271208 198.529016 27.202121 0.96 ± 0.27 0.189 1237667443513229416 198.529224 27.203110 0.189 3.6 1.3
18* J131533.9+233254 198.891415 23.54824 1.35 ± 0.26 - 1237667910598787245 198.892569 23.550384 0.551 8.6 4.2
19 J131635.1+332406 199.14629 33.401613 3.33 ± 0.35 0.463 1237665127475380722 199.147629 33.401386 0.463 4.1 5.6
20* J131715.6+322643 199.314904 32.44538 1.25 ± 0.26 0.185 1237665227847565637 199.313765 32.446109 0.185 4.3 11.7
21 J132111.2+265009 200.296539 26.835849 2.08 ± 0.28 - 1237667323262992805 200.293255 26.836073 0.542 10.6 0.6
22 J132355.2+282319 200.979945 28.388498 2.33 ± 0.29 0.406 1237665440981254703 200.978406 28.389180 0.406 5.5 3.1
23 J132453.6+244909 201.223168 24.819245 1.82 ± 0.27 0.569 1237667448346903078 201.221548 24.818992 0.569 5.4 3.2
24 J133020.9+240249 202.587121 24.046861 3.00 ± 0.33 0.610 1237667911673971962 202.586077 24.046954 0.610 3.5 4.2
25* J133231.6+350843 203.131806 35.145221 1.82 ± 0.27 0.189 1237664852029079667 203.131680 35.145198 0.189 0.4 2.0
26 J133806.8+351530 204.528535 35.258382 1.90 ± 0.28 0.339 1237664852566409566 204.528530 35.257533 0.339 3.1 0.6
27 J134324.5+240202 205.852117 24.034017 2.15 ± 0.29 0.500 1237667912212153027 205.854422 24.035555 0.500 9.4 2.6
28 J134429.5+303034 206.12285 30.509484 2.29 ± 0.29 - 1237665329860248195 206.122041 30.504826 0.672 17.0 0.9
29* J134853.0+270011 207.220753 27.002946 2.49 ± 0.30 0.175 1237665533319643218 207.223273 27.003177 0.175 8.1 3.0
30 J141351.9-000026 213.466627 -0.007454 2.72 ± 0.31 - 1237674603753243273 213.466488 -0.009563 0.548 7.6 1.2
31 J141550.4+012750 213.960027 1.464006 2.47 ± 0.30 0.296 1237651752951415050 213.959966 1.465131 0.296 4.1 1.5
32* J141605.5+011828 214.023078 1.308023 3.15 ± 0.34 0.588 1237651735235003221 214.024281 1.307622 0.588 4.6 3.3
33 J141827.4-001703 214.614453 -0.284336 1.85 ± 0.28 0.250 1237648704053903588 214.614920 -0.284529 0.250 1.8 3.6
34 J141832.9+010212 214.637488 1.036847 4.14 ± 0.39 0.668 1237651752414871842 214.636719 1.036710 0.668 2.8 3.2
35 J142008.9-001434 215.03741 -0.242847 2.27 ± 0.29 0.615 1237648704054035361 215.037730 -0.242879 0.615 1.2 5.9
36 J142233.9+023413 215.641415 2.570521 2.20 ± 0.29 0.747 1237651736846270820 215.641393 2.568986 0.747 5.5 0.2
37 J143358.4-012718 218.493585 -1.455029 1.89 ± 0.28 0.239 1237655693012369781 218.49700 -1.456681 0.238 13.7 2.1
38 J143845.8+013503 219.691249 1.584351 1.62 ± 0.27 0.498 1237651735774364011 219.691389 1.583848 0.498 1.9 5.3
39 J145420.6-005203 223.586163 -0.867644 2.58 ± 0.31 0.765 1237648720176087748 223.586516 -0.872245 0.551 16.6 8.4
40 J145653.4-000720 224.222595 -0.122431 1.58 ± 0.27 0.647 1237648721250092410 224.222216 -0.122965 0.647 2.4 1.5

Table 2.4: 40 matches found at a separation radius less than or equal to 20 arcsec after cross-
matching the robust high-z subsample of 283 high-z candidates with a sample of 1,776,242
known-low-redshift galaxies from SDSS DR14. The object J145420.6-005203 is identified
as a QSO in the H-ATLAS catalog. For each H-ATLAS source the following information
is provided: our redshift estimate after revising the bias (zunbiasedMMF ), spectroscopic redshift
of the optical association assigned in the H-ATLAS catalog (zH−ATLASspec ), identifying name
(SDSS ID) of the association found by us, its spectroscopic redshift (zSDDSspec ), its separation
radius in arcsec (R) and a rough estimation of Einstein radius that the lensed system would
have according to the calculations and assumptions described in Sec. 2.7.2. Those sources
marked with an asterisk (*) are also forecasted to be lens systems according to the best
deep learning model derived from KiDS-like simulations in Sec. 6.1.
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Focusing on the smaller radii, we find 40 associations at a separation lower than 20
arcsec, between the 50175 known-spectroscopic-redshift galaxies from SDSS DR14 that fall
in H-ATLAS footprint and our robust high-z subsample of 283 H-ATLAS sources. One
of them (J145420.6-005203) is identified as a QSO in the H-ATLAS catalog. We chose to
consider this separation since most of the lenses would have an Einstein radius less than 20
arcsec, which is the radius around which the strongest magnifications are expected. From
among these matches, 28 have a separation greater than the positional error in Herschel
(>3 arcsec) so lensing is possibly responsible for that association. ∼ 4 associations should
be caused due to pure random alignments, so it is expected that a considerable number of
these associations are lensed. These 40 matches are shown in Table 2.4. And snapshots of
them, centered on the SDSS DR14 sources, are shown in Fig. C from Appendix C.

We have used the SDSS DR14 asinh magnitudes in the r-band of these 40 low redshift
optical sources shown in Table 2.4 to get a rough estimation of the Einstein radius of
each possible lensed system. Firstly, we have estimated from van Uitert et al. (2015) the
corresponding corrections for the redshift of their spectra (i.e., the k-correction) and for the
intrinsic evolution of their luminosity (i.e., the e-correction) in order to correct the r-band
magnitudes. Once the magnitudes of the optical sources are corrected, we have calculated
their fluxes and then their luminosities (through their luminosity distances DL). At this
point, we used the luminosity-to-halo mass relation Meff = M0,L(L/L0)βL parametrized
in van Uitert et al. (2015) to estimate the mass of each SDSS galaxy for the corresponding
luminosity previously obtained. The pivot luminosity L0 is the same for every object while
theM0,L and βL parameters depend on the spectroscopic redshift of the galaxy. Finally, we
supposed the galaxy behaves as a singular isothermal sphere to estimate the Einstein radius
(see Narayan and Bartelmann (1996)). We assumed the virial radius of the galaxy to be r
= 1.3(M/1015M�)1/3 Mpc in order to estimate its velocity dispersion σv =

√
GM/2r. The

Einstein radius can be then estimated through θE = (4πσ2
vDds)/(c2Ds), where Dds and

Ds are the angular diameter distances between the lens and the source, and observer and
source, respectively. These distances are calculated with the spectroscopic redshift of the
SDSS galaxy acting as lens (zSDSSspec ) and the photometric redshift of the source estimated
with our MMF (zunbiasedMMF ). These Einstein radius estimates are included in Table 2.4 and
endorse the choice of 20 arcsec as upper limit for the separation between H-ATLAS sources
and their partners from SDSS DR14. 15 of the 40 matches have a separation radius smaller
than the corresponding estimation of the Einstein radius. For these 15 we will expect to
find counter-images outside the Einstein radius. Possible reasons why we do not find those
could be: i) the foreground galaxy is not a lens, ii) there is substructure around the lens
that can create fluctuations in the flux or iii) the Einstein radius is overestimated. Einstein
rings corresponding to these radii have been drawn in the snapshots from Appendix C.
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All H-ATLAS objects from Table 2.4, except four of them, had a previous associa-
tion with a galaxy with spectroscopic redshift at less than 10 arcsec. In our search for
possible lens systems, we extend our association radius to 20 arcsec. We find that 2 of
the previously unmatched H-ATLAS sources (J132111.2+265009 and J134429.5+303034)
can now be matched with a galaxy having spectroscopic redshift within 20 arcsec. For
the other two remaining unmatched sources (J131533.9+233254 and J141351.9-000026),
we find associations within 10 arcsec with SDSS galaxies having spectroscopic redshift.
These last two associations may not have been included in the H-ATLAS catalog because
SDSS DR7 and SDSS DR10 were used and we cross-match our robust high-z sample with
known-low-redshift galaxies from SDSS DR14.

There are five sources for which there is a mismatch between the redshift published in
the H-ATLAS catalog and the redshift of the match found in this work. These sources are
J090038.0-003522, J091331.4-003644 (SLG candidate from González-Nuevo et al. (2012)),
J114512.9-002446, J115101.7-020024 (labeled as unclear in Negrello et al. (2017)) and
J145420.6-005203. In all cases, our matches are beyond the 10 arcsec radius used in
the H-ATLAS association. All these five sources lie in the GAMA fields for which more
redshift information is available other than the SDSS redshifts (and that was not used
in our association). In fact, we can confirm that spectroscopic redshifts for the first four
sources come from the GAMA project (Driver et al., 2009, 2016) but the last one comes
from the WiggleZ Dark Energy Survey.

After visual inspection, among the 40 matches we identify interesting cases that are
likely to be lensed. Three of them (J090311.6+003907, J134429.5+303034 and J141351.9-
000026) are already confirmed as strongly lensed systems in Negrello et al. (2017).
Some other SDSS stamps reveal overdensities of galaxies at z < 1 that could indicate
the presence of a group of galaxies acting as a lens for the corresponding candidate.
These are mainly J083726.1+015641, J085229.0+010217, J085250.9-010000, J115819.5-
000127, J130138.7+302808, J131407.0+271208, J131533.9+233254, J133231.6+350843,
J133806.8+351530, J141832.9+010212 and J143845.8+013503.

The properties and complex nature of the strong gravitationally lensed system
J090311.6+003907 (proposed as SLG candidates in González-Nuevo et al. (2012)) have
been studied in detail in Dye et al. (2015) by modeling ALMA long baseline imaging.
This source has an optical association in the H-ATLAS catalog at 1.87 arcsec with z=0.3
which is compatible with both the assocciation we found after the cross-matching and the
association identified in Negrello et al. (2017).

The source J134429.5+303034 has no association in the H-ATLAS catalog (within 10 arc-
sec) with an optical counterpart with known-redshift. Although we find an SDSS galaxy
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(with unknown redshift) at 0.43 arcsec distance. At larger radii, we find an association
with a SDSS galaxy having zspec = 0.67 at 16.96 arcsec. In Negrello et al. (2017) they find
a potential lens with zspec = 0.6721 but much closer to the H-ATLAS source (0.43 arcsec).
A closer look at the SDSS images reveals how the potential lens can be barely resolved in
SDSS images. We propose that the small lens identified in Negrello et al. (2017) is part of
a larger halo (or lens) at z = 0.67.

The source J141351.9-000026 resembles the situation of the previous source. It has no
optical association with any galaxy having known spectroscopic redshift in the H-ATLAS
catalog, but we find a galaxy (with unknown redshift) in the SDSS images at 1.12 arcsec
distance. For this source we find an association with a SDSS galaxy at 7.61 arcsec at
z = 0.547. This association differs from the one in Negrello et al. (2017) which finds a
much fainter galaxy at 1.12 arcsec (also at z = 0.547). A closer inspection of the optical
high resolution image in Negrello et al. (2017) reveals a giant arc at the position of the IR
source. The morphology of the arc (with a radius of order 10" and aligned in a tangential
direction with respect to our lens candidate) suggests that our association is the correct
one. However, the galaxy found in Negrello et al. (2017) could still be contributing to the
magnification, since it seems to lie near the critical curve (for the redshifts of the system).

The object J115101.7-020024 is also present in Negrello et al. (2017) proposal. It is labeled
as an unclear case because no optical association was found. But we have found an asso-
ciation for this source with zspec = 0.4543 at 13.63 arcsec, which differs from the optical
association assigned in H-ATLAS catalog.

J131533.9+233254 is an interesting example. The H-ATLAS catalog contains no optical as-
sociation. We find an association in SDSS at 8.61 arcsec and with z = 0.551. The snapshot
of this association in Fig. C reveals a number of galaxies in the vicinity of the SDSS galaxy,
suggesting that the lens may be a group or a cluster at z=0.55. The stamp for J141351.9-
000026 (discussed above) resembles this situation, although with fewer SDSS galaxies.
Other interesting candidates are J083726.1+015641, J085229.0+010227 and J115819.5-
000127, which show a concentration of SDSS galaxies near the IR source. The already
mentioned object J091331.4-003644 and J085855.4+013729 are the only ones candidates
from González-Nuevo et al. (2012) presented in the robust high-z sample for which we
found associations with spectroscopic redshifts.

The selection shown in Appendix C contains only a small sample of potential candidates
to be lensing systems. Our search for this type of systems is limited by the fact that we
restrict ourselves to SDSS galaxies with spectroscopic redshifts. Future surveys with many
more galaxies having spectroscopic redshifts (like Euclid), or accurate photometric redshifts
(like J-PAS) can significantly increase the number of lensed systems.
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2.8 Conclusions

In this chapter we have extended previous work on the multifrequency matched multifilter
(MMF) technique to sub-mm astronomy, in particular the Herschel -ATLAS fields. Our
multifrequency technique allows us to, on the one hand, boost the statistical significance
and S/N of the detections and, on the other hand, provide an estimation of the photometric
redshift. This approach relies on semi-analytic modeling of the thermal peak of the SED of
dusty galaxies (see e.g., Pearson et al., 2013). We remark that the use of SED templates is
not strictly necessary for the MMF technique4, but it becomes very useful for the purpose
of redshift estimation. We have tested our technique with both realistic simulations and
also with H-ATLAS sources for which their redshifts are known, concluding that the MMF
indeed leads to an improved S/N with respect to single-frequency detection and that the
photometric redshifts are relatively accurate, especially for those H-ATLAS sources with
a photometric behavior close the SED used in the range 0.8 < z < 4.3. Outside of this
range, we have studied the bias in the MMF photo-z estimation and provided correction
factors up to z ∼ 7.0.

410,997 point-like sources from the DR1 and DR2 H-ATLAS fields (Valiante et al.,
2016; Maddox et al., 2018) have been re-analyzed with this multifrequency filter. Two
different sets of selection criteria based on flux, color, S/N, and agreement between observed
photometry and the SED model have been carried out in order to select the H-ATLAS
sources for which the MMF method performs the best and illustrate its potential usefulness.
A total of 607 H-ATLAS sources are found, for which new photometry and photometric
redshifts are provided. They are split into two samples of interest:

• A sample of 370 bright high-z objects with z̄ = 2.13 and σz = 0.65. This sample con-
tains 62 of the 80 strongly lensed candidates identified in Negrello et al. (2017), and
including 17 out of the 20 confirmed strongly lensed galaxies. An average improve-
ment of 76% in the S/N has been achieved for this sample with our MMF method
compared to the 500-µm band. Besides, an average improvement of 16% and a
slight improve of 0.2% have been obtained for the 350-µm and 250-µm, respectively.
By cross-correlating this high-z sample with a catalog of low-known-redshift galaxies
from SDSS DR14, we find 40 potential candidates to being gravitational lens systems
which have been shown and discussed. Some SDSS stamps around these candidates
reveal overdensities of galaxies at z < 1 that could indicate the presence of a group
of galaxies acting as a lens.

4As discussed in Lanz et al. (2010, 2013), the MMF can work with arbitrary SED points taken as
free random variables, but some physical modeling is often both justified and useful.
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• A second sample of 237 faint high significance candidates to 500-µm risers (with
z̄ = 4.62 and σz = 0.71) which were previously near the H-ATLAS detection limit but
are now confirmed with the MMF as high significance detections. We have achieved
average improvements of 25%, 55% and 76% in the S/N for the 500-µm, 350-µm and
250-µm, respectively. This clearly reflects that it is in this kind of faint objects where
our MMF method reaches its full potential in terms of S/N improvement.

The MMF has proven to be able to enhance the sensitivity of fainter objects and im-
prove its photometry. According to the comparative analysis of the photometric redshift
estimates with known-redshift H-ATLAS sources, it may also return more robust photo-
metric redshifts than the ones that would be obtained using the fluxes of the H-ATLAS
catalog, as proven by the mean µ and median µ1/2 values shown in tables 2.1 and 2.3.

Running a non-blind search, using the already-known source positions in the public
H-ATLAS catalog, allows us to directly compare our method with the detection pipeline of
the public H-ATLAS catalog. However, given that, in the end, H-ATLAS detection image
simply reduces to the 250 µm channel (Valiante et al., 2016), in the future we plan to apply
this method in a blind search mode over the H-ATLAS maps. Thereby we will be able
to exploit the information from the other wavelengths and be able to detect faint sources
that we could be missing now.

The work done here could also be extended in the future focusing only in the sources
already confirmed. One of the possible deeper analysis or improvements would be to repeat
the MMF execution using other SEDs different from the Pearson et al. (2013) model. For
instance, SEDs derived from ultraluminous dusty galaxies Arp200; SMM J2135-0102, “The
Cosmic Eyelash” at z = 2.3 (Ivison et al., 2010) or H-ATLAS J142413.9+022304 alias
G15.141 at z = 4.23 (Cox et al., 2011), which are characteristic of the local submillimeter
galaxies. This procedure would show us how much the redshifts and flux densities change
depending on the SED used and would help us to select sources in a more robust way. This
further analysis would also allow us to check whether the methodology bias observed in
simulations is because of the particular shape of the function employed. Nevertheless, we
think that the Pearson et al. (2013) model is the best model choice since it is not a certain
SED from a single source but an empirical model based on 40 H-ATLAS sources and it
has already been used in several previous works (Eales, 2015; Ivison et al., 2016; Bianchini
et al., 2016, 2018; Negrello et al., 2017; Fudamoto et al., 2017; Bakx et al., 2018; Donevski
et al., 2018).



Chapter 3

Gravitational Lensing

3.1 Introduction

The first written reference to the concept of gravitational lensing dates back to 1783. That
year, John Mitchell, an unsung English natural phylosopher, sent to Henry Cavendish a
letter proposing the idea of light deflection by mass, and describing a method to measure
the mass of stars by detecting the reduction in the light speed that this phenomenon causes.
Around that time, this suspicion was shared by many others such as Newton, Laplace, or
Soldner. It took until the XXth century for more light to be shed on this matter. One of the
predictions of Einstein’s Theory of General Relativity is that light follows the null geodesics,
a generalization of the straight lines along which light travels in classical physics, of a certain
space-time geometry. Given that, according to this theory, the curvature of spacetime is
understood as the result of the presence of matter and radiation, this means that the light
rays are deviated when approaching to any place with high matter concentration. The
deflection of light in presence of massive bodies, and the phenomena resulting therefrom,
are what we denominate gravitational lensing. This phenomenon increases the apparent
brightness and angular size of the lensed sources, making it easier to study objects that
would be otherwise too faint to be probed. Gravitational lensing effect, hereafter also
denoted as lensing, can be occasioned by a number of massive objects, among which galaxy
clusters, galaxies, and stars can be mentioned. These objects are called lenses or deflectors
when they behave in such a way. Depending on the characteristics of these lenses, such as
their mass and size, the effects of lensing on the observations of distant astronomical objects
or faraway radiations will be different. Lensing effects can be observed at practically every
angular length scale, and so three different lensing regimes are historically distinguished.

The lensing phenomena produced by extended lenses, like galaxies and galaxy clusters,
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fall into two broad categories: strong lensing (SL) and weak lensing (WL). Strong lensing
events may be observed if the observer, lens, and source are sufficiently well aligned along
the line of sight. Since the late 30s it was already pointed out that galaxies could split
images of background sources by a large enough angle so as to be observed (Zwicky, 1937).
In such events, the light from the background source is deflected resulting in multiple
images, highly distorted images, or more usually both things at the same time. For point-
like background sources, there will be multiple images while for extended background
emissions there often are distorted images, which can acquire the shape of rings or arcs.
The extension of the source entails that the light from the background source is deflected
differently, and hence the images produced are distorted. These distorsions can be in the
radial or in the tangential direction. The most spectacular example of distorted images
are the gravitational arcs observed near the center of many massive galaxy clusters (see
Figures 0.2 and 3.1). All images belonging to the same background source carry the same
spectral information, and thus multiple images can be identified thanks to an spectral
analysis. In fact, the first gravitational lens system ever detected, discovered by Walsh
et al. (1979), was confirmed due to the spectral similarity of the observed images. It
consisted of two images of the quasar QSO 0957+561, separated by 6", seen through a
foreground galaxy. The arrangement of these multiple images is determined by the mass
distribution of the lens, and the relative position of the source. The most impressive
example of multiple images is known as Einstein ring. This happens when the source, lens,
and observer are all perfectly aligned, and the lens has circular symmetry, so the light is
diverted forming a ring.

There is no accurate definition of weak lensing beyond the fact that the lenses have
to be extended and that the angular separation between source and lens is large. Weak
gravitational lensing maps source galaxies to new positions on the sky, systematically
distorting their images. The effect of weak lensing can only be measured statistically
because it shows up only by averaging on an ensamble of extended sources, which lay behind
the lens. It is impossible to measure the effect on the images of single galaxies because the
distorsion is indistiguishable from the intrinsic shape of the galaxies. A detailed review of
weak lensing can be found in Bartelmann and Schneider (2001).

On the other hand, we have microlensing events, which are produced by lightweight
masses whose size is small compared to its distance from us and to the source. Such
lenses can be for example stars, planets or any other compact object floating in our or
other galaxy. A mass able to bring about microlensing events is typically in the range
10−6 ≤M/M� ≤ 106. The first observational detection of a microlensing event took place
in 1989 (Vanderriest et al., 1989; Irwin et al., 1989). The presence of individual stars in the
galaxies lensing quasars QSO 0957+561 and QSO 2237+0305 altered the magnification of
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one of the quasar images with respect to the other. The occurrence of these events did
not attract much attention until the first example of gravitational lensing was discovered.
The fact is that it was not believed that microlensing could be observed owing to that the
expected image separation was below the limit resolution. However, even when it is not
possible to see the multiple images, the magnification may still be detected if the source
and the lens move relative to each other. After the discovery of the first gravitational
lens system, lensing by stellar mass objects become more appealing. Paczynski (1986)
contributed to this rise by showing that in any nearby galaxy at any time one star out of
a million might be measurably magnified by an intervening star in the halo of our galaxy.
Initially, it was believed that the individual monitoring of the light curves of a million
stars would never be feasible. Nevertheless, technological advances have made it possible
to detect nowadays the order of ∼ 104 microlensing events, and have allowed the study of
this phenomenon to become a research field itself. It is worth to mention the discovery,
through microlensing, of the farthest star ever detected, called Icarus, at z = 1.49 (Kelly
et al., 2018). A detailed review of microlensing can be found in Wambsganss (2006).

Throughout the last decades, gravitational lensing has proven to be a major tool for
observational cosmology, and has given rise to an independent field of research within the
cosmology community. Microlensing techniques are used to make precise measurements of
the masses of lens stars that do not rely on any assumption about their internal physics.
These measurements also help in the validation of theoretical stellar models. One of the
theories proposed for dark matter is that it could exist in the form of compact objects
distributed in the halo of the galaxy. If these objects, known as MACHOs, have a suit-
able mass, they could originate detectable microlensing signals from background stars in
nearby galaxies (Paczynski, 1986). Several searches for dark matter are ongoing following
this idea. Microlensing events are also used for the search of exoplanets (Tsapras, 2018).
The gravitational influence of a transiting planet on the light coming from its host star
can be detected in the form of brightness variations. The first microlensing planet was
discovered in 2004 (OGLE Collaboration, 2004), and ever since ∼ 50 exoplanets have been
found through this technique, including cool low mass planets (Beaulieu et al., 2006). Mi-
crolensing has developed into an exciting method for studying the nature and distribution
of mass in our galaxy.

Focusing now on strong lensing, we can name two relatively distinct fields: lensing by
galaxy clusters and lensing by galaxies. These events are different both in appearance
and in abundance. Galaxy-cluster systems are far less common than their galaxy lens
counterparts. The baryons in galaxies have had enough time to cool and shape the visible
galaxy, thereby giving a cuspy profile, suitable for lensing. The density profiles of galaxy
clusters are not usually so cuspy, making them less ideal lenses. Therefore, only the most
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dense clusters have surface densities large enough for lensing. For this reason, despite
not being as numerous as galaxy-galaxy systems, they are much more impressive. While
galaxy lens systems have typical image separations of a few arcseconds, the most massive
clusters are able to produce multiple images of distant galaxies with separations of up to
∼ 1 arcmin. The study of these images and its distorsion can provide us with unique
information about the distribution of baryonic and dark matter within the foreground
mass acting as a lens. The more complicated is the gravitational potential of the lens,
the harder is to extract the information. This information allows us, for instance, to
constrain galaxy mass models, the stellar initial mass function or the abundance of dark
matter subhalos. The most accurate estimates of the matter distribution in the central
region of galaxies are, indeed, due to gravitational lensing analyses. The magnification
effect derived from gravitational lensing works like a cosmic telescope, and has enabled
us to observe distant objects which would otherwise remain undetected. The statistics
of lensing events also turn them into a promising way of inferring or deriving significant
constraints on the cosmological parameters (Kochanek, 1993, 1996; Maoz and Rix, 1993;
Bartelmann et al., 1998; Falco et al., 1998; Link and Pierce, 1998; Golse and Kneib, 2002;
Chiba and Futamase, 1999). The cosmological parameter best determined through lensing
is the Hubble constant. Refsdal (1964) was the first one who pointed out that the Hubble
constant could be estimated by measuring the time delay between the appearance of the
images of an intrinsically variable lensed source, such as SNe. Since then, H0 has been
measured through the analysis of many lensed sources (Kundić et al., 1997; Schechter et al.,
1997; Biggs et al., 1999; Koopmans et al., 2003; Kochanek and Schechter, 2004), but it was
not until recently that SNe were finally used for this purpose (Vega-Ferrero et al., 2018).
These analyses have improved the precision of other probes (Wong et al., 2020) due, for
example, to the fact that this approach works at larger redshifts than other methods.

Weak gravitational lensing has been widely used as a direct probe of the matter dis-
tribution in our Universe on different scales (Zhang, 2011), including large-scale structure,
galaxy clusters, and galaxies (Wilson et al., 1996; Umetsu, 2011). Looking at large scales,
we found that the analysis of weak lensing by large-scale structures can provide direct
measurements of the primordial power spectrum of the density fluctuations in the Universe
(Hilbert et al., 2012). The CMB is affected by gravitational lensing as well: it changes
the CMB power spectra, induces non-Gaussianities, and generates a B-mode polarization
signal. The study of all these effects is a well-developed probe of large-scale clustering over
a broad range of redshifts (Lewis and Challinor, 2006; Challinor et al., 2018). Reaching at
last the largest possible scale, we found that the entire Universe acts as a lens. Its energy
density distorts the shapes of any astronomical object and any radiation all over the sky.
The signal produced by these effects, known as cosmic-shear, can be detected, if treated
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Figure 3.1: Giant arc observed by Hubble Space Telescope in an image of one of the
most massive galaxy clusters known, Abell 1689. Courtesy of NASA, N. Benitez (JHU),
T. Broadhurst (The Hebrew University), H. Ford (JHU), M. Clampin (STScI), G. Hartig
(STScI), G. Illingworth (UCO/Lick Observatory), the ACS Science Team and ESA.

statistically, in large field-of-view observations. This signal can be exploited to constrain
the structure growth of the Universe in a very powerful and direct way.

3.2 Theory of lensing

3.2.1 Light deflection

Although it can be observed on different length scales, the basic explanation behind lensing
is always the same and can be approached in a simple way. In this work we only discuss
the effects of lensing at first order. A description of the second order effects on the images
of lensed sources can be read in Meneghetti (2016). Assuming at first a point mass lens,
whose Schwarzschild radius is:

RS =
2GM

c2
, (3.1)

the deflection angle α̂ of a light ray crossing its gravitational field is given by:
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α̂(ξ) =
4GM

c2ξ
=

2Rs
ξ

(3.2)

where M is the mass of the point mass lens, G is the universal gravitational constant, c
is the speed of light, and ξ is the impact parameter, i.e., the distance from the deflector
at which an unperturbed light ray would pass. This expression is true, provided that the
impact parameter is much larger than the Schwarzschild radius of the lens. As can be
seen, α̂ does not depend on the wavelength of the light. Therefore, gravitational lensing
is inherently achromatic, and any chromatic effect is only consequence of the wavelength-
dependent geometry of the different emission regions in the Universe.

The deflection angle shown in Eq. (3.2) depends linearly on the mass of the lens, thus
the deflection angles of a set of lenses can be linearly superposed. Supposing we have a
scattered distribution of N point masses on the same plane, the deflection angle of a light
ray propagating through the plane at ξ is:

α̂(ξ) =
∑
i

α̂i(ξ − ξi) =
4G

c2

∑
i

Mi
ξ − ξi
|ξ − ξi|2

(3.3)

with ξi and Mi being the positions in the plane and masses, respectively, of the 1 ≤ i ≤ N
point sources.

As we know, distributions of matter in the Universe cannot be properly modeled as
point masses, so more realistic lens models need to be considered. Despite being such
massive structures, galaxies and galaxy clusters are concentrated on a relatively small
volume, compared to the distance that light from a distant source has to travel to reach
us. When the distances between observer, lens and source are much larger than the physical
size of the lens, we can assume that the entire matter distribution of the lens is contained in
one plane, called the lens plane. The sources are also assumed to lie on a plane, called the
source plane. This is known as the thin screen approximation, and is sketched in Fig. 3.2.
The lensing matter distribution under this approximation is fully described by its surface
mass density:

Σ(ξ) =

∫
ρ(ξ, z)dz (3.4)

where ρ is the three-dimensional density mass of the lens, ξ is now defined as a two-
dimensional vector on the lens plane, and z indicates the direction along which unperturbed
light rays propagate. Under the thin screen approximation, light deflection occurs on a
short section of the light path, and is described by the following angle:
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α̂(ξ) =
4G

c2

∫
(ξ − ξ′)Σ(ξ′)

|ξ − ξ′|2
d2ξ′ (3.5)

Figure 3.2: Sketch of a gravitational lens system, from Bartelmann and Schneider (2001).

3.2.2 Lens equation

The geometry of a typical gravitational lens system, assuming the thin screen approxi-
mation, is shown in Fig. 3.2. The optical axis, depicted as a dashed line perpendicular
to the source and lens planes and centered in the observer, will be used henceforward as
reference. Let suppose a source placed in the source plane at transverse distance η from
the optical axis. A light ray coming from that source intersects the lens, in the lens plane,
at transverse distance ξ from the optical axis. This light ray is deflected by an angle α̂
defined in Eq. (3.5), so the observer receives the light coming from the source as if it was
emitted at a different position. The angular separation between the optical axis and the
true source position is β, while the angle between the optical axis and the image of the
source seen by the observer is θ. The angular diameter distances from the observer to the
lens, to the source, and between the lens and the source are DL, DS , and DLS , respectively.
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Knowing this, we can express the transverse distances η = βDS and ξ = θDL in terms of
their angular positions. As long as α̂, β and θ are small, the true source position and its
observed position are related by the following geometrical expression:

βDS = θDS − α̂DLS (3.6)

It is now convenient to define the reduced (or scaled) deflection angle:

α(θ) ≡ DLS

DS
α̂(θ) (3.7)

so Eq. (3.6) can be expressed as

β = θ −α(θ) (3.8)

This geometrical relation, called the lens equation, is the centerpiece of gravitational lens-
ing, that allows us to describe the ray-tracing between the source plane and the lens plane.
It is non-linear since multiple images θ can result from a single source position β. This
equation holds, provided that the Euclidean relation physical size = angular size ×
distance is fulfilled. Although it is not guaranteed that this relation meets whether the
spacetime is curved, it is possible to define distances in a curved spacetime such that satisfy
this relation.

3.2.3 Lensing potential

Before proceeding further, it is useful to define a dimensionless quantity equivalent to the
surface mass density, known as the convergence κ:

κ(θ) =
Σ(θDL)

Σcr
(3.9)

with Σ(θDL) being the surface mass density from Eq. (3.4), and Σcr is the critical surface
density defined as

Σcr =
c2

4πG

DS

DLDLS
(3.10)

For realistic cases, such as the cluster analyzed in the next chapter, Σcr can take values of
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the order of ≈ 0.4 g/cm2. This means that in the center of a massive cluster, the projected
mass is comparable to that of a 1e coin or 50 sheets of stacked paper.

The strong lensing effect often requires that Σ(ξ)> Σcr. Recalling Eq. (3.5), the reduced
deflection angle under the thin screen approximation now can be read as

α(θ) =
1

π

∫
κ(θ′)

θ − θ′

|θ − θ′|2
d2θ′ (3.11)

The efective lensing potential of an extended mass by applying the thin screen approxima-
tion can be written is terms of the convergence as

ψ(θ) =
1

π

∫
κ(θ′)ln|θ − θ′|d2θ′ (3.12)

And the gradient of this potential allows us to obtain the reduced deflection angle

α(θ) =∇ψ(θ) (3.13)

while its Laplacian gives us the aforementioned convergence:

κ(θ) =
1

2
∆ψ(θ) =

1

2
∇2ψ(θ) =

1

2
∇α(θ) (3.14)

3.2.4 Distorsion and magnification

One of the main effects of gravitational lensing is that it warps the shape of the sources
observed. This can be negligible for unresolved sources but not for extended sources. The
light coming from different points of an extensive source is deflected differently resulting
in distorted images. The most spectacular example of distorsion are the arcs, belonging
to background galaxies, observed near the center of massive galaxy clusters. As we saw
in Sec 3.2.2, the relation between β and θ comes determined by the lens equation, so the
true shape of the sources can be derived by solving the lens equation for all the points
within its images. On condition that the size of the source is insignificant compared to the
scales on which the properties of the lens change, which is virtually always fulfilled, the
lens equation can be locally linearized. The distorsion of the images is, therefore, described
at first order by the following Jacobian matrix:
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A(θ) =
∂β

∂θ
=

(
δij −

∂2ψ(θ)

∂θi∂θj

)
(3.15)

where θi and θj indicate the two components of θ on the lens plane, and δij is the Kronecker
delta. For the sake of clarity we will use the following notation:

ψij ≡
∂2ψ(θ)

∂θi∂θj
(3.16)

If we retrieve Eq. (3.14), we can rewrite the convergence in terms of its partial derivatives
with this new notation:

κ(θ) =
1

2
∇2ψ(θ) =

1

2

( ∂2

∂θ2
1

+
∂2

∂θ2
2

)
ψ =

1

2
(ψ11 + ψ22) (3.17)

We can now introduce another important magnitude in gravitational lensing, known
as the shear :

γ = (γ2
1 + γ2

2)1/2 = γ1 + iγ2 = |γ|e2iφ (3.18)

The components of this pseudo-vector, γ = (γ1, γ2), like the convergence, are defined as a
function of the partial derivatives of the lensing potential:

γ1 =
1

2

( ∂2

∂θ2
1

− ∂2

∂θ2
2

)
ψ =

1

2
(ψ11 − ψ22) ≡ γ(θ) cos 2φ(θ) (3.19)

γ2 =
∂2

∂θ1θ2
ψ = ψ12 = ψ21 ≡ γ(θ) sin 2φ(θ) (3.20)

With the previous definitions, the Jacobian matrix from Eq. (3.15) can be written as
follows:

A(θ) =

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ2

)

= (1− κ)

(
1 0

0 1

)
− γ

(
cos2φ sin2φ

sin2φ −cos2φ

) (3.21)

The physical meaning of the convergence and the shear is much clearer once this form of
the matrix A is reached. The convergence (κ) induces isotropic distortions in the images,
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i.e., the source is mapped onto an image with the same shape but its size is rescaled by a
constant factor in all directions. On the other hand, the shear (γ) induces an anisotropic
distorsion, i.e., the intrinsic shape of the source is stretched along one preferred direction.
The quantity γ, defined in Eq. (3.18), determines the magnitude of the shear while its
orientation is described by the angle φ. For this reason, a circular source like the one
shown in Fig. 3.3 is mapped onto an elliptical image after being affected by κ and γ. The
ellipticity of this image can be defined as

ε = ε1 + iε2 =
1− (b/a)

1 + (b/a)
e2iφ (3.22)

where φ is the orientation angle of the image, a and b are its major and minor axes:

a =
r

1− κ− γ
, b =

r

1− κ+ γ
, (3.23)

and r is the radius of the circular source. Therefore, we can see how the observed ellipticities
allow measuring a combination of κ and γ:

〈ε〉 =

〈
γ

1− κ

〉
(3.24)

Figure 3.3: Distorsion effects on a circular source due to the convergence and shear. Taken
from Narayan and Bartelmann (1996).

Image distortion is inherently associated with a change in the flux that we receive
from the source. The surface brightness of the source is preserved in gravitational lensing,
since no photons are absorbed or emitted. Nevertheless, the change in the solid angle
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under which we observe the source results in an increase, or decrease, of the flux coming
from the source. The ratio between the fluxes of the observed image and the unlensed
source is known as the magnification. The magnification is calculated as the inverse of the
determinant of the Jacobian matrix A from Eq. (3.21):

µ = detM =
1

detA
=

1

(1− κ)2 − |γ|2
(3.25)

whereM = A−1 is the magnification tensor. The eigenvalues ofM are given by

µr =
1

λr
=

1

1− κ+ γ
(3.26)

µt =
1

λt
=

1

1− κ− γ
(3.27)

and allow measuring the magnification in the radial direction (µr) and in the tangential
direction (µt).

The magnification is ideally infinite when detA = 0. The set of points in the lens
plane (θ-space) where this condition is met form closed curves called critical lines, and
the corresponding positions in the source plane (β-space) are called caustics. Therefore,
there are two critical curves: the radial critical line, where µr = 0, and the tangential
critical line, for which µt = 0. They are linked, respectively, to a radial caustic and a
tangential caustic. A source placed near a radial caustic will produce images close to
the radial critical line, and stretched perpendicular to it. And any circularly symmetric
source placed around the tangential caustic will form strongly distorted images along the
tangential critical line. In addition to highlight regions of high magnification, critical lines
and caustics also separate regions of different image multiplicities. Sources placed within a
caustic are multiply imaged, and the number of images changes as the source moves across
the caustic network. A lens capable of inducing such effects in the source images is called
critical or supercritical. Both image distortions and the image multiplicity are features
that belong to the strong lensing regime. Strong lensing often occurs in the central regions
of galaxies and galaxy clusters. Galaxy clusters with high mass concentration occasionally
produce giant gravitational arcs when a background galaxy is aligned with one of the
cluster caustics (see Figures 0.2 and 3.1).
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3.3 Lens models

It is a common practice to use analytical lens models to reproduce the behavior of as-
tronomical objects as lenses. They are easily understandable and the derivation of their
lensing properties is pretty straighforward. Compact objects like planets, stars or MA-
CHOs are usually well aproximated by point mass lenses. The next rung of the ladder are
the axially symmetric (or circularly symmetric) lens models, for which a good choice of the
optical axis allows reducing the lensing analysis to a one-dimensional problem. However,
they are unable to describe well enough the lens behavior of most astrophysical sources.
The introduction of ellipticity in such models usually solves that problem. Elliptical lens
models are the best choice for approximating elliptical galaxies, which are a representative
example of lenses in the Universe (Kochanek, 1993). In this section we will approach some
of these lens models.

3.3.1 Point mass lens

We already introduced point mass lenses at the beginning of the previous section. A point
mass is the simplest example of an axially symmetric lens model. Recalling the expression
of α̂ from Eq. (3.2), and after applying Eq. (3.7), we can derive the reduced deflection
angle of a point mass as a function of the angular distance θ:

α(θ) =
4GM

c2θ

DLS

DLDS
(3.28)

The expression of its lensing potential can be easily obtained by using Eq. (3.13):

ψ(θ) =
4GM

c2

DLS

DLDS
ln|θ| (3.29)

The lens equation, Eq. (3.8), of a point source lensed through this point mass lens can now
be read as

β = θ − 4GM(θ)

c2|θ|
DLS

DLDS
(3.30)

Owing to the rotational symmetry of a point mass lens, a source located on the optical
axis (β = 0) is imaged as a ring, provided that the lens is supercritical. This symmetry
property is shared by the rest of circularly symmetric lens models we will see. The radius
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Figure 3.4: Locations of the source (S) and its images (I+ and I−) after being lensed by
a point mass M. Given the position of the source, one image falls inside the Einstein ring
and the other outside, both on opposite sides of the source. The Einstein ring is depicted
as a dashed circle of radius θE . Taken from Narayan and Bartelmann (1996).

of such ring for a point mass is obtained by setting β = 0 in the above equation:

θE ≡
√

4GM

c2

DLS

DLDS
=

√
4GM

c2D
(3.31)

where D ≡ DLDS
DLS

is defined as the effective lensing distance. Eq. (3.31) is known as the
Einstein radius, and depends on both the properties of the lens and the distances involved.
A point mass lens causes two images for any source, regardless of its angular distance β
to the lens. The typical angular separation between these two images is roughly 2θE . The
angular positions of these two images are given by

θ± =
1

2

(
β ±

√
β2 + 4θ2

E

)
(3.32)

The locations of these two images for a given source position β 6= 0, using the Einstein
radius as a reference, are shown in Fig. 3.4. Each image is located on one side of the source,
being one inside the Einstein radius and the other outside. As the source moves aways
from the lens, one of the images approaches to the true position of the source tending to
a value-one magnification, while the other image approaches to the lens, becoming fainter
and fainter. Sources located far outside the Einstein ring are slightly magnified, whereas
sources at a distance from the optical axis lower than θE are heavily magnified.
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3.3.2 Axially symmetric lenses

The great advantage of using axially symmetric lenses, of which the point mass lens model
is also part, is that their surface mass density does not depend on the position angle θ
to the lens center. It only depends on its modulus |θ|. Therefore, the optical axis can
be shifted to the center of symmetry of the lens and the light deflection reduces to a one-
dimensional problem. Following the same procedure as for the point mass, we can derive
the expressions of the reduced deflection angle and the lensing potential for a point source
being lensed by a circularly symmetric lens with an arbitrary mass profile:

α(θ) =
4GM(θ)

c2|θ|
DLS

DLDS
, ψ(θ) =

4GM(θ)

c2

DLS

DLDS
ln|θ| (3.33)

The Einstein radius corresponding to this lens model is again obtained by setting β = 0

in the lens equation:

θE ≡
√

4GM(θE)

c2D
(3.34)

As discussed above, multiple images can be produced if the lens is critical. The number
of images depends on the position of the source with respect to the caustics, and the
Einstein radius defines the scale to measure the angular separation between them. In
axially symmetric lenses, the tangential critical line is mapped onto a single point caustic,
whereas the radial critical curve, which corresponds to the Einstein ring, is mapped onto
a closed circular radial caustic on the source plane. As it can be seen in Fig. 3.5, sources
located inside the radial caustic produce three images, while sources that lie outside the
radial caustic only produce one image. As the tangential caustic consists of a single point
at β = 0, the tangential critical line do not affect to the number of images observed. It
is proven that the number of images produced in axially symmetric lenses is always odd.
The only exception are the point lenses, i.e., lenses with infinity density at the center. As
we show in Eq. (3.32) and Fig. 3.4, only two images can be observed when the source
lie within the radial caustic. A detailed description of the image multiplicity in axially
symmetric lenses can be found in Schneider et al. (1992). The distortion effects in the
images produced by this type of models are better noted when they perform on extended
sources. We will discuss this in more detail after bringing in ellipticity to these models in
Sec. 3.3.4.
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Figure 3.5: Imaging of a point source lensed by a non-singular, circularly symmetric lens.
Right : Positions of the source (black square) and the lens (black circle), along with the
radial caustic depicted using a dashed line. The tangential caustic consists of a single
point, where the source is placed. Left : Image positions of the source (three images
because the source is within the Einstein ring) along with the critical lines. The outer
curve is the tangential critical line while the inner curve is the radial critical curve. Taken
from Narayan and Bartelmann (1996).

3.3.2.1 Singular Isothermal Sphere

If we assume that the matter content within the lens behaves as an ideal gas, bound by its
own spherically symmetric gravitational potential, in thermal and hydrostatic equilibrium,
we can derive the following density distribution

ρ(r) =
σ2
v

2πG

1

r2
(3.35)

where r is the distance from the lens center. This density profile is known as the singular
isothermal sphere, and enables to relate the underlying mass distribution of the lens to
the velocity dispersion σv of its individual gas components. The derivation of this density
distribution can be seen in Narayan and Bartelmann (1996) and Binney and Tremaine
(2008). By projecting this density along the line of sight, we obtain the corresponding
surface mass density in terms of the impact parameter ξ:

Σ(ξ) =
σ2
v

2G

1

ξ
(3.36)

The Einstein radius of the singular isothermal sphere is given by
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θE = 4π
σ2
v

c2

DLS

DS
(3.37)

The reduced deflection angle, lensing potential, convergence, shear, and magnification for
this lens model can now be easily written as functions of the Einstein radius:

|α|= θE , ψ = θE |θ|, κ = γ =
θE
2|θ|

, µ =
|θ|
|θ|−θE

(3.38)

Multiple images are obtained only if the source lies inside the Einstein ring (β < θE).
Under this circumstance, the singular isothermal sphere model generates only two images
than can be detected. A third image is theoretically predicted, but it is located at θ = 0
and has zero flux. As already mentioned above, the angular separation between the two
images is 2θE . If the source lies outside the Einstein ring (β < θE), only one image is
produced.

3.3.2.2 Softened Isothermal Sphere

Even though the singular isothermal sphere reproduces in a natural way the flat rotation
curves of galaxies, its density distribution is singular at r = 0 and tends to infinity for
r → ∞. For this reason, to avoid this problem, we can either look for more elaborate
models or replace the singularity at the center of the lens by a core region with finite
density. If we decide to follow this last path, we have a model called softened isothermal
sphere (SIS). The deflection angle, lensing potential, convergence, and shear components
of this lens model are as follows:

α(θ) = θE
θ

(θ2 + θ2
c )

1/2
(3.39)

ψ(θ) = θE (θ2 + θ2
c )

1/2 (3.40)

κ(θ) = θE
θ2 + 2θ2

c

2(θ2 + θ2
c )

3/2
(3.41)

γ1(θ) = −θE
θ2

2(θ2 + θ2
c )

3/2
cos2φ (3.42)
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γ2(θ) = −θE
θ2

2(θ2 + θ2
c )

3/2
sin2φ (3.43)

where θc is the core radius and θE is the Einstein radius from Eq. (3.37). Now that the
central singularity has vanished, the third image produced when the source is inside the
Einstein ring can be observed.

3.3.3 The Navarro-Frenk-White density profile

Navarro, Frenk, and White found, thanks to numerical simulations of the formation and
evolution of dark matter halos, that its density distribution can be very well fitted by a
certain profile. The Navarro-Frenk-White (NFW) density profile (Navarro et al., 1996,
1997) is since then the most commonly used profile for modeling the mass distribution of
dark matter in galaxy clusters (Bartelmann, 1996; Wright and Brainerd, 2000; Golse and
Kneib, 2002; Meneghetti et al., 2003). The density of dark matter as a function of the
radius in the NFW profile is given by

ρ(r) =
ρ

(r/rs)(1 + r/rs)2
(3.44)

where the two parameters, rs and ρs, are the scale radius and the characteristic density of
the halo, respectively. The logarithmic slope of this density profile changes from -1 at the
center (flatter in the inner region) to -3 at large radii. It is flatter than the SIS density profile
in the inner part of the halo, and steeper in the outer regions. NFW models parametrize
dark matter halos by their masses M200, i.e., the mass within a sphere of radius r200, in
which the average density is 200 times the critical density. The concentration parameter
of a dark matter halo can be defined then as follows:

c200 =
r200

rs
(3.45)

There is an extension of the NFW density profile, known as the generalized NFW (gNFW)
model (see Zhao 1996; Jing and Suto 2000; Wyithe et al. 2001), which is defined as follows

ρgNFW (r) =
ρs

(r/rs)γgNFW (1 + r/rs)3−γgNFW (3.46)

As can be seen, if γgNFW = 1 the original NFW model is recovered, and γgNFW < 1 or



Gravitational Lensing 79

Figure 3.6: Density profiles of two simulated dark matter halos from Navarro et al. (1996),
fitted each one to a NFW profile.

γgNFW > 1 correspond, respectively, to shallower or steeper density profiles.

3.3.4 More realistic lens models

In order to achieve lens models capable of describing the properties of real lenses more
realistically, Blandford and Kochanek (1987) recommended to introduce elliptical lensing
potentials. This can be done in a simple way by performing the following substitution on
the models described above:

|θ|→

√
θ2

1

1− ε
+ (1− ε)θ2

2 (3.47)

where ε = 1 - b/a is the ellipticity, and a and b are the major and minor axis of the ellipse.
The resulting model will have elliptical iso-density contours whose major axis will be
oriented along the θ2-direction, but can as well be rotated any desired angle. The tangential
and radial caustics were a point and a circle, respectively, for the axially symmetric models,
whereas the critical lines consisted of circles on the lens plane. Increasing the ellipticity
of the lens strengthens its shear, and the caustics and the critical lines expand their areas
and change accordingly. The caustics tend to acquire the shape of cusps, while the critical
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lines assume a dumbbell shape. This last is due to the fact that such is the characteristic
shape of the surface mass density in elliptical lenses.

The growth of the caustic network entails an increase in the variaty of image configu-
rations that might be produced. Some examples of the effect of elliptical lens models on
compact and extended sources are shown in Fig. 3.7. Each row in that figure corresponds
to the same lens and source configuration. The caustics in the source plane are shown on
the right, and the images produced together with the critical lines are shown on the left. A
source enclosed by both caustics, and placed behind the lens center, generates five images:
four bright images forming a cross-shaped pattern, and another one fainter appears at the
lens center. When a compact source moves away from the lens center along a symmetry
line (top right panel), two outer images begin to approach to each other, then merge, and
finally dissapear (top left panel) when the source crosses the tangential caustic. A third
outer image and the central image start to approach to each other as well, and dissapear
when the source crosses the radial caustic. During this process, the fourth exterior image
is coming near the true source position while diminishing its distorsion. It is the last im-
age left. On the other hand, while a source with a larger angular size moves towards a
cusp edge (bottom right panel), three outer images merge forming a single elongated arc
(bottom left panel). This happens just when the source is crossing the tangential caustic.
This large arc-like image shortens and approaches to the position of source as the source
keeps moving away from the center. In the end, this image will be the last one observed,
and it will be placed virtually at same position than the source.
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Figure 3.7: The upper panel shows the movement of a compact source towards a inter-
cusp segment of a tangential caustic produced by an elliptical lens (right draw), and the
resulting images depending on the position of the source (left draw). The lower panel
shows the same, but the source is larger and is moving towards one of the cusps of the
tangential caustic. Taken from Narayan and Bartelmann (1996).

A last aspect to consider is the gravitational influence of the matter in the vicinity of
the lens on the light deflection. This can be taken into account by adding an external shear
γe, whose lensing potential and deflection angle are given by

ψγ(θ) =
γe
2

(θ2
1 − θ2

2), α(θ) = γe(θ1 − θ2) (3.48)

Since the SIS density profile is significantly steeper in the central region than the NFW
profile, this latter is much more sensitive to the incorporation of external perturbations.

3.4 Strong lensing in galaxy clusters

Strong gravitational lensing is a powerful technique for probing galaxy mass distributions
and for measuring cosmological parameters. In this thesis we aim at estimating the mass
distribution of a galaxy cluster through an analysis of its strong lensing observables. By
and large, a mass reconstruction based on strong lensing constraints can be treated as a
multipole expansion of the convergence:
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κ(θ) = κ0(θ) +

∞∑
n=1

κn(θ)einφ (3.49)

where depending on to which order we expand, the cluster structure will be described in
more or less detail. The monopole term κ0 describes an axially symmetric lens, while the
quadrupole depicts the degree of ellipticity of the lens. In addition to this, one can add an
external shear, as defined in Eq. (3.48), in order to account for perturbations coming from
the outer regions of the cluster.

Once all the strong lensing observables have been gathered together, the mass recon-
struction of the cluster can be tackled from two different approaches. The most broadly
used one is the parametric approach, where a certain model is assummed in order to de-
scribe the behavior of the cluster as a lens (Kneib et al., 1993, 1995, 1996; Broadhurst
et al., 1995; Natarajan and Kneib, 1997; Sand et al., 2002; Gavazzi et al., 2004; Halkola
et al., 2006; Limousin et al., 2010). The model parameters p are related to all the un-
knowns in the lensing problem, such as the positions β of the background galaxies and the
mass distribution of the cluster. The lens equation for each one of the N observations is
as follows:

βi = θi − α(θi, p) 1 ≤ i ≤ N (3.50)

Parametric models are based on building, using the lens equation above, a χ2 function in
a similar formulation to the following:

χ2
θ =

N∑
i=1

(θobs
i (β)− θmod

i

σi

)2
(3.51)

The solution of the strong lensing problem is found by minimizing the corresponding χ2
θ

function with respect to the model parameters, i.e., looking for a model whose predicted
images (θmod

i ) are close enough to the observed ones (θobs
i ). The results obtained will be

as accurate as the chosen parametrization and the quality of the data allow it. Parametric
models are the best choice for modeling strong lensing clusters when the number of lensing
constraints is relatively small. Its wide use comes from the fact that, in the early years of
strong lensing data analysis, it was common to have only a few constraints to work with.
The small number of constraints made it impossible to extract useful information about
the mass distribution of the lens without using at least a simple parametrization. However,
the quality and quantity of lensing data are growing fast, motivating the use of algorithms
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capable of exploiting the available information with fewer assumptions. In recent years it
has been possible to identify hundred of strong lensing arcs around the central region of
galaxy clusters (Broadhurst et al., 2005). This drives us to the non-parametric (or free-
form) approach, where the surface mass density of the cluster is treated as a combination of
individual density functionals. Non-parametric approaches have been previously explored
in several papers (Saha and Williams, 1997; Abdelsalam et al., 1998a,b; Trotter et al., 2000;
Warren and Dye, 2003; Bradač et al., 2005; Liesenborgs et al., 2007). Since the resulting
systems of equations are not always determined, non-parametric models are sadly not
exempt of requiring some assumptions. In the following chapter we present the analysis of
a galaxy cluster using a hybrid method, in the sense that it relies on the decomposition of
the mass distribution in several basis functions, but also makes the valid assumption that
a mass component traces the light of the galaxies within the cluster. For this reason, the
details of the mass decomposition will be discussed further in Sec. 4.3.





Chapter 4

Strong lensing analysis of galaxy
cluster MACS J1206.2-0847

Galaxy clusters are the largest gravitationally bound structures in the Universe, and a
reflect of the late evolution of cosmic structures (see Schneider, 2006, for a review). Even
though they were identified at first as regions with a significant overdensity of galaxies, it is
now known that they consist of mainly three different mass components. In first place, we
have the visible galaxies and stars. Furthermore, there is the intracluster medium (ICM),
a thermal plasma mostly made up of ionized hydrogen and helium. The ICM accounts
for most of the baryonic mass in galaxy clusters, and is detected through its strong X-ray
emission. The lacking mass is distributed forming a dark matter halo, which constitutes
by far the largest fraction of the total mass within the cluster.

Constraining the mass profile in the most central area of galaxy clusters is of particular
interest, since this high-density region contains the largest densities of dark matter. These
measurements provide good tests of dark matter models. If dark matter has a small cross
section for interaction, or if dark matter is ultralight (e.g. in axion-like-particle, or ALP,
models), it is at these regions where deviations from pure collisionless cold dark matter
models are expected (Rocha et al., 2012; Kaplinghat et al., 2013, 2014). Also, if dark matter
annihilates or interacts with itself, the density in the central region of galaxy clusters is
expected to be sensitive to these interactions. In particular, if the cross section for self-
interaction is significantly larger than 1 cm2g−1, the profile should flatten in the most
central region, and offsets between the positions of the brightest cluster galaxy (BCG)
and the peak of the dark matter distribution are expected if the cluster is in a merger
phase. The central mass profiles of galaxy clusters can be inferred in several ways, each
one probing a different range of radii. These methods include stellar kinematics, strong
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lensing, weak lensing, Sunyaev-Zel’dovich, and X-ray emission, which cover the distance
range from 10 kpc to 1 Mpc scale (Newman et al., 2009; Umetsu et al., 2011; Hogan et al.,
2017; Andrade et al., 2019). Strong lensing methods are based on the magnification, shape,
and positions of the multiple lensed images of background sources, which are used to set
constraints on the mass distribution of the deflector. These images typically appear near
the Einstein radius of the lens, or tangential critical curve, which is typically between tens
and a few hundred kiloparsecs in galaxy clusters. Arcs can also appear close to the radial
critical curve, which can be much closer (a few kiloparsecs) to the center of the cluster.

The interpretation of strong lensing observations in galaxy clusters can be difficult due
to the distortions introduced in the background galaxies and also the lack of information
(such as redshifts, Blandford and Narayan, 1992; Schneider et al., 1992; Wambsganss, 1998;
Narayan and Bartelmann, 1996; Kneib, 2002). Fortunately, in recent years, high quality
data has enabled us to spectroscopically confirm many families of multiple lensed images,
reducing the level of uncertainty and allowing detailed lens reconstructions in many galaxy
clusters. Lens reconstruction methods are broadly classified into parametric and free-form
methods. Parametric models are the natural choice for modeling strong lensing clusters
when the number of lensing constraints is relatively small, such as in the case of QSO
lensing, where only three or four multiple images are typically available. These models
require that initial assumptions, or priors, about the cluster mass distribution be made.
Some of these assumptions are, for instance, that the dark matter halos follow the luminous
matter in the cluster or that galaxy profiles have certain symmetries. However, if the
number of lensing constraints is sufficiently high, e.g. a few tens to a hundred, it is possible
to accurately reconstruct the mass profile of a galaxy cluster, including substructure, in a
free-form way. The advantage of a free-form method is that no initial assumptions about
the distribution of mass in the galaxy cluster are needed. Lens models derived with free-
form methods are useful in these cases where the geometry of the lens is complex, such
as in the galaxy cluster MACS0717. In this case, a free-form lens model was able to
correctly predict the position of new families of lensed galaxies, which were later confirmed
spectroscopically (Diego et al., 2015). Even in cases where the cluster is more regular, free-
form methods have proven to be accurate at predicting different observations that were
later confirmed. For instance, they predicted the time and position of the reappearance of
SN Refsdal correctly (Diego et al., 2016), or the redshift of the family of lensed images in
system 7 in the cluster A370 (Diego et al., 2018a).

In this chapter we explored, with strong lensing data alone, the galaxy cluster MACS
J1206.2-0847 (hereafter J1206) using the free-form code WSLAP+ (Diego et al., 2005a,b,
2007; Sendra et al., 2014) aiming at estimating its inner total mass distribution (baryonic
and dark matter) and constraining the dark matter component.
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4.1 The galaxy cluster MACS J1206.2–0847

The cluster J1206 is at z = 0.439, and was originally discovered in a short 2-min r-
band image taken on June 15th 1999 by the University of Hawaii’s 2.2-meter telescope
(UH2.2m) on Mauna Kea. This observation was triggered by the presence of a X-ray
source previously detected by the ROSAT All-Sky Survey (RASS) (RXC J1206.2–0848,
Böhringer et al. 2001, 2004). After its discovery, it was included in the MAssive Cluster
Survey (MACS), an ongoing project aimed at the compilation of a statistically complete
sample of very X-ray luminous (and thus, by inference, massive), distant clusters of galaxies
from RASS data (Ebeling et al., 2001, 2007, 2010). The cluster appeared fairly relaxed
in its X-ray emission, but had significant amounts of intracluster light which was not
centrally concentrated, suggesting that galaxy-scale interactions were still ongoing despite
the overall relaxed state (Eichner et al., 2013). The BCG can be easily identified and is
located in the center of the cluster.

Following its initial identification as a potentially massive galaxy cluster, several follow-
up observations were performed to confirm its cluster nature and characterise its physical
properties. This cluster is actually one of the 25 clusters in the Cluster Lensing and
Supernova survey with Hubble (CLASH) program (Postman et al., 2012), a major project
aimed to build a large strong lensing data set on massive relaxed lensing clusters (Zitrin
et al., 2012; Umetsu et al., 2012; Biviano et al., 2013). One of the most peculiar lensed
images in this cluster is a 15-arcsec long, bright and tangential gravitational arc, extending
from a few arcsec to ≈ 20 arcsec west of the BCG. This arc was spectroscopically observed
first by Sand et al. (2004) and later confirmed, with a counter-image, by Ebeling et al.
(2009) at z = 1.036. Ebeling et al. (2009) make an analysis of the total cluster mass
distribution as well as of the mass in the cluster core using X-ray, dynamical and strong
lensing data. This giant arc and its companion image are treated as a seven-image multiple
system in order to perform a strong lensing model. Their strong lensing analysis, based on
imaging from the Hubble Space Telescope (HST), yields a mass estimate twice larger than
the X-ray mass estimate based on Chandra data. Despite its relaxed appearance at optical
and X-ray wavelengths, this discrepancy is believed to be indicative of ongoing merging
activity, which is also supported by a small, but significant, offset of the X-ray emission
peak from the BCG, and the very high dispersion velocity of the cluster. Zitrin et al. (2012)
exploit UV, optical and IR data from the 16 HST bands in the CLASH project along with
spectra from VLT/VIMOS in order to spectroscopically identify 47 new multiple lensed
images of 12 distant sources. A total of 50 multiple lensed images of 13 sources, spanning
redshifts from 1.0 to 5.5, were known by then. They use 32 secure multiple lensed images
belonging to nine sources in a parametric strong lensing reconstruction to derive a detailed
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mass distribution, and to constrain the inner mass profile of this cluster.

A later comprehensive analysis of this cluster combining weak and strong lensing data
from wide-field Subaru imaging and HST observations was performed by Umetsu et al.
(2012). They primarly use the parametric strong lens modeling of Zitrin et al. (2012)
but also perform some semi-independent free-form strong lensing analyses. They find good
agreement in the overlap region between weak and strong lensing constraints. Agreement is
found also between the lensing results and X-ray mass measurements, again in the overlap
region of the two data sets. Their morphological analysis of both the distribution of galaxies
and the reconstructed mass distribution also reveals the presence of an elongated large-
scale structure surrounding J1206. This structure runs approximately NW-SE, and it is
aligned with the cluster and BCG orientations. The overall shape of J1206 indicates that
light follows the mass up to the large scales of the cosmic web probed by observations.

A conclusive assessment on the degree of relaxation of the cluster was finally reached
in Biviano et al. (2013) through the analysis of the velocities of several hundreds of cluster
members. Building on a data set of∼ 600 spectroscopic redshifts of cluster member galaxies
out to the cluster outskirts (∼ 5 Mpc), they perform a mass profile reconstruction with
galaxy dynamics well beyond the cluster virial radius. The mass profile obtained is found
to be in excellent agreement with those derived from all the other independent probes (that
is, SL, WL and X-rays) and consistent with a NFW profile. This agreement lastly indicates
that possible systematic biases in dynamical analyses have been properly accounted for, and
that the cluster is in fact in a relaxed dynamical state. A pretty good agreement between
Chandra X-ray and lensing mass profiles for this cluster is also reported in Donahue et al.
(2014). In this case, they use a free-form analysis which combines weak and strong lensing
constraints from the HST and from ground-based wide-field data (Merten et al., 2009,
2015).

Finally, the most up-to-date strong lensing analysis of this cluster is performed by Cam-
inha et al. (2017). They were able to identify 23 new spectroscopically confirmed multiple
lensed sources, using deep VLT/MUSE (Multi Unit Spectroscopic Explorer) observations
in combination with CLASH-VLT imaging (Biviano et al., 2013). Using the positional
measurements of 82 spectroscopic multiple images belonging to 27 families and a flexible
parametric approach, they present an improved measurement of the mass distribution in
the inner region of J1206. An extension of this strong lensing analysis, including stellar
kinematics constraints to model the cluster galaxy population, and using the same cat-
alog of multiple images and cluster galaxies as in Caminha et al. (2017), is described in
Bergamini et al. (2019).
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4.2 Lensing data

We used public imaging data obtained from the ACS and WFC3 Hubble instruments.
We retrieved the data from the Mikulski Archive for Space Telescope1 (MAST). For the
optical data we used filters F275W, F336W, F390W, F475W, F606W, F775W, F814W and
F850LP (ID 12069, PI: M. Postman) and for the IR data we used filters F105W, F110W,
F125W, F140W and F160W (ID 12069, PI: M. Postman). We produced color images by
combining these optical and IR bands.

Regarding the member galaxies in J1206, we restricted ourselves to only those galaxies
that have been spectroscopically confirmed. As part of the CLASH-VLT Large Programme,
VLT/VIMOS was used to measure redshifts for a sample of 2,736 sources over an area
of 400 arcmin2, spectroscopically confirming 577 galaxy members (Biviano et al., 2013;
Rosati et al., 2014)2. They are defined as the galaxies with a velocity dispersion lower
than ∆v = 2919 km s−1 in the cluster rest frame (z = 0.439, Girardi et al. 2015), which
corresponds to a redshift range of 0.425 ≤ z ≤ 0.453. Considering among them only those
member galaxies that fall within the HST field of view and also are closer to the BCG, we
selected the brightest ones and those which are near to strong lensing arcs. The lensing
reconstruction method used is only sensitive to galaxies which are really close to an arc
(a few arcsec) or that are very massive, and thus its effective radius of influence is larger
than a few arcsec. Therefore, only those galaxies which meet these criteria are key for the
lensing reconstruction method. The 54 cluster members selected (including the BCG) are
listed in Table 4.1, and the closest ones to the center of the cluster are shown in Fig. 4.1.

For the strong lensing data, we followed the multiple-image system identifications from
Caminha et al. (2017), which include 82 spectroscopic multiple images belonging to 27
background sources in the redshift range from 1.01 to 6.06. They combine spectroscopic
measurements from CLASH-VLT (Biviano et al., 2013) and MUSE to find the largest pos-
sible number of families of multiple images based on their redshift values. Only multiple
images of background galaxies with secure spectroscopic confirmation (identification in
the MUSE and HST data) are considered in order to avoid any image misidentification.
Multiple images located very close in projection to massive spectroscopically confirmed
background galaxies are also discarded because these member galaxies can introduce sig-
nificant deflections (difficult to model) in addition to those associated with the cluster.
From Caminha et al. (2017), we also adopted the numbering scheme (except for some sys-
tems we decided to redefine in this work or the systems that include multiple images that

1https://archive.stsci.edu/prepds/clash/
2This spectroscopic catalog was publicly released in March 2014 and is available at https://

archive.stsci.edu/missions/hlsp/clash/macs1206/catalogs/redshift.

https://archive.stsci.edu/prepds/clash/
https://archive.stsci.edu/missions/hlsp/clash/macs1206/catalogs/redshift
https://archive.stsci.edu/missions/hlsp/clash/macs1206/catalogs/redshift
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were not used for the reasons explained above) as well as the spectroscopic redshifts. In ad-
dition to the centroid positions of the multiple lensed systems, we also used the position of
individual knots present in well-resolved elongated arcs, that are easily identified thanks to
the depth of HST data. The addition of extra knots in well-resolved systems has proven to
greatly improve the accuracy and stability of the derived lensing solutions of the WSLAP+
method (Diego et al., 2016) due to the large extension of the giant arcs. We redefined the
15-arcsec long tangential arc at 20 arcsec west of the BCG (ID = 2b) by replacing the
original two positions, 2b and 2c, (placed in both extremes of this arc) by ten constraints,
more or less equally spaced, along the arc. Adding these additional constraints allows us
to include information on the magnification of giant arcs as the optimisation algorithm
tries to focus all knots into a very compact region in the source plane. It is important to
emphasize that, given the small physical size of the sources, we approximated them at first
by point sources, so each knot maps to the same location in the source plane. The shape of
sources with multiple lensed knots, that are extended in the source plane, is reconstructed
through the iterative process in the WSLAP+ method. A first model is run in which the
spatial information of sources is not included and fewer iterations are done. Then a second
model is run, where the deflection angle map obtained from the first model is used to pre-
dict the configuration of the knots in the source plane. The relative position of the knots
in the source plane with respect to the centroid of the source is then fixed, so only the
position of the centroid is a free parameter in the reconstruction. This was done several
times increasing the number of iterations at each step until the process ends converging.
The shape of extended sources in the source plane was reconstructed by this procedure,
avoiding an undesired bias to models which might favour high magnifications due to the
initial assumption that the sources are point-like. This technique is used in Diego et al.
(2016) for source 1, which has as many as 20 well resolved knots. The configuration of the
knots for source 1 is similar to those found by other methods (including parametric ones),
suggesting that this iterative process, together with its convergence, is robust against dif-
ferent modeling methodologies. We also redefined the straight arc pointing NW (ID = 4b)
that arise from the BCG by splitting it into five different knots spread along the arc. On
the other hand, counter-images 7c and 7d, which are 3 arcsec apart, were considered as
knots belonging to a unique curved arc leading NE (ID = 7c). Three other knots, adding
to a total of five, were included in this curved counter-image. Accordingly, counter-image
7e was renamed as 7d. In summary, we use 97 lensing constraints in this work. All these
constraints are listed in Table 4.2, and the nearest ones to the BCG are shown in Fig. 4.2.
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In this work we adopt a flat cosmological model with ΩM = 0.3, Λ = 0.7, and h = 70

Kms−1Mpc. For this model, 1 arcsec = 5.68 kpc at the distance of the cluster (z = 0.439).
The reference point of our system of coordinates is the BCG: RA= 12:06:12.1436, Dec =
-8:48:03.055 (J2000). In all images (except when noted otherwise), we adopt the standard
convention where north is up and east is left.

N◦ RA Dec

1 12:06:08.0928 -8:48:23.821
2 12:06:08.5999 -8:48:12.416
3 12:06:08.6263 -8:47:54.737
4 12:06:08.6426 -8:48:26.946
5 12:06:08.7348 -8:47:33.508
6 12:06:09.1373 -8:47:23.132
7 12:06:09.3401 -8:47:21.786
8 12:06:09.8885 -8:47:32.024
9 12:06:09.9206 -8:48:27.414
10 12:06:10.3814 -8:47:55.388
11 12:06:10.6385 -8:48:56.372
12 12:06:10.7038 -8:47:57.444
13 12:06:10.7573 -8:48:09.302
14 12:06:10.7623 -8:48:02.588
15 12:06:10.7856 -8:47:53.322
16 12:06:10.8290 -8:48:06.570
17 12:06:10.9505 -8:47:58.855
18 12:06:10.9543 -8:47:12.203
19 12:06:11.3618 -8:48:22.100
20 12:06:11.4444 -8:48:56.200
21 12:06:11.5236 -8:47:54.982
22 12:06:11.5370 -8:48:19.361
23 12:06:11.7094 -8:47:14.748
24 12:06:11.7270 -8:47:48.536
25 12:06:12.0842 -8:47:31.330
26 12:06:12.1459 -8:48:03.316
27 12:06:12.2818 -8:47:55.864

N◦ RA Dec

28 12:06:12.3353 -8:47:59.064
29 12:06:12.5191 -8:47:36.737
30 12:06:12.5676 -8:47:39.793
31 12:06:12.6288 -8:48:52.153
32 12:06:12.7015 -8:48:04.831
33 12:06:12.7282 -8:46:48.205
34 12:06:12.7418 -8:47:41.503
35 12:06:12.7493 -8:48:52.625
36 12:06:12.7822 -8:48:05.627
37 12:06:12.9187 -8:48:00.443
38 12:06:13.2612 -8:48:21.964
39 12:06:13.2898 -8:47:36.773
40 12:06:13.6320 -8:48:38.160
41 12:06:13.7657 -8:47:46.172
42 12:06:13.7846 -8:48:08.730
43 12:06:14.2651 -8:47:26.182
44 12:06:14.5106 -8:48:46.404
45 12:06:15.0310 -8:48:37.505
46 12:06:15.0482 -8:47:55.752
47 12:06:15.3494 -8:47:43.267
48 12:06:15.3562 -8:47:43.440
49 12:06:15.6612 -8:48:21.823
50 12:06:15.7313 -8:48:12.200
51 12:06:15.9929 -8:48:17.233
52 12:06:16.0973 -8:48:06.260
53 12:06:16.0990 -8:48:11.948
54 12:06:16.2806 -8:48:02.956

Table 4.1: Cluster member galaxies in J1206 used in our strong lensing analysis.
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Figure 4.1: Image of cluster J1206 showing 31 of the 54 cluster members used in our
analysis. The member galaxies that fall within a field of view of 1.18 arcmin centered in
the BCG, are marked with green circles.
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ID RA Dec zs

1a 12:06:12.2198 -8:47:50.7192 1.0121
1b 12:06:11.9050 -8:47:57.4584 1.0121
1c 12:06:11.7288 -8:48:23.9580 1.0121
2a 12:06:11.2296 -8:47:44.4480 1.0369
2b1 12:06:10.7420 -8:47:58.1560 1.0369
2b2 12:06:10.7396 -8:47:58.9030 1.0369
2b3 12:06:10.7358 -8:47:59.4920 1.0369
2b4 12:06:10.7304 -8:48:00.1940 1.0369
2b5 12:06:10.7268 -8:48:01.9390 1.0369
2b6 12:06:10.7358 -8:48:03.4150 1.0369
2b7 12:06:10.7322 -8:48:05.2050 1.0369
2b8 12:06:10.7541 -8:48:07.3880 1.0369
2b9 12:06:10.8112 -8:48:09.5570 1.0369
2b10 12:06:10.8245 -8:48:10.9872 1.0369
3a 12:06:12.1368 -8:47:44.0448 1.0433
3b 12:06:11.4266 -8:47:59.3196 1.0433
3c 12:06:11.6657 -8:48:19.0116 1.0433
4a 12:06:12.7169 -8:47:40.9164 1.4248
4b1 12:06:11.7192 -8:48:00.2052 1.4248
4b2 12:06:11.8088 -8:48:00.6250 1.4248
4b3 12:06:11.8837 -8:48:01.0500 1.4248
4b4 12:06:11.9246 -8:48:01.2810 1.4248
4b5 12:06:12.0083 -8:48:01.9110 1.4248
4c 12:06:11.9405 -8:48:28.6740 1.4248
5a 12:06:12.8537 -8:47:42.6804 1.4254
5b 12:06:13.0169 -8:48:05.5872 1.4254
5c 12:06:12.0012 -8:48:29.1528 1.4254
6a 12:06:11.9950 -8:47:46.9032 1.4255
6b 12:06:11.5534 -8:47:49.4088 1.4255
6c 12:06:11.5320 -8:48:33.4188 1.4255
7a 12:06:12.1351 -8:47:44.5344 1.4257
7b 12:06:11.3263 -8:47:52.7928 1.4257
7c1 12:06:12.2328 -8:48:01.8410 1.4257
7c2 12:06:12.3214 -8:48:01.1808 1.4257
7c3 12:06:12.4327 -8:48:00.9640 1.4257
7c4 12:06:12.5311 -8:48:01.4328 1.4257
7c5 12:06:12.6092 -8:48:02.0260 1.4257
7d 12:06:11.5937 -8:48:31.8816 1.4257
8a 12:06:12.8777 -8:47:44.7216 1.4864
8b 12:06:13.0858 -8:48:03.9744 1.4864
8c 12:06:11.9897 -8:48:31.9932 1.4864
9a 12:06:11.2178 -8:47:35.3184 1.9600
9b 12:06:10.3855 -8:47:52.1232 1.9600
9c 12:06:10.6507 -8:48:26.9496 1.9600
10a 12:06:12.5880 -8:47:42.0036 2.5393
10b 12:06:11.1850 -8:47:50.8740 2.5393
10c 12:06:12.1169 -8:47:59.8452 -
10d 12:06:13.1746 -8:48:00.5760 -
10e 12:06:11.7185 -8:48:42.5268 -

ID RA Dec zs

11a 12:06:15.0370 -8:47:48.0192 3.0358
11b 12:06:14.9988 -8:48:17.6796 3.0358
11c 12:06:14.5375 -8:48:32.3568 3.0358
12a 12:06:11.6717 -8:47:37.3812 3.3890
12b 12:06:11.0690 -8:47:43.3932 3.3890
12c 12:06:12.7843 -8:48:00.7092 3.3890
13a 12:06:11.8598 -8:48:06.3648 3.3961
13b 12:06:11.4862 -8:48:07.6140 3.3961
13c 12:06:12.9048 -8:48:17.1324 3.3961
13d 12:06:12.3334 -8:48:24.7104 3.3961
14a 12:06:15.9739 -8:48:16.1280 3.7531
14b 12:06:15.9540 -8:48:17.0388 3.7531
14c 12:06:15.9540 -8:48:18.5292 3.7531
14d 12:06:15.9060 -8:48:22.7808 3.7531
14e 12:06:15.7418 -8:48:27.6840 3.7531
15a 12:06:13.4309 -8:47:29.8860 3.7611
15b 12:06:13.8240 -8:48:11.0016 3.7611
15c 12:06:12.4195 -8:48:39.4704 -
16a 12:06:13.1002 -8:47:28.3272 3.7617
16b 12:06:11.1516 -8:47:58.8156 3.7617
16c 12:06:13.5648 -8:48:08.8956 3.7617
17a 12:06:13.4726 -8:47:44.2320 3.8224
17b 12:06:13.6699 -8:47:57.9192 3.8224
18a 12:06:13.2902 -8:47:48.1704 4.0400
18b 12:06:13.4225 -8:47:54.9420 4.0400
19a 12:06:14.9002 -8:47:41.5500 4.0520
19b 12:06:14.8495 -8:48:18.8604 4.0520
19c 12:06:14.3491 -8:48:34.0668 4.0520
20a 12:06:11.3933 -8:48:01.7136 4.0553
20b 12:06:13.6414 -8:48:13.7268 4.0553
21a 12:06:10.4234 -8:47:51.6264 4.0718
21b 12:06:12.3509 -8:48:02.9304 4.0718
21c 12:06:12.6840 -8:48:04.0140 4.0718
21d 12:06:12.8232 -8:48:04.3344 4.0718
22a 12:06:10.6387 -8:47:29.1048 4.2913
22b 12:06:9.8122 -8:48:21.9384 4.2913
23a 12:06:15.1805 -8:47:48.8148 4.7293
23b 12:06:15.2489 -8:48:13.2120 4.7293
24a 12:06:12.3307 -8:47:28.6800 5.6984
24b 12:06:10.5804 -8:47:49.5384 5.6984
24c 12:06:12.2186 -8:48:02.1852 5.6984
24d 12:06:13.2504 -8:48:03.8376 5.6984
25a 12:06:14.3314 -8:47:47.6232 5.7927
25b 12:06:14.4245 -8:48:00.6372 5.7927
26a 12:06:12.1706 -8:48:11.2032 6.0106
26b 12:06:12.2906 -8:48:13.2048 6.0106
27a 12:06:12.7802 -8:47:55.7700 6.0601
27b 12:06:12.4058 -8:47:57.0012 6.0601

Table 4.2: Spectroscopic multiple images in J1206 used in our strong lensing analysis.



94 Strong lensing analysis of galaxy cluster MACS J1206.2-0847

Figure 4.2: Image of cluster J1206, where all the spectroscopically confirmed multiple
images used in our strong lensing models, and that fall within a field of view of 58 arcsec,
are indicated with red circles.

4.3 Lensing reconstruction method

The lens model for J1206 was obtained using the WSLAP+ code. This algorithm does not
rely on assumptions on the dark matter distribution and has proven to perform equally well
both in morphologically complex clusters (Diego et al., 2015) as well as with more regular
clusters (Diego et al., 2016, 2018a). This free-form method allows for increased spatial
resolution, and flexibility, in certain areas of the lens plane, where more detail is needed.
We took advantage of this feature to study the central region of this cluster in greater
detail and benefit from the constraints provided by two radial arcs with unusually extended
morphology and close to the center of the cluster. When the performance of WSLAP+
was compared with other codes using simulated observations (Meneghetti et al., 2017), the
lens models derived with WSLAP+ reproduced well the lensing potential in those regions
where multiple images are present. On the contrary, and not surprisingly, the potential
was poorly constrained in those regions without lensing constraints. A description of the
main aspects of this method is given in this section. Further details of the method can be
found in Diego et al. (2005a,b, 2007) and Sendra et al. (2014).
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WSLAP+ (Weak and Strong Lensing Analysis Package) falls in the category of hybrid
methods as it relies on a grid configuration (free-form) plus a compact component that
traces the light from the cluster galaxies. The code is able to estimate the cluster mass
distribution without using any prior information on the underlying mass provided the
number of strong lensing images with known redshifts is sufficiently large. No priors on
the shape of the individual halos are needed. For the usually small compact component,
mostly the baryonic contribution, the code assumes that the mass is proportional to the
observed flux. All galaxies can be forced to have the same mass-to-light ratio or some
galaxies (usually the BCG or other bright galaxies) are allowed to have their own mass-
to-light ratio. This method relies on the decomposition of the lens plane into individual
cells. We show here how the problem in this approximation can be expressed as a system
of linear equations, for which a solution can be found.

The fundamental problem in lens modeling is to find out what are the positions β =
(βx, βy) of the background sources and the mass distribution m(θ) of the lens given a series
of lensed images whose positions θ = (θx, θy) are known. This is achieved by solving the
standard lens equation enunciated in Eq. (3.8):

β = θ −α(θ,m(θ)) (4.1)

where α is the deflection angle caused by the lens. The non-linear dependence of the
deflection angle α on the observed positions θ could make us think we are facing a a non-
linear problem. However, since the positions θ are known through observation and the
gravitational potential has a linear nature, a linear formulation of the lensing problem is
possible. In the following lines we will describe how to reach this end.

The lensed images, or strong lensing observables θ, can be expressed in terms of deriva-
tives of the lensing potential:

ψ(θ) =
4G

c2

DLS

DLDS

∫
m(θ′) ln(|θ − θ′|) dθ′ (4.2)

where DL, DS and DLS are the angular diameter distances to the galaxy cluster, to the
background galaxies and from the cluster to the galaxies, respectively. To begin with, the
gradient of this potential allows us to obtain the deflection angle:

α(θ) =
4G

c2

DLS

DLDS

∫
m(θ′)

θ − θ′

|θ − θ′|2
dθ′ (4.3)

If we assume the usual thin lens approximation, the mass distribution m(θ) of the lens
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can be fully described by its surface mass density Σ(θ) within the defined lens plane. The
expression of the deflection angle then takes the following form:

α(θ) =
4G

c2

DLDLS

DS

∫
Σ(θ′)

θ − θ′

|θ − θ′|2
d2θ′ (4.4)

And according to Eq. (3.25), the magnification produced by the lens is easily derived from
α as

µ−1(θ) = 1− ∂αx
∂x
− ∂αy

∂y
+
∂αx
∂x

∂αy
∂y
− ∂αx

∂y

∂αy
∂y

(4.5)

The surface mass density on the lens plane can be described by the combination of two
components:

• A soft (or diffuse) component, which we construct as the superposition of Nc basis
functions on a grid split into as many cells as functions. The cells on this grid can
have constant width (regular grid) or varying width (adaptive grid).

• A compact component, that accounts for the mass associated with the individual
galaxies in the cluster.

Regarding the soft component, the projected mass, which must simultaneously sat-
isfy the lens equation from Eq. (4.1) for all the images observed, can be expanded as a
combination of individual functions:

Σ(θx, θy) =
∑
l

clfl(θx, θy) (4.6)

where cl are the corresponding coefficients for each one of the basis function fl(θx, θy)

considered. The basis functions could, in principle, be any kind of two-dimensional func-
tion. For instance, orthogonal polynomials or wavelet functions. An study of how the lens
models depend on the choice of basis function used to represent the mass distribution was
carried out in Diego et al. 2007. From that discussion, it was concluded that the best
results are obtained using compact basis functions defined on a lens plane split into small
grids or cells. Extended basis functions tended to produce more images than were ob-
served. Specifically, they decided to assume that the mass distribution in each cell follows
a Gaussian distribution located at the center of the cell with a varying dispersion. Gaus-
sian functions offer several advantages, including a good compromise between the desired
compactness and smoothness of the basis function, and a fast analytical computation of
the integrated mass for a given radius. Accordingly, here we will follow the same path and
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use Gaussians for the fl functions.

On the other hand, the compact component was modeled by adopting the light distri-
bution of the cluster observed in the filter F160W, and directly assigning to each galaxy
a mass proportional to its surface brightness. This mass is later re-adjusted in an opti-
misation process. The compact component is usually split into independent layers, each
one containing one or several cluster members. The separation into layers allows us to
constrain differently the mass associated with different kinds of galaxies. This is useful in
the case where the light-to-mass ratio may be different, as happens for instance with the
BCG.

If we substitute the mass decomposition from Eq. (4.6) in Eq. (4.4), the deflection angle
for each background galaxy can be rewritten as

α(θj) = λj
∑
l

cl

∫
fl(θ

′)
θ − θ′

|θ − θ′|2dθ
′ = λj

∑
l

clf̃l(θj) (4.7)

where λj = 4GDLS/c2DSDL is different for each background galaxy, since it contains all
the distance factors whose values depend on the source. The factor f̃l(θj) is the convolution
of the basis function fl with the kernel (θ − θ′)/|θ − θ′|2 at the position θ. If we now
define the multiplication of these two variables as the matrix Υ by:

Υjl = λj f̃l(θj), (4.8)

the lens equation shown in Eq. (4.1) can be expressed in the following form:

Θ = Υc− β (4.9)

Going one step further, if all the unknowns in the lens problem are grouped together,
the strong lensing problem can finally be expressed as a system of linear equations, that
can be depicted in an even more compact form:

Θ = Γ X (4.10)

(
θx

θy

)
=

(
Υx Ix 0

Υy 0 Iy

) cβx
βy

 (4.11)

where the ij elements in matrix Ix are ones if the θi pixel (x-coordinate) comes from the
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βj source (y-coordinate), and zero otherwise. The matrix Iy is defined analogously, and
the matrix 0 contains all zeros. In this system of equations, the measured strong lensing
observables are contained in the array Θ of dimension NΘ = 2 NSL, the unknown source
positions β and surface mass density Σ(θ) are contained in the array X of dimension NX

= Nc + Ng + 2Ns, and the matrix Γ, which accounts for all the physics and geometry
of the grid, is known (for a given grid configuration and fiducial galaxy deflection field)
and has dimension NΘ ×NX . NSL is the number of strong lensing observables (each one
contributes with two constraints, θx, and θy). Ns is the number of background sources
(each one contributes with two unknowns, βx, and βy), which in our case was fixed to 27
families spectroscopically confirmed with CLASH/VLT and MUSE data. And Nc is the
number of grid points (or cells) that we use to split the field of view in the soft component
of the surface mass density. A Gaussian function is placed in each grid point. The width of
these Gaussians is chosen in such a way that two nearby grid points with a same amplitude
result in a horizontal plateau between the two overlapping Gaussians.

In this work, we considered both regular and adaptive (multiresolution) grid configu-
rations. Adaptive grids are useful when there is a clear peak in the mass distribution, for
instance here where the cluster has a single well-defined BCG. The regular grid used in
this work has Nc = 32 × 32 = 1024 grid points. The multiresolution grid used in this
work has Nc = 480 grid points. These two grids are shown in Fig. 4.3. Ng is the number
of deflection fields (from cluster members) that we consider, that is, the number of mass
layers in which we split the compact component. In this work, we set Ng equal to 1 or 2 in
order to explore different configurations. We contemplated a scenario with Ng = 2 where
all galaxies, except for the BCG, are in the same layer. On the other hand, when Ng =
1, all the galaxies in the cluster are re-scaled by the same parameter because they all are
in the same layer. We contemplated four cases with Ng = 1: i) the first one in which all
the individual galaxies were assumed to follow the same light-to-mass ratio, ii) a second
case in which the light contribution of the BCG was decreased by a factor of 0.5, iii) a
third case where the light distribution of the BCG was reduced to one third of its original
weight, and iv) the last case in which the BCG was excluded and only the rest of member
galaxies are taken into account. Cases ii-iv) are interesting to explore the possibility that
the dark matter content within the BCG is very small and the baryons in the BCG can
hide this deficit. We will return to the cases studied at the end of this section.

In summary, the strong lensing problem has been formulated in Eq. (4.10) in a manner
where the observables Θ depend linearly on the unknowns X. Even though an exact
solution for X exists as long as the inverse of Γ exists, Γ is singular in most cases and thus
does not have a inverse. In consecuense, a direct inversion of the lensing problem is not
always feasible. This seeming obstacle leads us to need a numerical approach to solve the
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Figure 4.3: Depiction of the grids used in this work: a regular grid of 1024 cells (left) and a
multiresolution grid of 480 cells (right). The peaks of the individual Gaussians are located
at the possitions of the dots.

lens equation, which in the end turns out not to be as bad as you might think. For the
cases where the inverse of Γ exists, we would obtain an exact solution of X, but taking
into account the following assumptions made we would be more interested in slightly more
imprecise solutions. We defined X assuming that the background galaxies are only placed
at the coordiantes βx and βy, which is inaccurate as galaxies have some spatial extent. In
addition, the approximation that the mass can be described as a superposition of basis
functions is not fully accurate. Therefore, in order to allow for some looseness in the
solutions derived, we incorporate the following residual (|r| > 0) in the lens equation:

r ≡ Θ− ΓX (4.12)

that we assume is distributed following a Gaussian. The solutions we are looking for are
those that maximize the following likelihood function:

L(X) = e−
1
2
χ2

(4.13)

This is the same as saying they have to minimize a χ2 we define as

χ2 =
1

2
XtAX + atX (4.14)

where a = 2ΓtC−1Θ and A = 2ΓtC−1Γ, being C the covariance matrix of the residual r.

The solution of the linear system of equations shown in Eq. (4.10) is therefore found
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after minimizing the above quadratic function of X. This minimization is done with
the constraint that the solution, X, must be positive. Since the vector X contains the
masses, the renormalization factors for the galaxy deflection field, and the background
source positions, and all these quantities are always positive (the reference zero of the source
positions is defined in the bottom left corner of the field of view), imposing X > 0 helps
to constrain the space of meaningful solutions, and to regularise the solution as it avoids
large negative and positive contiguous fluctuations. The approach followed here is known
as multiplicative updates for non-negative quadratic programming, and was developed by
Sha et al. (2003). The quadratic algorithm convergence is fast (80 minutes using the grid
with Nc = 1024 in a 2.7 GHz Intel Core i7 processor) allowing for multiple solutions to
be explored in a relatively short time. Different solutions can be obtained after modifying
the starting point (or grid configuration) in the optimisation and/or the redshifts of the
systems without spectroscopic redshift. A detailed description of the quadratic algorithm
used in the WSLAP+ method can be found in Diego et al. (2007), and a recent discussion
about its convergence and performance based on simulated data can be found in Sendra
et al. (2014).

In order to account for uncertainties and variability in the lensing models, we explored a
range of configurations where we changed the assumptions for the two main components of
our method: the light-to-mass ratio of the member galaxies (compact component) and the
grid definition (soft component). The number of member galaxies considered was always
fixed to 54. We considered nine types of models, which can be grouped into five categories
or cases, according to how the compact component was treated. In case 1, all galaxies but
the BCG were in the same layer (Ng = 2). All galaxies were assumed to follow a fixed
light-to-mass ratio while the BCG was allowed to have its own independent light-to-mass
ratio. A multiresolution grid with Nc = 480 cells (1a) and a regular grid of Nc = 1024 cells
(1b) were considered. From case 2 on, all the galaxies were in the same layer (Ng = 1).
Such as in case 1, grids with 480 (2a, 3a, 4a) and 1024 cells (2b, 3b, 4b) were again used in
cases 2, 3, and 4. In case 2, galaxies were forced to have the same light-to-mass ratio. In
case 3, all galaxies but the BCG had the same light-to-mass ratio equal to one. The BCG
was forced to have a mass-to-light ratio of 1/2 times the one for the other member galaxies.
Case 4 is similar to case 3 but this time the BCG was forced to have a mass-to-light ratio of
1/3 times the one for the other member galaxies. Finally, in case 5 the BCG was excluded
from the compact component and only the grid component contributed with mass in the
central region. The other member galaxies had all the same light-to-mass ratio. Only
results for the grid with 480 cells (5a) were used in this work3.

3Regular grid with 1024 cells was also considered but we decided to exclude it due to its clear poor
reconstruction of radial arc 7c.
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4.4 Results

We derived a solution for each one of the nine models discussed at the end of Sec. 4.3.
Solutions typically converge to a stable point after ≈ 105 iterations, at which point the
minimization was stopped. We show the critical curves for the two models in case 2,
considering a source at redshift zs = 3, in Fig. 4.4. Since most of the differences are due
to changes in the grid configuration, the critical curves for the other cases look similar.

To test the quality of the solutions, we compared the observed and predicted counter-
images in the image plane. First, we have focused our attention on system 2 since this was
the first one spectroscopically observed due to the size and brightness of image 2b. We
used image 2a to predict the entire system 2, by delensing 2a to the source plane and later
relensing it back to the image plane. This was done for every lens model considered. The
predictions of counter-image 2b for all nine models are shown in Fig. 4.5. The agreement
between the observed and predicted images is in general good. All predicted images of this
arc have the same length as the original one varying a bit in the thickness, straightness and
the meandering in the lower region. The fact that all models with different configurations
perform well at predicting this counter-image probes the robustness of the models. Cases
3b and 4b, and to a lesser degree 1b and 2b, are distinctively narrower in the middle
section of the arc than the other cases (and the real data), indicating that the predicted
radial magnification (µr = (1 − κ + γ)−1) in this region of the lens plane is smaller for
these models. Interestingly, b-type models have a larger contribution from the member
galaxies (compact component). The increase in mass in the b-type models is expected
since these models correspond to the regular grid, which has a lower resolution around the
central region. The impact of a lower resolution grid around the BCG is evident in case
1b, in which the mass of the BCG (M2 in Table 4.3) is ≈ 3 times larger than in case 1a.
Since b-type models have a larger κ around the member galaxies, the value of the radial
magnification can be smaller near these galaxies than in a-type models.

Despite the robust prediction of counter-image 2b offered by all models considered,
differences arise when looking at their projected density mass profiles. Differences between
their profiles are logically greater the closer we approach the center of the cluster since
the very central region is not constrained by any observation. Cases 1 and 2 have density
profiles steeper in the inner region as they allow for a greater contribution from the BCG.
On the other hand, the density mass profile from case 5, where the BCG was excluded,
is shallower. Differences between different grid configurations with the same conditions
for the compact component are less significant. We have estimated the values of the
logarithmic slope of the projected total mass density profiles for all models within a few
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kpc from the BCG. The total mass density profiles with the highest (case 1b) and lowest
slopes (case 5a) are shown with black dashed-dotted and black dashed lines, respectively,
in Fig. 4.6. The seven additional models fall in between these two models, and hence for
clarity, are not shown in the plot.

The central part of J1206 is the most interesting region we aimed to study. The
determination of the total mass distribution in the inner core of J1206 allows us to measure
the dark matter density profile and test for possible models of dark matter, such as self-
interacting dark matter, that predict shallow or even flat density profiles in the very central
region extending up to tens of kpc (and difficult to explain with baryonic feedback). Since
the very central region has a large contribution to the mass from the baryonic component
itself, one needs to estimate, and later subtract, this baryonic contribution. We used
65-mas CLASH images to measure the photometry of the BCG. The CLASH program
image each cluster with 16 HST filters from UV to near-IR wavelengths. However, due
to insufficient overlap between individual exposures, certain filters are prone to cosmic
ray contamination. Images from these filters were not included in our analysis. We only
measured the photometry from F275W, F606W, F814W, F105W, F110W, F125W, F140W,
and F160W images. The photometry of the BCG was measured by running SExtractor
in dual-image mode. The F160W image was used for source detection, segmentation and
the definition of the isophotal apertures. Fluxes and uncertainties in each band were then
measured from these isophotal apertures.

We fitted synthetic stellar population spectra to the SED with FAST (Kriek et al.,
2009). We made the following assumptions when constructing the synthetic spectra: (i)
the Bruzual and Charlot (2003) stellar population synthesis model, (ii) the Chabrier (2003)
initial mass function, (iii) an exponentially declining star formation history, (iv) the Kriek
and Conroy (2013) dust law, (v) a fixed redshift of z = 0.44, and (vi) a solar metallicity of
Z = 0.02. In addition to these assumptions, the synthetic populations are described by four
free parameters, which include stellar mass, star formation timescale, age, and extinction.
These free parameters are allowed to take on a wide range of physically plausible values.
For each combination of their values, a synthetic spectrum was constructed. FAST then
calculated the χ2 of each synthetic spectrum to the observed SED, and found the best-
fit spectrum, which is shown in Fig. 4.7. The stellar mass of the best-fit spectrum is
3.61+0.57

−1.98×1011M� (3σ interval). In the end, after removing this stellar mass, we achieved
an estimate of the dark matter distribution for each one of the models described at the end
of Sec. 4.3. Dark matter density profiles for the models with the highest (case 1b) and lowest
slopes (case 5a) are shown with red dashed-dotted and blue dashed lines, respectively, in
Fig. 4.6. It is important to note how case 5a (which we remind it corresponds to the
model where the contribution from the BCG is forced to be zero) results in a declining
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dark matter density profile at distances below ≈ 3 kpc once the stellar mass is subtracted.
This suggests that case 5a is underestimating the total mass at these radii. However, this
is compensated by an excess of mass between ≈ 3 kpc and ≈ 10 kpc, keeping a total mass
within 10 kpc approximately the same as for the other models. In fact, the integrated total
mass within ≤ 10 kpc for case 5a (6.43× 1012M�) is slightly higher than the mass in the
same region for the case 1b (6.28× 1012M�).

Figure 4.4: Critical curves for the two models in case 2 (case 2a in green and case 2b in
blue), considering a source at zs = 3. The field of view is 2 arcmin. The orientation is not
north-south, but rotated 44◦ counterclockwise.
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Case 1a Case 1b Case 2a

Case 2b Case 3a Case 3b

Case 4a Case 4b Case 5a

Figure 4.5: Original and predicted images of arc 2b, using the delensed counter-image 2a
as a template of the source, for the nine different models discussed at the end of Sec. 4.3.
The field of view and center of the images are the same in all panels. Image used was
filtered to reduce light contribution from member galaxies of the cluster.
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Figure 4.6: Mass profiles, in terms of the critical surface mass density (computed at zs = 3),
for the solutions with the highest (case 1b in red) and lowest slopes (case 5a in blue) within
a few kpc from the center of the cluster. The red dash-dotted line and the blue dashed line
are the total mass density profiles for each case. The black dash-dotted line surrounded
by a red shaded uncertainty region (3σ) and the black dashed line surrounded by a blue
shaded uncertainty region (3σ) are the dark matter density profiles in each case. Other
models have not been included because their behavior falls within the borders established
by the two models plotted.
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Figure 4.7: Best fit of cluster J1206’s synthetic stellar population spectrum.

4.4.1 The central region of J1206

As mentioned earlier, we are particularly interested in the central region of J1206. We
tested the performance of the nine models by comparing the predicted and observed images
of the two resolved radial arcs, 4b and 7c, near the BCG. The model that best reproduces
these two arcs would be, in principle, the best representation of the dark matter distribution
in the center of J1206. For system 4, we used the counter-image 4c as a template for the
source that is delensed and relensed by the nine lens models in order to predict the counter-
image 4b. Counter-image 4a was not used due to its proximity to a cluster member. For
system 7, we considered both counter-image 7a and 7d in the delensing and relensing
process for reconstructing arc 7c. Comparing the predictions of arcs 4b and 7c with the
data was not trivial in this case since we are making a comparison a posteriori. We did not
look for models that minimize the residuals between the observed and predicted images.
Instead, we have compared global properties (such as orientation, curvature, and position)
of the predicted and observed arcs 4b and 7c after the models were derived using all
available information. A classic residual analysis would be, in this case, not optimal since
the models were derived not optimising the counter-images 4b and 7c, but optimising the
predicted position of all arcs. The metrics used to compare the model with the data are a
compromise between the standard metric, which uses only the position, and more complex
figures of merit that could include additional parameters about the morphology of the arcs.
We simply added an extra parameter (in addition to the standard position) to account for
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the main morphological feature in each arc, radius of curvature in one case, and orientation
in the other. A more complicated metric could, of course, be chosen but at the expense of
introducing unnecessary correlations between the parameters.

First, we focused on the counter-image 4b (see Fig. 4.8), with a shape that can be
well approximated by a straight line. From the original counter-image we fitted a straight
line defined by the point where the arc intersects the BCG and the angle, α, between
this line and the x-axis (left subfigure). We did the same process for the counter-images
predicted using the different models (right subfigure). However, we were not able to select
the first point (a) in the same way as we did with the original counter-image because there
is no BCG covering the lower part of the predicted image. In order to tackle this we kept
the same y-coordinate of the first point (a) from the original arc and only looked for the
corresponding x-coordinate at which the predicted counter-image is maximum. From each
one of these fits we computed two values: the x-coordinate of the lower point (a) and the
angle (α) between the line of fit and the y-axis. Explanatory images of the steps followed
are shown in Fig. 4.8. The predictions of counter-image 4b for all nine models are shown
in Fig. 4.10.

For image 7c, we fitted it with a circle. Both from the original counter-image, and
from the model-predicted images, we computed the coordinates of the two main knots (7c2

and 7c4 according to our numbering criterion). We used these two coordinates to fit a
circle to the whole arc in the real image and the predicted counter-images and we kept
the coordinates of the center of these circles. From each one of these fits we saved three
pairs of values: the coordinates of the knot 7c2, the coordinates of the knot 7c4 and the
coordinates of the center of the fitted circle. Explanatory images of the steps followed are
shown in Fig. 4.9. The predictions of counter-image 7c for all nine models are shown in
Fig. 4.11.

We finally performed a Pearson’s χ2 test statistic in order to compare the performance
of the different models in predicting counter-images 4b and 7c, and to find the models
that work better. The values of the five parameters previously saved (two from 4b and
three from 7c) are then used in the χ2 test. To check for possible systematic effects, the
previous process has been repeated several times under different conditions: using different
counter-images as templates for the delensing and relensing process, centring the original
images in different coordinates or using different filtered images to enhance the signal of
the counter-images. Based on χ2 values obtained and shown in Table 4.3, case 2b is the
model which predicts with more accuracy both radial arcs. If we consider the two radial
arcs separately, case 3b is the best model describing arc 4b, while case 2b is again the
best model at reproducing 7c. The worst performers are case 1b for arc 4b, case 4b for
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arc 7c, and case 4b again for the combination 4b+7c. Interestingly, both the best and
worst performers correspond to the category of b-type models, that is models derived with
the regular grid. In all cases, the arc 7c has a χ2 that is significantly worse than arc
4b, indicating that there is still room for improvement in the model. This can be better
appreciated in Fig. 4.9, where for the best model, case 2b, a small but clear offset between
the predicted and observed image can still be seen.

Using case 2b, we were able to predict the position of counter-images that were not used
in neither our analysis nor in Caminha et al. (2017). Our predictions for these counter-
images are consistent with those in Caminha et al. (2017). These counter-images were not
taken into account because they might be significantly deflected by massive and nearby
early-type galaxies (22b, 23c, 24e according to the denomination of said paper) or because
they are model predicted images in Caminha et al. (2017) but not observed in MUSE nor
HST data (4d, 12d, 12e, 13e, 16d, 17c, 17d, 18c, 20c, 20d, 21e, 25c, 26c and 27c according
to the denomination of said paper). Case 2b also predicts new counter-images for system
14 (RA = 12:06:15.9459, Dec = -8:48:09.909), for system 18 (RA = 12:06:11.8139, Dec
= -8:48:46.595), and system 21 (RA = 12:06:11.2953, Dec = -8:48:40.112). These new
predicted images are shown in Fig. 4.12.

Model χ2
4b χ2

7c χ2
4b+7c M1 (1012 M�) M2 (1011 M�)

1a 5.6 27.2 32.8 4.31 2.54
1b 12.1 21.2 33.3 3.35 8.02
2a 9.4 31.3 40.7 4.54 -
2b 4.6 14.1 18.7 5.27 -
3a 5.4 19.1 24.5 4.55 -
3b 1.4 24.6 26.1 7.37 -
4a 5.6 22.9 28.5 4.47 -
4b 6.2 47.1 53.3 7.57 -
5a 3.3 34.4 37.7 4.32 -

Table 4.3: χ2 values and total mass of the galaxies in the compact component (M1 for
layer 1 and M2 for layer 2, containing the BCG) for each one of the models considered to
the reconstruction of counter-images 4b and 7c.
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Figure 4.8: Images of the analysis performed with counter-image 4b. Left : Original
counter-image 4b, where a blue dashed line has been used to approximate its shape, the
position where this arc intersects the BCG is surrounded by a red circle (a), and the angle
(α) between arc 4b and the x-axis is shown. Right : Counter-image 4b predicted with
case 2b, where position (a) is fixed to the same y-coordinate selected in the left panel and
x-coordinate is chosen to correspond with a maximum of the rebuilt image. This counter-
image is fitted to a straight line, which has a certain angle (α) with respect to the x-axis.
This process is repeated for every model considered.

Figure 4.9: Images of the analysis performed with counter-image 7c. Left : Original counter-
image 7c with its two knots 7c2 and 7c4 indicated with red circles. Middle: Counter-image
7c predicted with case 2b being its two knots highlighted. Right : Original counter-image
7c (left image) combined with the fit to a circle of the two knots (red dots) from the
above prediction (middle image) so as the shift between both pairs of knots (original and
predicted) can be better appreciated.
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Case 1a Case 1b Case 2a

Case 2b Case 3a Case 3b

Case 4a Case 4b Case 5a

Figure 4.10: Original and predicted images of arc 4b, using the delensed counter-image 4c
as a template of the source, for the nine different models discussed at the end of Sec. 4.3.
The field of view and center of the images are the same in all panels. The image used was
filtered to reduce the light contribution from member galaxies of the cluster.
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Case 1a Case 1b Case 2a

Case 2b Case 3a Case 3b

Case 4a Case 4b Case 5a

Figure 4.11: Original and predicted images of arc 7c, using the delensed counter-image 7a
as a template of the source, for the nine different models discussed at the end of Sec. 4.3.
The field of view and center of the images are the same in all panels. The image used was
filtered to reduce the light contribution from member galaxies of the cluster.
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Figure 4.12: New counter-images predicted by case 2b for multiple-image systems 14 (left),
18 (middle) and 21 (right). The positions where these counter-images should be seen are
indicated with white circles.
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4.4.2 Mass distribution and mass profile

The two-dimensional mass distributions of the soft component (grid) for case 2b, our best-
predict model, and case 3a, best-predict model using the multiresolution grid, are shown
in Fig. 4.13, and they are overlaid with an image of the cluster. In Fig. 4.14, we show a
comparison of the total projected mass profile of J1206 as estimated by galaxy kinematics
(Biviano et al., 2013), by the strong lensing method performed in Caminha et al. (2017),
and by the strong lensing analysis carried out in this work (Manjón-García et al., 2020).
This projected mass profile is calculated by integrating the corresponding density profile
along the distance. A very good agreement among the three profiles can be seen. The
density profile of the galaxy cluster J1206 from case 2b is shown in Fig. 4.15. Both the
projected total mass density profile (blue solid line) and the dark matter density profile
(black dotted line) are shown.

In this analysis we have used the generalised NFW model shown in Eq. (3.46) to fit
our estimation of the dark matter density profile within cluster J1206. After assessing the
χ2 values of several models to the measured dark matter density profile from case 2b, we
found a reasonably good fit by using a gNFW density profile with rs = 167 kpc (virial
radius r200 = 2 Mpc and concentration parameter c200 = 12), ρs = 6.7 × 106 M�kpc−3

and γgNFW = 0.7. This fit, performed within the range where strong lensing constraints
are available, is shown in Fig. 4.15. These results differ with those obtained in previous
works with this cluster. The gNFW parameters attained in Caminha et al. (2017) are rs
= (300 ± 3) kpc, ρs = (1.91 ± 0.3) × 106 M�kpc−3, and γgNFW = 0.91 ± 0.04. The
resulting gNFW density profile when using these values is also included in Fig. 4.15. We
note that our profile at radii larger than 200 kpc falls below that of Caminha et al. (2017).
Although this may be an artifact in our model due to memory effects of the initial condition
(which are more severe in areas where the number of constraints is poor), it may also be
a real feature as we are not assuming any specific profile for the halo at large radii. After
comparing with the dynamical results from Biviano et al. (2013) shown in Caminha et al.
(2017), the dynamical profile falls also faster than the profile in Caminha et al. (2017), and
more in line with our profile at large radii. The best-fit NFW model scale radius, virial
radius, and concentration parameter obtained in Biviano et al. (2013), by combining the
results of two different kinematic methods, are rs = (0.35+0.14

−0.09) Mpc, r200 = (1.96+0.14
−0.09)

Mpc, and c200 = (5.6 ± 1.9). This last NFW model is also very close to the best-fit NFW
model, with rs = (0.34 ± 0.06) Mpc; r200 = (1.96 ± 0.11) Mpc; and c200 = (5.8 ± 1.1),
obtained by the combined strong and weak lensing analysis published in Umetsu et al.
(2012). Our estimate of the scale radius is, therefore, smaller than those of these previous
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works.4 Since the number of strong lensing constraints decreases the further we move
away from the cluster center, and there are no constraints beyond 336 kpc, our method
is not sensitive to the virial radius scale. Accordingly, the boundaries we achieve for the
concentration parameter and the scale radius using our data are possibly not as robust as
the ones provided by other data sets, involving for instance weak lensing.

The giant arc 4b is particularly interesting since its extreme elongation could in princi-
ple be explained by a very shallow profile in the case of a circularly symmetric lens model.
This hypothesis is exciting since it could be the result of self-interactions in the dark matter
fluid. Alternatively, the large elongation of arc 4b could be explained if the dark matter
halo is oriented in the direction of the arc. This would result in a locally shallow potential
in that direction, which is the requirement for long elongated radial arcs. When looking at
the distribution of dark matter in the central region (see Fig. 4.13), the dark matter halo
has similar morphology, and is oriented in the same direction, as the BCG. That is, the
dark matter halo is oriented in the direction of the giant arc 4b. This fact suggests that one
does not need to rely on a cross section for dark matter in order to explain the morphology
of arc 4b. When fitting the value of the inner slope assuming a gNFW profile, we obtain
a slope of γ = 0.7. This slope is smaller than the canonical γ = 1 predicted by standard
CDM models but still relatively far to the expected shallow slope in self-interacting models
with cross sections of the order of (or larger than) 1 cm2g−1, where one expects γ ≈ 0

(Rocha et al., 2012).

Finally, we found an interesting result in the distribution of sources in the source plane.
We estimated the positions of all 27 background galaxies using the lens model 2b. These
galaxies are listed in Table 4.4, and shown in Fig. 4.16. Among these, the background
galaxies with ID = 4, 5, 6, and 7 are all in a narrow redshift interval, 1.424 ≤ z ≤ 1.426,
and probably forming a group at this redshift since they cluster in the source plane both
spatially and in redshift. A reconstructed version of the source plane with these four
sources is shown in Fig. 4.17. We can see how galaxies 4 and 5 are already interacting, and
that galaxies 6 and 7 are less than 10 kpc apart, thus in the early phase of an interaction
or soon after a first encounter.

4We also performed a fit to a NFW density profile finding a good fit for rs = 178 and ρs = 4.56 ×
106 M�kpc

−3. This estimation of the scale radius is smaller than in previous works too.
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Figure 4.13: Contours of the soft component (grid) of the mass distribution for case 2b (in
red) and case 3a (in blue) overlapped with an image of the cluster. The orientation of the
image is not north-south, but rotated 44◦ counterclockwise.
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Figure 4.14: Comparison of the total projected mass profile of J1206 as estimated by galaxy
kinematics in Biviano et al. 2013 (red), strong lensing in Caminha et al. 2017 (green) and
strong lensing in this work (pink). Courtesy of Andrea Biviano.
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Figure 4.15: Mass profile in terms of the critical surface mass density (κ computed at zs
= 3) for the model that best reproduces the counter-images 4b and 7c (case 2b). The blue
solid line is the mass density profile calculated with our method while the black dotted line
is the dark matter mass density profile estimated after separating the stellar component of
the BCG. The blue shaded region represents the 3σ uncertainty interval. The red dashed-
dotted line is the best fit to a gNFW density profile achieved in this work while the green
dashed line corresponds to a gNFW density profile considering the parameters attained in
Caminha et al. (2017). The gray shaded area spreading from 7.8 kpc to 335.8 kpc (1.37" to
59.1") covers the region where all the multiple images considered in this work (and listed
in Table 4.2) are placed.
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N◦ RA (deg) σRA (arcsec) Dec (deg) σDec (arcsec)
1 181.5502 0.1416 -8.8017 0.1105
2 181.5488 0.0684 -8.8005 0.0540
3 181.5501 0.0718 -8.8008 0.1029
4 181.5508 0.0222 -8.80132 0.2144
5 181.5509 0.0568 -8.80133 0.1017
6 181.5499 0.1128 -8.8021 0.0911
7 181.5500 0.2575 -8.8018 0.1000
8 181.5509 0.0846 -8.8016 0.0275
9 181.5488 0.0260 -8.8009 0.0426
10 181.5503 0.0648 -8.8025 0.0978
11 181.5553 0.0750 -8.8019 0.0728
12 181.5496 0.0318 -8.8025 0.0105
13 181.5515 0.1679 -8.7992 0.0839
14 181.5572 0.0289 -8.8025 0.0695
15 181.5518 0.0568 -8.8012 0.0392
16 181.5512 0.0998 -8.8012 0.1452
17 181.5511 0.0323 -8.8028 0.0076
18 181.5506 0.0105 -8.8031 0.0396
19 181.5548 0.0494 -8.8016 0.0166
20 181.5517 0.0651 -8.8006 0.0427
21 181.5496 0.0956 -8.8014 0.0651
22 181.5477 0.0076 -8.8004 0.0033
23 181.5552 0.0127 -8.8022 0.0868
24 181.5499 0.0972 -8.8020 0.1815
25 181.5527 0.0519 -8.8027 0.0407
26 181.5511 0.0865 -8.7980 0.1390
27 181.5493 0.0963 -8.8037 0.0730

Table 4.4: Positions (RA and Dec), estimated by case 2b, of the 27 background galaxies
deflected by the cluster J1206, which have been spectroscopically identified. σRA and σDec
are the corresponding positional errors for the estimated positions.
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Figure 4.16: Image of cluster J1206 showing the positions of all 27 background sources
estimated by case 2b. The field of view has 50 arcsec.
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Figure 4.17: Reconstructed version of the source plane with background sources 4, 5, 6
and 7, which all have redshifts in the range [1.424-1.426].
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4.5 Conclusions

In this chapter we have presented several free-form strong lensing models of the galaxy
cluster MACS J1206.2-0847, at z = 0.439. We used public ACS and WFC3 Hubble data
and the code WSLAP+ to derive the lens models. Our analysis was built upon spectroscop-
ically confirmed multiple lensed sources identified using public deep MUSE observations
in combination with CLASH-VLT imaging. The data set we used is based on the multiple
image identifications from Caminha et al. (2017), but extended with the addition of further
knots present in some well-resolved arcs. In total, 97 strong lensing constraints belonging
to 27 background sources were used. The models considered had different configurations
and were compared on the basis of how well they were able to reproduce two elongated
radial arcs placed close to the BCG. Surprisingly, all models reproduced fairly well these
two arcs, independently of the chosen configuration for the grid and choice for the mass-to-
light ratio of the member galaxies. The geometry of the two giant radial arcs is mostly due
to the elongated nature of the dark matter halo, which is reproduced by all models. We
estimated, and later subtracted, the stellar baryonic contribution in order to estimate the
remaining contribution from the dark matter component in the very central region. After
comparing the predicted versus observed central radial images for the range of models, we
identified the best model (2b) that reproduces the central potential. This best model is
well described by a gNFW profile with rs = 167 kpc and γgNFW = 0.7. Our estimate of
the scale radius disagrees with previous results of the mass distribution within this cluster,
although it should be noted that the lack of constraints at large radii impedes a robust
estimation of this scale radius. This estimate leads to a concentration parameter c200 ∼
12, which falls in the range predicted for relaxed clusters. This supports the conclusion
from Biviano et al. (2013) that the cluster is in a relaxed dynamical state. The results
from our lens modeling are not indicative of a shallow profile in the central region of the
cluster, as it would be expected for self-interacting dark matter models. On the contrary,
we find a slope close to the expected slope for standard CDM models above 10 kpc. This is
an important conclusion since our model makes no assumptions about the mass profile in
the inner region (that could bias the constraints in the inner slope), other than assuming
that the baryonic component traces the luminous mass.





Chapter 5

Neural networks theory

The analysis of strong gravitational lensing phenomena has proven to be an extremely
useful cosmological tool. They can provide direct estimations of the dark matter distribu-
tion in the central regions of galaxies and galaxy clusters, and also be used to constrain
cosmological parameters such as the Hubble constant. The only inconvenient is that strong
lensing is a rare phenomenon, with only a few systems expected from surveying thousands
of objects. The largest sample of strong lensed systems from a single survey until date, with
more than 100 lenses observed, has been provided by the Sloan Lens ACS Survey (SLACS)
(Bolton et al., 2008; Shu et al., 2017). Wide scale surveys, with millions of galaxy observa-
tions, are key to obtaining statistically significant samples of strong lenses. The advent of
huge amount of data from the current and upcoming new generation of surveys, which will
observe many more strongly lensed systems, could seem to solve this problem. The Euclid
space telescope (Laureijs et al., 2011), due for launch in 2022, and the Large Synoptic
Survey Telescope (LSST; LSST Science Collaborations, 2009) are foreseen to resolve ∼ 105

strong gravitational lens systems (Refregier et al., 2010; Oguri and Marshall, 2010; Pawase
et al., 2014; Collett, 2015). The Square Kilometer Array (SKA; Rawlings and Schilizzi,
2011) is also expected to observe an amount of radio-loud gravitational lenses of the same
order of magnitude (McKean et al., 2015). Focusing now on ongoing surveys, we can point
out optical wide surveys, such as the Kilo-Degree Survey (KiDS; de Jong et al., 2013) or
the Dark Energy Survey (DES; The Dark Energy Survey Collaboration, 2005), which are
expected to find the order of ∼ 103 lenses (see e.g. Collett, 2015). Current infrared surveys
also contribute to increase the statistics of detected lenses, as we discussed in Sec. 2.7 where
a sample of 40 potential lens candidates in H-ATLAS were identified (Manjón-García et al.,
2019). Sub-mm observations from Herschel (Negrello et al., 2010) and the South Pole Tele-
scope (Carlstrom et al., 2011), together with deeper, high-resolution observations from the
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Atacama Large Millimeter/sub-millimeter Array (ALMA; Wootten and Thompson, 2009)
or the future Wide Field Infrared Survey Telescope (WFIRST; Akeson et al., 2019), are
expected to provide several hundred of new lenses (González-Nuevo et al., 2012; Negrello
et al., 2017).

However, traditional searches for lens features (i.e., arcs and rings) have exclusively
relied on the visual inspection of the targets. And this is impractical for such volume of
data. Therefore, the development of automatic lens finder techniques has awakened great
interest recently. At first most of these techniques were based on the identification of arc-
like and ring-like shapes (Lenzen et al., 2004; Horesh et al., 2005; Alard, 2006; Estrada et al.,
2007; Cabanac et al., 2007; Seidel and Bartelmann, 2007; Kubo and Dell’Antonio, 2008;
More et al., 2012). Nevertheless, these methods suffered from strong contamination and
still required important eye-ball inspection of thousands of candidates per square degree.
Maturi et al. (2014) followed the same approach but together with a color selection, which
proved to be very effective in isolating the most promising arc candidates and reducing
drastically the sample contamination. Other methods proposed consisted of subtracting
the light of the central galaxies using multiband images, and then analysing the image
residuals (Gavazzi et al., 2014; Joseph et al., 2014). The next natural step consisted of
taking advantage of the recently popular machine learning techniques. In this sense, we can
cite, for example, the identification of strong lenses using support vector machine (SVM)
algorithms (Hartley et al., 2017). But the most successful supervised learning models in
working with images are the Convolutional Neural Networks (CNNs). CNNs (Fukushima,
1980; LeCun et al., 1998, 2015) are a state of the art class of machine learning algorithm,
particularly suitable for image recognition tasks since they are able to automatically extract
high-level features at the pixel level. Even though they were theoretically developed in the
1980s and the 1990s, the hardware of the time could not meet their computational demands.
Only recent innovations in hardware and the arrival of large labeled astronomical data
sets has allow them to outperform other algorithms. The first application of CNNs to
astronomical data sought to classify SDSS spectra (Hála, 2014). Subsequently, they have
been used for the morphological classification of galaxies (Dieleman et al., 2015; Huertas-
Company et al., 2015; Domínguez Sánchez et al., 2018), for measuring photometric redshifts
(Hoyle, 2016; Pasquet et al., 2018), and for distinguishing between stars and galaxies
(Kim and Brunner, 2017). And recently, they are intensely employed for the identification
of strong lenses (Petrillo et al., 2017; Petrillo, 2019; Petrillo et al., 2019; Jacobs et al.,
2017, 2019; Schaefer et al., 2018; Lanusse et al., 2018; Pourrahmani et al., 2018; Davies
et al., 2019). Moreover, they are used for measuring the parameters of the lensing systems
(Hezaveh et al., 2017), as well as their uncertainties (Perreault Levasseur et al., 2017),
for infering the masses of galaxy clusters (Ho et al., 2019), and in the reconstruction of



Neural networks theory 125

undistorted images of background sources in strongly lensed systems (Morningstar et al.,
2019).

Bearing all this in mind, we decided to follow a convolutional neural network approach
to search for gravitational strong lenses in astronomical images. In this chapter we proceed
to explain the main theory behind artificial neural networks, focusing on convolutional
neural networks. We recommend reading Fei-Fei et al. (2020) for further details on this
topic. Finally, we describe the network architecture we will use in the following chapters
for the identification of strong lenses.

5.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are computational models inspired by the behavior of
the biological neural networks in the human brain. They consist of one or more layers of
neurons, also called nodes or calculation units, linked by connections. These neurons are
the basic unit of computation in a neural network. Each neuron in a layer receives one or
more input values from the neurons placed in the previous layer, or from an external source
if they belong to the input layer. Each one of these inputs has an associated weight (w),
which is assigned depending on its relative importance to the other inputs. All neurons
have an additional learnable parameter which acts as a bias offset (b). Neurons perform a
weighted linear combination of all the received values and add the bias. Finally, a scalar
function f , known as the activation function, is applied to this weighted sum in order to
compute a scalar output y. The process described is shown in Fig. 5.1. In that outline, the
neuron takes up to n different numerical inputs xi, and associates them the same number
of weights wi. We will come back to talk about the activation function and bias after
explaining the network architecture and the learning process.

The first and simpliest type of ANN designed was the feedforward neural network. It
contains multiple neurons arranged in several layers. There are no cycles or loops in this
kind of network. The information moves only forward from the input layer to the output
layer, going through the hidden layers, if there were any. An example of a feedforward
neural network is shown in Fig. 5.2. As can be seen in it, nodes from adjacent layers can
be connected to each other, and have their corresponding weights associated.

The architecture of the network is built upon three types of nodes. The input nodes are
the neurons that provide to the network information from the outside, and are exclusively
arranged in the input layer. They do not perform any computation, just pass on the
information to the next layers. The output nodes are the neurons that perform the last
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Figure 5.1: Scheme of the operation of a single artificial neuron.

computations and provide us with the final result of the network estimation. They are
organized forming a single output layer. Lastly but not least, the hidden nodes are all
the neurons placed between the input and the output layer. They are so called because
they are not in contact with the outside world. They perform the main computations
and convey the information from the input nodes to the output nodes. Hidden nodes are
organized in hidden layers. Although a feedforward network only has one input layer and
a single output layer, it can have from zero to multiple hidden layers. Feedforward neural
networks can be split into two categories:

• Single layer perceptron: The simpliest feedforward network, which does not con-
tain any hidden layer.

• Multi layer perceptron: This is the name given to any feedforward network that
has at least one hidden layer.

5.1.1 Multi layer perceptron

A Multi Layer Perceptron (MLP) is a feedforward neural network that has one or more
hidden layers. Having hidden layers allows this kind of ANN to learn both linear and
non-linear functions, in contrast with what happens in the single layer perceptron, which
only can learn linear functions. The ANN shown in Fig. 5.2 is an example of MLP with a
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Figure 5.2: Example of a feedforward neural network known as multilayer perceptron. It
consists of at least three layers of nodes: input, hidden and output layers.

single hidden layer. Although the input, hidden and output layers have been drawn with
three, four, and two neurons, respectively, the last node in each layer has been labeled with
the index j, k, or i, respectively, indicating that the number of neurons in these layers is
arbitrary. In this sense, all connections will have weights associated with them, but only
three weights (w11, w21 and wj1) belonging to three connections between the input and the
hidden layer are shown in the figure. According to the neuron bevavior explained above,
and summarized in Fig. 5.1, the output from any hidden neuron in the single hidden layer
MLP shown in Fig. 5.2 is given by:

hk = f

∑
j

wjkxj + bk

 (5.1)

where wjk are the weights associated to the connections between the chosen hidden neuron
and the input layer, xj are the different inputs coming from the input layer, and bk is the
bias corresponding to the hidden neuron considered. Following the only possible direction,
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all the information from the hidden nodes arrives to the output layer. The resulting
estimation provided by any output neuron in the MLP shown in Fig. 5.2 is given by:

yi = f

(∑
k

wkihk + bi

)
= f

∑
k

wkif

∑
j

wjkxj + bk

+ bi

 (5.2)

where wki are the weights associated to the connections between the chosen output neuron
and the hidden layer, bi is the bias corresponding to the output neuron considered, and f
is the activation function, which is assumed to be the same for all neurons in the MLP.

5.1.2 Backward propagation

One of the main properties of ANNs is their ability to learn from data, for either classi-
fication or regression. The different learning methods can be broadly classified into two
categories based on the type of information fed into the network as training data. In su-
pervised learning, training data are labeled, i.e., they consist of several input values (ap)
paired with the desired output (bp) from the network for each of those input values, with
p = 1, ..., r. On the other hand, when data are presented to the network without additional
information and the network has to discover on its own the hidden patterns and categories,
we are talking about unsupervised learning. From now on we will focus solely on supervised
learning.

The input data set used to train the network is characterized by the features and the
number of examples given. The number of features is equal to the number of nodes in the
input layer of the network, which ranges within j = 1, ..., n. For instance, if an ANN was
being trained to classify among different species of mammals, the features could be the
height, weight or, hair length. This network would have an input layer with three nodes.
On the other hand, an example consists of the values for each of the features, along with a
truth label indicating the desired output of the network for this example. As it was earlier
said, the number of examples ranges within p = 1, ..., r. In the mammals classifier, the
examples would be, for instance, the label ‘lion’ with their corresponding feature values,
the label ‘koala’ with their values, another label ‘lion’ with feature values slightly different
from those in the first ‘lion’, etc. The training data set can have as many features and
examples as available or as we want. In fact, it is partially true that the more examples
and features the network sees, the better it can learn.

The number of output nodes in the output layer depends on the specific purpose for
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which the network is being trained. In a binary classification problem between two groups
or options, the output layer would have two nodes. One of them would output the prob-
ability of belonging to the first group while the other node would output the probability
for the other option. Whether the examples considered are classified into one or the other
group will depend on which of the two nodes scores a higher probability. This interpreta-
tion remains the same for multiclass classification problems, where there will be as many
output neurons as classes. Going back to the classification of mammals, this network would
have as many output neurons as the mammals we want the network be able to distinguish.
The number of neurons in the output layer ranges within i = 1, ...,m.

The learning process of a MLP is performed by tuning the weights associated to all the
connections in the network. In the supervised learning, the weights are usually obtained by
minimizing some error function, conventionally called cost or loss function, that measures
the difference between the desired output values and those calculated by the neural network.
This training scheme is called backward propagation of errors. In first place, initial weights
are set. They can be chosen randomly or assigned based on prior knowledge. Training data
start going through the network and an output result is obtained for each input. Once the
ANN has seen all the data for the first time, the loss function can be evaluated. There
are several loss functions used in neural networks, but for now we are only defining one of
them as an example. A fairly well-known example of loss function consists of calculating
the sum of squared residuals for every individual input data:

L ≡ E(w) =
1

2

∑
i,p

(bpi − ypi)2 (5.3)

where bpi are the desired output values and ypi are the output values predicted by the
network, according to Eq. (5.2), in each one of the i = 1, ...,m output nodes for the
p = 1, ..., r examples in the training data set. The errors calculated with the loss function
at the output nodes can be then propagated back through the network. The stochastic
gradient descent algorithm is then used to adjust all weights in the network with the aim
of reducing the errors in the output layer. The change in the weights required so that we
move down in the direction of steepest descent of the loss function is given by the following
partial derivatives:

w′jk = wjk − η
∂E(w)

∂wjk

w′ki = wki − η
∂E(w)

∂wki

(5.4)
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where the apostrophe ′ stands for the new weights, the absence of apostrophe stands for
the old weights, and η is the learning rate or learning parameter. The learning rate is
a decisive configurable hyperparameter that, every time the weights are updated, adjusts
how much the network model is changed as a function of the estimated error. Choosing
the learning rate may be tricky. A too small value could result in a long training process
that could even get stuck, whereas with a value too large the training could be unstable
and the weights achieved not optimal. It usually has a small positive value in the range
between 0 and 1.

At this point, the output of the neural network and the loss function can be calculated
again with the new weights. The network should perform better now than before since the
weights have been adjusted to decrease the error in prediction. This is an iterative process,
in which we will keep updating the weights until finding the ones that minimize the loss
function, i.e., until the output error is below a predetermined threshold. Loss functions
used in neural networks are non-convex functions, i.e., they may have several local minima
that are not as deep as the global minimum we are interested in finding. Therefore, it can
be hard to tell if the iterative process got stuck in a local minimum instead of reaching the
global one. Once a successful learning is accomplished with the training data, the neural
network is ready to work with new data.

To sum up, the learning problem in ANNs comes down to getting the right weights
(w) for approximating a given set of input-output patterns (ap1, ..., apn; bp1, ..., bpm), in
such a way that the output values (yp1, ..., ypm) from the network for certain input values
(ap1, ..., apn) are as close as possible to the desired output values (bp1, ..., bpm). Once these
weights are reached, we have a trained ANN, which has learned from the labeled data and
the error propagation, ready to work with new input data.

5.1.3 Activation function

The aforementioned activation function f is a non-linear function whose purpose is to
introduce non-linearity into the output of the neuron. This is necessary since most of the
data in the real world are non-linear. Activation functions receive the data and perform a
certain fixed mathematical operation with them. There is a number of activation functions
that may be encountered in practice, but the following are the most commonly used:

• Sigmoid: This function takes real-valued inputs and squashes them to range between
0 and 1 according to the following mathematical expression:
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σ(x) =
1

1 + e−x
(5.5)

The behavior of this function can be seen in the left plot of Fig. 5.3. It turns large
negative numbers into 0 and large positive numbers into 1. The sigmoid non-linearity
has often been historically used given its straightforward interpretation of the firing
rate of a neuron: from a full saturating response (1) to the absence of it (0). However,
it is rarely ever used nowadays because using it involves three main drawbacks. The
first disadvantage is that when the activation saturates at either 0 or 1, the gradient
is almost zero at these regions. And if this local gradient is very small, the whole
gradient will be killed in the backpropagation process. As a result, almost no signal
will be left to flow through the neurons. This is known as the vanishing gradient
problem. The second undesired effect is that if the initial weights are too large, most
neurons will saturate and the network learning will be very poor. For this reason,
caution must be taken when initializing the weights of sigmoid neurons. The last
inconvenience is due to the fact that the outputs of sigmoid neurons are not zero-
centered. If a neuron always receive positive data, the resulting gradient on the
weights w will become either all positive, or all negative, depending on the gradient
of the expression of the activation function f . This could introduce an undesired zig-
zagging pattern in the gradient update. However, in the end this effect is somewhat
mitigated because once these gradients are added up across many data, the update
for the weights can end having variable signs.

Sigmoid tanh ReLU

Figure 5.3: Sigmoid, tanh, and ReLU activation functions.

• Tanh: The hyperbolic tangent function receives a real-valued input and squashes it
to the range [-1,1] according to the mathematical formula:

tanh(x) = 2σ(2x)− 1 =
2

2 + 2e−2x
− 1 (5.6)
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As it can be noted in this equation, a tanh neuron is simply a scaled sigmoid neu-
ron. This modification allows us to get neurons which continue saturating but whose
outputs are now centered at zero. Therefore, in practice the tanh non-linearity is a
better choice than the sigmoid one. Tanh function is affected by the vanishing gradi-
ent problem too. Due to the nature of the backpropagation optimization, gradients
tend to get smaller and smaller as keep moving backwards. It implies that neurons
in first layers learn rather slower than neurons in the last layers. This results in a
decrease of the prediction accuracy of the network and a long training process. The
behavior of this function can be seen in the middle plot of Fig. 5.3.

• ReLU: The Rectified Linear Unit (ReLU) function takes a real-valued input and
thresholds it at zero, according to:

f(x) = max(0, x) (5.7)

Negative values are replaced with zeros while positive values keep their input value.
The behavior of this non-linearity can be seen in the right plot of Fig. 5.3. This
activation function was introduced for the first time to a dynamical network by
Hahnloser et al. (2000). It has been proved by Glorot et al. (2011) and Krizhevsky
et al. (2012) that ReLUs speed up a lot the convergence of the stochastic gradient
descent compared to the previous mentioned functions. This is argued to happen be-
cause of its linear non-saturating form at the positive numbers range. In comparison
to the sigmoid and tanh neurons, which involve time-consuming operations, ReLUs
can be easily realized by thresholding a matrix of activations at zero. ReLUs are
also not affected by the vanishing gradient problem. Another major improvement is
that they are capable of giving a true zero value as a result, unlike tanh and sigmoid
functions that only learn to approximate a zero output. This means that negative
inputs can activate the hidden layers in the network to calculate true zero values.
This property, called sparse representation, is really rewarding as it can accelerate
learning and simplify the derived model.

ReLUs have become very popular in the last few years due to these advantageous
features. Unfortunately, they are not exent of some flaws. The flow of a large gradient
through these neurons might result in such a weights update that no data would ever
be able to activate them. If this happens, the gradient coming from this unit will
forever be zero from that point on, i.e., the ReLUs can irreversibly die during training.
This is known as the “dying ReLU” problem. It is, therefore, important to have as
few dead neurons as possible in the network. A proper setting of the learning rate η
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can ensure this is less of a problem. If the learning rate is too high the weights may
change to a value that causes the neuron to not get updated with any data again.

• Leaky ReLU: Leaky ReLUs arise as an attempt to sort out the problem of ReLUs’
death. Instead of turning all negative values to zero, this function renders a small
negative slope (of ≈ 0.01, or so) when x < 0:

f(x) =

αx if x < 0

x if x ≥ 0

where α is a small constant. The behavior of this function for α = 0.5 can be seen in
the left plot of Fig. 5.4. The results with this non-linearity are not always consistent.
The slope in the negative zone can also be turned into a specific parameter of each
neuron, as seen in He et al. (2015). The function in this case is known as Parametric
Rectified Linear Unit (PReLU).

Leaky ReLU ELU

Figure 5.4: Leaky ReLU and ELU activation functions. A constant value higher than
usual (α = 0.5) was taken so that the behavior of each function when x < 0 can be well
appreciated.

• ELU: The Exponential Linear Unit (ELU) is another attempt to fix the fragility
problem of ReLUs. In this case, the linear behavior when x < 0 is replaced by an
exponential behavior according to the following:

f(x) =

α(ex − 1) if x < 0

x if x ≥ 0

This function is depicted, considering α = 0.5, in the right plot of Fig. 5.4.
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• Maxout: All types of neurons seen so far consist of applying a non-linearity on the
dot product between the data and the weights: f(wtx + b). The maxout activation
function is a different choice which was introduced by Goodfellow et al. (2013). This
neuron is defined as follows:

f(x) = max(wt1x+ b1, w
t
2 + b2) (5.8)

A maxout unit is a piecewise linear function that returns the maximum value among
the n linear functions considered (n = 2 for this case). It is an activation function
trained by our model. It can be observed that both the ReLU and the Leaky ReLU
are special cases of this form. For example, for the ReLU we would have w1, b1 = 0.
Therefore, the maxout neurons are not at risk of dying during the process, and
offer a linear regime of operation without saturation. However, the total number of
parameters to be trained by the network is doubled. This activation function was
designed to be used along with the dropout regularization technique, about which
we will talk in the next section.

• Softmax: The softmax function is an activation function that receives a vector of
real-valued numbers, also called digits, and turns them into probabilities that sum
to one, according to the following expression:

S(y)i =
eyi∑
j e

yj
(5.9)

In words, an exponential function is applied to each digit yi of the input vector y and
then these values are normalized by dividing by the sum of all these exponentials.
The normalization ensures the sum of all components in the output vector S(y)i is
one. This output vector represents the probability distribution of a list of potential
outcomes. We mean that, before the softmax function is applied, there was no
restriction for the vector values. But after applying it, every component is within the
interval [0,1], and their sum will be 1, so that they can be interpreted as probabilities.
For this reason, softmax is typically used as the activation function in the neurons of
the output layer, to turn the non-normalized output of the network into a probability
distribution over the predicted output classes.

It should not be forgotten to say that the importance of the aforementioned bias b lies in
providing every node with a trainable constant value, apart from the normal inputs, which
allows shifting the activation function to the right or left. This small room for maneuver
may be critical for achieving a successful learning.
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All things considered, the question arises of which of these activation functions should
be used. The answer is rather straighforward. Softmax, hyperbolic tangent or linear
activation are the best choices for the output layer. However, the best decision for the
hidden layers of the neural network is to start using the ReLU non-linearity. As it was
demonstrated by Glorot et al. (2011) and Krizhevsky et al. (2012), this activation function
enables a better training of deeper networks compared to the sigmoid and tanh functions.
It is currently the most widely-used and successful activation function. Although it is
important to be careful with the learning rate chosen and watch out the fraction of dead
neurons in the whole network. Leaky ReLU, PReLU, ELU or maxout are good alternatives
to try if any persistent problem arise. Due to the vanishing gradient problem, it is not
recommended to use the sigmoid and tanh functions in networks with many layers.

5.1.4 Regularization techniques

We have already made it clear that neurons are the essential elements in a neural network,
and that they are arranged in three different types of layers depending on their purpose.
However, what architecture should a neural network have to face a practical problem? How
do we decide it? A ground fact to be noted first is that the deeper the neural network,
the greater its predisposition to learn will be. As the size and the number of layers in the
ANN are increased, more and more neurons can work together, and the space of learnable
functions grows. ANNs with more neurons are able to express more complicated functions,
i.e., they have greater capacity. It is sad to say, but this blessing comes along with its curse.
Despite the fact that large neural networks can learn to classify more complicated data,
they can also acquire such precise knowledge of the training data set that they are not
able to perform well with an unseen data sample. This undesired consequence is known as
overfitting. Overfitting occurs when a high capacity model fits the noise in the data instead
of the underlying relationships of interest. This is precisely caused because the model is
overly complex, with too many parameters. An overfit model can easily be diagnosed by
monitoring its performance during training on both a training data set and on a validation
data set. The validation data set is not used to adjust the weights on the neural network,
but to verify that any increase in accuracy over the training data yields an increase in
accuracy over data that the network has not seen earlier. If the accuracy over the training
set increases, but the accuracy over the validation set decreases or remains equal, then
the network is overfitting the training data. There are two ways to reduce overfitting:
increasing the number of examples in the training data set or reducing the complexity of
the network.
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The capacity of a neural network model is defined by its architecture in terms of nodes
and layers, and its weights. The complexity of an ANN can, therefore, be reduced by
changing its structure (number of weights) or its parameters (values of weights). Based
on this, it could seem preferable to use smaller neural networks, with fewer layers and
fewer neurons per layer, if data are not large or complex enough. This thought is wrong.
In practice, it is always better to use other existing methods to control overfitting rather
than decreasing the number of neurons. This is why it is more difficult to train small
neural networks with local methods, such as the gradient descent. Although their loss
functions have few local minima, many of them have high loss and are easier to converge
to. On the contrary, larger neural networks contain significantly more local minima, but
they turn out to be much better reducing the loss. The work of Choromanska et al. (2015)
studied the behavior of the loss surfaces in feedforward neural networks and their results
pointed in this direction. The probability of finding a bad local minimum is not zero for a
small network, and it decreases quickly as the network size gets larger. Most local minima
in large networks are essentially equivalent from the point of view of the error decrease
reached, and rely less on lucky random initializations. That is why there is no point in
struggling to find the global minimum in the training, as it can even lead to overfitting.

Larger neural networks are proven to perform better than smaller networks, but their
higher capacity must be suitably addressed in order to control overfitting. The procedure
of limiting the capacity of a model by making slight modifications to the learning algorithm
is called regularization. Regularization is used so that the model trained by the ANN can
generalize properly to new data, i.e., make accurate predictions for data it has not been
trained with. Some of the most known regularization techniques to prevent overfitting
from occurring will be introduced below:

• Early Stopping: As it was said earlier, a validation data set can be used to detect
when overfitting starts during the supervised training of a neural network. The
technique of stopping training at the point when the performance on the validation
sample starts to downgrade is called early stopping (Prechelt, 1998). This point has
to be carefully evaluated since insufficient training will lead to an underfit model
that performs poorly on the training data. The exact moment to stop training is
when a decrease in the error estimation on the training data does not yields an error
decrease in the validation data, but it rather remains the same or even could increase
(see Fig. 5.5). This is a simple and widely used approach to tackle overfitting, which
can be used either alone or in conjunction with other regularization techniques.

• L2 Regularization: This and the following technique are aimed to penalize the model
during training based on the magnitude of the neuron activations. They do so by
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Figure 5.5: Example of the evolution of the learning for a training and a validation samples,
showing the early stopping point. Plot taken from Gençay (2001).

adding penalty terms to the loss function. The L2 penalty seeks to minimize the
squared magnitude of the weights according to the following:

L(wij) ≡ L(wij) +
1

2
λ
∑
i,j

w2
ij =

∑
i,p

(bpi − ypi)2 +
1

2
λ
∑
i,j

w2
ij (5.10)

where the MLP network from Fig. 5.2 and the squared residuals loss function from
Eq. (5.3) were assumed. In this equation, wij stands for the matrix of the weights
(wjk, wki) involved since all of them are updated in the backpropagation algorithm,
and λ is the regularization strength. Turning it into words, a term 1

2λw
2 is added to

every weight in the network. The factor 1
2 is used so the resulting gradient of the term

with respect to the weight w is just λw instead of 2λw. In fact, during the parameter
update every weight decays linearly towards zero according to wij = wij − λ ∗ wij .
The intuitive interpretation of this regularization is that extreme weight vectors are
heavily penalized, while diffuse weight vectors are preferred. This has the effect of
pushing the network into having all of its inputs contributing a little rather than
having a few inputs contributing a lot. This is one of the most common forms of
regularization. It is able to learn complex data patterns, however, it is not robust to
outliers, i.e., values that deviates significantly from the rest of data.



138 Neural networks theory

• L1 Regularization: The L1 regularization penalizes the absolute value of the weights
according to the following:

L(wij) ≡ L(wij) + λ
∑
i,j

|wij |=
∑
i,p

(bpi − ypi)2 + λ
∑
i,j

|wij | (5.11)

In this case, the term added to every weight is λ|wij |. It is also possible to combine
this with the term from the L2 regularization, technique which is called elastic net
regularization (see Zou and Hastie, 2005). The L1 regularization leads the weight
vectors to be very close to zero. In other words, the network ends up using only a
limited number of the most important inputs and becomes almost insensitive to noisy
inputs. This behavior is opposite to that of the L2 regularization. L1 regularization is
robust to outliers, however, it produces simpler and more interpretable models than
L2. In practice, L2 regularization can be expected to give a better performance.

• Data augmentation: This procedure is based on the other possible approach to avoid
overfitting, increasing the number of examples in the training data. It is mainly
used in neural networks working with images. The size of the data is augmented
using a number of techniques on the data itself. These techniques include flipping,
translation, rotation, scaling, changing brightness, adding noise, etc.

• Maximum norm constraint: Large weights in a neural network are a sign of overfit-
ting. An alternative solution to the penalization of the values of the weights proposed
by L1 and L2 regularizations consists of using a weight constraint. This constraint
is nothing else but an absolute upper bound on the magnitude of the weights for
every neuron. The weights update is performed as usual, but if the value of a weight
exceeds this chosen upper bound, it is rescaled so that its value is below the limit
or between a range. Typical values of this weight constraint are on orders of 3 or
4. Unlike what happens when a penalty is added to the loss function, an explicit
constraint ensures the weights of the network are small, instead of just encouraging
them to be so.

• Dropout: While regularization methods like L1, L2 and max norm constraint reduce
the complexity of the neural network by decreasing the values of weights, dropout
modifies the structure of the network in order to reduce the number of weights. The
key idea of this technique, introduced by Srivastava et al. (2014), is to randomly
remove some neurons from the neural network, along with all its incoming and out-
going connections, in each iteration during training. This prevents neurons from
co-adapting too much. A diagram of this technique is shown in Fig. 5.6. It can be
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interpreted as sampling a neural network within the full neural network, in which
the parameters of the sampled network are updated based only on the input data.
Dropout is extremely effective, and can be used together with any of the previously
explained methods.

Figure 5.6: Diagram of the dropout regularization technique.
Figure obtained from Srivastava et al. (2014).

5.2 Convolutional Neural Networks

A convolutional neural network (CNN) is a type of artifical neural network designed to
be applied on images, which essentially are matrices of pixel values. CNNs are the most
popular deep learning architecture. They have proven to be very effective in the last years
for artificial vision tasks, such as pattern recognition and image classification (Russakovsky
et al., 2015). Some examples include identifying traffic signs, handwritten number recogni-
tion (Ciresan et al., 2012), facial recognition (Parde et al., 2017) or license plate detection
(Kurpiel et al., 2017). The main advantage of a CNN with respect to other pattern recog-
nition algorithms is that it automatically detects and extracts the most representative
features from the images without any human supervision.

As we saw in the previous section, neural networks receive a single vector as input and
operate with it through the hidden layers. Neurons within each hidden layer do not share
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any connections with each other but are fully connected to all neurons in the previous layer.
The output layer, which is the last fully-connected layer, represents the probability scores
of belonging to the different categories in the classification problem considered. CNNs
exploit the fact of receiving images as an input and, in contradistinction to regular neural
networks, most of their neurons are organized in three-dimensional arrangements (width,
height and depth). Neurons within these 3D layers are only connected to a small region
of the previous layer, abandoning the fully-connected manner. Every layer transforms the
3D input data to a 3D output answer. In the sketch shown in Fig. 5.7, the red input layer
holds the image, so its width and height have to match the dimensions of the image. On
the other side, the depth will be the number of channels of the image. For instance, it
would be three (red, green and blue) in the case of a color image, or higher in the case of
having several astronomical images from the same extragalactic source observed at different
frequencies. The final output layer will only have one dimension since the initial 3D volume
of images is reduced to a single vector of class scores, settled along the depth dimension.
The length of this vector will depend on the number of possible classes in the classification
problem. In addition to the input and output layers, the architecture of CNNs consists of
other different blocks or layers that will be detailed below.

Figure 5.7: Illustration of the three-dimensional arrangement of neurons in a CNN.
Taken from Fei-Fei et al. (2020).

5.2.1 Convolutional layer

The convolutional layer is the core of a CNN that does most of the computational work, as
can be deduced from the fact that the entire network is named after this layer. A typical
CNN usually has more than one convolutional layer. The parameters of each convolutional
layer consist of a set of learnable filters, also called kernels or feature detectors, all of
them being of the same size. These filters are smaller than the input images, along the
height and width dimensions, but expand through the full depth of the input data. By
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using small squares of the input data, the convolution preserves the spatial relationships
between pixels. As can be seen in Fig. 5.8, each filter is slided, or convolved, over the
width and height of the input image, computing the element-wise multiplication for every
position between the entries of the filter and the pixel values of the image sub-matrix
covered by the filter. The multiplication outputs for each position of the filter over the
image are then added to obtain the single elements of the output matrix. This matrix,
formed after sliding the filter over the image and computing the dot product, is called
activation map or feature map. The process results in a two-dimensional activation map
for each filter. In practice, a CNN learns the weights of these filters on its own during
the training process. The network will learn filters able to recognize some kind of visual
feature in the input images, such as edges, blotches or geometrical shapes. Different filters
are able to detect different features from an image. The larger the number of filters, the
more features can be extracted and the better the network will be at detecting complex
patterns in new images.

Figure 5.8: Example of the convolution operation between an input image and a filter.
The filter is slided over the input image computing the element-wise matrix multiplication
between it and the selected sub-matrix from the image. The values of the resulting matrix
for every filter position are then added up to obtain the elements of the activation map.
Taken from Robinson (2017).

The size of the activation maps is controlled by four parameters that need to be decided
in advanced for every convolutional layer: the number of filters, the filters size, the stride,
and the zero-padding. The number of filters per layer, also called depth, determines the
number of activation maps created. If you think of them as stacked two-dimensional
matrices, the number of filters will decide the depth of the whole feature map in each
convolutional layer. The stride is the step used to slide the filter matrix over the input
matrix. If the stride is 1, the filter scrolls one pixel at a time. If the stride is 2, the
filter moves 2 pixels at a time. The larger the stride, the smaller the feature maps. The
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procedure of padding the input image matrix with zeros around their borders is called
zero-padding. This is convenient so we can apply the filter to the pristine input matrix,
and it allows us to control the size of the activation maps.

After every convolution operation, a ReLU activation function is applied. As was
explained in Sec. 5.1.3, ReLU is an element-wise operation that replaces all negative pixel
values in the activation maps by zero. The purpose of using ReLU is to introduce non-
linearity in the CNN since the convolution is a linear operation, but most of real data are
non-linear.

5.2.2 Pooling layer

It is frequent to periodically insert a pooling layer after the convolutional layer in a CNN
architecture. The function of spatial pooling, also called sub-sampling or downsampling, is
to progressively reduce the dimensionality of each activation map but retaining the most
important information. This allows diminishing the number of parameters and computa-
tional work in the network, thus also helps control overfitting. The pooling layer performs
independently on every depth slice of the input, and downsize it spatially using a certain
operation. There are different types of spatial pooling (max, average or sum pooling)
depending on the type of operation used.

The input rectified activation map is split into spatial neighborhoods or windows from
which the largest element (max-pooling), the average (average pooling) or the sum of all
elements (sum pooling) is taken. In practice, max-pooling has been shown to work better.
Since these operations are performed on small regions of the image, the pooling makes the
network invariant to small transformations, translations or distorsions in the input images.
This is very powerful given that the features can be detected in the images no matter where
they are located. The pooling process can also be understood, analogously to convolution,
as sliding with a definite stride a filter of certain size over the feature maps, where the filter
will perform the chosen operation on all the pixels marked. Fig. 5.9 shows an example of
max-pooling on a rectified feature map by using a 2 × 2 filter applied with a stride of 2.
In this manner, the input map is partitioned into four regions and the maximum value
is selected from each of them. As can be seen as well in Fig. 5.9, the pooling operation
is applied separately to each feature map so although the size of the maps is lower, their
number is the same, i.e., the depth dimension remains unchanged.
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Figure 5.9: Left : A simple example of max-pooling where an input map of size 4 × 4 is
split into four regions, from each of one the largest value is selected, resulting in a 2 × 2
output map. Right : An input volume of size 224 × 224 × 64 is downsized with a filter of
size 2× 2 and stride 2 into an output volume of size 112× 112× 64. The volume depth is
conserved with only the width and height being reduced. Taken from Fei-Fei et al. (2020).

5.2.3 Fully-connected layer

So far we have explained how convolution, ReLU and pooling work. These operations
together extract the helpful features from the images, introduce non-linearity in the network
and reducing the dimensions of the feature maps while making the network invariant to
small distorsions in the images. After the last convolution + ReLU layer, whether or not
followed by pooling operation, the feature maps are flattened as a one-dimensional vector
and arrive to a fully-connected layer. More than one fully-connected layer can be used in
a CNN. A fully-connected layer is basically a MLP (see Sec. 5.1.1) that uses a softmax
activation function. All neurons within this layer have full connections to all activation
maps coming from the previous layers. These activation maps portray high-level features of
the input images. The aim of the fully connected layer is to learn non-linear combinations
from these features and classify the input images into the existing classes. Its output is
an array of probabilities for the different possible class labels attached to the images. The
class that receives the highest probability is chosen as the classification decision.

Fig. 5.10 shows an example of CNN containing all the layers explained. This network
classifies every input image into four categories: cat, dog, bird or boat. When it receives
a boat image as input, the network correctly gives the highest probability for the boat
option (0.95) among the four possible options. The use of the softmax activation function
ensures that the sum of output probabilities from the fully-connected layer is 1.
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Figure 5.10: Example of CNN for classifying images among cat, dog, bird or boat. It
consists of an input layer, 2 convolutional + ReLU + pooling layers, 2 fully-connected
layers, and an output layer that returns the probabilities for each class. Taken from
MissingLink.

5.2.4 Training process

The overall training process of a CNN follows the same steps described for an ANN in
Sec. 5.1.2. In first place, the architecture of the network must be decided (number and
type of layers, number of filters, filter sizes, etc). All the other parameters and weights
are initialized with random values. We also have to set up how the training data will
be handled by the network. This consists of deciding the batch size and the number of
epochs. The batch size is the number of slots in which the training data are split while
the number of epochs, or learning cycles, is the number of times that the whole training
data set is passing through the CNN. The number of iterations per epoch will depend
on the size of the training data set and the batch size. For example, if you have 10,000
training examples, and the batch size is 50, it will take 200 iterations to complete 1 epoch.
In each epoch the order and composition of the batches change, so the network sees the
examples in a different order every cycle. When this has been decided, the training images
can be fed into the network, going through all its layers, until finding for each input image
the probabilities of belonging to each possible class. The total error over all classes at
the output layer is evaluated using the chosen loss function, for instance Eq. (5.3). The
backpropagation method is used to calculate the gradients of the error with respect to all
weights in the network, and the gradient descent algorithm updates all weights to minimize
the error in the output layer, as shown in Eq. (5.4). Once the optimal weights are reached,
we can say that the CNN has learned to classify correctly the images from the training
data set and it is ready to work with a test data set.

However, sometimes the learning is not successful, and the network does not even
classify the training sample well enough, or performs much better on the training data set
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than in the validation data set. As it was explained in Sec. 5.1.4, this kind of learning
problems can easily be diagnosed by monitoring the performance of the CNN over time
during training. For classification tasks, the loss and the accuracy on both the training
sample and the validation sample can be recorded for each epoch in order to inquire further
into these anomalous behaviors. Any decrease in the loss, or increase in the precision, for
the training data must have the same effect on the validation sample. If not, we say that
the model is overfitted.

Among the techniques explained to avoid overfitting, dropout is undoubtedly the most
popular regularization technique for deep neural networks. As shown in Fig. 5.6, dropout
consists of assigning to all or some of the neurons in the network a certain probability
p of being temporarily disabled during training time. These neurons are resampled with
the same probability at every iteration, so a dropped-out neuron at one iteration can be
active in the next one, and the network architecture will change at each iteration. Dropout
can be used either after the convolution or pooling layers to reduce overfitting when the
network has given signs of it. The other common way of reducing overfitting is to increase
the number of examples in the training data set through data augmentation.

5.2.5 Performance of a CNN

The performance of any classification model, such as neural networks, on a test data set
for which the true values are known can be described using a confusion matrix. The
confusion matrix is a table whose number of both rows and columns matches the number
of output classes from the network. It shows the amount of correct predictions for each
class, as well as the amount of incorrect predictions misclassified as belonging to some of
the other classes. The sum of all cells in the confusion matrix matches the size of the data
set. In two-class classifiers, such as here where we try to predict whether an image is a
lens or not, a threshold value is set to decide. The default value for such threshold on
which confusion matrices are generally built is 0.5. Thus, all examples with probability
scores greater than 0.5 are predicted to be lenses while those examples with scores lower
than 0.5 are considered non-lenses. We can now define some basic terms of the confusion
matrices associated to binary classifiers. All examples in the data that are true lenses will
be denoted as positives (P ) while all true non-lenses will do so as negatives (N). True
Positives (TP ) are the number of examples correctly identified as lenses. True Negatives
(TN) are the number of examples correctly identified as non-lenses. False Positives (FP )
are the number of examples wrongly identified as lenses. False Negatives (FN) are the
number of examples wrongly identified as non-lenses. An example of the confusion matrix
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that will be used in this work is shown in Table 5.1.

Predicted
Non lens Lens

T
ru
e Non lens TN FP

Lens FN TP

Table 5.1: Example of confusion matrix.

We are now in disposition of defining some important rates which can be computed
from the information of the confusion matrix. The true positive rate (TPR), also called
recall or sensitivity, tells the probability of detection and is defined as the ratio between
the true positives and the total positive cases:

Recall ≡ TPR =
TP

P
=

TP

TP + FN
(5.12)

It is a proxy of the completeness of the classification. The false positive rate (FPR) informs
us of the probability of false alarm and is defined as the ratio between the false positives
and the total negative cases:

FPR =
FP

N
=

FP

TN + FP
(5.13)

The accuracy, which indicates how many of the predictions done by the classifier are correct,
is defined as:

Accuracy ≡ Acc =
TP + TN

P +N
=

TP + TN

TP + TN + FP + FN
(5.14)

And then we have the precision, which tells us the proportion of correctly identified lenses
with respect to the total lens identifications done over the data. It is an indicator of the
purity of the classification, given by:

Precision ≡ Pre =
TP

TP + FP
(5.15)

The most common method used to quantify the execution of a classification model
is the ROC (Receiver Operating Characteristics) curve (Dorfman and Alf, 1968; Powers,
2011). This curve represents the FPR versus the TPR (or Recall) for different probability
thresholds (Pthr). Some examples of ROC curves can be seen in Fig. 6.4. The AUC
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(Area Under the Curve) provided by this curve is the standard figure of merit used for
comparying the performance of several classification models. It tells how much a model
is able of distinguishing between classes. We seek to maximize the TP , and minimize the
FP values. Therefore, the closer to the left x-axis and upper y-axis, the higher the AUC
and the better the classifier.

Finally, once all the above quantities have been introduced we can define the Fβ score:

Fβ = (1 + β2)
Pre×Recall

(β2Pre+Recall)
(5.16)

So Fβ=0 = Pre, Fβ=∞ = Recall, and 0 ≤ Fβ ≤ 1. Fβ = 0 occurs if there are zero TP
while Fβ = 1 happens when there are no FP and no FN . The relative importance of
Precision and Recall depends on the value chosen for β. The Fβ can be calculated for a
specific threshold Pthr on the score given by the classifier. The performance of a classifier
can be then measured by the maximum Fβ reached for any Pthr:

Fβ = maxpFβ(p) (5.17)

When searching for lenses, having high precision, i.e., having low contamination rate
is important due to the fact that in real data lenses are rarer than they are in simulated
data by a factor of ∼ 1000. We will use the Fβ score to test the performance of the CNN
in Sec. 6.3. We will assume the value β2 = 0.0009, which will ensure that a high scoring
classifier provides a pure sample of lenses on a test sample with real ratios of lenses to
non-lenses.

5.3 Our network architecture

The CNN configuration used in this work is an adaptation of the network developed for
the morphological classification of galaxies in Domínguez Sánchez et al. (2018), now aimed
for the identification of strong lenses. It has been built and trained in Python 3.6 using
the Keras library1, a high-level, open-source neural networks application programming
interface. The basic architecture of this CNN is shown in Fig. 5.11. It is composed of 4
convolutional layers with squared filters of different sizes (6 × 6, 5 × 5, 2 × 2 and 3 × 3,
respectively), and a fully connected layer. A ReLu activation function is applied after
every convolutional layer, and a 2 × 2 max-pooling is applied after the second and third

1https://keras.io/

https://keras.io/
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convolutional layers. In the beginning, dropout was performed after each convolutional
layer with rates of 0.25 or 0.5, as it is depicted in the scheme. However, after performing
some trials with KiDS-like lensing simulations in Sec. 6.1, we decided to remove all the
dropout except for that in the fully-connected layer. The network architecture remained
that way from that moment.

We have used different input data for the network along this work, and accordingly the
input layer has not always been the same. The input layer shown in Fig. 5.11 corresponds
to the network used in Sec. 6.1, where we have trained using KiDS-like images, with
101 × 101 pixels, in three different bands (g, r and i). Hence, the matrices read by the
network have dimensions (101,101,3). In Sec. 6.2 we trained using Euclid-like images,
also with 101 × 101 pixels, only in the visible band, so the matrices read by the network
have dimensions (101,101,1). In Sec. 6.3, we trained the network again using Euclid-like
simulations, but with 66 × 66 pixels, and the imaging is available in four different bands
(VIS, J, Y and H). The matrices read by the network this time have dimensions (66,66,4).
Finally, in Sec. 7.4 the network is trained using two pseudo-spectra images, with 56 × 56

pixels, for every example to be classified. Therefore, the matrices to be fed into the network
have dimensions (56,56,2). In all cases, the flux values of the images are normalised before
entering the network so as to not working with large numbers.
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Figure 5.11: Scheme of the main architecture of the CNN used for identifying strong lenses.

The models are trained using a truth table (supervised learning) as binary classifiers,
between lenses (1) and non-lenses (0). A sigmoid activation function is used in the last
fully connected layer to turn the output scores into probabilities distributed between 0 and
1. In the learning process we use the binary-crossentropy loss function, defined as:

L = − 1

N

N∑
i=1

[biln(yi) + (1− bi)ln(1− yi)] (5.18)
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where N is the number of training examples, bi are the ground truth values, and yi are the
classification predictions of the network for each example. The stochastic gradient descent
method used here is the adam optimization (Kingma and Ba, 2015) with a learning rate
of 0.001. The output once the network has been trained is an array of probability scores
between 0 and 1, whose length agrees with the number of examples given to the network.
An score of 0 means the lowest confidence that the given example is a lens, while an score of
1 signifies the highest confidence that it is a lens. We used 25 training epochs when trying
different strategies to work with the network, such as changing the size of the training
samples or probing different data pre-processings. And 60 epochs, with the option for
early stopping, when the ultimate training for a certain data set is carried out. The batch
size is always fixed to 30. The order of the batches changes in every epoch. In the training
process, several data augmentation techniques are performed, allowing the images to be
zoomed in and out (0.75 to 1.3 times the original size), rotated (within 45◦), flipped and
shifted both vertically and horizontally (by 5%). This ensures the derived models do not
suffer from overfitting since the input varies from one training epoch to the next one. The
ratio of lenses/non-lenses is not necessarily balanced in the training data sets used. Taking
this into account, we make sure to balance the weights assigned to the lens and non-lens
classes during the training in order to avoid undesired biases in the performance of the
CNN.





Chapter 6

Using convolutional neural networks
to identify strong lenses

In this chapter the performance in finding strong lenses of the CNN described in Sec. 5.3 has
been tested using mock data based on different astronomical surveys. More specifically,
Euclid-like and KiDS-like simulations from the Euclid Strong Lensing Group have been
considered. We will describe the characteristics of these simulated data, explain the process
followed to train the network with them and expose the main results achieved.

6.1 Searching for strong lenses in KiDS-like simulations

6.1.1 Description of KiDS-like data

In first place, we trained the CNN using mock data mimicking the Kilo-Degree Survey1.
KiDS (de Jong et al., 2013) is an optical multi-band imaging survey carried out from the
European Southern Observatory’s Very Large Telescope (ESO’s VLT). In order to bet-
ter understand the dark energy, the structure of galaxy halos or the evolution of galaxies
and clusters, it has mapped almost 1,500 square degrees of the night sky in four broad-
band filters (u, g, r, and i). These simulations formed part of the Gravitational Lens
Finding Challenge 1.0, organized by the Bologna Lens Factory project2, which took place
from November 25, 2016 to February 5, 20173. The simulated data were produced using

1http://kids.strw.leidenuniv.nl/
2https://bolognalensfactory.wordpress.com/
3http://metcalf1.difa.unibo.it/blf-portal/gg_challenge.html
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GLAMER code (Metcalf and Petkova, 2014), which uses galaxies from the Millennium Sim-
ulation project4 and real galaxies from KiDS as foreground lenses and background sources.
The challenge was concentrated only on identifying galaxies that are lensed by galaxies,
i.e., along with non-lensed galaxies, the simulations only contain different examples of this
kind of lensing system. The simulated images are not meant to precisely mock the KiDS
survey, but they were built to have the same noise levels, pixels sizes and sensitivities. All
four SDSS bands (u, g, r, and i) were simulated, being used r as the reference band.

The contents of the data sets regarding the KiDS-like simulations are summarized in
Table 6.1. The training set consists of 20,000 images in each band, being each image of
101×101 pixels, with a resolution of 0.2 arcseconds. Along with the images, a table is
provided indicating whether or not each example is a lens. Lensing examples are labeled
with ‘1’s while non-lenses are labeled with ‘0’s. We show some examples of lenses and
non-lenses in Fig. 6.1 and Fig. 6.2, respectively. It is important to keep in mind that
some objects will be classified as lenses, but the source may be too dim to be detected.
That table also holds other helpful information to take into account when training the
network. One information that we will use is the variable npix. This quantity measures,
for each example in the training set, the number of pixels in the lensed source image that
are greater than 1σ above the noise level in the r band, where σ is the standard deviation
of the background noise. The test set, or challenge set, contains 100,000 candidates to be
classified, i.e., 400,000 images counting all bands. These images have the same dimensions
and resolution as those in the training set. 85,010 of the mock images in this set (∼ 85%)

were purely simulated, while the remaining 14,990 (∼ 15%) used actual images taken from
a preliminary sample of bright galaxies detected in the KiDS footprint. A table with
additional information about the simulations is also provided for the test data set, but we
do not know which examples are lenses and which are not. Among the available information
we can find the aforementioned variable npix or the ‘no_source’ parameter, which indicates
whether or not there is a source in the images. Another interesting parameter indicates
which of the simualtions were built using actual KiDS images (‘kids_lens_image’). Both
training and challenge imaging data sets include images with artifacts and masked regions,
i.e., areas with pixel values set manually to 100. After removing these cases (≈ 13%), the
size of the training data set falls to 17,374 examples, while the test data set retains 86,751
examples. We will refer to these data sets as clean. If we remove those examples with
artifacts from the test data set containing only simulations with actual KiDS galaxies, we
are left with a sample of 13,038 images. Further details about the challenge and how the
simulations were created can be found in Metcalf et al. (2019).

4https://wwwmpa.mpa-garching.mpg.de/galform/virgo/millennium/

https://wwwmpa.mpa-garching.mpg.de/galform/virgo/millennium/
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(a) ID=7 in the g-band. (b) ID=7 in the r-band. (c) ID=7 in the i-band.

(d) ID=268 in the g-band. (e) ID=268 in the r-band. (f) ID=268 in the i-band.

(g) ID=8418 in the g-band. (h) ID=8418 in the r-band. (i) ID=8418 in the i-band.

(j) ID=10137 in the g-band. (k) ID=10137 in the r-band. (l) ID=10137 in the i-band.

(m) ID=11148 in the g-band. (n) ID=11148 in the r-band. (o) ID=11148 in the i-band.

Figure 6.1: Some examples of lenses in the KiDS-like training data set.
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(a) ID=22 in the g-band. (b) ID=22 in the r-band. (c) ID=22 in the i-band.

(d) ID=4712 in the g-band. (e) ID=4712 in the r-band. (f) ID=4712 in the i-band.

(g) ID=14338 in the g-band. (h) ID=14338 in the r-band. (i) ID=14338 in the i-band.

(j) ID=15515 in the g-band. (k) ID=15515 in the r-band. (l) ID=15515 in the i-band.

(m) ID=17776 in the g-band. (n) ID=17776 in the r-band. (o) ID=17776 in the i-band.

Figure 6.2: Some examples of non-lenses in the KiDS-like training data set.
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Name Description Lenses Non-lenses

KiDS-like training data set 20,000 images (101×101) in i, g and r bands 8,021 11,979
Clean KiDS-like training data set 17,374 images (101×101) in i, g and r bands 6,960 10,414

KiDS-like test data set 100,000 images (101×101) in i, g and r bands 49,862 50,138
Clean KiDS-like test data set 86,751 images (101×101) in i, g and r bands 43,320 43,431

KiDS-like test data set based on actual images 14,990 images (101×101) in i, g and r bands 7,500 7,490
Clean KiDS-like test data set based on actual images 13,038 images (101×101) in i, g and r bands 6,517 6,521

Table 6.1: Description of the data sets regarding the KiDS-like simulations. By clean we
mean that those examples with artifacts and masked regions were removed from the data
sets. And if the data sets just contain mock images done using actual images taken from
a preliminary sample of bright galaxies detected in the KiDS footprint, we say they are
based on actual images.

We aim to find the model that is best able to distinguish between lenses and non-lenses
in the KiDS-like simulations. In the following pages, we will show the results obtained after
training our convolutional neural network under different conditions in order to achieve this
purpose. Except when noted otherwise, the architecture of the network used is the same
as shown in Fig. 5.11. As it was our first contact with CNNs, we decided arbitrarily to
train the network using only images from the g, r, and i bands. The number of trainable
parameters, or weights, of the network per each layer for these simulated data are shown
in Table 6.2. The output from the trained network for each example to be classified is a
score between 0 and 1, 0 signifying the lowest confidence that the example is a lens and 1
signifying the highest confidence that it is a lens.

Layer Number of weights

1st convolutional layer 3,488
2nd convolutional layer 51,264
3rd convolutional layer 32,896
4th convolutional layer 147,584
1st fully connected layer 5,120,064
2nd fully connected layer 65

Full network 5,355,361

Table 6.2: Number of weights per layer of the CNN trained with KiDS-like simulations.
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6.1.2 Trials with the KiDS-like data

We start by running some trials in order to decide the size of the training data set (ntrain)
we will use in the different tests to be carried out. We choose four different training sizes,
ntrain = [5000, 7000, 12000, 17000], and compare the performances of the derived models
with each other on the same test data set. Both the training samples and the test sample
were selected from the KiDS-like training data set described in Table 6.1. The ratio of
lenses/non-lenses in these training data sets is roughly the same as for the full training
set, while the test sample has the same number of lenses and non-lenses. In each training
we use validation samples whose size (nval) is one tenth the corresponding training data
set size, i.e., nval = [500, 700, 1200, 1700]. Therefore, we are using 5500, 7700, 13200, and
18700 examples, respectively, in each training process. The architecture of the network is
the same as shown in Fig. 5.11. Both here and for the rest of the tests carried out, we first
plot the probability distributions obtained by applying the different models to the same
test sample. Then we build the corresponding confusion matrices by choosing Pthr = 0.5
as the reference probability threshold. Thereby, only examples with Pthr ≥ 0.5 would be
considered as lens predictions while the rest would be identified as non-lens predictions.
We also calculate the accuracy (Acc) and precision (Pre) for the models considered, taking
into account this last assumption. Finally, we plot together the ROC curves of the different
models being compared.

In the probability distributions of Fig. 6.3, it can be observed that the model trained
with ntrain = 7000 yields the clearest separation between the lens and non-lens classes,
followed by the model trained with ntrain = 12,000. From the confusion matrices shown
in Table 6.3 we can see that the model trained with ntrain = 5000 accomplishes the purest
classification of lenses (Pre = 96.1%), i.e., few non-lenses are missclassified as lenses.
However, the model trained with ntrain = 12,000 is the one that obtains the greater number
of correct lens classifications (TPR = 71%) and the highest overall accuracy (Acc = 83%)
when considering also the classification of the non-lenses. Thus we could conclude that
this last model is the best from the ones compared here. This is confirmed in Fig. 6.4,
inasmuch such model is by far the one that achieves a higher AUC value (area = 0.936).
Henceforth, unless indicated otherwise, trainings will be done with a training sample of
size ntrain = 12,000.
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(c) ntrain = 12,000
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(d) ntrain = 17,000

Figure 6.3: Probability distributions obtained by applying the models derived with the
CNN using different training sizes (ntrain) to the same test sample of size ntest = 1000,
with the same number of lenses than non-lenses. Blue bins represent those examples in
the test sample that are lenses while the red bins represent the non-lenses. Data were
normalized in the range [-1,1].
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Predicted
Non-lens Lens

T
ru
e Non-lens 489 (98%) 11 (2%)

Lens 231 (46%) 269 (54%)

(a) ntrain = 5000
(Acc = 75.8%. Pre = 96.1%)

Predicted
Non-lens Lens

T
ru
e Non-lens 476 (95%) 24 (5%)

Lens 215 (43%) 285 (57%)

(b) ntrain = 7000
(Acc = 76.1%. Pre = 92.2%)

Predicted
Non-lens Lens

T
ru
e Non-lens 475 (95%) 25 (5%)

Lens 145 (29%) 355 (71%)

(c) ntrain = 12,000
(Acc = 83%. Pre = 93.4%)

Predicted
Non-lens Lens

T
ru
e Non-lens 467 (93%) 33 (7%)

Lens 170 (34%) 330 (66%)

(d) ntrain = 17,000
(Acc = 82.4%. Pre = 86.8%)

Table 6.3: Confusion matrices obtained by applying the models derived with the CNN
using different training sizes (ntrain) to the same test sample of size ntest = 1000, with the
same number of lenses than non-lenses. We chose Pthr = 0.5 as the reference probability
threshold to decide whether or not an example is predicted as a lens. The accuracy (Acc
from Eq. 5.14) and precision (Pre from Eq. 5.15) of the different models are also calculated
based on this threshold. Data were normalized in the range [-1,1].
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Figure 6.4: ROC curves obtained by applying the models derived with the CNN using
different training sizes (ntrain) to the same test sample of size ntest = 1000, with the same
number of lenses than non-lenses. Data were normalized in the range [-1,1].

Now we proceed to evaluate the performance of the network for different normalizations
of the input data. Data normalization is needed so as the network does not have to deal
with very small or very large values, which could lead to problems in the learning process.
In the trials shown earlier we normalized the data in the range [-1,1]. Now we also consider
normalizing the data in the range [0,1], and to the maximum value in each band. This last
normalization imposes an upper limit of value 1 for every example, but more freedom is
granted for the lowest values, which change from one example to another, and from one
band to another. Minimum values are of the order of ∼ −1. We compare the performances
of the models trained with the same training data, but pre-processed under these different
conditions, when being applied to the same test sample. The training and test samples
were both extracted from the KiDS-like training data set, and their sizes are ntrain =
12,000 and ntest = 1000, respectively. The training sample is the same as used before, and
will be the same from now on, unless indicated otherwise. The test sample has different
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number of lenses than non-lenses. The architecture of the network is the same as shown
in Fig. 5.11, with 25 training epochs, and a batch size of 30.

The probability distributions from Fig. 6.5 show, beyond any doubt, that normalizing
the data in each example to the maximum value in each band results in the best separation
between classes. The distribution of the scores for lenses clearly peaks in the valued-1 bin,
while the distribution of non-lenses peaks in the valued-0 bin. The behavior between the
two peaks is very flat in comparison. According to the Table 6.3, this data normaliza-
tion provides the highest accuracy (Acc = 86.5%), increasing significantly the number of
correctly identified lenses (TPR = 85%) with respect the other two models, although its
precision is lower than when normalizing to [-1,1]. Nevertheless, the confusion matrix val-
ues, as well as the precision, were calculated assuming a probability threshold of Pthr = 0.5.
The evident separation between classes achieved in Fig. 6.5c indicates that the precision of
this model will easily overcome that other model for higher values of Pthr. When we plot
together the ROC curves of these three models (see Fig. 6.6), we observe that the model
providing the best separation between classes is also the one that achieves a higher AUC
value (area = 0.953). From now on, trainings will be done normalizing the data in each
example to the maximum value in each band.
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(a) Normalization in the range [-1,1]

0.0 0.2 0.4 0.6 0.8 1.0
Pth

0

20

40

60

80

100

120

140

160

N

Ntrain = 12000
Ntest = 1000

Lenses
No Lenses

(b) Normalization in the range [0,1]
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(c) Normalization to max value per band

Figure 6.5: Probability distributions obtained by applying the models derived with the
CNN considering various data normalizations to the same test sample of size ntest = 1000,
with different number of lenses than non-lenses. Blue bins represent those examples in the
test sample that are lenses while the red bins represent the non-lenses.
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Predicted
Non-lens Lens

T
ru
e Non-lens 538 (91%) 56 (9%)

Lens 103 (25%) 303 (75%)

(a) Normalization in the range [-1,1]
(Acc = 84.1%. Pre = 84.4%)

Predicted
Non-lens Lens

T
ru
e Non-lens 516 (87%) 78 (13%)

Lens 104 (26%) 302 (74%)

(b) Normalization in the range [0,1]
(Acc = 81.8%. Pre = 79.5%)

Predicted
Non-lens Lens

T
ru
e Non-lens 521 (88%) 73 (12%)

Lens 62 (15%) 344 (85%)

(c) Normalization to max value per band
(Acc = 86.5%. Pre = 82.5%)

Table 6.4: Confusion matrices obtained by applying the models derived with the CNN
considering various data normalizations to the same test sample of size ntest = 1000, with
different number of lenses than non-lenses. Pthr = 0.5 is chosen as the reference probability
threshold. The accuracy (Acc) and precision (Pre) are calculated.
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Figure 6.6: ROC curves obtained by applying the models derived with the CNN considering
various data normalizations to the same test sample of size ntest = 1000, with different
number of lenses than non-lenses.
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In our trials working with the network we also wanted to check the impact on the
learning process when modifying the input data. Here, and from now on, the test sample
has been increased from 1000 to 2000 examples, extracted from the KiDS-like training
data set. We exponentiated the data using different powers: data0.8 (see Fig. 6.7a and
Table 6.5a),

√
data (see Fig. 6.7b, Table 6.5b), and data1.2 (see Fig. 6.7c, Table 6.5c). We

also forced the data to have root mean square (rms) equal to one (see Fig. 6.7e, Table 6.5e),
and shift them to be all positive values (see Fig. 6.7f, Table 6.5f). The distribution of the
flux values, separated by bands, of the images in the KiDS-like training data set is shown
in Fig. 6.8. They are shown both as they are and shifted to positive values, and separated
for the sake of visual clarity. A test by combining the data with a layer of gaussian noise
of mean zero and standard deviation equal to 0.1 (see Fig. 6.7d, Table 6.5d) is also carried
out. Adding a gaussian noise layer is useful to mitigate overfitting, and it can be seen
as a form of random data augmentation. After performing every data treatment, data
were normalized to the maximum value in each band. Finally, we also include an example
running the CNN using raw data and normalizing them to the maximum value in each
band (see Fig. 6.7g and Table 6.5g).

As it can be seen in the probability distributions, the model trained using data with
rms = 1, and the model trained with raw data are those that achieve fairest separations
between the lens and non-lens classes. The first one supplies us with the least contaminated
classification of lenses (Pre = 92.9%), but the latter one delivers the largest number of
true lenses identified (TPR = 79%) and the highest overall accuracy (Acc = 87.3%). For
the seak of clarity, the ROC curves from all the models compared here have been split into
Fig. 6.9 and Fig. 6.10. The model trained with raw data is displayed in both figures, using
a green line. This model has proven to be the best classifying the classes, since its AUC
value is 0.951. It is equivalent to the model depicted, with a green line as well, in Fig. 6.6,
in the sense that the training has been carried out under the same conditions. Nonetheless,
both models result from different trainings, and they have been applied to different test
samples. These facts sustain our conclusion that training the network without modyfing
the input data, except for normalizing them to the maximum in each band, is the best
choice.
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(a) data0.8 (normalized to max)
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(c) data1.2 (normalized to max)
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(d) data + gaussian noise (normalized to max)
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(e) data with rms = 1
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(f) data shifted to positive (normalized to max)
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(g) raw data (normalized to max)

Figure 6.7: Probability distributions obtained by applying to the same test sample of size
ntest = 2000, with different number of lenses than non-lenses, some models derived with
the CNN. We considered different treatments of the data prior to being normalized to the
maximum value in each band for each example. Blue bins represent those examples in the
test sample that are lenses while the red bins represent the non-lenses.
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Predicted
Non-lens Lens

T
ru
e Non-lens 1126 (95%) 61 (5%)

Lens 372 (46%) 441 (54%)

(a) data0.8 (normalized to max)
(Acc = 78.3%. Pre = 87.8%)

Predicted
Non-lens Lens

T
ru
e Non-lens 976 (82%) 211 (18%)

Lens 462 (57%) 351 (43%)

(b)
√
data (normalized to max)

(Acc = 66.3%. Pre = 62.5%)

Predicted
Non-lens Lens

T
ru
e Non-lens 1076 (91%) 111 (9%)

Lens 266 (33%) 547 (67%)

(c) data1.2 (normalized to max)
(Acc = 81.1%. Pre = 83.1%)

Predicted
Non-lens Lens

T
ru
e Non-lens 1114 (94%) 73 (6%)

Lens 349 (43%) 464 (57%)

(d) data + gaussian noise
(normalized to max)

(Acc = 78.9%. Pre = 86.4%)

Predicted
Non-lens Lens

T
ru
e Non-lens 1144 (96%) 43 (4%)

Lens 250 (31%) 563 (69%)

(e) data with rms = 1
(Acc = 85.3%. Pre = 92.9%)

Predicted
Non-lens Lens

T
ru
e Non-lens 1094 (92%) 93 (8%)

Lens 377 (46%) 436 (54%)

(f) data shifted to positive values
(normalized to max)

(Acc = 76.5%. Pre = 82.4%)

Predicted
Non-lens Lens

T
ru
e Non-lens 1103 (93%) 84 (7%)

Lens 171 (21%) 642 (79%)

(g) raw data (normalized to max)
(Acc = 87.3%. Pre = 88.4%)

Table 6.5: Confusion matrices obtained by applying to the same test sample of size
ntest = 2000, with different number of lenses than non-lenses, some models derived with
the CNN. We considered different treatments of the data prior to being normalized to
the maximum value in each band for each example. Pthr = 0.5 is chosen as the reference
probability threshold. The accuracy (Acc) and precision (Pre) of the different models are
also calculated.
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Figure 6.8: Flux distributions of the KiDS-like training data set for the g, i, and r bands, in
which we can see the mean values have been subtracted. In the right plot, the distributions
have been shifted to positive values, and separated for the sake of visual clarity.
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Figure 6.9: ROC curves obtained by applying to the same test sample of size ntest = 2000,
with different number of lenses than non-lenses, some models derived with the CNN. We
considered different treatments of the data prior to being normalized to the maximum
value in each band for each example.
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Figure 6.10: As in Fig. 6.9 but considering other data treatments. The model from Fig. 6.9
in which we train wihtout any data pre-processing (green line) is also shown here.
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As we mentioned earlier, KiDS-like images do have some observational artifacts and
masked regions. The extent of these artifacts varies from a few pixels to almost the entire
image. Both in the training and test data sets, 4% of the examples have these masks in
the three bands, 9% contain them in one or two bands, and 87% are free of them. Given
that we intend to use our network with images that mimic true astronomical observations,
i.e., without factitious features added afterwards, we decided to compare the performance
of the network when training with and without images having artifacts. The KiDS-like
training data set after removing such images is named clean KiDS-like training data set.
In the same way, the KiDS-like test data set is reduced to the clean KiDS-like test data
set. The characteristics of these clean data sets are summarized in Table 6.1. For short, we
will refer to the samples containing masks as untouched and to the samples free of masks
as clean. The untouched and clean training samples have the same size (ntrain = 12,000),
being the first one the same that has been used to train until now. The untouched and
clean test samples also have the same size (ntest = 2000), being the first one the same
we have used in the previous set of tests. The architecture of the network is the same as
shown in Fig. 5.11, with 25 training epochs, and a batch size of 30.

The model trained with the untouched training sample has been applied to both clean
(see Fig. 6.11a and Table 6.6a) and untouched test samples (see Fig. 6.11b and Table 6.6b).
The same was done regarding the model trained with the clean training sample. The
probability distribution from Fig. 6.11b is the only one showing a prominent peak mixing
lenses and non-lenses between 0.4-valued and 0.5-valued bins. On his side, in Fig. 6.11d
it can be seen a clearly raised peak of non-lenses in the 1-valued bin, i.e., they would be
misidentified as lenses with high score probabilities. We are applying here a model trained
wih a clean sample to an untouched test sample. This is the only case in which the test
sample contains examples the network has not seen during the training, i.e., lenses and non-
lenses involving masks. Therefore, it is not surprising that the network missclassified ones
or the others with high probabilities. The best separation between classes is accomplished
when applying the models to a clean test sample. This can be seen both when the model
has been trained with an untouched training sample (see Fig. 6.11a and Table 6.6a) as when
it has been trained with a clean training sample (see Fig. 6.11c and Table 6.6c). According
to Table 6.6, both tests show pretty good similar results. The quantities provided by the
first one are Acc = 90.7%, Pre = 91.5%, and TPR = 85%, while the latter results in
Acc = 91.1%, Pre = 91%, and TPR = 86%. The ROC curves in Fig. 6.12 show that both
tests also exhibit similar behaviors, achiving a slightly superior AUC (0.974) when we have
trained using a clean sample. Since only 13% of the images in the data sets carry masks,
and we achieve better results training models without them, we decide that the model we
will apply to the four test sets described in Table 6.1 will be trained with clean data.
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(a) Training with untouched sample, and
testing with clean sample.
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(b) Training with untouched sample, and
testing with untouched sample.
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(c) Training with clean sample, and
testing with clean sample.
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(d) Training with clean sample, and
testing with untouched sample.

Figure 6.11: Probability distributions obtained by training and testing the models derived
using different data sets. We trained the network using samples from both the KiDS-like
training data set and lean KiDS-like training data set, and apply the resulting models over
test samples, of size ntest = 2000, from both data sets as well. Blue bins represent those
examples in the test sample that are lenses while the red bins represent the non-lenses.
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Predicted
Non-lens Lens

T
ru
e Non-lens 1140 (95%) 63 (5%)

Lens 123 (15%) 674 (85%)

(a) Training with untouched sample, and
testing with clean sample.

(Acc = 90.7%. Pre = 91.5%)

Predicted
Non-lens Lens

T
ru
e Non-lens 1092 (92%) 95 (8%)

Lens 157 (19%) 656 (81%)

(b) Training with untouched sample, and
testing with untouched sample.
(Acc = 87.4%. Pre = 87.4%)

Predicted
Non-lens Lens

T
ru
e Non-lens 1135 (94%) 68 (6%)

Lens 110 (14%) 687 (86%)

(c) Training with clean sample, and testing
with clean sample.

(Acc = 91.1%. Pre = 91%)

Predicted
Non-lens Lens

T
ru
e Non-lens 1064 (90%) 123 (10%)

Lens 134 (16%) 679 (84%)

(d) Training with clean sample, and testing
with untouched sample.

(Acc = 87.2%. Pre = 84.7%)

Table 6.6: Confusion matrices obtained by training and testing the models derived using
different data sets. We trained the network using data from both the KiDS-like training
data set and clean KiDS-like training data set, and apply the resulting models over test
samples, of size ntest = 2000, from both data sets as well. Pthr = 0.5 is chosen as the
reference probability threshold. The accuracy (Acc) and precision (Pre) of the different
models are also calculated.
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Figure 6.12: ROC curves obtained by training and testing the models derived using different
data sets. We trained the network using data from both the KiDS-like training data set
and clean KiDS-like training data set, and apply the resulting models over test samples, of
size ntest = 2000, from both data sets as well.

In parallel to the study of removing the examples containing masks, we have explored,
as far as possible since it is beyond the scope of this work at this moment, slightly dif-
ferent configurations of the CNN shown in Fig. 5.11. We have tried decreasing the size
of some filters or removing/adding one convolutional layer. The results were worse or in
line with those obtained with the current configuration of the network. However, reduc-
ing the amount of dropouts in the network does lead to a significant improvement in the
performance of the models trained. We compare in Fig. 6.13, Table 6.7, and Fig. 6.14 the
results obtained both by training the network shown in Fig. 5.11, and the same network
but leaving only the dropout in the fully-connected layer. These models were trained over
25 and 50 epochs, and applied to the same test sample of size ntest = 2000. As it can be
seen, using less dropout, as described, results in higher overall accuracies and ROC values
(0.964).
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(a) All dropout (25 epochs)
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(b) All dropout (50 epochs)
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(c) Just last dropout (25 epochs)
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(d) Just last dropout (50 epochs)

Figure 6.13: Probability distributions obtained for the models derived with two slightly
different network architectures. On the one hand, dropout was performed after each con-
volutional layer while, on the other had, all dropout was removed except for the one in
the fully-connected layer. Each case was performed running over 25 and 50 epochs. These
models were applied to the same test sample of size ntest = 2000, with different number
of lenses than non-lenses. Blue bins represent those examples in the test sample that are
lenses while the red bins represent the non-lenses.
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Predicted
Non-lens Lens

T
ru
e Non-lens 1150 (97%) 37 (3%)

Lens 234 (29%) 579 (71%)

(a) All dropout (25 epochs)
(Acc = 86.4%. Pre = 94%)

Predicted
Non-lens Lens

T
ru
e Non-lens 1043 (88%) 144 (12%)

Lens 118 (15%) 695 (85%)

(b) All dropout (50 epochs)
(Acc = 86.9%. Pre = 82.8%)

Predicted
Non-lens Lens

T
ru
e Non-lens 1111 (94%) 76 (6%)

Lens 155 (19%) 658 (81%)

(c) Just last dropout (25 epochs)
(Acc = 88.5%. Pre = 89.7%)

Predicted
Non-lens Lens

T
ru
e Non-lens 1138 (96%) 49 (4%)

Lens 174 (21%) 639 (79%)

(d) Just last dropout (50 epochs)
(Acc = 88.9%. Pre = 92.9%)

Table 6.7: Confusion matrices obtained for the models derived with two slightly different
network architectures. On the one hand, dropout was performed after each convolutional
layer while, on the other had, all dropout was removed except for the one in the fully-
connected layer. Each case was performed running over 25 and 50 epochs. These models
were applied to the same test sample of size ntest = 2000, with different number of lenses
than non-lenses. Pthr = 0.5 is chosen as the reference probability threshold. The accuracy
(Acc) and precision (Pre) of the different models are also calculated.
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Figure 6.14: ROC curves obtained for the models derived with two slightly different network
architectures. On the one hand, dropout was performed after each convolutional layer
while, on the other had, all dropout was removed except for the one in the fully-connected
layer. Each case was performed running over 25 and 50 epochs. These models were applied
to the same test sample of size ntest = 2000, with different number of lenses than non-lenses.

6.1.3 Results for KiDS-like data

Finally, we come to the moment of applying our best model to the four test data sets
described in Table 6.1. The first two data sets have already been explained. The KiDS-
like test data set based on actual images was built by selecting in the KiDS-like test data
set those examples that use real galaxy images taken from the KiDS footprint. We can
identify them thanks to the parameter ‘kids_lens_image’ provided in a table associated
to the simulations. The clean KiDS-like test data set based on actual images is built from
the former after removing those examples containing artificial masks. Taking into account
all the considerations seen so far regarding the performance of the CNN, our best model
is achieved by training the network under the following circumstances:
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• We train the network with the clean KiDS-like training data set. 16,374 examples
are used for training while the remaining 1000 are reserved for validation.

• The input data for every example are normalized to the maximum value in each of
the three bands considered (g, r, and i). No other data pre-processing was done.

• The architecture of the network is the same as shown in Fig. 5.11, but all dropout
was removed except for the one in the fully-connected layer.

• We use the early-stopping option, which stops the training once the performance on
the validation sample stops improving. This results in a training through 46 epochs.

Even though we do not have direct information about whether the examples in the
test data sets are lenses or non-lenses, we can use some of the variables from the tables
provided to infer it in a more than reasonably good way. If we look at the examples from
the KiDS-like training data set, we see a strong correlation between the lenses and the npix
variable. As it can be seen in Table 6.8, 93% of the lenses have npix > 0 while all non-lens
examples have npix = 0. Therefore, this variable is a remarkable clue for labeling the lenses
and non-lenses in the test data sets. When we examine the data table of the KiDS-like
test data set, we see that in all examples with npix > 0 there is at least one source in the
image (‘no_source’ = 0). After visual inspection of a random sample of examples with
‘no_source’ = 0 but npix = 0, we observe some obvious lenses with arcs and ring-shaped
patterns. So, we decide to label as lenses those examples with ‘no_source’ = 0 (49,862)
while those examples with ‘no_source’ = 1 are labeled as non-lenses (50,138). This is
shown in Table 6.9. Our lenses/non-lenses numbers agree with those indicated in Davies
et al. (2019), where they also test a CNN to identify images containing lensing systems
using these same KiDS-like data sets.

Name Lenses with npix > 0 Lenses with npix = 0 Non-lenses with npix = 0

KiDS-like training data set 7,491 (93%) 530 (7%) 11,979 (100%)

Table 6.8: Characteristics of the examples in the KiDS-like training data set.

Name no_source = 0 no_source = 0 & npix > 0 no_source = 1

KiDS-like test data set 49,862 (49.9 %) 46,673 (46.7 %) 50,138 (50.1 %)

Table 6.9: Characteristics of the examples in the KiDS-like test data set.
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The probability distributions obtained after applying our best model to the four test
data sets are shown in Fig. 6.15. We achieve a great separation between the lens and
non-lens classes for the KiDS-like test data set, with the main inconvenient of having 2171
non-lenses missclassified as lenses with Pthr > 0.9, and 1554 lenses missclassified as non-
lenses with Pthr < 0.1. These two missclassified peaks are considerably reduced, to 475
non-lenses and 729 lenses, respectively, when we consider the clean KiDS-like test data
set. The separation between classes gets significantly worse when the model is applied
just to the examples based on real KiDS images, and improves a little when the examples
with artificial masks are removed. The improvement in the classification when removing
the examples with artificial masks can also be appreciated in Table 6.10, Fig. 6.16, and
Table 6.11. According to the values in Table 6.10, which were calculated assuming a
probability threshold of Pthr = 0.5, removing these examples from the KiDS-like test data
set translates into an increase of the TPR from 88.6% to 91.9%, the accuracy improves
from 88.9% to 92.6%, and the precision moves up from 89.1% to 93.2%. In Table 6.11
one can see how this improvement remains for different probability thresholds. In this
table we can also see how the stricter the probability cut, the lower is the TPR and the
higher the precision, while the accuracy remains more or less stable. With high probability
thresholds, we can obtain purer samples with few non-lenses missclassified as lenses (higher
Pre) at the expense of reducing the number of lenses detected over all present in the data
set (lower TPR). The best performance of our model is achieved when applied to the
clean KiDS-like test data set, yielding an AUC value of 0.982 (see Fig. 6.16). Using a cut
in Pthr > 0.9, we can get within this data set a sample of 39,769 examples identified as
lenses with a precision of 98.7%.

We have also trained a model under the same conditions as our best model, but using
only the r-band images. The training of this model took place along 57 epochs. This model
was then tested on the KiDS-like test data set. The probability distribution is shown in
Fig. 6.15e, the confusion matrix in Table 6.10e, and its ROC curve in included in Fig. 6.16.
Therefore, we can do a direct comparison between this single-band model and their analo-
gous three-band model applied on the same test data set (Fig. 6.15a, Table 6.10a). We see
that the AUC value, as well as all the classification rates considered (TPR, Acc and Pre),
are significantly better when the amount of information given to the network, in the form
of additional bands, increases.
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As can be clearly seen in Fig. 6.16, the efficiency of the model is very different from being
applied to all the examples to being applied just to those based on actual KiDS images.
The conclusion is obvious, simulations need to be as realistic as possible, so that this effect
does not occur when models trained with simulations are tested on real data. Following
this thought, we have also trained the network using a sample of 10,000 examples from the
clean KiDS-like test data set based on actual images and applied the derived model to a
sample of ntest = 2000 from the same data set. The resulting probability distribution and
confusion matrix are included in Fig. 6.15f and Table 6.10f, respectively. The ROC curve
of this model is plotted in Fig. 6.17 against the curve from our, previously explained, best
model applied to the clean KiDS-like test data set based on actual images. The betterment
now that we train and test with real KiDS images is significative. The separation of the
classes is much better, being the majority of non-lenses concentrated below Pthr = 0.5. The
accuracy increases in 7 percentage points whereas the precision enhances in 12 percentage
points. And the AUC value moves up from 0.832 to 0.888.
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(a) KiDS-like test data set.
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(b) Clean KiDS-like test data set.
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(c) KiDS-like test data set
based on actual images.

0.0 0.2 0.4 0.6 0.8 1.0
Pth

0

500

1000

1500

2000

2500

3000

N

Ntrain = 16374
Ntest = 13038

Lenses
No Lenses

(d) Clean KiDS-like test data set
based on actual images.

0.0 0.2 0.4 0.6 0.8 1.0
Pth

0

5000

10000

15000

20000

25000

30000

N

Ntrain = 16374
Ntest = 100000

Lenses
No Lenses

(e) Training and testing with the r-band
images from clean KiDS-like test data set.
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(f) Training and testing with clean KiDS-like
test data set based on actual images.

Figure 6.15: Probability distributions obtained by applying our best model, trained using a
sample with ntrain = 16,374 from the clean KiDS-like training data set, to the four test data
sets described in Table 6.1 (Figures 6.15a to 6.15d). Fig. 6.15e is analogous to Fig. 6.15a,
but only the r-band images were used to train the network and to test the model. Finally,
Fig. 6.15f shows the probability distribution from a model trained using sample of ntrain =
10,000 from the clean KiDS-like test data set based on actual images applied to a sample
of ntest = 2000 from the same data set. Blue bins represent those examples in the test
sample that are lenses while the red bins represent the non-lenses.
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Predicted
Non-lens Lens

T
ru
e Non-lens 44725 (89%) 5413 (11%)

Lens 5692 (11%) 44170 (89%)

(a) KiDS-like test data set
(Acc = 88.9%. Pre = 89.1%)

Predicted
Non-lens Lens

T
ru
e Non-lens 40542 (93%) 2889 (7%)

Lens 3509 (8%) 39811 (92%)

(b) Clean KiDS-like test data set
(Acc = 92.6%. Pre = 93.2%)

Predicted
Non-lens Lens

T
ru
e Non-lens 5375 (72%) 2115 (28%)

Lens 2174 (29%) 5326 (71%)

(c) KiDS-like test data set
based on actual images

(Acc = 71.4%. Pre = 71.6%)

Predicted
Non-lens Lens

T
ru
e Non-lens 4859 (75%) 1662 (25%)

Lens 1736 (27%) 4781 (73%)

(d) Clean KiDS-like test data set
based on actual images

(Acc = 73.9%. Pre = 74.2%)

Predicted
Non-lens Lens

T
ru
e Non-lens 43279 (86%) 6859 (14%)

Lens 10700 (21%) 39162 (79%)

(e) Training and testing with the r-band
images from clean KiDS-like test data set

(Acc = 82.4%. Pre = 85.1%)

Predicted
Non-lens Lens

T
ru
e Non-lens 849 (87%) 127 (13%)

Lens 248 (24%) 776 (76%)

(f) Training and testing with clean
KiDS-like test data set based on actual

images
(Acc = 81.3%. Pre = 85.9%)

Table 6.10: Confusion matrices obtained by applying our best model, trained with a sample
of ntrain = 16,374 from the clean KiDS-like training data set, to the four test data sets
described in Table 6.1 (Tables 6.10a to 6.10d) Table 6.10e is analogous to Table 6.10a, but
only the r-band images were used to train the network and to test the model. Finally,
Table 6.10f shows confusion matrix from a model trained with a sample of ntrain = 10,000
from the clean KiDS-like test data set based on actual images applied to a sample of ntest
= 2000 from the same data set. Pthr = 0.5 is chosen as the reference probability threshold.
The accuracy (Acc) and precision (Pre) of the different models are also calculated.
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Figure 6.16: ROC curves obtained by applying our best model, trained with a sample of
ntrain = 16,374 from the clean KiDS-like training data set, to the KiDS-like test data set
(blue line), clean KiDS-like test data set (orange line), KiDS-like test data set based on
actual images (green line) and clean KiDS-like test data set based on actual images (red
line). The purple ROC curve is analogous to the blue one both in training and testing,
but only the r-band images were used.
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Figure 6.17: ROC curves obtained by applying our best model, trained with a sample of
ntrain = 16,374 from the clean KiDS-like training data set, to the clean KiDS-like test data
set based on actual images, and a model trained with a sample of ntrain = 10,000 from the
clean KiDS-like test data set based on actual images to a sample of ntest = 2000 from the
same data set.
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Test data set Pthr TPR Acc Pre

0.5 88.6 % 88.9% 89.1%
KiDS-like test data set 0.7 84.1% 88.7% 92.5%

0.9 79.2% 87.5% 94.8%
0.5 91.9% 92.6% 93.2%

Clean KiDS-like test data set 0.7 88.1% 92.5% 96.6%
0.9 83.8% 91.4% 98.7%
0.5 71.0% 71.4% 71.6%

KiDS-like test data set based on actual images 0.7 59% 72.0% 79.7%
0.9 49.1% 70.7% 86.5%
0.5 73.4% 73.9% 74.2%

Clean KiDS-like test data set based on actual images 0.7 61.3% 74.8% 83.8%
0.9 51.4% 73.4% 91.6%

Table 6.11: Recall (TPR), accuracy (Acc) and precision (Pre) values for our best model
trained with KiDS-like data, when applied on the test data sets and considering three Pthr.

6.1.4 Testing the model with strong lens candidates

We have tested the performance of our best model, trained with the clean KiDS-like train-
ing data set, on 101×101 pixel sized images in the g, r, and i bands of strong gravitational
lenses observed with SDSS and DES. First, we have considered a sample of 174 SDSS strong
lenses which has been erected as follows: 66 lenses from SLACS (Bolton et al., 2008; Shu
et al., 2017), 8 secure strong lensing spiral galaxies discovered with the SWELLS Survey
(Sloan WFC Edge-on Late-type Lens Survey, Treu et al., 2011), 55 lensed quasars from
the SDSS Quasar Lens Search (SQLS, Inada et al., 2012), and 45 wide separation (≥ 1.5

arcsec) gravitational lens systems from the CASSOWARY spectroscopy survey (Cambridge
And Sloan Survey Of Wide ARcs in the skY, Stark et al., 2013). We achieve an overall
precision of 65%, with 113 lenses well predicted out of 174. Those CASSOWARY lenses
also confirmed as lenses by our model are shown in Fig. 6.18, while the ones our model
does not identify can be seen in Fig. 6.19. The probability scores obtained for the rest
of true positives from the SDSS lenses sample can be read in Table 6.12, while the false
positives can be found in Table 6.13. And regarding DES, we have gathered a sample of
578 strong lens candidates discovered using CNNs, and through visual inspection. These
include 503 galaxy-galaxy lenses from Jacobs et al. (2019), and 75 secure lens cadidates
(those ranked with grades A and B) from Huang et al. (2020). Our model outputs a pre-
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cision of 83% (481/578) for this sample of DES lenses. The probability scores obtained for
all these DES strong lenses can be read in Appendix D, while some of them, both correctly
and wrongly predicted by our model, are shown in Fig. 6.20. For our surprise, the model
failed to identify the example J023953.1-013456.0, which is an image of the cluster A370,
the first strong lensing arc discovered. We can easily find an explanation in the fact that
the model we applied was trained only with examples of galaxy-galaxy strong gravitational
lenses. Therefore, elongated arcs such as this one, and that in J022057.7-383303.3, are not
identified by our model.

Finally, we have also applied our model on the images of two samples of potential SDSS
lens candidates. On the one hand, we have drawn upon the 40 lens candidates proposed in
the Table 2.4 from Sec. 2.7. 7 of them are model-predicted to be lenses. They are marked
in the table with an asterisk (*), and their ID names are highlighted with orange in Ap-
pendix C. These are: J131407.0+271208 (Plens = 1.00), J133231.6+350843 (Plens = 0.98),
J114512.9-002446 (Plens = 0.91), J134853.0+270011 (Plens = 0.87), J131715.6+322643
(Plens = 0.66), J131533.9+233254 (Plens = 0.65) and J141605.5+011828 (Plens = 0.53).
On the other hand, we have considered a sample of lens candidates from the Galaxy Zoo 2
(GZ2) project5. GZ2 (Willett et al., 2013) is a morphologic classification catalog of SDSS
galaxies resulting from the decisions taken by volunteers through a user-friendly web in-
terface. Even though this is an easy way to overcome the classification of large amounts of
data, it can also bring about some drawbacks. The visual classification of intermediate and
unclear examples can even be a difficult task for a professional. This can imply both that
highly voted galaxies may not be well classified, as lead to uncertain classifications caused
by the disagreement between participants. Our sample was built initially by selecting those
galaxies that were largely voted for having an odd lens- or arc-type feature, according to
the classification scheme followed in the project. The resulting examples were later visu-
ally inspected and labeled as lens candidates (30), unclear candidates (63), and non-lenses
(116). Lens and unclear candidates were taken into account to make up a sample of 93
examples. 80 of them (28 lens candidates and 52 unclear examples) are predicted to be
lenses by our model. Cutout images of all these examples are shown in Fig. 6.21.

5https://data.galaxyzoo.org/

https://data.galaxyzoo.org/
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Figure 6.18: Lenses from the CASSOWARY survey (SDSS) well-predicted by a model
derived with our CNN. The model was trained using the clean KiDS-like training data set.
In orange we show the probability score of being a lens given by the model. The probability
threshold to assess an example as a lens prediction is 0.5.
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Figure 6.18 (cont.)
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Figure 6.19: Lenses from the CASSOWARY survey (SDSS) wrongly predicted by a model
derived with our CNN. The model was trained using the clean KiDS-like training data set.
In orange we show the probability score of being a lens given by the model. The probability
threshold to assess an example as a lens prediction is 0.5. After visual inspection, we do
not consider the system J113406.73+253335.1 being a true lens. This is to say, the model
would have been right. We are not convinced about the system J104943.14+442035.6. The
rest of examples, which have higher probabilities, do seem lenses.
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ID Plens Ref

J143004.10+410557.1 1.0 [a]
J110024.39+532913.9 0.997 [a]
J095629.78+510006.6 0.987 [a]
J171837.40+642452.2 0.950 [a]
J153812.92+581709.8 0.931 [a]
J004402.90+011312.6 0.926 [a]
J140329.49+000641.4 0.924 [a]
J153150.07-010545.7 0.910 [a]
J095900.96+441639.4 0.898 [a]
J232120.93-093910.3 0.878 [a]
J125919.05+613408.6 0.870 [a]
J234111.57+000018.7 0.860 [a]
J163028.16+452036.3 0.840 [a]
J095519.72+010144.4 0.839 [a]
J125135.71-020805.2 0.809 [a]
J114257.35+100111.8 0.730 [a]
J000802.96-000408.2 0.725 [a]
J114329.64-014430.0 0.710 [a]
J003753.21-094220.1 0.673 [a]
J102922.94+042001.8 0.654 [a]
J144319.62+030408.2 0.652 [a]
J125050.52-013531.7 0.631 [a]
J101622.86+385903.3 0.545 [a]
J033012.14-002051.9 0.535 [a]
J102026.54+112241.1 0.532 [a]
J021652.54-081345.3 0.505 [a]
J142015.85+601914.8 0.501 [a]
J090334.94+502819.3 1.0 [b]
J092455.79+021924.9 0.991 [b]
J121646.04+352941.4 0.989 [b]
J100434.92+411242.7 0.989 [b]
J125819.24+165717.6 0.982 [b]
J133018.64+181032.1 0.969 [b]
J140012.77+313454.1 0.947 [b]
J125418.94+223536.5 0.941 [b]
J115517.34+634622.0 0.939 [b]
J133907.13+131039.6 0.939 [b]
J133222.62+034739.9 0.937 [b]

ID Plens Ref

J091127.61+055054.0 0.927 [b]
J083216.99+040405.2 0.908 [b]
J140515.42+095931.3 0.907 [b]
J024634.09-082536.1 0.879 [b]
J122608.02-000602.2 0.871 [b]
J080623.70+200631.8 0.861 [b]
J152445.62+440949.5 0.853 [b]
J130443.58+200104.2 0.784 [b]
J135306.34+113804.7 0.778 [b]
J111816.94+074558.2 0.776 [b]
J151538.59+151135.8 0.771 [b]
J165043.44+425149.3 0.748 [b]
J120629.64+433217.5 0.735 [b]
J105545.45+462839.4 0.726 [b]
J013435.66-093102.9 0.708 [b]
J100120.83+555349.6 0.704 [b]
J115518.29+193942.2 0.688 [b]
J132236.41+105239.4 0.685 [b]
J082016.11+081215.9 0.657 [b]
J095122.57+263513.9 0.633 [b]
J105440.83+273306.4 0.606 [b]
J133534.79+011805.5 0.601 [b]
J152938.90+103803.9 0.570 [b]
J162026.14+120342.0 0.567 [b]
J125107.57+293540.5 0.552 [b]
J152720.13+014139.6 0.538 [b]
J091301.02+525928.8 0.529 [b]
J141546.24+112943.4 0.523 [b]
J113157.72+191527.7 0.506 [b]
J170341.46+245140.0 0.978 [c]
J103745.03+351730.9 0.956 [c]
J111735.37+470407.4 0.830 [c]
J082012.86+484736.7 0.813 [c]
J113506.88+372023.9 0.770 [c]
J120356.33+253549.1 0.752 [c]
J133140.33+362811.9 0.656 [c]
J091516.27+421152.7 0.636 [c]

Table 6.12: SDSS lenses well-predicted by a model derived with our CNN. The model was
trained using the clean KiDS-like training data set. The probability score of being a lens
(Plens) is shown, along with the reference from which the candidate has been taken: [a]
Bolton et al. (2008), [b] Inada et al. (2012) and [c] Treu et al. (2011). The probability
threshold to assess an example as a lens prediction is 0.5.
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ID Plens Ref

J080858.78+470638.9 0.001 [a]
J140228.21+632133.5 0.010 [a]
J120444.07+035806.4 0.032 [a]
J002907.77-005550.5 0.040 [a]
J121826.70+083050.3 0.055 [a]
J040535.41-045552.4 0.066 [a]
J162746.45-005357.6 0.076 [a]
J090315.19+411609.1 0.076 [a]
J214154.68-000112.3 0.078 [a]
J010933.73+150032.5 0.082 [a]
J103235.84+532234.9 0.122 [a]
J113405.89+602713.5 0.132 [a]
J093543.93-000334.8 0.137 [a]
J162132.99+393144.6 0.148 [a]
J095944.07+041017.0 0.179 [a]
J082242.32+265243.5 0.222 [a]
J152506.70+332747.4 0.226 [a]
J143627.54-000029.2 0.236 [a]
J120540.44+491029.4 0.264 [a]
J102332.26+423001.8 0.274 [a]
J091205.31+002901.2 0.349 [a]
J141622.34+513630.4 0.364 [a]
J121340.58+670829.0 0.382 [a]
J111250.60+082610.4 0.384 [a]
J073728.45+321618.6 0.387 [a]
J025245.21+003958.4 0.389 [a]
J015758.94-005626.1 0.397 [a]

ID Plens Ref

J125028.26+052349.1 0.399 [a]
J145128.19-023936.4 0.401 [a]
J223840.20-075456.0 0.404 [a]
J110308.21+532228.2 0.404 [a]
J230321.72+142217.9 0.408 [a]
J093600.77+091335.8 0.425 [a]
J163602.62+470729.6 0.456 [a]
J143213.34+631703.8 0.459 [a]
J230220.18-084049.5 0.472 [a]
J161843.10+435327.4 0.474 [a]
J094656.68+100652.8 0.493 [a]
J074653.04+440351.3 0.194 [b]
J100424.88+122922.2 0.196 [b]
J113803.73+031457.8 0.221 [b]
J140624.82+612640.9 0.278 [b]
J074352.61+245743.6 0.315 [b]
J094604.79+183539.7 0.385 [b]
J081331.28+254503.0 0.422 [b]
J145501.91+144734.8 0.451 [b]
J102913.94+262317.9 0.471 [b]
J133401.39+331534.3 0.474 [b]
J100128.61+502756.8 0.484 [b]
J163348.98+313411.9 0.484 [b]
J112818.49+240217.4 0.485 [b]
J132059.17+164402.5 0.494 [b]
J134929.84+122706.8 0.499 [b]

Table 6.13: SDSS lenses wrongly predicted by a model derived with our CNN. The model
was trained using the clean KiDS-like training data set. The probability score of being a
lens (Plens) is shown, along with the reference from which the candidate has been taken:
[a] Bolton et al. (2008) and [b] Inada et al. (2012). The probability threshold to assess an
example as a lens prediction is 0.5.
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Figure 6.20: Cutouts of some DES strong lens candidates presented in Jacobs et al. (2019)
and Huang et al. (2020). In orange we show the probability score of being a lens derived
by the model.
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Figure 6.21: Cutouts of lens cadidates from GZ2 that are predicted to be lenses by a model
derived with our CNN. The model was trained using the clean KiDS-like training data set.
In orange we show the probability score of being a lens given by the model. The probability
threshold to assess an example as a lens prediction is 0.5.
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6.2 Searching for strong lenses in single-band
Euclid-like simulations

6.2.1 Description of single-band Euclid-like data

Here we consider a data set meant to roughly mimic the data quality which is expected
from observations by the Euclid telescope6 in the visible channel. Euclid (Laureijs et al.,
2011) is a space-based survey mission from the European Space Agency (ESA) designed
to understand the nature of dark energy, dark matter and gravity. The Euclid wide survey
will cover ∼15,000 square degrees of the extragalactic sky, complemented by two 20 deg2

deep fields, observed in a total of four bands with two different instruments. The visible
instrument (VIS) provides measurements in one broad visible r+ i+ z band (550-920 nm),
while the near infrared instrument (NISP) will image the sky in three near-infrared bands:
Y (0.920-1.146 µm), J (1.146-1.372 µm) and a long H (1.372-2.000 µm). These simulations
also form part of the Gravitational Lens Finding Challenge 1.0. As it occurred wih the
KiDS-like simulations, only galaxy-galaxy lenses are considered (i.e., no clusters and no
quasars). This imaging data set was built to have the same noise levels, pixels sizes and
sensitivities as those expected from the Euclid data (see the Euclid Red Book, Laureijs
et al., 2011). These space-based images have a higher signal-to-noise ratio than the KiDS-
like images. The reference band for background and foreground galaxies was SDSS i, since
it is overlapping with the broader Euclid VIS band.

The contents of the data sets for the Euclid-like simulations are summarized in Ta-
ble 6.14. The training set consists of 20,000 images in the visible band, being each image
of 101×101 pixels. Along with the images a table is provided indicating whether or not
each case is a lens. Lensing examples are labeled with ‘1’s, while non-lenses are labeled
with ‘0’s. Some examples of lenses and non-lenses are shown in Fig. 6.22 and Fig. 6.23,
respectively. This table also holds other helpful information to take into account when
training the network, such as the npix variable. The test set, or challenge set, contains
100,000 images to be classified. A table with additional information about the simulations
is also provided. For this set we do not know which examples are lenses and which are
not. The table does contain the aforementioned npix and ‘no_source’ variables. Further
details about the challenge and how the simulations were created can be found in Metcalf
et al. (2019).

6https://www.euclid-ec.org/

https://www.euclid-ec.org/
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Name Description Lenses Non-lenses npix > 0 npix = 0

Training data set 20,000 images (101×101) 13,968 6,032 13,611 6,389

Test data set 100,000 images (101×101) 39,975 60,025 38,664 61,336

Table 6.14: Description of the data sets for the single-band Euclid-like simulations.

(a) ID=19 (b) ID=65 (c) ID=6936

Figure 6.22: Some examples of lenses in the Euclid-like training data set.

(a) ID=4 (b) ID=9 (c) ID=28

Figure 6.23: Some examples of non-lenses in the Euclid-like training data set.

6.2.2 Results for single-band Euclid-like data

Bearing in mind what we learned from the trainings with the KiDS-like simulations, we
proceed to tackle the lens identification within this data with three different approaches.
The normalization of the input data and the architecture of the network are the same as
before, with the exception that input data are now single-band. The early-stopping tool
is again used here. The number of trainable parameters of the network per each layer
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for these simulated data is shown in Table 6.15. Our first approach consisted of testing
with the model from Sec. 6.1.3, which was trained using only the r-band images within the
clean KiDS-like training data set. The training of this model lasted 57 epochs, using 16,374
examples split into 30 batches. The remaining 1000 examples were kept for validation. In
the other two approaches we used the Euclid-like training data set described in Table 6.14.
One model was trained making use of the ground truth labels for lenses and non-lenses
provided, while in the other one we defined as lenses those examples in which npix > 0,
and as non-lenses those with npix = 0. We decided to do this to check the difference
between training with all the lenses and training only with the more apparent ones. 19,000
examples were used in both trainings (with 1000 for validation) and concluded after 34 and
43 epochs, respectively. These three models were all applied to the Euclid-like test data
set containing 100,000 examples. As we discussed previously for the KiDS-like test data,
we consider lenses those examples with ‘no_source’ = 0 (39,975), whereas the examples
with ‘no_source’ = 1 are identified as non-lenses (60,025).

Layer Number of weights

1st convolutional layer 1,184
2nd convolutional layer 51,264
3rd convolutional layer 32,896
4th convolutional layer 147,584
1st fully connected layer 5,120,064
2nd fully connected layer 65

Full network 5,353,057

Table 6.15: Number of weights per layer of the CNN trained with single-band Euclid-like
simulations.

The resulting probability distributions are shown in Fig. 6.24. Although the model
trained with the r-band KiDS-like images manages to concentrate the greatest amount of
non-lenses in the 1-valued bin, compared to the other models, it yields visually the worst
separation between the lens and non-lens classes. Putting it into numbers, whereas this
model achieves to score 52% of the lenses with Pthr > 0.9, the other two models classify
66% and 69%, respectively. On the other hand, this model misclassifies 2631 lenses (7%)
as non-lenses with Pthr < 0.1, but the other two models outcome in 1254 (3%) and 568
(1.4%). This fact is also observed in the confusion matrices calculated assuming Pthr = 0.5

as border between lenses and non-lenses (Table 6.16). According to them, the model
trained following the criterion npix > 0 to select the lenses supplies the largest number of
lenses correctly identified (TPR = 84%). This makes sense since we are training without
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the less clear lenses, those whose number of pixels in the image are comparable to the
noise level, and are few enough so we can detect best the clearest lenses, which are also a
majority in the test data set. Yet the model trained with the ground truth labels delivers
the least contaminated classification of lenses (Pre = 80.4%). It also achieves the highest
overall accuracy (84.5%), but the difference with the other model is small. As can be seen
in Table 6.17, this balance is maintained with a cut in Pthr > 0.9. Training with the true
lens labels we obtain the purest sample of lenses (Pre = 95.1%), but training using the
npix criterion renders the more accurate sample (Acc = 85.8%) with the greater number
of lenses correctly indetified (TPR = 68.7%). The ROC curves in Fig. 6.25 also show that
both models exhibit similar behaviors, but help us to confirm that being stricter in defining
the lenses results in a best classifying model (AUC value = 0.921).
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Figure 6.24: Probability distributions obtained by applying three different models derived
with the CNN to the single-band Euclid-like test data set of size ntest = 100,000. Fig. 6.24a
resulted from training the network using the r-band images within the clean KiDS-like
training data set. Fig. 6.24b shows the results of a model trained with the Euclid-like
training data set using the ground truth labels given, while in Fig. 6.24c the model was
trained defining as lenses those examples in which npix > 0. Blue bins represent those
examples in the test sample that are lenses while the red bins represent the non-lenses.
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Predicted
Non-lens Lens

T
ru
e Non-lens 51796 (86%) 8229 (14%)

Lens 11629 (29%) 28346 (71%)

(a) r-band KiDS-like data (lens labels)
(Acc = 80.1%. Pre = 77.5%)

Predicted
Non-lens Lens

T
ru
e Non-lens 52162 (87%) 7863 (13%)

Lens 7627 (19%) 32348 (81%)

(b) Euclid-like data (lens labels)
(Acc = 84.5%. Pre = 80.4%)

Predicted
Non-lens Lens

T
ru
e Non-lens 50580 (84%) 9445 (16%)

Lens 6509 (16%) 33466 (84%)

(c) Euclid-like data (npix > 0)
(Acc = 84%. Pre = 77.9%)

Table 6.16: Confusion matrices obtained by applying three different models derived with
the CNN to the single-band Euclid-like test data set of size ntest = 100,000. Table 6.16a
resulted from training the network using the r-band images within the clean KiDS-like
training data set. Table 6.16b shows the results of a model trained with the Euclid-like
training data set using the ground truth labels given, while in Table 6.16c the model was
trained defining as lenses those examples in which npix > 0. Pthr = 0.5 is chosen as the
reference probability threshold. The accuracy (Acc) and precision (Pre) of the different
models are also calculated.
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Figure 6.25: ROC curves obtained by applying three different models derived with the
CNN to the single-band Euclid-like test data set of size ntest = 100,000. The blue line
corresponds to a model trained using the r-band images within the clean KiDS-like training
data set. The model resulted from training the network with the Euclid-like training data
set using the ground truth labels given is depicted by the orange line while the green line
represents a model trained with the same data but defining as lenses those examples in
which npix > 0.

Test data set Pthr TPR Acc Pre

0.5 70.9% 80.1% 77.5%
model trained with KiDS-like r-band images (lens labels) 0.7 61.9% 81.0% 86.9%

0.9 52.3% 79.5% 93.7%
0.5 80.9% 84.5% 80.4%

model trained with Euclid-like VIS images (lens labels) 0.7 74.0% 85.8% 88.7%
0.9 65.6% 84.9% 95.1%
0.5 83.7% 84.0% 77.9%

model trained with Euclid-like VIS images (npix > 0) 0.7 77.4% 86.1% 86.3%
0.9 68.7% 85.8% 94.1%

Table 6.17: Recall (TPR), accuracy (Acc) and precision (Pre) values of the models applied
to multi-band Euclid-like data considering three different Pthr cuts.
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6.3 Searching for strong lenses in multi-band
Euclid-like simulations

6.3.1 Description of multi-band Euclid-like data

The Bologna Lens Factory project lauched a second gravitational lens finding challenge on
October 11, 20197, on which we entered to participate. It lasted until February 7, 2020.
The simulated images within this challenge supposed an improvement over data from the
previous challenges. On this occasion, lensing simulations do not limit to a galaxy being
lensed by another galaxy, but multiple lensed systems involving clusters and galaxies are
considered. The challenge concentrated only on Euclid-like observations in the visible,
and near-infrarred J, Y, and H bands. Both the training data set and challenge data set
consisted initially of 100,000 images in each of the four bands. These images are centered
on a lens galaxy candidate. Visible images are 200 × 200 pixels with a resolution of 0.1".
Infrarred images are 66 × 66 pixels with a resolution of 0.3". In order too work with the
four images together, visible images were repixelized so they all have 66 × 66 pixels.

The training data set comes along with a catalog that gives the properties of each lens
candidate. Among these properties we can find the redshifts of the source and the lens,
the number of pixels in the lensed source image above 1σ (npix), the number of separated
groups of source pixels, i.e., the number of images (nim), the effective magnification of the
source including all images (µeff ), the number of sources added (nsources) or the average
surface brightness contrast between the lens and source in pixels above certain threshold
(sbcontrast). The effective magnification is calculated as µeff =

∑
i fi/

∑
i µ
−1
i fi, where

the sums are over the sampled pixels in the image, fi is the surface brightness, and µi

is the magnification of a specific pixel. A specific parameter telling us whether or not
the candidates are lenses was not included. However, the organizers indicated that lenses
could be defined as those examples with nim > 0, µeff > 1.6, and npix > 20. On the other
hand, cases with µeff < 1.0 or no source added are considered non-lenses. Entries for the
challenge were evaluated by calculating the maximum Fβ score reached for any probability
threshold, according to Eq. (5.17), and assuming β = 0.03. Since a small value for β was
chosen, the evaluation method rewards those models that achieve a higher precision, as
defined in Eq. (5.15). Identifying all existing lenses is not as important as the fact that
those predicted to be lenses are indeed lenses. Taking this into account, and due to the
fact that our initial training of the network, defining the lenses and non-lenses according
to the aforementioned criteria, did not succeed, we decided to use in the training a stricter

7http://metcalf1.difa.unibo.it/blf-portal/gg_challenge.html

http://metcalf1.difa.unibo.it/blf-portal/gg_challenge.html
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definition for the lenses. Therefore, our approach consisted of training with those examples
that are more likely to be clear lenses or non-lenses, leaving out those candidates which
are unclear or might be hard to detect. Following this path we expected to achieve lens
classifications as pure as possible in the challenge data set.

The training data set was split into two data sets, one aimed to training and the
other one purposed to test our models before being applied to the challenge data set.
We contemplated seven different criteria to consider the candidates as lenses and non-
lenses. These criteria can be read in Table 6.18. According to them, we built six training
sub-data sets and seven test sub-data sets. The criterion indicated by the organizers,
nicknamed as ‘assessable 0’ in the tables, was not used for training, but it was used for
testing. Those examples that cannot be considered lenses nor non-lenses were excluded.
Regarding the challenge data set, the lenses were in the end defined using the ‘assessable
1’ yardstick, while all the remaining examples were labeled as non-lenses. Those examples
with 1 < µeff < 1.6 were removed, leaving the challenge data set with 88,910 candidates.
The contents of all these data sets are summarized in Table 6.19.

Criterion Lenses Non-lenses

assessable 0 µeff ≥ 1.6 & nim > 0 & npix > 20 µeff < 1.0 or nsources = 0

assessable 1 µeff ≥ 1.6 & nim > 0 & npix > 20 the rest except those with 1 < µeff < 1.6

20-pixel µeff ≥ 4.0 & nim > 0 & npix > 20 µeff < 1.0 or nsources = 0

50-pixel µeff ≥ 4.0 & nim > 0 & npix > 50 µeff < 1.0 or nsources = 0

100-pixel µeff ≥ 4.0 & nim > 0 & npix > 100 µeff < 1.0 or nsources = 0

200-pixel µeff ≥ 4.0 & nim > 0 & npix > 200 µeff < 1.0 or nsources = 0

300-pixel µeff ≥ 4.0 & nim > 0 & npix > 300 µeff < 1.0 or nsources = 0

350-pixel µeff ≥ 4.0 & nim > 0 & npix > 350 µeff < 1.0 or nsources = 0

Table 6.18: Criteria chosen to define the lenses in the multi-band Euclid-like data sets. The
criteria from ‘20-pixel’ to ‘350-pixel’ include also the requirement of having a sbcontrast <
10, in order to avoid a few extreme examples.



Using convolutional neural networks to identify strong lenses 201

data set Criterion Description Lenses Non-lenses

Training 20-pixel 15,771 images (66×66) in J, Y, H and VIS bands 8375 7396
Training 50-pixel 14,450 images (66×66) in J, Y, H and VIS bands 7054 7396
Training 100-pixel 12,840 images (66×66) in J, Y, H and VIS bands 5444 7396
Training 200-pixel 10,868 images (66×66) in J, Y, H and VIS bands 3472 7396
Training 300-pixel 9,802 images (66×66) in J, Y, H and VIS bands 2406 7396
Training 350-pixel 9,441 images (66×66) in J, Y, H and VIS bands 2045 7396

Test assessable 0 35,830 images (66×66) in J, Y, H and VIS bands 30,830 5000
Test 20-pixel 10,000 images (66×66) in J, Y, H and VIS bands 5000 5000
Test 50-pixel 9,183 images (66×66) in J, Y, H and VIS bands 4183 5000
Test 100-pixel 8,235 images (66×66) in J, Y, H and VIS bands 3235 5000
Test 200-pixel 7,026 images (66×66) in J, Y, H and VIS bands 2026 5000
Test 300-pixel 6,410 images (66×66) in J, Y, H and VIS bands 1410 5000
Test 350-pixel 6,174 images (66×66) in J, Y, H and VIS bands 1174 5000

Challenge assessable 1 88,910 images (66×66) in J, Y, H and VIS bands 49,596 39,314

Table 6.19: Description of the data sets for the multi-band Euclid-like simulations.

The greater realism of the simulations we discussed above also brings a greater variety
of scenarios, resulting more difficult to know by eye what we are seeing, even after checking
the catalog with the properties of the candidates. Some examples of the candidates within
these simulations are shown in Fig 6.26. In these images we can see evident lenses with
high µeff (Fig. 6.26a), clear lenses with lower µeff (Figures 6.26b to 6.26d), unclear spiral-
like candidates with really high µeff (Fig. 6.26e), off center lenses (Fig. 6.26f), high-µeff
candidates with zero images of the source (Figures 6.26g to 6.26i), and low-µeff candidates
with many images of the source (Figures 6.26j to 6.26l). These cases with many images
but low µeff can be due to lensing by a galaxy in a cluster. Some of the images might be
outside the field of view shown in the cutout, and since µeff is calculated over the pixels
in the image, its value is lower than it should. Most of the candidates with zero images,
but high effective magnification, are probably cases where the source was too dim, despite
µeff , to be above the threshold. Other interesting examples, like that in Fig 6.26e with
only 1 image of the source but µeff = 44.74, can be caused by the merging of several
images into one.
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(a) ID = 21
(µeff = 17.94, nim = 2)

(b) ID = 21886
(µeff = 5.23, nim = 3)

(c) ID = 79
(µeff = 3.01, nim = 2)

(d) ID = 95
(µeff = 3.17, nim = 1)

(e) ID = 847
(µeff = 44.74, nim = 1)

(f) ID = 89467
(µeff = 13.98, nim = 1)

(g) ID = 22275
(µeff = 13.45, nim = 0)

(h) ID = 37369
(µeff = 14.40, nim = 0)

(i) ID = 88041
(µeff = 19.02, nim = 0)

(j) ID = 38
(µeff = 0.46, nim = 4)

(k) ID = 312
(µeff = 1.45, nim = 4)

(l) ID = 92666
(µeff = 1.95, nim = 7)

Figure 6.26: Some examples in the visible band of the multi-band Euclid-like data.
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6.3.2 Results for multi-band Euclid-like data

We have put our network through six learning processes using the training data sets de-
termined in Table 6.19. 10% of the examples in every training data set were used for
validation. Data from every example were normalized to the maximum value in each
band prior to be input to the network. And the network architecture used is the same as
described in Sec. 5.3, with the exception that input data are now four-band. The early-
stopping tool is again used here. The 20-pixel and 50-pixel models were achieved after
training the network over ∼ 60 epochs, while the rest of models required ∼ 40 epochs. The
number of trainable parameters of the network per each layer for all the trainings carried
out are shown in Table 6.20.

Layer Number of weights

1st convolutional layer 4,640
2nd convolutional layer 51,264
3rd convolutional layer 32,896
4th convolutional layer 147,584
1st fully connected layer 2,097,216
2nd fully connected layer 65

Full network 2,333,665

Table 6.20: Number of weights of the CNN trained with multi-band Euclid-like simulations.

In first place, we applied each model derived with the network to the corresponding
test data set, built following the same criteria as the ones used in the training data sets.
This is, the model trained with the 20-pixel training data set was applied to the 20-pixel
test data set, and so on. In this way, we can check out the capacity of the different models
to identify lenses defined following the same rules as those used to train the models. The
resulting probability distributions are shown in Fig. 6.27. As can be seen in them, the
more aggressive is the criterion requested to define the lenses, the better is the separation
achieved between both classes. However, the ability of the models to classify the non-lens
class worsens more than for the lens class when we go down to the 50-pixel and 20-pixel
criteria. According to all probability distributions, we can easily extract a pure enough
sample of lenses by demanding a high cut in the probability threshold. The confusion
matrices from Table 6.21 show how the TPR is kept above 90% for the three stricter
models. Then it starts going down until it reaches its minimum value for the 20-pixel
model (TPR = 44.5%). While the accuracy decreases as the criteria to define the lenses
are softer, the precision increases until it reaches its maximum value for the 50-pixel model
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(Pre = 87.9%). The ROC curves in Fig. 6.28 show clearly how the ability of the models
in distinguishing between classes gets better as the criteria to define the lenses are more
stringent. As these curves demonstrate, the 350-pixel model is the best classifier between
lenses and non-lenses. Nevertheless, in this occassion models are compared by calculating
the maximum value of Fβ reached for any Pth. A value of β = 0.03 was assummed so,
according to Eq. (5.16), those models with the least contaminated lens classifications are
expected to score higher Fβ values. The curves of Fβ as a function of the probability
threshold for all the models considered are depicted in Fig. 6.29. The maximum value of
Fβ was calculated for every model, and we inferred that the best model is that trained
with the 50-pixel criterion (max Fβ = 0.9907). This is consistent with the information we
already had, since the 50-pixel model supplies us with the most precise sample of lenses.

In second place, we have applied all the models derived with the network to the test
data set built with the ‘assessable 0’ criteria, in which non-lenses are defined as those
examples with µeff < 1.0 or no sources added. Given that all models are being tested
on the same data set with a criterion almost identical to the ‘assessable 1’, the results
achieved this time can give us a more accurate idea of the perfomance our models will have
over the challenge data set. In the probability distributions from Fig. 6.30, one can see
that the 350-pixel model houses the largest number of lenses missclassified as non-lenses
in the 0-valued bin, and the lower amount of true lenses correctly classified as lenses in the
1-valued bin. It is also the model that achieves the best classification of the non-lenses,
scoring almost all of them with the lowest probabilities. As we consider models trained
with looser criteria to define the lenses, this scenario evolves auspiciously for the lenses.
The wrongly classified lenses tend to move to the right, emptying the 0-valued bin and
increasing their number in the 1-valued bin. However, the non-lenses suffer the opposite
effect, ceasing to be so well classified as they were with the stricter models. This behavior
is also reflected in the confusion matrices from Table 6.22. Unlike what happened when we
applied the models to the test data sets built with the same criteria as those used to train
the models, the TPR now increases from 20.0%, in the strictest model, to 42.5%, in the
softer model. The same happens to the accuracy, which rises from 30.5%„ for the 350-pixel
model, to 48.2%, for the 20-pixel model. And here the precision remains about constant,
between ∼ 94% and ∼ 96% for all models, achieving its highest value for the 50-pixel model
(96.4%). Looking at it all, although the 20-pixel model accomplishes the greatest accuracy
and TPR, the 50-pixel model is the more precise, getting to reduce by half, from 16.3%
to 8.0%, the amount of false positive examples of the former. This evidence supports the
fact that the 50-pixel model not only is once again the best model, attending to the Fβ
score (see Fig. 6.32), but it has also managed to establish as the best model according to
the ROC curves (see Fig. 6.31).
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In the end, we have applied all the models to the challenge data set, in which, in
contradistinction to the previous test data set, all those candidates that do not meet
the requirements to be lenses are considered non-lenses. Thus, the amount of non-lenses
increases meaningly. The behavior of the models that we observed with the previous data
set reappears here. Therefore, it was a helpful test in order to forecast the performance
of our models, and to decide which one would yield better results in the challenge. The
probability distributions are shown in Fig. 6.33, and the confusion matrices can be read in
Table 6.23. According as we lower the level of demand to define the lenses, the classification
of lenses improves but that of non-lenses gets worse. We notice an increase of the TPR
from 22.5% to 44.5%, and the accuracy moves up from 54.7% to 61.0%. The precision
remains steady, between ∼ 83% and ∼ 86%, for all models except the 20-pixel model, in
which it goes down to 75.5%. The 50-pixel model achieves the best accuracy, and the
second largest values for the precision and TPR, when taking Pth = 0.5. In Table 6.24 we
see that it does reach greater precisions than the rest of the models, when taking higher
cuts for the probability scores: 92.6% with Pth = 0.7, and 97.6% with Pth = 0.9. Finally,
as it follows from Figures 6.34 and 6.35, the 50-pixel model is the one that exhibits a better
overall performance in distinguishing between lenses and non-lenses (AUC = 0.700), and
provides a purer sample of lenses (maximum Fβ = 0.9859). We show in Fig. 6.36 the
evolution of the precision, from all the models considered, as a function of some of the
characteristics of the lenses, such as µeff , npix, the redshifts of source and lens, or the
mass of the main lens in the simulation. In this plots we can see that the 50-pixel model
outperforms the rest of models, except for lensing systems with sources beyond z ≈ 5.5.

The 50-pixel model accomplishes 8837 true positives, i.e., true lenses identified, with
Pth > 0.9, and 3147 true positives with Pth = 1.0. We show in Fig. 6.37 a random sample
of 35 true positive examples with Pth = 1.0. As it can be easily seen, all of them are evident
lenses with multiple arcs and/or ring-shaped images. However, this model also presents
220 false positives, i.e., non-lenses wrongly identified as lenses, with Pth > 0.9. In Fig. 6.38
we show a random sample of 35 false positive examples with Pth > 0.99. Among them
we can see, for instance, a significant amount of spiral-like candidates, but also 12 lenses
recognizable by eye. These are: 9361, 24322, 27162, 32049, 32429, 43513, 54910, 58551,
76698, 79016, 89898, and 99425. Other 3 examples (29270, 40512, and 64317) could also
be lenses, but we are less confident about them. The fact that a third part of the examples,
in this random sample of false positives, are evident lenses tells us that our models are
capable of identifying lenses below the criteria defined in the challenge to decide whether
examples are or not lenses. These are good news, since in blind searches for lenses in large-
scale surveys we do not have this information, and all the positive identifications must be
examined.
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Figure 6.27: Probability distributions obtained with the models derived using the multi-
band Euclid-like training data sets defined in Table 6.19, when applied to test samples
built following the same criteria as the training ones to define the lenses. Thus, Fig. 6.27a
shows the results of applying a model trained with the 350-pixel training data set to the
350-pixel test data set. The rest of plots are read the same way. Blue bins represent those
examples in the test sample that are lenses while the red bins represent the non-lenses.
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Predicted
Non-lens Lens

T
ru
e Non-lens 4760 (95.2%) 240 (4.8%)

Lens 105 (8.9%) 1069 (91.1%)

(a) 350-pixel (Acc = 94.4%. Pre = 81.7%).

Predicted
Non-lens Lens

T
ru
e Non-lens 4677 (93.5%) 323 (6.5%)

Lens 104 (7.4%) 1306 (92.6%)

(b) 300-pixel (Acc = 93.3%. Pre = 80.2%).

Predicted
Non-lens Lens

T
ru
e Non-lens 4612 (92.2%) 388 (7.8%)

Lens 177 (8.7%) 1849 (91.3%)

(c) 200-pixel (Acc = 92.0%. Pre = 82.7%).

Predicted
Non-lens Lens

T
ru
e Non-lens 4613 (92.3%) 387 (7.7%)

Lens 764 (23.6%) 2471 (76.4%)

(d) 100-pixel (Acc = 86.0%. Pre = 86.5%).

Predicted
Non-lens Lens

T
ru
e Non-lens 4598 (92.0%) 402 (8.0%)

Lens 1263 (30.2%) 2920 (69.8%)

(e) 50-pixel (Acc = 81.9%. Pre = 87.9%).

Predicted
Non-lens Lens

T
ru
e Non-lens 4187 (81.8%) 813 (18.2%)

Lens 1571 (55.5%) 3429 (44.5%)

(f) 20-pixel (Acc = 76.2%. Pre = 80.8%).

Table 6.21: Confusion matrices obtained with the models derived using the multi-band
Euclid-like training data sets defined in Table 6.19, when applied to test samples built
following the same criteria as the training ones to define the lenses. Thus, Table 6.21a
shows the results of applying a model trained with the 350-pixel training data set to the
350-pixel test data set. The rest of matrices are read the same way. We chose Pthr = 0.5 as
the reference probability threshold to decide whether or not an example is predicted as a
lens. The accuracy (Acc from Eq. 5.14) and precision (Pre from Eq. 5.15) of the different
models are also calculated based on this threshold.
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Figure 6.28: ROC curves of models derived using the multi-band Euclid-like training data
sets defined in Table 6.19, when applied to test samples built following the same criteria
as the training ones to define the lenses. Thus, for example, the red line corresponds to a
model trained with the 100-pixel training data set and applied to the 100-pixel test data
set. The rest of curves are read the same way.
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Figure 6.29: Fβ curves, as a function of the probability threshold, of models derived using
the multi-band Euclid-like training data sets defined in Table 6.19, when applied to test
samples built following the same criteria as the training ones to define the lenses. Thus, for
example, the red line corresponds to a model trained with the 100-pixel training data set
and applied to the 100-pixel test data set. The rest of curves are read the same way. Fβ
values were calculated using Eq. (5.16) assumming β = 0.03. For each model the maximum
Fβ reached for any Pthr is estimated.
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Figure 6.30: Probability distributions obtained with the models derived using the multi-
band Euclid-like training data sets defined in Table 6.19, when applied to test samples
built following the ‘assessable 0’ criteria to define the lenses. Thus, Fig. 6.30a shows the
results of applying a model trained with the 350-pixel training data set to the ‘assessable 0’
test data set. The rest of plots are read the same way. Blue bins represent those examples
in the test sample that are lenses while the red bins represent the non-lenses.
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Predicted
Non-lens Lens

T
ru
e Non-lens 4760 (95.2%) 240 (4.8%)

Lens 24661 (80.0%) 6169 (20.0%)

(a) 350-pixel (Acc = 30.5%. Pre = 96.3%).

Predicted
Non-lens Lens

T
ru
e Non-lens 4677 (93.5%) 323 (6.5%)

Lens 23422 (76.0%) 7408 (24.0%)

(b) 300-pixel (Acc = 33.7%. Pre = 95.8%).

Predicted
Non-lens Lens

T
ru
e Non-lens 4612 (92.2%) 388 (7.8%)

Lens 21311 (69.1%) 9519 (30.9%)

(c) 200-pixel (Acc = 39.4%. Pre = 96.1%).

Predicted
Non-lens Lens

T
ru
e Non-lens 4613 (92.3%) 387 (7.7%)

Lens 21427 (69.5%) 9403 (30.5%)

(d) 100-pixel (Acc = 39.1%. Pre = 96.0%).

Predicted
Non-lens Lens

T
ru
e Non-lens 4598 (92.0%) 402 (8.0%)

Lens 20114 (65.2%) 10716 (34.8%)

(e) 50-pixel (Acc = 42.7%. Pre = 96.4%).

Predicted
Non-lens Lens

T
ru
e Non-lens 4187 (83.7%) 813 (16.3%)

Lens 17730 (57.5%) 13100 (42.5%)

(f) 20-pixel (Acc = 48.2%. Pre = 94.2%).

Table 6.22: Confusion matrices obtained with the models derived using the multi-band
Euclid-like training data sets defined in Table 6.19, when applied to test samples built
following the ‘assessable 0’ criteria to define the lenses. Thus, Table 6.22a shows the
results of applying a model trained with the 350-pixel training data set to the ‘assessable
0’ test data set. The rest of matrices are read the same way. We chose Pthr = 0.5 as
the reference probability threshold to decide whether or not an example is predicted as a
lens. The accuracy (Acc from Eq. 5.14) and precision (Pre from Eq. 5.15) of the different
models are also calculated based on this threshold.
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Figure 6.31: ROC curves of models derived using the multi-band Euclid-like training data
sets defined in Table 6.19, when applied to test samples built following the ‘assessable 0’
criteria to define the lenses. Thus, for example, the red line corresponds to a model trained
with the 100-pixel training data set and applied to the ‘assessable 0’ test data set. The
rest of curves are read the same way.
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Figure 6.32: Fβ curves, as a function of the probability threshold, of models derived using
the multi-band Euclid-like training data sets defined in Table 6.19, when applied to test
samples built following the ‘assessable 0’ criteria to define the lenses. Thus, for example,
the red line corresponds to a model trained with the 100-pixel training data set and applied
to the ‘assessable 0’ test data set. The rest of curves are read the same way. Fβ values
were calculated using Eq. (5.16) assumming β = 0.03. For each model the maximum Fβ
reached for any Pthr is estimated.
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Figure 6.33: Probability distributions obtained with the models derived using the multi-
band Euclid-like training data sets defined in Table 6.19, when applied to the challenge
data set. Blue bins represent those examples in the test sample that are lenses while the
red bins represent the non-lenses.
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Predicted
Non-lens Lens

T
ru
e Non-lens 37475 (95.3%) 1839 (4.7%)

Lens 38446 (77.5%) 11150 (22.5%)

(a) 350-pixel (Acc = 54.7%. Pre = 85.8%).

Predicted
Non-lens Lens

T
ru
e Non-lens 36644 (93.2%) 2670 (6.8%)

Lens 35918 (72.4%) 13678 (27.6%)

(b) 300-pixel (Acc = 56.6%. Pre = 83.7%).

Predicted
Non-lens Lens

T
ru
e Non-lens 35981 (91.5%) 3333 (8.5%)

Lens 33025 (66.6%) 16571 (33.4%)

(c) 200-pixel (Acc = 59.1%. Pre = 83.3%).

Predicted
Non-lens Lens

T
ru
e Non-lens 35911 (91.3%) 3403 (8.7%)

Lens 32900 (66.3%) 16696 (33.7%)

(d) 100-pixel (Acc = 59.2%. Pre = 83.1%).

Predicted
Non-lens Lens

T
ru
e Non-lens 35960 (91.5%) 3354 (8.5%)

Lens 31158 (62.8%) 18438 (37.2%)

(e) 50-pixel (Acc = 61.2%. Pre = 84.6%).

Predicted
Non-lens Lens

T
ru
e Non-lens 32156 (82.1%) 7158 (17.9%)

Lens 27514 (55.5%) 22082 (44.5%)

(f) 20-pixel (Acc = 61.0%. Pre = 75.5%).

Table 6.23: Confusion matrices obtained with the models derived using the multi-band
Euclid-like training data sets defined in Table 6.19, when applied to the challenge data set.
We chose Pthr = 0.5 as the reference probability threshold to decide whether or not an
example is predicted as a lens. The accuracy (Acc from Eq. 5.14) and precision (Pre from
Eq. 5.15) of the different models are also calculated based on this threshold.
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Figure 6.34: ROC curves of models derived using the multi-band Euclid-like training data
sets defined in Table 6.19, when applied to the challenge data set.
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Figure 6.35: Fβ curves, as a function of the probability threshold, of models derived using
the multi-band Euclid-like training data sets defined in Table 6.19, when applied to the
challenge data set. Fβ values were calculated using Eq. (5.16) assumming β = 0.03. For
each model the maximum Fβ reached for any Pthr is estimated.
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Test data set Pthr TPR Acc Pre

0.5 22.5% 54.7% 85.8%
model trained with 350-pixel training data set 0.7 18.0% 53.3% 91.0%

0.9 14.2% 51.7% 94.8%
0.5 27.6% 56.6% 83.7%

model trained with 300-pixel training data set 0.7 20.8% 54.6% 90.7%
0.9 14.6% 52.1% 96.7%
0.5 33.4% 59.1% 83.3%

model trained with 200-pixel training data set 0.7 26.1% 57.0% 89.4%
0.9 19.0% 54.3% 94.9%
0.5 33.7% 59.2% 83.1%

model trained with 100-pixel training data set 0.7 25.4% 56.8% 89.9%
0.9 17.4% 53.5% 95.9%
0.5 37.2% 61.2% 84.6%

model trained with 50-pixel training data set 0.7 26.0% 57.6% 92.6%
0.9 17.8% 53.9% 97.6%
0.5 44.5% 61.0% 75.5%

model trained with 20-pixel training data set 0.7 30.9% 58.5% 85.4%
0.9 20.9% 55.1% 93.9%

Table 6.24: Recall (TPR), accuracy (Acc) and precision (Pre) values of all the models
applied to multi-band Euclid-like challenge data set considering three different Pthr cuts.
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Figure 6.36: Precision as a function of several parameters of the multi-band Euclid-like
simulated data, for all the models considered. These parameters are the effective magnifi-
cation of the source (Fig. 6.36a), the number of pixels in the lensed source image abova 1σ
(Fig. 6.36b), the redshift of the lens (Fig. 6.36c), the redshift of the source (Fig. 6.36d),
the halo mass of the main lens (Fig. 6.36e), and the difference in color between lens and
source (Fig. 6.36f).
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Figure 6.37: Images in the visible band of some high scoring true positive examples from
the multi-band Euclid-like challenge data set, i.e., lenses predicted correctly as lenses by
our 50-pixel model with Pth = 1.0.



Using convolutional neural networks to identify strong lenses 221

9361 11462 17611 24322 27162

31841 32049 32429 40512

42331 42446 42844 43513 54283

54910

55155

58274 58551 64317

65873 71979

76698

79016

88900 89898 90684

94042 94643 99425

29270

84658

85746 92904

95480 99534

Figure 6.38: Images in the visible band of some high scoring false positive examples from
the multi-band Euclid-like challenge data set, i.e., non-lenses predicted as lenses by our
50-pixel model with Pth > 0.99.
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6.4 Conclusions

In this chapter the performance in finding strong gravitational lenses of several models
based on the same convolutional neural network is presented. We considered, both for
training and testing, data mimicking or proceeding from different astronomical surveys.
In first place, several trials using KiDS-like simulated data were carried out in order to
lay the ground. We found that a normalization of the input data for every example to
the maximum value in each band considered, reducing the amount of dropout used and
early-stopping when the performance on a validation sample stops improving yields the
best seen results. In the specific case of KiDS-like data, random artificial masking appears
for some pixels in 13% of the examples, which we think were included to mimic noisy data
or a bad response from the detector. Since we deem these masks are excessive, hidding in
some cases completely the lens or non-lens features in the images, and we achieve better
results without them, we decided to remove these examples from the training and test data
sets.

The standard figure of merit used to compare the performance of classification models
is the area under the ROC curve (AUC). The best model trained using KiDS-like data
achieves an AUC = 0.955 when tested on the full test data set, and an AUC = 0.982
when the examples containing artificial masks are removed (see Fig. 6.16). A 15% of
the examples in these test data sets used actual images taken from a preliminary sample
of bright galaxies observed with the KiDS survey. When our model is applied to these
concrete examples, the AUC falls to 0.832, but with a model trained and tested using
exclusively these examples we achieve an AUC = 0.888 (see Fig. 6.17). This is a clear
example of the efficiency differences that may arise when models trained using simulations
are tested on real data. And it is thus important that the simulations are as realistic as
possible. Our best model was later tested on images from a sample of SDSS and DES
strong lens candidates, achieving precisions of 65% and 83%, respectively. Images of some
of these candidates, together with the probabilities given by our model, are shown in
Figures 6.18, 6.19, and 6.20. It has also been applied to the 40 potential lens candidates
found in Sec. 2.7, among which 7 are predicted as lenses, and to a set of potential lenses
identified thanks to the Galaxy Zoo 2 project, an subsequently checked by eye. 86% of
these last candidates were predicted to be lenses by our model (see Fig. 6.21).

On the other hand, the best model trained with single-band Euclid-like data, which was
obtained by using slightly stricter criteria to define the lenses than those used to evaluate
the model on the test data set, delivers an AUC = 0.921 (see Fig. 6.25). As it can be
seen, despite the fact that Euclid-like images have higher S/N than the KiDS-like images,
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the AUC results are much better for the latter. After training a model only with r-band
images from the KiDS-like data, we can confirm that providing to the network further
information, in the form of additional bands, improves its performance. Therefore, the
reason why the CNN performs more poorly with these space-based data is that they own
merely one band.

Finally, we trained and tested the CNN using more realistic simulated data, that mimic
the four bands from Euclid (VIS, J, H, and Y). On this occasion we aimed to accomplish
a model with a high precision, since the evaluation method used penalized the amount of
false positives. Several models were considered, which were trained with more aggresive
definitions for the lenses than that used to evaluate the results. The best model supplied
us with a Fβ = 0.9859 (see Fig. 6.35) and an AUC = 0.700 (see Fig. 6.34). We succeed in
obtaining a pure enough classification of lenses in the challenge, but at the cost of losing
more lenses than were detected (see Tabla 6.24). After checking by eye some high scoring
false positives, we found that ≈33% are true lenses recognizable by eye, but do not meet the
evaluation requirements of the challenge. These are encouraging news, since our aggressive
models are able to recognize lens patterns in lens examples less clear than those used in
the training.

We intend to further explore CNN algorithms, moving on also to the analysis of the
properties of the strong lensing events detected. Our long-term goal is to develop auto-
mated lens finder models as accurate as possible which are able to extract features difficult
to recognize by the human eye. Another important point is ensuring that these models do
not depend on the instrument and survey characteristics used to obtain the images. We
have seen here that it is possible to apply models trained with KiDS-like data to Euclid-
like, SDSS and DES images achieving good results. The models derived need to be robust
against small changes in the data sets. We will do this by exploring all the possibilities of
CNNs and combining the already detected lenses from different surveys with mock images
of strong lenses generated under different conditions.





Chapter 7

Using convolutional neural networks
to identify lensed quasars in J-PAS

The morphology of galaxies is a true reflection of the properties of the stars they host
(Blanton and Moustakas, 2009; Pozzetti et al., 2010). In the local Universe, elliptical
galaxies show larger masses and higher velocity dispersions than spiral galaxies. While
the existing stars inside elliptical galaxies tend to be older, giving off more red light than
younger stars, spiral galaxies are, due to its higher gas and dust content, hotbeds of star
formation. In consequence, the emission from spiral galaxies is brighter and bluer. For
this reason, elliptical galaxies can be described as red passive galaxies, and spiral galaxies
as blue and active. As more lenses are discovered in new surveys, we are able to better
constrain the populations of lenses and sources. The knowledge gathered so far indicates
that elliptical galaxies do completely dominate the optical depth for strong lensing by
individual galaxies (Turner et al., 1984; Kochanek, 1993).

Normal galaxies are those that contain stars that are generally similar to the stars in
our own galaxy, and whose radiation emission is mainly due to their stellar content, dust,
and interstellar gas. However, there are galaxies that show additional radiation emission
in their SED, not produced by the usual galaxy components. It is thought that in all these
galaxies, an enormous amount of energy is released in a tiny nuclear region, so that the
origin of this excess radiation is attributed to the existence of an active galactic nucleus
(AGN), which is why they are called active galaxies. Therefore, an AGN is a compact region
at the center of a galaxy that has a much higher than usual luminosity over some portion
of the electromagnetic spectrum. This surplus non-stellar emission has been observed in
gamma rays, X-rays, ultra-violet, optical, infrared, microwave and radio. A galaxy with
an active nucleus can be considered as the sum of a normal galaxy plus an AGN.
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The machinery that powers an AGN is the presence of a supermassive central black
hole (SMBH), accreting matter earned from the host galaxy, and converting gravitational
energy into electromagnetic radiation. This material forms an accretion disk around the
black hole, which is heated by viscosity to temperatures of ∼ 106 K, emitting highly
energetic radiation, mainly X-ray and ultraviolet. In addition, internal jets can sometimes
emerge perpendicular to the accretion disk, extending beyond the limits of the galaxy itself
and ending in radio lobes. This central machinery is surrounded by relatively dense gas
clouds that move at very high speeds (broad line region, or BLR). These clouds, in turn,
are surrounded by a toroidal structure of gas and dust, much larger than the accretion
disk, at moderate temperatures (from ∼ 100 K to ∼ 1500 K). This toroid is indirectly
heated by the AGN radiation, giving rise to a significant emission in the infrared. In turn,
it is also surrounded by low-density gas clouds that move at slower speeds than the internal
clouds (narrow line region, or NLR).

The observed characteristics of an AGN depend on several properties such as the ori-
entation of the accretion disk regarding our line of sight, the mass of the central black hole
or the rate of gas accretion. Based on their observed characteristics, several subclasses of
AGNs have been identified, being the quasars one of the most powerful ones. The discov-
ery of quasars (Schmidt, 1963) revealed a class of sources ideal for studying the effects of
gravitational lensing. Quasars (from QSOs ≡ “Quasi-Stellar Objects”) are distant, and so
the probability that they are lensed by foreground galaxies is sufficiently large. Yet, they
are intrinsically bright enough to be detected even at cosmological distances. The most
distant quasar currently known is at z = 7.642 (Wang et al., 2021). Their optical emission
region is very compact, much smaller than the typical scales of galaxy lenses. The max-
imum magnification is inversely proportional to the square root of the size of the object
being lensed, so smaller objects can be magnified more than larger objects. Therefore, the
resulting magnifications when quasars are lensed can be very large, with well separated
and easily detected multiple imaging. Proof of this is the fact that the first lens system
ever detected consisted of a two-image lensed quasar Walsh et al. (1979).

Nearly a million of quasars have been found to date, most detected by the Sloan
Digital Sky Survey (Lyke et al., 2020). And its amount is expected to increase with the
observations to come from the current and future large-scale surveys, which will confirm
high-confidence candidates and will bring new detections. A significant number of them
will be lensed, and so it is necessary to identify them in an automatic way, that does not
require a one-by-one inspection. For instance, the Rubin Observatory/LSST is expected
to observe ∼ 104 strongly lensed quasars (Oguri and Marshall, 2010; Verma et al., 2019),
or the Euclid survey has a forecast of detecting ∼ 103 lensed quasars (Refregier et al.,
2010). J-PAS will observe over half a million quasars, among which we expect hundreds
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Figure 7.1: Illustration of the light from a distant quasar being disturbed by a massive
foreground galaxy. This can result in quadruple images when the background quasar and
the foreground galaxy are almost perfectly aligned. Courtesy NASA/JPL-Caltech.

of them to be strongly lensed. Aiming to detect these lensed QSOs in future J-PAS data
(Bonoli et al., 2020), we train in this chapter the CNN described in Sec. 5.3 on J-PAS
based simulated data.

7.1 The J-PAS survey

The Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS) is an
ongoing survey that will cover at least 8000 square degrees of the northern hemisphere ex-
tragalactic sky in approximately 5 years, using an innovative system of 54 optical narrow
band filters. The data set resulting from this survey will have a unique legacy value, al-
lowing a broad collection of astrophysical studies. The infrastructure required to carry out
this large sky photometric survey is placed at the Observatorio Astrofísico de Javalam-
bre (OAJ) (see Cenarro et al., 2014). The observatory consists of two telescopes, the
Javalambre Survey Telescope (Cenarro et al., 2018, JST/T250) and the Javalambre Aux-
iliary Survey Telescope (JAST/T80), both located at the Pico del Buitre of the Sierra
de Javalambre, Teruel, Spain. Since 2014 the OAJ is a Spanish Singular Scientific and
Technical Infrastructure (known with the Spanish acronym ICTS for Infraestructura Cien-
tífica y Técnica Singular). On the other hand, the exploitation and management of the
data produced at the OAJ are liability of the Centro de Estudios de Física del Cosmos de
Aragón.
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J-PAS will be conducted from the JST/T250, which is an unprecedented Ritchey-
Chrétien-like, alt-azimuthal, large-étendue telescope, with 2.55 meters of aperture, and
a 3 deg diameter field-of-view (FoV). Its effective collecting area is 3.75 m2, yielding an
étendue of 26.5 m2 deg2. However, before the arrival of its main scientific instrument,
the Javalambre Panoramic Camera (JPCam), the JST has been equipped with an interim
camera, the JPAS-Pathfinder, used to carry out the first scientific operations and test the
telescope and narrow filter system performances. This camera is composed of a 9.2k×9.2k
CCD, with a 0.3 deg2 FoV and same pixel size as JPCam, 0.2267 arcsec pixel−1. The first
test accomplished with the JPAS-Pathfinder consisted of probing the AEGIS field (along
the Extended Groth Strip). The mini-JPAS survey observed 1 deg2 on the AEGIS field with
the 54 J-PAS narrow bands + 2 medium bands + ugri bands. All the details concerning
the miniJPAS observations and the data set can be found in Bonoli et al. (2020), while the
miniJPAS data itself and associated value added catalogs are publicly accessible1.

The truly novel and distinctive feature of J-PAS lies on its photometric filter system:
54 narrow band filters ranging from 3780 Å to 9100 Å, and two additional broader filters
extending to the UV and the near-infrared. The main characteristics of the J-PAS filter set
are listed in Table 7.1. The narrow band filters are spaced by about 100 Å, except for the
J0378 filter, providing a continuous spectral coverage through the entire optical range. The
two additional filters are one medium band covering the UV border (uJAVA), and a broad
filter beyond 9100 Å, approaching the near-infrared (J1007). This large number of filters
will allow resolving spectral features such as the Lyman-α line of high redshift quasars, and
other strong emission and absorption lines. Fig. 7.2 shows the transmission curves of these
56 filters, after taking into account the atmospheric absorption, the CCD efficiency and
the camera optics. The miniJPAS field has also been observed with SDSS-like broad band
filters: u, g, r, and i. The average FWHM values of the point spread functions (PSFs) per
tile and per filter are shown in Fig. 7.3.

The J-PAS filter system definition was determined to pursue three main scientific goals.
First, to measure photometric redshifts for galaxies up to z ∼ 1 with a high precision of
∼ 0.3%. Second, to study stellar populations in nearby galaxies. And finally, to resolve
broad spectral features of objects such as supernovae and AGNs. The size of the JPAS-
Pathfinder camera FoV allowed to cover the AEGIS field almost entirely with only 4
pointings, being the observations carried out with the instrument rotated ∼ 45◦ with
respect to the celestial North. The four tiles composing the miniJPAS footprint are listed in
Table 7.2 and are shown in Fig. 7.4, along with the observational fields of other overlapping
survey projects.

1http://archive.cefca.es/catalogues/minijpas-pdr201912

http://archive.cefca.es/catalogues/minijpas-pdr201912
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Filter λ (Å) δλ (Å)

uJAVA 3497 509
J0378 3782 157
J0390 3904 150
J0400 3996 148
J0410 4110 144
J0420 4203 147
J0430 4303 148
J0440 4403 152
J0450 4503 150
J0460 4603 148
J0470 4701 148
J0480 4799 142
J0490 4902 154
J0500 5002 152
J0510 5097 148
J0520 5202 150
J0530 5296 150
J0540 5389 152
J0550 5498 149
J0560 5596 150
J0570 5701 150
J0580 5803 148
J0590 5917 152
J0600 6010 150
J0610 6107 150
J0620 6206 148
J0630 6309 150
J0640 6408 150

Filter λ (Å) δλ (Å)

J0650 6506 146
J0660 6607 151
J0670 6710 146
J0680 6812 152
J0690 6912 148
J0700 7007 148
J0710 7119 148
J0720 7207 146
J0730 7307 150
J0740 7414 148
J0750 7502 142
J0760 7602 144
J0770 7719 146
J0780 7811 145
J0790 7907 142
J0800 8009 140
J0810 8124 144
J0820 8226 143
J0830 8329 148
J0840 8429 148
J0850 8523 146
J0860 8620 148
J0870 8716 146
J0880 8810 146
J0890 8912 150
J0900 9000 154
J0910 9107 152
J1007 9316 635

Table 7.1: J-PAS photometric filter system main characteristics.
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Figure 7.2: Transmission curves of the J-PAS filters. Taken from Bonoli et al. (2020).

Figure 7.3: PSF FWHM values per tile and per filter. The colored symbols represent
the average values for each filter, while the gray ones are the values for each one of the
pointings. The larger symbols indicate the FWHM of the broad bands (uJAVA, uJPAS,
gSDSS, rSDSS, iSDSS, J1007). Taken from Bonoli et al. (2020).
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Tile RA J2000 (deg) Dec J2000 (deg)

miniJPAS-AEGIS1 214.2825 52.5143
miniJPAS-AEGIS2 214.8285 52.8487
miniJPAS-AEGIS3 215.3879 53.1832
miniJPAS-AEGIS4 213.7417 52.1770

Table 7.2: Central coordinates of each of the tiles composing the miniJPAS footprint.

Figure 7.4: Left : Footprint of the miniJPAS survey, showing also its overlap with other
surveys. The tiles that compose it are depicted as red squares. Their central coordinates
can be seen in Table 7.2. Right : g-r-i color image of the miniJPAS footprint. zooming
over three selected areas. Taken from Bonoli et al. (2020).

7.2 Mini-JPAS data

In this chapter, we aim for simulating strongly lensed quasars in J-PAS, so as to be used
for training the CNN architecture explained in Sec. 5.3. Whereas the lensed quasars are
based on a mock catalog, real red galaxies observed with J-PAS are assumed as lenses.
The reason for using red galaxies is that, due to their mostly higher surface mass density,
they lead more often to lensing events. The characteristics of the data (real and mock)
used to train the network are told in this section, and the process for creating the lensing
simulations is described in Sec. 7.3.
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7.2.1 Galaxies in the mini-JPAS footprint

We consider a list of 4139 galaxies, with redshifts between 0.15 and 0.5, found in the mini-
JPAS footprint (Bonoli et al., 2020). Their corrected spectra were fitted by the SED fitting
codes BaySeAGal (de Amorim et al. in prep) and MUFFIT (Díaz-García et al., 2015).
BaySEAGal is a Bayesian inference code for spectral fitting which uses the data from the
54 narrow-band and 2 wide-band filters in J-PAS, and assumes a τ -delayed star formation
history (SFH). It allows deriving a wide variety of intrinsic galaxy properties, such as
the stellar mass, the luminosity-weighted age of the stellar population, the metallicity
and stellar extinction. On the other hand, MUlti-Filter FITting (MUFFIT) is a generic
spectral fitting code, based on a error-weighted χ2, optimized to retrieve the main stellar
population parameters of galaxies in photometric multi-filter surveys by assuming two
single stellar populations models. Our estimation of the stellar mass for these galaxies is
the average of the corresponding derivations from both codes. We assume as red galaxies
those identified as such by both codes, attending to their color-magnitude properties, while
the rest will be considered blue galaxies. This yardstick leaves us with 650 red galaxies
and 3489 blue galaxies. We downloaded squared images (16" × 16") of these galaxies
centered at the positions provided by the catalog. Only the red galaxies are used to perform
realistic simulations of the gravitational lenses. However, not all red galaxies selected have
photometric flux measurements in all bands, which is necessary to carry out the lensing
simulations. For this reason, we divide the sample of elliptical galaxies that does have this
information, allocating half (207) for the lensing simulations and the other half (206) to
be non-lensing examples. Red galaxies that lack of photometric information in any of the
bands (237) and non-elliptical galaxies are purposed to be non-lensing examples. Besides,
the size of the sample of non-lensing galaxies is doubled by rotating every galaxy 90◦,
resulting in 7864 examples.

7.2.2 Mock J-PAS based quasars

We use a mock quasars catalog with fluxes simulated based on the J-PAS photometric sys-
tem. These mocks were created by convolving real SDSS spectra, selected from the DR12
quasar catalog (Pâris et al., 2017), with the mini-JPAS photometric passbands, and adding
J-PAS-like noise, in order to achieve the expected S/N for J-PAS. We considered realistic
photometric errors (within an aperture of 3") selected from a catalog of point-like sources
observed with mini-JPAS. The quasar distribution was derived from theoretical predictions
based on the luminosity function (Palanque-Delabrouille et al., 2016) and corresponds to
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an area of approximately 300 deg2. The catalog contains 105,846 quasars. In order to have
a sample of quasars well distributed in magnitudes, four versions of the quasar catalog
were created. Each individual source appears in all versions, but its magnitude is different.
Version 1 (v1) corresponds to the original r-band magnitudes, after shifting the original
SDSS magnitude distribution to fainter values, so that it resembles the distribution ex-
pected for J-PAS. Versions v2, v3 and v5 were derived from v1 by summing, respectively,
one, two and four magnitudes to the r-band values in the reference v1 version.

7.2.3 Quasars and stars in the mini-JPAS footprint

As non-lensing examples, along with the already discussed sample of galaxies, we have
also trained the network with quasars and stars, identified in the mini-JPAS footprint, in
order to get more robust results. Including non-lensed quasars in the training sample is
important since most of the quasars observed with J-PAS will not be lensed. It is also
worth to mention that blue stars are easily mistaken for quasars. We consider a list of
131 quasars and 111 stars with spectroscopic confirmation in the SDSS DR16 Superset
catalog (Lyke et al., 2020). Note that this is a very reduced list due to two reasons. The
Superset catalog contains a small set of sources targeted as quasars for eBOSS, with great
completeness and purity due to visual inspection procedures to correct the automated
classifications and redshifts from the pipeline. In addition, our sample was obtained by
doing a cross-match within 1" with the Superset catalog, in which only miniJPAS sources
with FLAGS = 0, MASKFLAGS = 0 and zQUALITY = 3 were considered. Although there
are fewer objects than we would obtain by doing a cross-match with the SDSS pipeline,
the classification of these objects is more reliable. 36 of the quasars in our sample were
obtained after searching specifically for quasars with r > 22.

7.3 Lensed quasars simulations

Once all data have been detailed, we can proceed to explain the lensing simulations we
carried out. Through this work, we adopt a flat cosmological model with ΩM = 0.3, Λ = 0.7
and h = 70 Kms−1Mpc. We assume that the elliptical galaxies we will use as lenses behave
as softened isothermal ellipsoids. Following this assumption, the mass distribution of the
galaxies is modeled using Eq. (3.41), and making the variable change shown in Eq. (3.47)
to account for the ellipticity. The stellar mass, redshift, ellipticity, and orientation angle
of each galaxy are directly read from the catalog. In order to augment the number of
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examples, six different lenses are built for every individual galaxy used. This is done by
considering 3 different masses: its estimated value from photometric measurements (m),
double its value (2m), and half its value (1

2m). And 2 rotation angles: its orientation angle
and rotating the galaxy 90◦. Since 207 red galaxies are being used to create the lensing
simulations, we can build up to 1242 (207 × 2 rotations × 3 masses) different lens models.
The deflection angle for these lens models is calculated according to Eq. (3.11).

Quasars are built occupying one single pixel (1 pixel = 0.01 arcsec) in the source plane at
the redshift read from the mock quasar catalog, and they are placed randomly in positions
close to caustics, so that the magnification of the source is above a certain threshold. From
the full mock quasar catalog we are using in the lensing simulations those that fall in the
redshift range 0.8 < z < 2.5 (76,626 quasars), to roughly overlap with the range where the
number of expected quasars is highest (Pâris et al., 2018). The total magnification of the
quasar is estimated as the ratio between the area of the lensed images in the lens plane
and the area of the unlensed quasar, which fills a single pixel, in the source plane. Once
the quasar is lensed, we estimate its new flux in the r band by multiplying its tabulated
flux in this band by the total magnification. As we are using the tabulated fluxes from the
mock quasar catalog, and we do not want the noise to be magnified along with the signal,
instead of multiplying their fluxes at all bands by the total magnification, we replace the
lensed quasar with another mock quasar close enough both in redshift and in the r-band
magnitude. We can do this easily thanks to having created several versions of the quasar
catalog, which contain the same quasars but simulated at different magnitudes.

Not all simulations performed are finally accepted and used for training the network.
If no surrogate quasar is found that meet the conditions to replace the lensed one, the
simulation is rejected. In addition, we demanded the simulations to meet at least one of
the two following requirements in order to be accepted. The lensed quasar and the lens
galaxy have to be either close in the r-band magnitude (rlensed qso − relliptical galaxy < 2.6),
or the lensed quasar must have a threshold magnification of µtotal > 5. The simulations
accepted move on to the following step. The images in all J-PAS filters of the corresponding
galaxy, whose data have been used to model the lens, are either rotated or left as they are
so as to match the orientation of the lens in the simulation. Using observed galaxies allows
us to include real systematics, such as instrumental noise and the PSF of the instrument,
in the simulations. We normalize the total flux of these images so they match the tabulated
fluxes. On the other hand, we convolve the map of the lensed quasar with the corresponding
PSF in each J-PAS channel (see Fig. 7.3), and repixelize the resulting maps so they have
the same pixel size as the J-PAS images. We then normalize the overall fluxes within these
images so they correspond to the fluxes in the catalog. Finally, we add up at each channel
the map of the lensed quasar with the image of the elliptical galaxy. As it is shown in
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Fig. 7.5, every lensed quasar resulted from this process, and the non-lensing examples too,
can be seen as a cube, whose height and width correspond to the side sizes of the cutout
images, and its depth is equal to the number of J-PAS filters considered. Using this cube
as input for the convolutional neural network implies working with a large volume of data.
This would result in a more complex network, i.e., with a higher number of parameters,
and a slower learning process. In order to avoid this issue, we reduce this cube to only two
images (hereafter nicknamed pseudo-spectra, since they mimic observations done with a
narrow slit, with the spectral resolution of the J-PAS filter system) by projecting the data
along the height and width axes for all the depth layers. The dimensions of these resulting
pseudo-spectra correspond to the side sizes of the images in the projected axis and the
number of channels. These pseudo-spectra contain all the relevant information about the
morphological and spectral features of both, the simulated lensed quasars and the non-
lensing examples. Some examples of the lensed quasar simulations at specific wavelengths
can be seen in Fig. 7.6. The corresponding pseudo-spectra for these examples are shown in
Fig. 7.7. On the other hand, some examples of pseudo-spectra for non-lensed quasars and
stars are shown in Fig. 7.8, and examples for blue and red galaxies can be seen in Fig. 7.9.

Figure 7.5: llustration showing the construction of the pseudo-spectra. Taken from a talk
given by a researcher of the Instituto de Astrofísica de Andalucía.
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Figure 7.6: Some examples of the lensed QSOs simulations. Every row represents a different
simulation at a specific wavelength (λ), showing the lensed QSO (left), the lens galaxy
(middle), and the QSO + lens resulting image (right).
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(f) QSO + lens (y-axis)
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(k) QSO + lens (x-axis)
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(j) Lens 2241-11955 (y-axis)
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Figure 7.7: Some pseudo-spectra examples of the lensed QSOs simulations. Every simula-
tion spans two rows, with the x-axis/y-axis pseudo-spectra for the lensed QSO (left), the
lens galaxy (middle), and the QSO + lens image (right) shown in the upper/lower row.
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(m) QSO 272211 (x-axis)
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(q) QSO + lens (x-axis)
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(n) QSO 272211 (y-axis)
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(u) Lens 2243-7843 (x-axis)
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(w) QSO + lens (x-axis)
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Figure 7.7 (cont.)
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(e) QSO 2406-11608 (x-axis)
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(d) QSO 2406-5992 (y-axis)
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(f) QSO 2406-11608 (y-axis)
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(k) star 2243-14817 (x-axis)
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Figure 7.8: Some pseudo-spectra examples of non-lensed QSOs and stars. Every example
spans two vertical boxes, with the x-axis/y-axis pseudo-spectrum above/below.
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(a) 2241-7123 (red, x-axis)

470 nm 570 nm 670 nm 770 nm 870 nm
 (nm)

-6

-4

-2

0

+2

+4

+6

ar
cs

ec

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1e 5

(c) 2406-7091 (red, x-axis)
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(e) 2470-1055 (red, x-axis)
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(b) 2241-7123 (red, y-axis)
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(d) 2406-7091 (red, y-axis)
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(f) 2470-1055 (red, y-axis)
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(g) 2406-4876 (blue, x-axis)
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(i) 2406-12109 (blue, x-axis)
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(k) 2470-12036 (blue, x-axis)
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(h) 2406-4876 (blue, y-axis)
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(j) 2406-12109 (blue, y-axis)
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(l) 2470-12036 (blue, y-axis)

Figure 7.9: Some pseudo-spectra examples of red and blue galaxies. Every example spans
two vertical boxes, with the x-axis pseudo-spectrum above and the y-axis pseudo-spectrum
below. Vertical bands are due to noisier images for those specific filters.
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7.4 Results

We have trained the network using two data sets, whose only difference is that with the
first one we are not showing to the network examples of unlensed QSOs and stars. 10%
of the examples in both training sets were used for validation. Data from every example
were normalized to the maximum value in each pseudo-spectrum before being feed up to
the network. The network architecture used is the same as described in Sec. 5.3, but again
with the exception that input data consist of two channels, namely the pseudo-spectra in
the x and y projections. We use early-stopping, so the learnings with the training data
sets concluded after ∼ 50 epochs. The number of trainable parameters of the network per
each layer for the trainings carried out are shown in Table 7.3. The models derived from
these trainings were applied to the same test data set, which includes unlensed QSOs and
stars. The characteristics of the data sets considered here are summarized in Table 7.4.

As we have said, the models differ just in the fact that one of them has been trained with
QSOs and stars, as non-lensing examples, while the other one has not. The probability
distributions and confusion matrices of these models on the test data set are shown in
Fig. 7.10 and Table 7.5, respectively. The separation achieved between classes is astonishing
good, so it would not be necessary to go beyond the default probability threshold of 0.5 to
get a pure sample of lensed QSOs. Looking in more detail, training with unlensed QSOs
and stars has a significant positive impact, decreasing the amount of false positives from
61 examples (2.9%) to just 9 (0.4%). These 9 examples include 3 blue galaxies, 2 QSOs,
and 3 stars. The list of false positives can be read in Table 7.6, where these 9, common to
both models, are marked with an asterisk. The minor side effect is that the false negatives
increase from 6 (0.3%) to 24 (1.2%). Although the TPR drops, the accuracy and precision
grow with this decision. The ROC curves shown in Fig 7.11 confirm the logical conclusion
that training with a greater variety of examples yields more reliable results.

Layer Number of weights

1st convolutional layer 2,336
2nd convolutional layer 51,264
3rd convolutional layer 32,896
4th convolutional layer 147,584
1st fully connected layer 1,605,696
2nd fully connected layer 65

Full network 1,839,841

Table 7.3: Number of weights per layer of the network trained with J-PAS based data.
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data set Size Composition
7460 lensed QSOs

Training data set 1 13,359 5234 blue galaxies
665 red galaxies
7460 lensed QSOs
5234 blue galaxies

Training data set 2 13,481 665 red galaxies
66 QSOs
56 stars
2000 lensed QSOs
1744 blue galaxies

Test data set 4085 221 red galaxies
65 QSOs
55 stars

Table 7.4: Description of the two J-PAS based training data sets used, and the only test
data set considered.
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(a) QSOs and stars excluded from training.
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(b) QSOs and stars included in training.

Figure 7.10: Probability distributions of the models derived with the CNN using J-PAS
based lensing simulations, when applied to the same test sample. Fig. 7.10a shows the
results of a model trained considering only galaxies as non-lensing examples, while in
Fig. 7.10b the model was trained including also QSOs and stars as non-lensed examples.
Blue bins repesent those examples in the test sample that are lenses and the red bins
correspond to the non-lenses.
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Predicted
Non lens Lens

T
ru
e Non lens 2024 (97.1%) 61 (2.9%)

Lens 6 (0.3%) 1994 (99.7%)

(a) QSOs and stars not part of training.
(Acc = 98.4%. Pre = 97.0%)

Predicted
Non lens Lens

T
ru
e Non lens 2076 (99.6%) 9 (0.4%)

Lens 24 (1.2%) 1976 (98.8%)

(b) QSOs and stars included in training.
(Acc = 99.2%. Pre = 99.5%)

Table 7.5: Confusion matrices of the models derived with the CNN using J-PAS based
lensing simulations, when applied to the same test sample. Table 7.5a shows the results
of a model trained considering only galaxies as non-lensing examples, while in Table 7.5b
the model was trained including also QSOs and stars as non-lensed examples. Pthr = 0.5
is chosen as the reference probability threshold. The accuracy (Acc) and precision (Pre)
of the different models are also calculated.

Figure 7.11: ROC curves obtained by applying the models derived with the CNN using
J-PAS based lensing simulations to the same test sample. The model trained considering
only galaxies as non-lensing examples is depicted with a blue line while the orange line
represents the model trained including also QSOs and stars as non-lensed examples.
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No. Type ID Plens (training data set 1) Plens (training data set 2)

1 star 2241-19461 0.500 0.040
2 red gal 2406-3601-2 0.503 0.354
3 blue gal 2241-16211-2 0.508 0.006
4 blue gal 2241-8258-1 0.514 0.003
5 blue gal 2406-2726-1 0.518 0.006
6 blue gal 2241-9424-1 0.522 0.324
7 qso 2406-5548 0.523 0.001
8 blue gal 2470-12555-1 0.574 0.021
9 blue gal 2243-3842-1 0.595 0.024
10 qso 2406-1224 0.609 0.001
11 qso 2241-18457 0.611 0.409
12 star 2243-9710 0.621 0.024
13 blue gal 2406-7789-1 0.622 0.002
14 qso 2241-15867 0.635 0.020
15 qso 2241-19660 0.648 0.001
16 blue gal 2243-1682-2 0.670 0.016
17 blue gal 2470-7406-2 0.682 0.035
18 qso 2406-11219 0.696 0
19* blue gal 2241-4599-2 0.710 0.765
20 blue gal 2243-8607-1 0.714 0.284
21 star 2241-5588 0.718 0.035
22 qso 2406-9169 0.733 0.004
23 blue gal 2241-6367-2 0.791 0.149
24 blue gal 2243-6289-1 0.809 0.227
25 blue gal 2470-14948-1 0.810 0.071
26 red gal 2406-9636-1 0.818 0.148
27 blue gal 2406-9456-1 0.827 0
28 qso 2243-12523 0.828 0.028
29 qso 2241-1126 0.853 0.486
30 blue gal 2470-1625-2 0.872 0.029
31 blue gal 2241-4599-1 0.878 0.209
32 star 2243-8359 0.885 0
33 blue gal 2406-2674-1 0.901 0.011
34 red gal 2406-10757-2 0.909 0.001
35 qso 2241-13090 0.909 0.020
36 qso 2470-8427 0.923 0.275
37 red gal 2406-2835-1 0.944 0.265
38* blue gal 2241-9990-1 0.949 0.797
39 red gal 2406-5738-1 0.953 0.418
40* blue gal 2243-9957-1 0.953 0.890
41 star 2241-6436 0.956 0.073
42 blue gal 2243-6289-2 0.960 0.301
43 blue gal 2406-16273-2 0.960 0.433
44 star 2243-12739 0.960 0.036
45 qso 2243-6718 0.968 0.003
46 star 2406-7843 0.982 0.278
47 star 2243-3813 0.983 0.187
48 blue gal 2241-19534-2 0.984 0.115
49 star 2243-2625 0.988 0.186
50 blue gal 2406-3603-1 0.993 0.002
51 star 2241-19071 0.994 0.040
52 star 2241-10309 0.995 0.258
53 qso 2243-12132 0.999 0.056
54 star 2243-14817 0.999 0.260
55 blue gal 2241-20674-1 1 0.012
56* qso 2243-12507 1 0.685
57* star 2470-12146 1 0.640
58* star 2406-1001 1 0.985
59* star 2241-8822 1 0.972
60* qso 2241-3062 1 0.854
61* star 2243-6036 1 0.982

Table 7.6: False positive examples in the J-PAS based test sample, i.e., non-lenses predicted
as lenses by our models. The 9 false positives from the model trained including non-lensed
QSOs and stars (training data set 2) were also missclassified by the other model. Those
examples missclassified by both models are identified with an asterisk. The probability
scores from both models for every example are shown.
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7.5 Conclusions

In this chapter the first results of an ongoing work aimed to develop an automatic iden-
tification method for lensed quasars in J-PAS are shown. We have created strong lensing
simulations using mock quasars based on the J-PAS photometric system, and red galaxies
observed in the mini-JPAS footprint. These lensing simulations, along with non-lensing
examples (galaxies, quasars and stars), were used to train a CNN. Instead of training the
network with the images of the 56 bands considered, we used two pseudo-spectra for every
example, which were built by projecting the data in all bands along the x and y axes of the
images. We may loss some information, but the relevant morphological and spectral fea-
tures of the examples needed to classify them are mostly preserved, and the complexity of
the network is less. We compared the performance of two models, one trained with galax-
ies, quasars, and stars, as non-lensing examples, and the other trained just with galaxies.
We find that both models achieve impressive results, but training with a greater diversity
of examples reduces meaningly the amount of false positives. We are aware of the fact
that the goodness of the results is mostly due to the low number of QSOs/stars in the
test sample, and the requirements under which the lensing simulations have been built.
Nevertheless, our desire is to check next the performance of the CNN by increasing the
amount of low-µeff lensed quasars, which will be surely less easily classifiable. Increasing
the numbers of stars, quasars, and galaxies considered here is also in our work path. For
the future, we aim to test the models derived on the sources detected in the full J-PAS
footprint. The correct identifications of lensed quasars achieved will be of interest for the
WEAVE-QSO survey (Pieri et al., 2016), whose targets will be J-PAS quasars.





Chapter 8

Conclusions and future work

It has not been that long since convolutional neural networks started to be used in cosmol-
ogy, but they have accomplished to become one of the most attractive tools for analyzing
data, in particular for clasification purposes. And they will surely continue to be increas-
ingly relevant due to their ability to detect features without any human supervision. We
have shown in this work how they can be successfully employed for searching strong lenses
in astronomical images. But they are as well used for distinguishing between different astro-
nomical sources or radiations, in morphological classification of galaxies, or for measuring
photometric redshifts. For all these purposes, having a good knowledge of the observed
SED is crucial so as the network will be able to characterize the nature or estimate the
redshift of the detected objects. Although spectroscopic surveys allow accurate analyses
of the sources, lengthy follow-up campaigns are required for every target. On the other
hand, wide photometric surveys provide data for as many sources as fall in the images, but
the wavelength resolution depends on how narrow the filters are, losing information about
the individual spectral features. For this reason, the existence of narrow-band surveys like
J-PAS or PAU (Eriksen et al., 2019) is rewarding. With its 54 narrow-band filters, J-PAS
enables to increase the precision producing full low-resolution spectra, which cover a wide
range of visible wavelengths. While automatic deep learning techniques, such as convolu-
tional neural networks, help us to deal more easily with the large amounts of data to come
from current and future large-scale imaging surveys, J-PAS pseudo-spectra are useful to
resolve broad spectral features of the observed objects, faster than those obtained with
spectroscopic follow-ups. We expect a broad range of astrophysical studies to be carried
out by the combination of these two ingredients, producing significant scientific results.
Even though neural networks are really powerful on their own, we have seen that a suit-
able pre-processing of the data is important. In this sense, the combination of concrete
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adaptive filtering techniques, like the MMF, that optimize the detection of sources on a
background, and convolutional neural networks would also be an interesting project to
develop in the future.

Focusing on gravitational lensing, it is a phenomenon involving two objects separated in
redshift, and with different spectral behaviors, in which usually faint blue arc-like structures
may be seen around luminous red galaxies. In this work we have confirmed that having
observations at different wavelengths yields much better results when searching for strong
lenses. Therefore, the large number of photometric bands in J-PAS can provide a clear sight
for detecting lensing systems, distinguishing the source from the lens due to their spectral
differences, and identifying multiple images of the source owing to the spectral similarity in
the observed images. One of the main goals of J-PAS is measuring accurate photometric
redshifts for galaxies up to z ∼ 1, which significantly facilitates the discovery of lensed
systems so they can be studied later by this or other surveys. The more observational data
are available, the better strong lensing analyses can be performed. And this is important
since lensing statistics are a promising way of deriving constraints on the cosmological
parameters. Thanks to automatic detection techniques, like convolutional neural networks,
and large-scale surveys, such as Euclid and LSST, which expect to observe ∼ 105 strong
lens systems, the search and analysis of strong lensing events is a promising research field.
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Appendix A: Derivation of the MMF formula

In this appendix, the derivation of the two-dimensional matched multifilter (MMF) is
explained in detail. We shall begin, as we did in the derivation of the matched filter in
Sec. 1.1, by assuming a set of images at N different frequencies observing the same area
of the sky. We also assume that only one point source is within the field of view and
that it is placed at the coordinate origin of the images. Therefore, the overall signal yν
in these images is given by Eq. (1.10), and the signal sν from the point source is given
by Eq. (1.11). Multifrequency methods take into account the statistical correlation of the
noise between the different frequencies and the frequency dependence of the sources. The
background noise nν is modeled as a homogeneous and isotropic random field with average
value equal to zero, and its cross-power spectrum P = (Pν1ν2) between the noises at any
two frequencies, ν1 and ν2, is defined in Eq. (1.28).

According to the convolution theorem declared in Eq. (1.5) and the convention of the
Fourier transform chosen in Eq. (1.6), the filtered maps ωψν obtained after applying a set
of N linear time-invariant filters ψν to the image signal from Eq. (1.11) are given by:

ωψν (b) =

∫
yν(x)ψν(x; b) dx =

∫
yν(q)ψν(q)e−iq·b dq (1)

where b denotes a translation from the origin of the images, ωψν (b) are the filtered images
in the position b at the corresponding frequency ν, and yν(q) and ψν(q) are the Fourier
transforms of yν(x) and ψν(x), respectively. Therefore, each map yν is filtered with a linear
filter ψν , resulting in a filtered image ωψν . The total filtered map is the sum of each one
of these individual maps:

ωψ(b) =
∑
ν

ωψν (b) (2)

and its variance is defined as
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σ2
ωψ

= 〈ωψ(b)2〉 − 〈ωψ(b)〉2 = 2π
∑
ν1ν2

∫
ψν1Pν1ν2ψν2 q dq (3)

Summing up, in the first step, each individual frequency image is filtered with a linear
filter, and in the second step all the resulting filtered maps are combined into a single filtered
image where the signal s(x) has been boosted while the noise n(x) has been significantly
removed. Note also that this combination is completely general, since any summation
coefficients different than one are absorbed in the definition of the filters ψν . The only
loose end left is to find the filters ψν for which the total filtered field is optimal in the
detection of point sources. The two necessary requirements to guarantee that the filtered
field is optimal for the detection of point sources in this multifrequency approach are the
same as those, (1) and (2), explained in Sec. 1.1.

In first place, the total filtered map must be an unbiased estimator, on average, of the
amplitude of the source, that is, 〈ωψ(0)〉 = A. Therefore, the filters ψν must be unbiased.
In second place, the variance σ2

ωψ
of the total filtered map ωψ(b) has to be as small as

possible, that is, the map has to be an efficient estimator of the amplitude of the source.
Therefore, the filters ψν must be maximum efficiency estimators. From now on, we will
follow an analogous procedure to the derivation of the MF with the difference that several
frequencies are being considered. Since the noise has zero mean, 〈n(x)〉 = 0, the first
requirement can be mathematically enunciated as

2π
∑
ν

fν

∫
ψνfντν q dq = 1 (4)

Given that the noise n is the only contribution to the variance σ2
ωψ

, because the signal
component does not change, we have to minimize Eq. (3) while meeting Eq. (4) at the same
time. In order to achieve this, we have to resort to the method of Lagrange multipliers.
The Lagrangian constructed assuming two frequency channels, ν1 and ν2 is the following

L = σ2
ωψ

(ψν1 , ψν2) + λ
[
2π
∑
ν

fν

∫ ∞
0

ψν(q)τν(q) q dq − 1
]

= 2π
∑
ν1ν2

∫ ∞
0

ψν1(q)Pν1ν2(q)ψν2(q) q dq + λ
[
2π
∑
ν

fν

∫ ∞
0

ψν(q)τν(q) q dq − 1
] (5)

We now calculate the derivatives of this Lagrangian respect to the two filters involved
and equal the results to zero:
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∂L
∂ψ1

= 4π
∑
i

∫
ψiP1i q dq + λf1

∫
τ1 q dq = 0

∂L
∂ψ2

= 4π
∑
j

∫
ψjP2j q dq + λf2

∫
τ2 q dq = 0

(6)

where i and j goes from 1 to 2. ψ1 and τ1 are the filter and the source profile at the
frequency ν1, and ψ2 and τ2 are the same for the frequency channel ν2. These expressions
can be rewritten as the following system of two equations:

2
∑
i

P1iψi + λf1τ1 = 0

2
∑
i

P2iψi + λf2τ2 = 0
(7)

The simplified matrix form of this system of equations is

2PΨ = −λF (8)

where Ψ = [ψν ] is the column vector of the filters, F = [fντν ] is a column vector containing
the frequency dependence fν and the source profile τν at each frequency ν, and P−1 is the
inverse matrix of the cross-power spectrum P. From the equation above is easy to obtain
the formula for the two-dimensional matched multifilter :

Ψ(q) = αP−1F (9)

where α = -λ/2 is a normalization factor that preserves the source amplitude after filtering.
Its expression can be obtained by substituting the MMF formula in Eq. (4):

2π

∫
FtαP−1F q dq = 1

1

2π
= α

∫
FtP−1F q dq

α−1 =

∫
FtP−1Fdq

(10)

Finally, we can obtain the expression for the filtered map σ2
ωψ

from Eq. (3):

σ2
ωψ

= 2π
∑
ν1ν2

∫
ψν1Pν1ν2ψν2 =

∑
ν1ν2

ψν1Pν1ν2ψν2 dq =

∫
ΨtPΨ dq (11)





Appendix B: Selected high redshift sources

We present here two tables: the first one with the 370 high-z H-ATLAS sources from the
robust high-z sample, and the second one containing the 237 high-z H-ATLAS sources from
the 500 µm-riser sample. The column ‘reliability’ indicates if the photometry estimated
using the MMF and the SPIRE channels is also consistent when incorporating the PACS
bands: consistent (0), small worsening (1), not consistent (2), or PACS photometry not
available (-1).

No. H-ATLAS name α (deg) δ (deg) zunbiasedMMF SMMF (mJy/beam) Reliability
250 µm 350 µm 500 µm

1 HATLAS J083051.0+013225 127.712684 1.540284 3.15 ± 0.34 230 ± 5 287 ± 7 265 ± 6 -1
2 HATLAS J083218.0+002527 128.075027 0.424236 1.08 ± 0.26 119 ± 7 80 ± 5 37 ± 2 -1
3 HATLAS J083344.9+000109 128.437396 0.019282 3.16 ± 0.34 58 ± 5 72 ± 6 67 ± 6 2
4 HATLAS J083726.1+015641 129.358797 1.944871 1.71 ± 0.27 118 ± 8 103 ± 7 61 ± 4 1
5 HATLAS J083904.5+022848 129.768948 2.480177 2.54 ± 0.3 48 ± 7 53 ± 7 41 ± 6 -1
6 HATLAS J083929.4+023536 129.872679 2.593495 1.66 ± 0.27 122 ± 8 104 ± 7 60 ± 4 -1
7 HATLAS J084010.0+014336 130.04181 1.726677 2.71 ± 0.31 40 ± 6 46 ± 7 38 ± 6 -1
8 HATLAS J084055.2+001819 130.230288 0.305532 1.37 ± 0.26 113 ± 7 86 ± 6 44 ± 3 1
9 HATLAS J084306.5+012342 130.777236 1.395141 3.15 ± 0.34 45 ± 5 56 ± 7 51 ± 6 -1
10 HATLAS J084615.9+012004 131.566339 1.334708 1.49 ± 0.27 114 ± 6 91 ± 5 49 ± 3 0
11 HATLAS J084641.1+002738 131.671655 0.460763 2.42 ± 0.3 54 ± 5 59 ± 6 44 ± 4 0
12 HATLAS J084658.7+021112 131.744841 2.186738 0.99 ± 0.27 205 ± 8 132 ± 5 59 ± 2 -1
13 HATLAS J084723.8+015430 131.849524 1.908484 2.34 ± 0.3 58 ± 7 61 ± 7 45 ± 5 -1
14 HATLAS J084740.8+002421 131.920354 0.405969 1.85 ± 0.28 56 ± 6 51 ± 6 32 ± 3 1
15 HATLAS J084859.1-015438 132.246479 -1.910578 2.91 ± 0.32 64 ± 4 77 ± 4 66 ± 4 -1
16 HATLAS J085015.2+005658 132.563354 0.949446 2.37 ± 0.3 83 ± 7 89 ± 7 65 ± 5 0
17 HATLAS J085034.0+003231 132.641952 0.541958 2.82 ± 0.32 46 ± 6 54 ± 7 45 ± 6 0
18 HATLAS J085111.7+004934 132.79885 0.826131 1.77 ± 0.27 115 ± 6 103 ± 6 61 ± 3 1
19 HATLAS J085133.1+014940 132.888113 1.828026 2.58 ± 0.31 43 ± 6 48 ± 7 38 ± 5 -1
20 HATLAS J085144.1+014214 132.933947 1.703908 1.35 ± 0.26 129 ± 9 98 ± 7 50 ± 3 1
21 HATLAS J085229.0+010217 133.12107 1.03812 3.02 ± 0.33 46 ± 6 56 ± 7 50 ± 6 -1
22 HATLAS J085250.9-010000 133.21219 -1.0002 1.13 ± 0.26 135 ± 8 93 ± 6 44 ± 3 0
23 HATLAS J085326.3+001146 133.35993 0.19621 2.81 ± 0.32 48 ± 7 57 ± 8 48 ± 7 0
24 HATLAS J085339.7+024216 133.41574 2.70447 1.79 ± 0.27 73 ± 7 66 ± 6 40 ± 4 -1
25 HATLAS J085341.1-003359 133.42126 -0.56665 1.47 ± 0.27 111 ± 7 88 ± 6 47 ± 3 1
26 HATLAS J085501.6+003252 133.75674 0.548 2.11 ± 0.28 48 ± 6 48 ± 6 33 ± 4 2
27 HATLAS J085521.1-003603 133.83824 -0.60105 2.9 ± 0.32 74 ± 6 89 ± 7 77 ± 6 -1
28 HATLAS J085625.4+023641 134.10592 2.61164 2.94 ± 0.33 40 ± 5 48 ± 6 42 ± 5 -1
29 HATLAS J085732.9-003320 134.38744 -0.55562 2.3 ± 0.29 45 ± 6 47 ± 6 34 ± 5 -1
30 HATLAS J085855.4+013729 134.73117 1.6249 2.37 ± 0.3 71 ± 6 76 ± 7 56 ± 5 1
31 HATLAS J085924.6+001256 134.85286 0.21562 2.77 ± 0.32 30 ± 5 35 ± 6 29 ± 5 -1
32 HATLAS J090033.8+001958 135.1412 0.33286 1.5 ± 0.27 102 ± 6 82 ± 5 45 ± 3 1
33 HATLAS J090038.0-003522 135.15864 -0.58972 1.53 ± 0.27 67 ± 6 54 ± 5 30 ± 3 1
34 HATLAS J090146.5-002054 135.4439 -0.34857 3.29 ± 0.35 37 ± 4 48 ± 5 45 ± 5 -1

Table B.1: 370 H-ATLAS sources that form our robust high-z sample.
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No. H-ATLAS name α (deg) δ (deg) zunbiasedMMF SMMF (mJy/beam) Reliability
250 µm 350 µm 500 µm

35 HATLAS J090302.9-014127 135.76235 -1.69088 2.14 ± 0.29 313 ± 6 314 ± 6 215 ± 4 0
36 HATLAS J090311.6+003907 135.79868 0.65206 3.17 ± 0.34 139 ± 5 174 ± 6 162 ± 6 2
37 HATLAS J090318.6+012125 135.82783 1.35713 2.16 ± 0.29 67 ± 7 67 ± 7 46 ± 5 -1
38 HATLAS J090449.7+014858 136.2073 1.81633 2.19 ± 0.29 55 ± 7 56 ± 7 39 ± 5 2
39 HATLAS J090517.2+013552 136.32207 1.59802 2.46 ± 0.3 53 ± 6 58 ± 7 44 ± 5 -1
40 HATLAS J090530.1+001609 136.37546 0.26936 2.64 ± 0.31 51 ± 5 57 ± 6 46 ± 5 -1
41 HATLAS J090740.0-004200 136.91691 -0.70018 1.24 ± 0.26 450 ± 8 325 ± 6 160 ± 3 0
42 HATLAS J090844.2+000410 137.1844 0.06967 2.21 ± 0.29 54 ± 6 55 ± 6 39 ± 4 1
43 HATLAS J090930.4+002226 137.37702 0.37391 2.16 ± 0.29 55 ± 6 55 ± 6 38 ± 4 -1
44 HATLAS J090957.6-003620 137.49034 -0.60562 2.03 ± 0.28 102 ± 6 99 ± 6 65 ± 4 0
45 HATLAS J091023.0+014023 137.59615 1.67324 1.59 ± 0.27 82 ± 7 68 ± 6 38 ± 3 1
46 HATLAS J091043.0-000322 137.67949 -0.0562 1.84 ± 0.27 388 ± 7 354 ± 6 218 ± 4 0
47 HATLAS J091238.0+020048 138.15844 2.01359 2.95 ± 0.33 74 ± 6 89 ± 7 78 ± 6 -1
48 HATLAS J091304.9-005344 138.27077 -0.89563 2.54 ± 0.3 123 ± 5 136 ± 6 105 ± 4 -1
49 HATLAS J091331.4-003644 138.38089 -0.61234 1.49 ± 0.27 163 ± 7 130 ± 6 70 ± 3 1
50 HATLAS J091341.4-004343 138.42288 -0.72877 1.24 ± 0.26 145 ± 7 105 ± 5 51 ± 3 1
51 HATLAS J091350.1+014543 138.45899 1.76219 1.97 ± 0.28 93 ± 7 88 ± 7 57 ± 4 1
52 HATLAS J091457.6-003215 138.74022 -0.53761 2.53 ± 0.3 42 ± 6 47 ± 6 36 ± 5 0
53 HATLAS J091654.7+020325 139.22829 2.05695 2.08 ± 0.28 88 ± 7 87 ± 7 58 ± 5 0
54 HATLAS J091804.9+005812 139.52063 0.97017 3.13 ± 0.34 39 ± 5 48 ± 6 44 ± 6 -1
55 HATLAS J091840.8+023048 139.67015 2.51348 2.96 ± 0.33 109 ± 6 132 ± 7 116 ± 6 -1
56 HATLAS J092041.4+025254 140.1728 2.88192 2.9 ± 0.32 60 ± 5 72 ± 6 62 ± 5 -1
57 HATLAS J092110.6-002837 140.29421 -0.47712 1.08 ± 0.26 187 ± 7 125 ± 5 58 ± 2 0
58 HATLAS J092135.6+000131 140.39873 0.02553 2.09 ± 0.28 130 ± 7 129 ± 7 86 ± 4 1
59 HATLAS J092348.4+011907 140.95206 1.31888 1.51 ± 0.27 123 ± 8 100 ± 7 54 ± 4 2
60 HATLAS J092633.8-001801 141.64114 -0.30035 1.17 ± 0.26 124 ± 8 86 ± 6 41 ± 3 0
61 HATLAS J113245.7+003427 173.19058 0.57429 3.09 ± 0.33 52 ± 5 64 ± 6 59 ± 6 0
62 HATLAS J113453.6-005232 173.72346 -0.87559 1.85 ± 0.28 115 ± 7 105 ± 6 65 ± 4 1
63 HATLAS J113526.2-014606 173.85958 -1.76854 2.26 ± 0.29 260 ± 6 269 ± 6 191 ± 4 0
64 HATLAS J113526.4-011247 173.8602 -1.21325 2.04 ± 0.28 53 ± 7 51 ± 6 34 ± 4 -1
65 HATLAS J113833.0+004950 174.63769 0.83064 1.42 ± 0.27 140 ± 7 109 ± 5 58 ± 3 2
66 HATLAS J113924.2-015258 174.85095 -1.88295 2.01 ± 0.28 62 ± 8 60 ± 7 39 ± 5 1
67 HATLAS J113952.6+002604 174.96954 0.43468 2.23 ± 0.29 87 ± 6 89 ± 6 63 ± 4 1
68 HATLAS J114223.5-000033 175.59825 -0.00922 1.24 ± 0.26 126 ± 7 91 ± 5 45 ± 3 1
69 HATLAS J114227.1-015311 175.61324 -1.88666 1.54 ± 0.27 160 ± 7 131 ± 6 72 ± 3 -1
70 HATLAS J114229.0-003048 175.62116 -0.51342 2.68 ± 0.31 53 ± 6 61 ± 6 49 ± 5 2
71 HATLAS J114512.9-002446 176.30379 -0.4128 2.58 ± 0.31 31 ± 4 34 ± 5 27 ± 4 -1
72 HATLAS J114637.9-001132 176.65816 -0.19226 2.56 ± 0.31 289 ± 6 322 ± 6 252 ± 5 1
73 HATLAS J114753.1-005857 176.97166 -0.9826 2.96 ± 0.33 70 ± 5 85 ± 6 75 ± 6 2
74 HATLAS J114831.1-005312 177.1298 -0.88676 1.68 ± 0.27 123 ± 7 106 ± 6 62 ± 3 1
75 HATLAS J115101.7-020024 177.75721 -2.0068 1.9 ± 0.28 165 ± 8 153 ± 7 96 ± 5 1
76 HATLAS J115112.2-012637 177.80104 -1.4437 1.94 ± 0.28 128 ± 7 121 ± 7 77 ± 4 -1
77 HATLAS J115157.1-015046 177.98808 -1.84622 1.18 ± 0.26 125 ± 8 88 ± 5 42 ± 3 1
78 HATLAS J115303.4-011835 178.26447 -1.30988 2.28 ± 0.29 73 ± 6 76 ± 6 54 ± 4 0
79 HATLAS J115453.7-001619 178.72377 -0.27197 1.73 ± 0.27 87 ± 7 77 ± 6 45 ± 4 0
80 HATLAS J115518.1-021147 178.82556 -2.19666 1.61 ± 0.27 76 ± 8 64 ± 6 36 ± 4 -1
81 HATLAS J115540.8-005529 178.92015 -0.92491 1.87 ± 0.28 77 ± 7 71 ± 6 44 ± 4 2
82 HATLAS J115752.7-015742 179.46959 -1.96172 2.77 ± 0.32 37 ± 6 43 ± 6 36 ± 5 -1
83 HATLAS J115819.5-000127 179.58164 -0.02436 2.32 ± 0.29 55 ± 6 58 ± 6 42 ± 5 1
84 HATLAS J115850.5+005422 179.71068 0.90632 1.92 ± 0.28 50 ± 6 47 ± 6 30 ± 4 2
85 HATLAS J115922.5-010131 179.84384 -1.02528 2.42 ± 0.3 54 ± 6 58 ± 7 43 ± 5 2
86 HATLAS J120004.5-000227 180.01916 -0.04088 2.21 ± 0.29 46 ± 6 47 ± 6 33 ± 4 -1
87 HATLAS J120042.2+004322 180.17602 0.72296 2.75 ± 0.32 53 ± 6 61 ± 7 51 ± 5 -1
88 HATLAS J120127.6-014043 180.36524 -1.67888 4.06 ± 0.38 62 ± 3 91 ± 4 102 ± 5 2
89 HATLAS J120203.4-004331 180.5144 -0.72553 1.8 ± 0.27 78 ± 7 70 ± 6 42 ± 4 -1
90 HATLAS J120218.2-005922 180.57621 -0.98961 2.12 ± 0.28 61 ± 7 61 ± 7 41 ± 5 2
91 HATLAS J120319.1-011253 180.82963 -1.21497 3.02 ± 0.33 106 ± 6 129 ± 7 115 ± 6 -1
92 HATLAS J120435.9-014018 181.14969 -1.67174 2.27 ± 0.29 56 ± 6 58 ± 7 42 ± 5 -1
93 HATLAS J120604.9-020857 181.52057 -2.14942 2.42 ± 0.3 46 ± 6 49 ± 7 37 ± 5 -1
94 HATLAS J120656.4+012641 181.73502 1.44487 2.12 ± 0.28 105 ± 7 105 ± 7 71 ± 5 0
95 HATLAS J120709.2-014702 181.78856 -1.78415 2.03 ± 0.28 137 ± 7 132 ± 7 87 ± 4 2
96 HATLAS J120728.5+001557 181.86911 0.26584 2.51 ± 0.3 57 ± 7 63 ± 7 49 ± 6 -1
97 HATLAS J120753.6-011743 181.97342 -1.29552 3.34 ± 0.35 32 ± 5 41 ± 6 40 ± 6 -1
98 HATLAS J120932.7+002517 182.3866 0.42152 1.51 ± 0.27 101 ± 8 82 ± 7 44 ± 4 1
99 HATLAS J121001.9-012953 182.50821 -1.49812 1.36 ± 0.26 85 ± 9 65 ± 7 33 ± 3 1
100 HATLAS J121044.2+011848 182.68424 1.31345 1.15 ± 0.26 129 ± 7 90 ± 5 43 ± 2 -1
101 HATLAS J121218.8+010826 183.0784 1.14064 1.74 ± 0.27 54 ± 7 48 ± 6 28 ± 4 -1

Table B.1 (cont.)
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No. H-ATLAS name α (deg) δ (deg) zunbiasedMMF SMMF (mJy/beam) Reliability
250 µm 350 µm 500 µm

102 HATLAS J121301.5-004922 183.25663 -0.82294 2.26 ± 0.29 118 ± 5 122 ± 5 87 ± 4 -1
103 HATLAS J121334.9-020323 183.39555 -2.05642 2.36 ± 0.3 170 ± 6 181 ± 6 133 ± 5 0
104 HATLAS J121542.7-005220 183.92815 -0.87229 2.35 ± 0.3 122 ± 6 129 ± 7 95 ± 5 -1
105 HATLAS J121622.8-000707 184.09513 -0.1187 2.47 ± 0.3 67 ± 6 74 ± 7 56 ± 5 0
106 HATLAS J121628.8+004153 184.12041 0.69828 2.69 ± 0.31 46 ± 6 52 ± 7 42 ± 5 -1
107 HATLAS J121741.1-011558 184.42134 -1.26633 2.06 ± 0.28 52 ± 7 51 ± 7 34 ± 5 0
108 HATLAS J121915.9+000634 184.8166 0.10965 1.8 ± 0.27 75 ± 8 67 ± 7 41 ± 4 2
109 HATLAS J121933.2-005601 184.88859 -0.93379 2.2 ± 0.29 48 ± 7 49 ± 7 34 ± 5 1
110 HATLAS J122028.2+003530 185.11783 0.59176 2.3 ± 0.29 58 ± 7 61 ± 7 44 ± 5 0
111 HATLAS J122125.7-014641 185.35747 -1.77819 2.79 ± 0.32 41 ± 6 48 ± 7 40 ± 6 -1
112 HATLAS J122127.9+005026 185.36626 0.84058 1.97 ± 0.28 116 ± 7 111 ± 7 71 ± 4 1
113 HATLAS J122134.0-004919 185.39173 -0.82196 2.34 ± 0.29 50 ± 7 53 ± 7 39 ± 5 -1
114 HATLAS J122201.5-011354 185.50653 -1.23177 2.43 ± 0.3 56 ± 7 60 ± 7 45 ± 6 1
115 HATLAS J122205.8+013232 185.52438 1.54247 1.79 ± 0.27 65 ± 7 58 ± 6 35 ± 4 0
116 HATLAS J122247.3+001906 185.69734 0.31843 3.03 ± 0.33 71 ± 5 87 ± 6 78 ± 6 -1
117 HATLAS J122335.1+004307 185.89649 0.71884 1.81 ± 0.27 84 ± 6 76 ± 6 46 ± 4 2
118 HATLAS J122342.4-001103 185.92673 -0.1842 1.74 ± 0.27 84 ± 7 74 ± 6 44 ± 4 1
119 HATLAS J140223.0+010213 210.59604 1.03696 2.14 ± 0.29 101 ± 7 102 ± 7 70 ± 5 1
120 HATLAS J140701.1-004402 211.75489 -0.73406 1.98 ± 0.28 64 ± 7 61 ± 6 40 ± 4 -1
121 HATLAS J140727.9+013759 211.8664 1.63332 2.74 ± 0.31 62 ± 6 72 ± 7 59 ± 6 -1
122 HATLAS J141010.2-002700 212.54269 -0.45009 1.87 ± 0.28 71 ± 7 65 ± 7 41 ± 4 1
123 HATLAS J141038.9-014816 212.66209 -1.8046 1.89 ± 0.28 91 ± 6 84 ± 6 53 ± 3 -1
124 HATLAS J141110.3-001715 212.7931 -0.28775 2.12 ± 0.29 51 ± 7 51 ± 7 35 ± 5 2
125 HATLAS J141149.6-005632 212.95704 -0.94239 1.67 ± 0.27 111 ± 8 96 ± 7 55 ± 4 1
126 HATLAS J141246.4+022948 213.19373 2.49675 3.18 ± 0.34 38 ± 5 48 ± 6 44 ± 6 0
127 HATLAS J141327.0+012305 213.36252 1.38473 1.8 ± 0.27 58 ± 7 53 ± 6 32 ± 4 0
128 HATLAS J141328.7-012251 213.3698 -1.38108 1.87 ± 0.28 76 ± 7 70 ± 6 44 ± 4 -1
129 HATLAS J141346.1-000928 213.44232 -0.158 1.47 ± 0.27 123 ± 8 98 ± 6 52 ± 3 0
130 HATLAS J141351.9-000026 213.46663 -0.00745 2.73 ± 0.31 166 ± 5 192 ± 6 158 ± 5 0
131 HATLAS J141409.7+022541 213.54075 2.42811 2.45 ± 0.3 54 ± 7 59 ± 7 44 ± 5 1
132 HATLAS J141425.0+013039 213.60457 1.51091 2.93 ± 0.33 38 ± 5 46 ± 6 40 ± 5 2
133 HATLAS J141528.0+005204 213.86674 0.86779 1.28 ± 0.26 130 ± 7 96 ± 5 48 ± 3 1
134 HATLAS J141550.4+012750 213.96003 1.46401 2.77 ± 0.32 36 ± 5 42 ± 6 35 ± 5 1
135 HATLAS J141550.8+001546 213.96188 0.2628 2.53 ± 0.3 64 ± 6 71 ± 6 55 ± 5 1
136 HATLAS J141559.5+013522 213.99825 1.58968 2.72 ± 0.31 46 ± 5 54 ± 6 44 ± 5 1
137 HATLAS J141605.5+011828 214.02308 1.30802 2.54 ± 0.3 55 ± 6 61 ± 6 47 ± 5 1
138 HATLAS J141718.2+005554 214.32618 0.9319 2.21 ± 0.29 57 ± 6 58 ± 6 41 ± 4 -1
139 HATLAS J141729.9+001637 214.37494 0.27719 1.96 ± 0.28 42 ± 7 39 ± 6 25 ± 4 1
140 HATLAS J141750.9+003054 214.46215 0.515 3.24 ± 0.34 35 ± 4 44 ± 5 41 ± 5 1
141 HATLAS J141805.6-002140 214.52369 -0.36132 2.26 ± 0.29 47 ± 6 48 ± 6 34 ± 5 1
142 HATLAS J141827.4-001703 214.61445 -0.28434 1.86 ± 0.28 104 ± 6 95 ± 6 59 ± 4 0
143 HATLAS J141832.9+010212 214.63749 1.03685 3.9 ± 0.38 51 ± 4 73 ± 6 80 ± 6 -1
144 HATLAS J141852.9-010138 214.72082 -1.02729 2.22 ± 0.29 46 ± 6 47 ± 7 33 ± 5 -1
145 HATLAS J141955.5-003449 214.98151 -0.58029 1.82 ± 0.27 160 ± 7 145 ± 6 88 ± 4 2
146 HATLAS J142008.9-001434 215.03741 -0.24285 2.27 ± 0.29 73 ± 6 76 ± 6 54 ± 4 -1
147 HATLAS J142033.9-014111 215.14149 -1.68641 1.65 ± 0.27 66 ± 7 56 ± 6 32 ± 3 2
148 HATLAS J142046.8-005721 215.19507 -0.95596 2.98 ± 0.33 48 ± 6 58 ± 7 51 ± 6 -1
149 HATLAS J142049.1+000555 215.20495 0.09878 2.49 ± 0.3 50 ± 7 54 ± 7 42 ± 6 1
150 HATLAS J142112.4+005230 215.30175 0.87508 2.29 ± 0.29 88 ± 7 92 ± 7 66 ± 5 0
151 HATLAS J142123.2+002617 215.34704 0.43824 2.34 ± 0.29 54 ± 7 57 ± 7 42 ± 5 1
152 HATLAS J142142.1+015229 215.42571 1.87488 2.56 ± 0.31 38 ± 7 42 ± 8 33 ± 6 1
153 HATLAS J142233.9+023413 215.64142 2.57052 2.26 ± 0.29 57 ± 5 59 ± 5 42 ± 4 0
154 HATLAS J142303.2+010716 215.76366 1.12112 2.32 ± 0.29 68 ± 6 71 ± 7 52 ± 5 -1
155 HATLAS J142318.3+013913 215.82658 1.65383 2.45 ± 0.3 100 ± 7 109 ± 8 82 ± 6 0
156 HATLAS J142339.4+003242 215.91453 0.54504 2.55 ± 0.31 59 ± 6 66 ± 7 51 ± 5 -1
157 HATLAS J142413.9+022303 216.0582 2.38424 3.94 ± 0.38 117 ± 4 169 ± 6 186 ± 7 -1
158 HATLAS J142431.9-003932 216.13306 -0.65909 2.34 ± 0.3 63 ± 7 67 ± 8 49 ± 6 -1
159 HATLAS J142540.9+013151 216.42074 1.53096 3.26 ± 0.34 37 ± 5 48 ± 7 45 ± 6 -1
160 HATLAS J142554.5+012650 216.47728 1.44723 2.14 ± 0.29 52 ± 7 53 ± 7 36 ± 5 -1
161 HATLAS J142629.0+014412 216.62094 1.73685 3.31 ± 0.35 36 ± 5 47 ± 6 45 ± 6 -1
162 HATLAS J142702.9+003053 216.7624 0.51473 2.37 ± 0.3 56 ± 6 60 ± 7 44 ± 5 2
163 HATLAS J142736.9+022920 216.90386 2.48907 3.18 ± 0.34 44 ± 5 55 ± 6 51 ± 5 -1
164 HATLAS J142737.1+021335 216.90491 2.22665 2.61 ± 0.31 52 ± 6 59 ± 7 46 ± 6 -1
165 HATLAS J142751.0+004233 216.96278 0.70933 1.85 ± 0.28 122 ± 6 112 ± 6 69 ± 3 1
166 HATLAS J142810.7+002843 217.04469 0.47868 1.67 ± 0.27 113 ± 7 98 ± 6 56 ± 4 0
167 HATLAS J142824.7+013930 217.10293 1.65847 1.49 ± 0.27 101 ± 7 81 ± 6 44 ± 3 2
168 HATLAS J142859.8+015037 217.24956 1.84381 3.34 ± 0.35 33 ± 5 43 ± 6 42 ± 6 2
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169 HATLAS J142935.5+012749 217.39832 1.46386 2.56 ± 0.31 40 ± 6 44 ± 6 35 ± 5 -1
170 HATLAS J143135.6+003041 217.89868 0.51158 2.39 ± 0.3 45 ± 6 48 ± 6 36 ± 4 -1
171 HATLAS J143229.4-000820 218.12257 -0.1391 2.58 ± 0.31 66 ± 5 74 ± 6 58 ± 5 2
172 HATLAS J143358.4-012718 218.49358 -1.45503 1.89 ± 0.28 63 ± 6 59 ± 6 37 ± 4 2
173 HATLAS J143441.2-014548 218.67174 -1.76335 2.35 ± 0.3 53 ± 6 56 ± 7 41 ± 5 -1
174 HATLAS J143505.9-002139 218.7746 -0.36105 2.12 ± 0.29 60 ± 7 59 ± 7 40 ± 5 -1
175 HATLAS J143512.3+004222 218.80147 0.70618 2.98 ± 0.33 39 ± 5 48 ± 7 42 ± 6 2
176 HATLAS J143512.3+021203 218.80161 2.20094 1.2 ± 0.26 119 ± 8 84 ± 6 41 ± 3 2
177 HATLAS J143530.8+013240 218.87848 1.54458 2.31 ± 0.29 49 ± 6 52 ± 7 37 ± 5 1
178 HATLAS J143707.1+011050 219.27987 1.18082 3.14 ± 0.34 31 ± 4 38 ± 5 35 ± 5 -1
179 HATLAS J143735.5-013804 219.3982 -1.63455 2.04 ± 0.28 84 ± 6 82 ± 6 54 ± 4 -1
180 HATLAS J143841.2+013110 219.6718 1.51948 3.1 ± 0.33 36 ± 5 45 ± 7 41 ± 6 1
181 HATLAS J143845.8+013503 219.69125 1.58435 1.73 ± 0.27 79 ± 7 69 ± 6 41 ± 4 -1
182 HATLAS J143852.1+021130 219.71739 2.1917 1.03 ± 0.26 120 ± 7 79 ± 5 36 ± 2 1
183 HATLAS J143853.4+001904 219.72263 0.31781 2.41 ± 0.3 53 ± 7 57 ± 8 43 ± 6 1
184 HATLAS J143936.0+003839 219.90036 0.64437 1.7 ± 0.27 110 ± 6 96 ± 5 56 ± 3 2
185 HATLAS J144042.1+003316 220.17561 0.55466 2.26 ± 0.29 59 ± 6 61 ± 6 43 ± 4 0
186 HATLAS J144154.3-001345 220.47638 -0.22941 1.68 ± 0.27 120 ± 7 104 ± 6 60 ± 3 0
187 HATLAS J144201.7+003449 220.50743 0.58036 1.92 ± 0.28 83 ± 7 78 ± 6 49 ± 4 1
188 HATLAS J144243.4+015504 220.68089 1.9179 2.19 ± 0.29 120 ± 7 122 ± 7 84 ± 5 1
189 HATLAS J144334.3-003034 220.89297 -0.50953 3.27 ± 0.34 64 ± 4 82 ± 5 78 ± 5 -1
190 HATLAS J144445.3-000910 221.18892 -0.15301 1.68 ± 0.27 55 ± 8 47 ± 7 27 ± 4 0
191 HATLAS J144521.7+005504 221.34062 0.91801 2.62 ± 0.31 36 ± 6 41 ± 7 33 ± 5 2
192 HATLAS J144524.8+000002 221.3534 0.00058 2.92 ± 0.33 31 ± 5 38 ± 6 33 ± 5 -1
193 HATLAS J144533.8+010556 221.39124 1.09906 1.35 ± 0.26 168 ± 7 127 ± 5 65 ± 3 2
194 HATLAS J144556.1-004853 221.48377 -0.81481 2.43 ± 0.3 112 ± 6 121 ± 7 91 ± 5 -1
195 HATLAS J144626.3+011400 221.60991 1.23354 2.34 ± 0.29 50 ± 6 53 ± 7 39 ± 5 1
196 HATLAS J144828.6+020947 222.11918 2.16307 2.79 ± 0.32 58 ± 6 68 ± 7 57 ± 6 0
197 HATLAS J145138.5-012819 222.91073 -1.472 1.55 ± 0.27 117 ± 6 96 ± 5 53 ± 3 -1
198 HATLAS J145337.2+000407 223.4052 0.06887 2.55 ± 0.31 63 ± 7 70 ± 7 55 ± 6 0
199 HATLAS J145342.8-002345 223.42844 -0.39601 2.42 ± 0.3 61 ± 6 66 ± 7 49 ± 5 0
200 HATLAS J145420.6-005203 223.58616 -0.86764 2.58 ± 0.31 29 ± 6 32 ± 6 25 ± 5 -1
201 HATLAS J145653.4-000720 224.2226 -0.12243 1.58 ± 0.27 62 ± 7 51 ± 6 29 ± 3 0
202 HATLAS J000007.5-334100 0.03119 -33.68326 2.25 ± 0.29 136 ± 7 141 ± 7 100 ± 5 -1
203 HATLAS J000525.0-331342 1.35423 -33.22837 1.27 ± 0.26 136 ± 8 99 ± 6 50 ± 3 1
204 HATLAS J000622.1-300508 1.59225 -30.0856 1.35 ± 0.26 145 ± 7 110 ± 6 56 ± 3 1
205 HATLAS J000631.2-312238 1.63017 -31.37732 1.01 ± 0.26 149 ± 8 97 ± 5 44 ± 2 1
206 HATLAS J000722.2-352015 1.84235 -35.33737 1.61 ± 0.27 210 ± 7 177 ± 6 100 ± 3 1
207 HATLAS J000806.8-351205 2.02835 -35.20138 3.18 ± 0.34 75 ± 5 95 ± 6 88 ± 5 -1
208 HATLAS J000912.7-300807 2.30293 -30.13529 1.3 ± 0.26 322 ± 9 238 ± 6 120 ± 3 0
209 HATLAS J001010.5-360237 2.54381 -36.04354 2.03 ± 0.28 152 ± 7 147 ± 7 97 ± 5 -1
210 HATLAS J001148.2-312431 2.95101 -31.40849 2.1 ± 0.28 107 ± 7 106 ± 7 71 ± 5 2
211 HATLAS J001334.2-324432 3.39265 -32.74231 2.06 ± 0.28 117 ± 7 115 ± 7 76 ± 5 1
212 HATLAS J001725.2-295152 4.35502 -29.86437 1.89 ± 0.28 140 ± 7 130 ± 7 81 ± 4 0
213 HATLAS J001802.2-313505 4.50901 -31.58466 1.85 ± 0.28 126 ± 7 116 ± 7 71 ± 4 0
214 HATLAS J002533.6-333826 6.38992 -33.64055 2.33 ± 0.29 116 ± 6 122 ± 7 89 ± 5 1
215 HATLAS J002624.8-341738 6.60345 -34.29384 2.89 ± 0.32 138 ± 5 165 ± 6 142 ± 5 -1
216 HATLAS J002913.4-322500 7.30577 -32.41662 2.17 ± 0.29 100 ± 7 101 ± 7 69 ± 5 0
217 HATLAS J002953.4-322318 7.47262 -32.38842 1.75 ± 0.27 154 ± 6 136 ± 6 81 ± 3 1
218 HATLAS J003605.8-290025 9.02405 -29.00704 1.35 ± 0.26 199 ± 8 150 ± 6 77 ± 3 1
219 HATLAS J003905.5-290609 9.77295 -29.10258 1.99 ± 0.28 102 ± 6 98 ± 6 63 ± 4 1
220 HATLAS J004130.7-332921 10.37795 -33.48922 1.45 ± 0.27 132 ± 8 105 ± 6 56 ± 3 1
221 HATLAS J004736.0-272951 11.89999 -27.49738 2.71 ± 0.31 156 ± 6 180 ± 6 147 ± 5 -1
222 HATLAS J004853.3-303110 12.22192 -30.51932 2.39 ± 0.3 117 ± 6 126 ± 6 93 ± 5 0
223 HATLAS J005119.0-312321 12.82908 -31.38921 1.7 ± 0.27 123 ± 7 107 ± 6 63 ± 4 0
224 HATLAS J005132.8-301848 12.8867 -30.31335 2.21 ± 0.29 151 ± 7 155 ± 7 108 ± 5 1
225 HATLAS J005212.9-334502 13.05365 -33.75058 1.35 ± 0.26 194 ± 8 146 ± 6 75 ± 3 1
226 HATLAS J005809.8-330233 14.54096 -33.04264 1.3 ± 0.26 135 ± 6 100 ± 5 50 ± 2 1
227 HATLAS J005838.3-331143 14.65957 -33.19531 1.2 ± 0.26 124 ± 7 88 ± 5 42 ± 3 1
228 HATLAS J005952.1-303802 14.96708 -30.63388 2.11 ± 0.28 91 ± 6 91 ± 6 61 ± 4 -1
229 HATLAS J005957.0-284530 14.98731 -28.75834 1.06 ± 0.26 123 ± 7 82 ± 5 38 ± 2 2
230 HATLAS J010250.9-311723 15.71188 -31.28976 1.96 ± 0.28 246 ± 8 233 ± 7 149 ± 5 1
231 HATLAS J010753.0-305344 16.971 -30.89549 1.55 ± 0.27 130 ± 8 107 ± 6 59 ± 3 2
232 HATLAS J011424.0-333614 18.60015 -33.6038 3.97 ± 0.38 82 ± 4 119 ± 6 131 ± 7 2
233 HATLAS J011512.1-283958 18.80045 -28.66613 1.2 ± 0.26 137 ± 8 97 ± 5 47 ± 3 0
234 HATLAS J011542.0-273553 18.92486 -27.59819 1.74 ± 0.27 110 ± 7 97 ± 6 57 ± 4 -1
235 HATLAS J011823.8-274404 19.59911 -27.7344 2.37 ± 0.3 101 ± 6 108 ± 7 80 ± 5 -1
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236 HATLAS J012046.5-282403 20.19358 -28.40097 3.51 ± 0.36 105 ± 4 140 ± 6 140 ± 6 -1
237 HATLAS J012407.4-281434 21.03082 -28.24284 2.45 ± 0.3 228 ± 6 248 ± 7 187 ± 5 1
238 HATLAS J012416.0-310500 21.06657 -31.08338 2.42 ± 0.3 124 ± 7 134 ± 7 100 ± 5 -1
239 HATLAS J012853.0-332719 22.22084 -33.45536 2.52 ± 0.3 97 ± 6 107 ± 6 83 ± 5 -1
240 HATLAS J013004.1-305514 22.51707 -30.92051 1.87 ± 0.28 145 ± 6 134 ± 6 83 ± 4 1
241 HATLAS J013240.0-330907 23.16656 -33.15184 2.64 ± 0.31 104 ± 6 119 ± 7 95 ± 6 -1
242 HATLAS J013524.3-330959 23.85142 -33.16643 1.84 ± 0.27 155 ± 9 141 ± 8 87 ± 5 0
243 HATLAS J013732.3-314506 24.38473 -31.75164 1.48 ± 0.27 124 ± 8 99 ± 7 53 ± 4 0
244 HATLAS J013840.5-281856 24.66875 -28.31545 4.39 ± 0.39 93 ± 4 150 ± 6 177 ± 7 -1
245 HATLAS J014849.3-331820 27.20521 -33.30547 2.33 ± 0.29 125 ± 8 132 ± 8 96 ± 6 -1
246 HATLAS J124957.4+270606 192.48913 27.1017 1.2 ± 0.26 134 ± 9 95 ± 6 46 ± 3 0
247 HATLAS J125000.2+312738 192.50064 31.46054 1.56 ± 0.27 102 ± 6 84 ± 5 47 ± 3 0
248 HATLAS J125000.4+305323 192.50182 30.8896 2.17 ± 0.29 73 ± 8 74 ± 8 51 ± 6 0
249 HATLAS J125027.9+242643 192.61607 24.44523 1.8 ± 0.27 77 ± 7 70 ± 6 42 ± 4 1
250 HATLAS J125233.5+331031 193.13953 33.17537 2.06 ± 0.28 58 ± 6 56 ± 6 37 ± 4 2
251 HATLAS J125404.7+312610 193.51968 31.43623 2.02 ± 0.28 59 ± 7 57 ± 7 38 ± 5 1
252 HATLAS J125441.2+333753 193.67185 33.63146 1.51 ± 0.27 217 ± 8 175 ± 6 95 ± 3 -1
253 HATLAS J125526.4+304930 193.86011 30.8249 1.43 ± 0.27 167 ± 8 131 ± 6 69 ± 3 0
254 HATLAS J125532.6+325638 193.88574 32.94389 1.36 ± 0.26 111 ± 7 85 ± 5 44 ± 3 2
255 HATLAS J125632.5+233627 194.13524 23.60758 3.39 ± 0.35 201 ± 5 261 ± 7 256 ± 6 1
256 HATLAS J125700.6+312507 194.25238 31.41864 1.02 ± 0.26 131 ± 8 85 ± 5 39 ± 2 1
257 HATLAS J125710.9+241533 194.29549 24.25923 1.07 ± 0.26 139 ± 8 93 ± 5 43 ± 3 0
258 HATLAS J125911.0+293843 194.79574 29.6454 1.98 ± 0.28 151 ± 7 145 ± 7 93 ± 4 0
259 HATLAS J130138.7+302808 195.41128 30.46876 2.03 ± 0.28 45 ± 7 43 ± 7 29 ± 4 1
260 HATLAS J130152.8+245012 195.46998 24.8366 2.36 ± 0.3 46 ± 7 49 ± 7 36 ± 5 1
261 HATLAS J130314.0+315646 195.80823 31.94621 1.8 ± 0.27 127 ± 7 115 ± 6 69 ± 4 1
262 HATLAS J130333.1+244643 195.8881 24.77864 2.72 ± 0.31 96 ± 6 111 ± 6 91 ± 5 2
263 HATLAS J130334.4+282029 195.89353 28.34151 2.34 ± 0.29 51 ± 7 54 ± 7 39 ± 5 -1
264 HATLAS J130349.8+351024 195.95757 35.17324 1.54 ± 0.27 98 ± 7 80 ± 6 44 ± 3 -1
265 HATLAS J130525.0+342852 196.3543 34.48122 1.85 ± 0.28 121 ± 8 111 ± 7 68 ± 4 2
266 HATLAS J130602.9+333035 196.5121 33.5098 1.23 ± 0.26 128 ± 8 92 ± 6 45 ± 3 1
267 HATLAS J131025.0+301933 197.60417 30.3257 2.91 ± 0.32 40 ± 6 48 ± 7 42 ± 6 -1
268 HATLAS J131105.4+253024 197.77244 25.50653 2.35 ± 0.3 61 ± 6 65 ± 6 47 ± 5 -1
269 HATLAS J131301.8+305942 198.25761 30.99498 1.73 ± 0.27 131 ± 8 115 ± 7 68 ± 4 1
270 HATLAS J131348.7+242456 198.45272 24.41548 2.47 ± 0.3 91 ± 6 99 ± 7 75 ± 5 0
271 HATLAS J131407.0+271208 198.52902 27.20212 0.96 ± 0.27 146 ± 7 92 ± 4 41 ± 2 1
272 HATLAS J131435.2+301802 198.64671 30.30066 2.2 ± 0.29 86 ± 8 88 ± 8 61 ± 6 0
273 HATLAS J131533.9+233254 198.89142 23.54824 1.36 ± 0.26 119 ± 7 90 ± 6 47 ± 3 2
274 HATLAS J131540.6+262322 198.91917 26.38947 3.24 ± 0.34 85 ± 5 108 ± 7 102 ± 6 0
275 HATLAS J131634.2+243457 199.14232 24.58243 2.37 ± 0.3 63 ± 6 67 ± 7 50 ± 5 2
276 HATLAS J131635.1+332406 199.14629 33.40161 3.33 ± 0.35 34 ± 4 44 ± 5 43 ± 5 -1
277 HATLAS J131715.6+322643 199.3149 32.44538 1.25 ± 0.26 79 ± 7 57 ± 5 28 ± 2 2
278 HATLAS J131820.5+230158 199.5856 23.03276 1.08 ± 0.26 154 ± 9 103 ± 6 48 ± 3 -1
279 HATLAS J132034.0+343940 200.14147 34.661 1.39 ± 0.26 120 ± 8 92 ± 6 48 ± 3 1
280 HATLAS J132111.2+265009 200.29654 26.83585 2.12 ± 0.28 99 ± 6 99 ± 6 67 ± 4 1
281 HATLAS J132123.8+265910 200.34925 26.9861 1.61 ± 0.27 114 ± 8 96 ± 6 54 ± 4 -1
282 HATLAS J132128.6+282020 200.36904 28.33888 2.17 ± 0.29 100 ± 6 101 ± 6 70 ± 4 -1
283 HATLAS J132314.3+285039 200.80957 28.84426 1.68 ± 0.27 154 ± 8 133 ± 7 77 ± 4 -1
284 HATLAS J132355.2+282319 200.97994 28.3885 2.28 ± 0.29 63 ± 6 66 ± 6 47 ± 5 1
285 HATLAS J132419.0+320752 201.07921 32.13114 3.75 ± 0.37 71 ± 4 99 ± 5 104 ± 6 2
286 HATLAS J132427.0+284450 201.11257 28.74716 2.27 ± 0.29 329 ± 7 342 ± 7 244 ± 5 2
287 HATLAS J132453.6+244909 201.22317 24.81924 1.95 ± 0.28 55 ± 7 52 ± 6 33 ± 4 -1
288 HATLAS J132504.4+311534 201.26821 31.25951 1.83 ± 0.27 233 ± 8 212 ± 7 130 ± 4 0
289 HATLAS J132621.6+231646 201.58983 23.27955 1.64 ± 0.27 68 ± 7 58 ± 6 33 ± 3 -1
290 HATLAS J132630.1+334408 201.6255 33.73548 3.94 ± 0.38 171 ± 4 247 ± 6 270 ± 7 2
291 HATLAS J132630.5+291840 201.62697 29.31112 1.32 ± 0.26 138 ± 8 103 ± 6 52 ± 3 1
292 HATLAS J132748.0+282411 201.94988 28.40301 1.44 ± 0.27 130 ± 8 102 ± 6 54 ± 3 1
293 HATLAS J132812.5+232747 202.05204 23.46302 1.85 ± 0.28 78 ± 8 71 ± 7 44 ± 4 1
294 HATLAS J132859.2+292327 202.2468 29.39074 2.85 ± 0.32 233 ± 5 275 ± 6 234 ± 5 0
295 HATLAS J132900.4+281914 202.25187 28.32064 2.32 ± 0.29 110 ± 6 116 ± 6 84 ± 4 -1
296 HATLAS J132957.3+295302 202.48869 29.88398 1.37 ± 0.26 140 ± 8 107 ± 6 55 ± 3 0
297 HATLAS J133008.6+245900 202.53579 24.98334 2.33 ± 0.29 255 ± 6 269 ± 7 196 ± 5 1
298 HATLAS J133020.9+240249 202.58712 24.04686 3.01 ± 0.33 53 ± 6 65 ± 7 58 ± 6 -1
299 HATLAS J133038.3+255129 202.65945 25.85796 2.04 ± 0.28 151 ± 7 147 ± 7 97 ± 5 0
300 HATLAS J133231.6+350843 203.13181 35.14522 1.82 ± 0.27 114 ± 7 104 ± 7 63 ± 4 2
301 HATLAS J133255.8+342208 203.23246 34.36886 1.8 ± 0.27 189 ± 8 170 ± 7 103 ± 4 -1
302 HATLAS J133312.2+271025 203.30088 27.17365 1.21 ± 0.26 145 ± 8 103 ± 6 50 ± 3 1
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No. H-ATLAS name α (deg) δ (deg) zunbiasedMMF SMMF (mJy/beam) Reliability
250 µm 350 µm 500 µm

303 HATLAS J133413.8+260458 203.55768 26.08276 2.63 ± 0.31 127 ± 5 144 ± 6 115 ± 5 2
304 HATLAS J133440.4+353141 203.66844 35.52806 2.92 ± 0.32 69 ± 5 83 ± 5 72 ± 5 2
305 HATLAS J133534.1+341835 203.892 34.30967 2.3 ± 0.29 106 ± 6 111 ± 6 80 ± 5 1
306 HATLAS J133538.3+265742 203.90947 26.96173 2.14 ± 0.29 98 ± 6 98 ± 6 67 ± 4 -1
307 HATLAS J133543.0+300402 203.92905 30.06709 2.26 ± 0.29 130 ± 6 134 ± 7 95 ± 5 0
308 HATLAS J133622.7+343806 204.09456 34.63513 1.22 ± 0.26 190 ± 9 136 ± 6 67 ± 3 1
309 HATLAS J133650.0+291800 204.20819 29.3 1.83 ± 0.27 291 ± 7 265 ± 6 162 ± 4 0
310 HATLAS J133806.8+351530 204.52854 35.25838 1.9 ± 0.28 79 ± 7 74 ± 6 46 ± 4 -1
311 HATLAS J133834.2+294805 204.64238 29.80143 1.37 ± 0.26 135 ± 9 103 ± 7 53 ± 3 1
312 HATLAS J133846.5+255055 204.69389 25.84855 2.45 ± 0.3 151 ± 7 165 ± 7 125 ± 5 2
313 HATLAS J133856.5+304721 204.73523 30.78917 1.35 ± 0.26 154 ± 7 116 ± 5 60 ± 3 0
314 HATLAS J133905.0+340819 204.77072 34.13859 1.9 ± 0.28 129 ± 7 120 ± 7 76 ± 4 0
315 HATLAS J134132.5+263334 205.38559 26.55947 1.67 ± 0.27 98 ± 6 84 ± 5 49 ± 3 1
316 HATLAS J134158.5+292833 205.49377 29.47585 1.59 ± 0.27 186 ± 8 155 ± 6 87 ± 4 -1
317 HATLAS J134240.1+272356 205.66709 27.39888 1.84 ± 0.27 102 ± 7 93 ± 6 57 ± 4 1
318 HATLAS J134324.5+240202 205.85212 24.03402 2.15 ± 0.29 73 ± 7 73 ± 7 50 ± 5 -1
319 HATLAS J134400.4+342243 206.00159 34.37868 1.59 ± 0.27 140 ± 8 117 ± 6 66 ± 4 1
320 HATLAS J134421.9+261513 206.09107 26.25358 1.4 ± 0.27 124 ± 8 96 ± 6 50 ± 3 2
321 HATLAS J134429.5+303034 206.12285 30.50948 2.29 ± 0.29 443 ± 6 463 ± 7 332 ± 5 0
322 HATLAS J134441.5+240345 206.17285 24.06259 2.37 ± 0.3 65 ± 7 69 ± 7 51 ± 5 -1
323 HATLAS J134553.7+345802 206.47383 34.96729 1.02 ± 0.26 134 ± 8 87 ± 5 39 ± 2 0
324 HATLAS J134654.4+295659 206.72685 29.94962 1.56 ± 0.27 143 ± 8 118 ± 6 66 ± 3 1
325 HATLAS J134853.0+270011 207.22075 27.00295 2.49 ± 0.3 71 ± 6 78 ± 7 60 ± 5 -1
326 HATLAS J135020.3+265536 207.58468 26.92669 2.04 ± 0.28 148 ± 7 144 ± 7 95 ± 4 -1
327 HATLAS J135026.2+241402 207.60907 24.23384 2.78 ± 0.32 37 ± 6 43 ± 7 36 ± 6 -1
328 HATLAS J222206.2-340025 335.52571 -34.00681 1.29 ± 0.26 159 ± 8 117 ± 6 59 ± 3 2
329 HATLAS J223753.8-305828 339.47426 -30.97452 2.26 ± 0.29 121 ± 6 126 ± 6 89 ± 4 2
330 HATLAS J223829.1-304149 339.62142 -30.69684 1.5 ± 0.27 226 ± 8 182 ± 6 99 ± 3 0
331 HATLAS J223942.4-333304 339.92682 -33.55121 2.39 ± 0.3 91 ± 6 97 ± 6 72 ± 5 -1
332 HATLAS J224026.5-315155 340.11058 -31.86522 1.92 ± 0.28 102 ± 7 96 ± 6 60 ± 4 0
333 HATLAS J224435.5-324202 341.14786 -32.70061 1.66 ± 0.27 183 ± 9 157 ± 8 90 ± 5 0
334 HATLAS J224506.5-295624 341.27704 -29.94002 1.06 ± 0.26 191 ± 8 127 ± 5 58 ± 2 2
335 HATLAS J224536.3-312841 341.40112 -31.47813 1.15 ± 0.26 129 ± 8 89 ± 6 43 ± 3 1
336 HATLAS J224720.9-302206 341.837 -30.36833 1.22 ± 0.26 132 ± 8 94 ± 5 46 ± 3 2
337 HATLAS J224805.4-335820 342.02232 -33.97226 2.87 ± 0.32 108 ± 5 128 ± 6 110 ± 6 0
338 HATLAS J224932.7-323116 342.38612 -32.52122 1.81 ± 0.27 107 ± 7 97 ± 6 59 ± 4 0
339 HATLAS J225201.1-322055 343.00477 -32.34864 1.15 ± 0.26 150 ± 7 104 ± 5 49 ± 2 2
340 HATLAS J225250.7-313658 343.21138 -31.61605 2.7 ± 0.31 98 ± 5 112 ± 6 92 ± 5 0
341 HATLAS J225301.6-314442 343.25682 -31.74502 1.49 ± 0.27 127 ± 7 102 ± 6 55 ± 3 0
342 HATLAS J225324.2-323504 343.35103 -32.5845 2.05 ± 0.28 118 ± 7 115 ± 7 76 ± 4 0
343 HATLAS J225600.7-313232 344.00286 -31.54211 1.86 ± 0.28 118 ± 7 109 ± 6 67 ± 4 2
344 HATLAS J225706.7-294314 344.27786 -29.72061 1.44 ± 0.27 155 ± 9 122 ± 7 65 ± 4 2
345 HATLAS J225844.8-295125 344.68666 -29.85693 2.44 ± 0.3 156 ± 7 169 ± 7 128 ± 6 1
346 HATLAS J230815.6-343801 347.06496 -34.6337 4.03 ± 0.38 81 ± 4 119 ± 6 132 ± 6 -1
347 HATLAS J230917.7-312144 347.32394 -31.36222 2.06 ± 0.28 105 ± 7 103 ± 7 68 ± 4 1
348 HATLAS J231651.6-345845 349.2149 -34.97919 1.7 ± 0.27 118 ± 7 103 ± 6 60 ± 4 -1
349 HATLAS J232210.9-333749 350.5454 -33.63041 1.89 ± 0.28 106 ± 6 99 ± 6 62 ± 4 1
350 HATLAS J232419.8-323927 351.08254 -32.65738 2.47 ± 0.3 199 ± 5 217 ± 6 165 ± 4 0
351 HATLAS J232531.4-302236 351.38064 -30.37653 2.32 ± 0.29 191 ± 5 201 ± 6 146 ± 4 -1
352 HATLAS J232550.8-333826 351.46158 -33.64046 1.89 ± 0.28 130 ± 7 121 ± 6 75 ± 4 0
353 HATLAS J232623.0-342642 351.59604 -34.4451 2.32 ± 0.29 134 ± 6 141 ± 7 103 ± 5 1
354 HATLAS J232625.3-323102 351.6056 -32.51714 2.27 ± 0.29 82 ± 5 86 ± 6 61 ± 4 0
355 HATLAS J232626.7-323135 351.61138 -32.52636 2.29 ± 0.29 82 ± 5 86 ± 6 61 ± 4 0
356 HATLAS J232827.6-294831 352.11494 -29.80854 1.84 ± 0.27 122 ± 7 111 ± 6 68 ± 4 1
357 HATLAS J232900.6-321744 352.25263 -32.29559 2.98 ± 0.33 105 ± 5 127 ± 6 112 ± 5 1
358 HATLAS J233128.0-342139 352.86648 -34.36076 1.37 ± 0.26 135 ± 8 103 ± 6 53 ± 3 1
359 HATLAS J233354.6-351627 353.47754 -35.27406 1 ± 0.27 145 ± 9 93 ± 6 42 ± 3 2
360 HATLAS J233437.0-303301 353.65431 -30.55039 1.19 ± 0.26 206 ± 8 145 ± 6 70 ± 3 1
361 HATLAS J233837.3-345509 354.65525 -34.91925 1.31 ± 0.26 132 ± 7 99 ± 5 50 ± 3 -1
362 HATLAS J234357.7-351724 355.99055 -35.28988 1.98 ± 0.28 234 ± 7 224 ± 7 144 ± 4 0
363 HATLAS J234418.1-303936 356.07554 -30.66013 3.13 ± 0.34 133 ± 5 166 ± 6 152 ± 6 0
364 HATLAS J234625.9-332615 356.60793 -33.43741 1.54 ± 0.27 164 ± 9 135 ± 7 74 ± 4 0
365 HATLAS J234955.7-330833 357.48208 -33.14252 2.87 ± 0.32 89 ± 6 106 ± 7 91 ± 6 -1
366 HATLAS J235154.9-355243 357.97876 -35.87856 1.2 ± 0.26 180 ± 8 128 ± 6 62 ± 3 0
367 HATLAS J235517.9-293517 358.82443 -29.58814 1.9 ± 0.28 87 ± 6 81 ± 5 51 ± 3 -1
368 HATLAS J235623.1-354119 359.09612 -35.68855 2.99 ± 0.33 120 ± 6 145 ± 7 129 ± 6 -1
369 HATLAS J235827.7-323244 359.61534 -32.54559 3.53 ± 0.36 100 ± 5 134 ± 7 135 ± 7 -1
370 HATLAS J235910.1-325701 359.79209 -32.95035 1.57 ± 0.27 122 ± 8 101 ± 7 56 ± 4 -1
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No. H-ATLAS name α (deg) δ (deg) zunbiasedMMF SMMF (mJy/beam) Reliability
250 µm 350 µm 500 µm

1 HATLAS J083359.4+005008 128.497828 0.835735 3.81 ± 0.37 22 ± 4 31 ± 6 33 ± 6 -1
2 HATLAS J083436.7+012907 128.653175 1.485354 4.41 ± 0.39 17 ± 3 28 ± 5 33 ± 6 -1
3 HATLAS J083700.1+013111 129.250571 1.519785 6.03 ± 0.34 14 ± 2 39 ± 5 60 ± 7 -1
4 HATLAS J084116.1+002619 130.317356 0.438641 5.01 ± 0.4 15 ± 3 29 ± 5 37 ± 7 -1
5 HATLAS J084213.4-000531 130.556008 -0.091959 3.76 ± 0.37 26 ± 5 36 ± 6 38 ± 7 -1
6 HATLAS J084644.6+002352 131.686002 0.397871 3.96 ± 0.38 18 ± 4 26 ± 5 28 ± 6 1
7 HATLAS J085340.9+024044 133.420602 2.679046 5.14 ± 0.39 13 ± 2 26 ± 5 35 ± 7 -1
8 HATLAS J085534.2+005258 133.892785 0.882992 5.29 ± 0.39 12 ± 2 26 ± 5 35 ± 7 -1
9 HATLAS J090029.8+001653 135.12445 0.281402 5.17 ± 0.39 11 ± 2 22 ± 4 29 ± 5 -1
10 HATLAS J090045.5+004131 135.189985 0.69217 6.35 ± 0.3 8 ± 1 25 ± 4 40 ± 6 0
11 HATLAS J090304.5-004616 135.769163 -0.771248 6.35 ± 0.3 7 ± 1 23 ± 4 37 ± 6 -1
12 HATLAS J090329.6+000753 135.873578 0.131548 4.89 ± 0.4 18 ± 3 33 ± 5 43 ± 6 -1
13 HATLAS J090540.0+020347 136.417044 2.063127 3.65 ± 0.36 32 ± 5 44 ± 7 45 ± 7 -1
14 HATLAS J090908.6-010140 137.286131 -1.027792 4.33 ± 0.39 20 ± 4 31 ± 6 36 ± 7 -1
15 HATLAS J091019.4+011755 137.581142 1.298769 4.04 ± 0.38 16 ± 3 24 ± 4 26 ± 5 -1
16 HATLAS J091025.9+002116 137.60821 0.354684 4.34 ± 0.39 16 ± 3 25 ± 5 29 ± 5 -1
17 HATLAS J091617.1+010036 139.071573 1.010031 4.97 ± 0.4 14 ± 3 26 ± 5 34 ± 6 0
18 HATLAS J091733.4+005054 139.389273 0.848382 4.34 ± 0.39 21 ± 3 33 ± 5 39 ± 6 -1
19 HATLAS J091902.6-003905 139.760959 -0.651409 5.8 ± 0.36 8 ± 2 21 ± 4 31 ± 6 -1
20 HATLAS J092215.4+002920 140.564326 0.489096 3.93 ± 0.38 22 ± 4 32 ± 6 35 ± 7 0
21 HATLAS J092406.5+003901 141.02734 0.65037 4.2 ± 0.39 17 ± 3 26 ± 5 29 ± 6 -1
22 HATLAS J092447.2+005854 141.19684 0.98167 3.61 ± 0.36 23 ± 4 32 ± 5 32 ± 6 1
23 HATLAS J092554.4+002846 141.47684 0.47952 5.12 ± 0.39 14 ± 2 27 ± 4 36 ± 5 -1
24 HATLAS J113009.3+004659 172.53891 0.78328 5.29 ± 0.39 10 ± 2 22 ± 4 30 ± 5 -1
25 HATLAS J113335.1+002616 173.39658 0.43789 4.95 ± 0.4 15 ± 3 28 ± 5 36 ± 7 -1
26 HATLAS J113650.3+010128 174.20998 1.0247 4.75 ± 0.4 17 ± 3 30 ± 5 37 ± 6 0
27 HATLAS J113942.6+001742 174.92773 0.29517 5.29 ± 0.39 13 ± 2 28 ± 5 38 ± 7 0
28 HATLAS J114038.8-022804 175.16169 -2.46805 5.38 ± 0.38 13 ± 2 27 ± 5 38 ± 7 -1
29 HATLAS J114137.2-001154 175.40502 -0.19846 4.68 ± 0.4 17 ± 3 30 ± 5 37 ± 7 -1
30 HATLAS J114257.7-005624 175.74048 -0.94008 4.3 ± 0.39 20 ± 3 31 ± 5 37 ± 6 0
31 HATLAS J114350.3-005210 175.95963 -0.86963 4.75 ± 0.4 14 ± 3 26 ± 5 32 ± 6 -1
32 HATLAS J114353.5+001250 175.97311 0.21399 5.39 ± 0.38 11 ± 2 24 ± 4 33 ± 6 1
33 HATLAS J114412.1+001812 176.05062 0.30345 4.67 ± 0.4 17 ± 3 30 ± 5 37 ± 6 -1
34 HATLAS J114420.2-020218 176.08449 -2.0386 4.93 ± 0.4 13 ± 3 25 ± 5 33 ± 6 0
35 HATLAS J114724.8-012743 176.85339 -1.46213 5.48 ± 0.38 10 ± 2 23 ± 4 32 ± 6 -1
36 HATLAS J115306.5-014248 178.2772 -1.71345 4.84 ± 0.4 16 ± 3 30 ± 6 38 ± 7 -1
37 HATLAS J115319.3-022936 178.3305 -2.49336 5.43 ± 0.38 12 ± 2 27 ± 5 38 ± 7 -1
38 HATLAS J115435.6-013057 178.64854 -1.51593 3.72 ± 0.37 25 ± 5 34 ± 6 36 ± 7 -1
39 HATLAS J115454.5-010322 178.72738 -1.05624 3.85 ± 0.37 25 ± 4 36 ± 5 39 ± 6 2
40 HATLAS J115606.9+012458 179.02879 1.41632 4.16 ± 0.39 17 ± 3 25 ± 5 29 ± 6 -1
41 HATLAS J115614.0+013900 179.0586 1.65024 5.89 ± 0.35 11 ± 2 30 ± 5 44 ± 7 -1
42 HATLAS J115633.8+014521 179.14101 1.75603 3.98 ± 0.38 15 ± 3 22 ± 4 24 ± 5 -1
43 HATLAS J115719.3-010052 179.33047 -1.0146 3.89 ± 0.38 21 ± 4 30 ± 6 33 ± 6 1
44 HATLAS J115803.2-004836 179.51362 -0.81008 3.84 ± 0.37 22 ± 4 32 ± 6 34 ± 6 -1
45 HATLAS J120022.8-004025 180.09541 -0.67377 3.91 ± 0.38 18 ± 4 26 ± 5 28 ± 6 -1
46 HATLAS J120904.8-010524 182.27007 -1.09008 5.51 ± 0.38 14 ± 2 33 ± 5 47 ± 7 -1
47 HATLAS J121004.6+011057 182.51954 1.18271 5.95 ± 0.34 8 ± 2 22 ± 4 34 ± 6 -1
48 HATLAS J121023.4+002621 182.5978 0.43918 6.35 ± 0.3 7 ± 1 21 ± 3 34 ± 6 0
49 HATLAS J121638.3-005132 184.15999 -0.85916 3.89 ± 0.38 20 ± 4 28 ± 5 31 ± 6 1
50 HATLAS J121646.7-000233 184.19499 -0.04274 5.59 ± 0.37 11 ± 2 27 ± 5 38 ± 7 0
51 HATLAS J121656.1-012557 184.23383 -1.43273 4.71 ± 0.4 17 ± 3 30 ± 5 37 ± 6 -1
52 HATLAS J121740.3-021133 184.41806 -2.19264 3.85 ± 0.37 20 ± 4 28 ± 5 30 ± 6 -1
53 HATLAS J121757.1-010815 184.48827 -1.13767 4.38 ± 0.39 20 ± 4 32 ± 6 38 ± 7 0
54 HATLAS J121803.7+005743 184.5156 0.96205 3.55 ± 0.36 23 ± 4 31 ± 5 31 ± 6 -1
55 HATLAS J122113.8-003149 185.30778 -0.53044 5.03 ± 0.39 17 ± 3 32 ± 6 42 ± 7 -1
56 HATLAS J122130.1-013308 185.37583 -1.5524 3.85 ± 0.37 22 ± 4 31 ± 6 33 ± 6 -1
57 HATLAS J122244.7+002320 185.68666 0.38914 4.27 ± 0.39 23 ± 4 36 ± 6 42 ± 7 -1
58 HATLAS J140926.1-012136 212.35893 -1.36003 4.21 ± 0.39 19 ± 4 29 ± 6 34 ± 6 0
59 HATLAS J140938.5+012832 212.4106 1.47561 4 ± 0.38 20 ± 4 29 ± 6 33 ± 6 -1
60 HATLAS J140959.8-015337 212.49924 -1.89362 4.19 ± 0.39 18 ± 3 27 ± 5 31 ± 6 -1
61 HATLAS J141143.1-001251 212.92996 -0.21442 4.02 ± 0.38 19 ± 4 28 ± 5 32 ± 6 0
62 HATLAS J141416.4+023453 213.56857 2.5816 4.37 ± 0.39 20 ± 3 32 ± 5 38 ± 6 -1
63 HATLAS J142141.4+011904 215.42273 1.31798 5.77 ± 0.36 10 ± 2 25 ± 5 36 ± 7 -1
64 HATLAS J142516.7-010213 216.31993 -1.0371 4.03 ± 0.38 20 ± 4 30 ± 6 33 ± 7 -1
65 HATLAS J142710.6+013806 216.79439 1.63525 3.79 ± 0.37 28 ± 4 40 ± 6 42 ± 6 1

Table B.2: 237 H-ATLAS sources that form our 500 µm-riser sample.
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No. H-ATLAS name α (deg) δ (deg) zunbiasedMMF SMMF (mJy/beam) Reliability
250 µm 350 µm 500 µm

66 HATLAS J142734.7+000835 216.8947 0.14321 4.92 ± 0.4 16 ± 3 30 ± 5 38 ± 7 -1
67 HATLAS J142756.2+000915 216.98433 0.15432 3.95 ± 0.38 21 ± 4 31 ± 5 34 ± 6 -1
68 HATLAS J143447.5-011809 218.69818 -1.30268 4.11 ± 0.38 27 ± 4 40 ± 6 45 ± 7 1
69 HATLAS J143513.7-011042 218.80728 -1.17844 5.22 ± 0.39 13 ± 2 26 ± 5 35 ± 6 -1
70 HATLAS J143727.4-013459 219.36453 -1.58314 3.83 ± 0.37 21 ± 4 30 ± 6 32 ± 6 -1
71 HATLAS J143919.5+015908 219.83143 1.98582 5.3 ± 0.39 12 ± 2 26 ± 5 35 ± 7 -1
72 HATLAS J143953.7+012507 219.97409 1.41863 5.17 ± 0.39 12 ± 2 25 ± 4 34 ± 6 1
73 HATLAS J144128.0+001355 220.36674 0.23211 5.45 ± 0.38 9 ± 2 20 ± 4 28 ± 5 -1
74 HATLAS J144410.5+004845 221.04401 0.81252 4.2 ± 0.39 17 ± 3 26 ± 5 30 ± 6 -1
75 HATLAS J144753.9+015400 221.97496 1.90014 3.94 ± 0.38 21 ± 4 31 ± 5 34 ± 6 1
76 HATLAS J144856.6+024806 222.23606 2.80174 4.21 ± 0.39 22 ± 3 34 ± 5 39 ± 6 -1
77 HATLAS J145035.8+000611 222.64936 0.10308 5.07 ± 0.39 14 ± 3 27 ± 5 35 ± 6 -1
78 HATLAS J145039.4-003925 222.66433 -0.65698 3.63 ± 0.36 23 ± 4 31 ± 6 32 ± 6 0
79 HATLAS J000006.6-303443 0.02755 -30.57851 4.72 ± 0.4 15 ± 3 26 ± 5 32 ± 6 0
80 HATLAS J000308.6-331749 0.7857 -33.2969 4.37 ± 0.39 18 ± 3 28 ± 5 33 ± 6 -1
81 HATLAS J000442.1-324008 1.1754 -32.66889 3.98 ± 0.38 33 ± 4 48 ± 6 53 ± 6 1
82 HATLAS J000824.5-340548 2.10221 -34.09667 5.2 ± 0.39 13 ± 2 27 ± 5 37 ± 6 -1
83 HATLAS J001305.3-304540 3.27212 -30.76105 3.84 ± 0.37 22 ± 4 31 ± 5 33 ± 6 1
84 HATLAS J001534.5-304821 3.89389 -30.80579 4.56 ± 0.4 18 ± 3 30 ± 5 37 ± 6 -1
85 HATLAS J001748.4-335213 4.45155 -33.87021 3.88 ± 0.37 20 ± 4 28 ± 5 31 ± 6 -1
86 HATLAS J001917.8-333739 4.82428 -33.62757 4.77 ± 0.4 15 ± 3 27 ± 5 34 ± 6 -1
87 HATLAS J002028.3-353119 5.11775 -35.52207 4.99 ± 0.4 16 ± 3 30 ± 6 39 ± 7 2
88 HATLAS J002237.1-300722 5.65461 -30.12283 5.27 ± 0.39 12 ± 2 26 ± 5 35 ± 7 1
89 HATLAS J002300.8-333258 5.75341 -33.54936 3.89 ± 0.38 22 ± 4 31 ± 6 34 ± 6 -1
90 HATLAS J002347.4-322513 5.94732 -32.42015 4.2 ± 0.39 20 ± 3 30 ± 5 34 ± 6 -1
91 HATLAS J002435.7-295057 6.14872 -29.84914 4.09 ± 0.38 22 ± 4 32 ± 6 37 ± 7 -1
92 HATLAS J002546.6-300507 6.444 -30.08534 4.44 ± 0.39 17 ± 3 27 ± 5 32 ± 6 -1
93 HATLAS J002603.6-305948 6.51518 -30.99678 4.52 ± 0.39 17 ± 3 28 ± 5 34 ± 6 -1
94 HATLAS J003152.9-284343 7.97048 -28.72848 4.5 ± 0.39 17 ± 3 29 ± 6 34 ± 7 -1
95 HATLAS J003214.7-295656 8.06122 -29.9489 4.95 ± 0.4 15 ± 3 29 ± 5 38 ± 7 -1
96 HATLAS J003247.6-313214 8.19844 -31.53713 3.96 ± 0.38 18 ± 4 26 ± 5 29 ± 6 -1
97 HATLAS J003423.2-301146 8.59675 -30.196 5.16 ± 0.39 15 ± 2 30 ± 5 39 ± 6 -1
98 HATLAS J003431.0-275557 8.62929 -27.93253 3.69 ± 0.37 25 ± 5 35 ± 6 36 ± 7 -1
99 HATLAS J003458.8-324439 8.74482 -32.74422 4.29 ± 0.39 21 ± 4 33 ± 6 38 ± 6 0
100 HATLAS J003506.6-280621 8.77764 -28.10575 5.32 ± 0.39 12 ± 2 26 ± 5 35 ± 7 -1
101 HATLAS J003603.4-331114 9.01405 -33.18734 4.38 ± 0.39 18 ± 3 29 ± 5 35 ± 6 -1
102 HATLAS J003746.4-304516 9.44345 -30.75435 3.95 ± 0.38 25 ± 4 36 ± 6 40 ± 7 2
103 HATLAS J003830.8-293604 9.62824 -29.60115 4.69 ± 0.4 16 ± 3 29 ± 5 35 ± 6 -1
104 HATLAS J004135.5-301743 10.39791 -30.29526 3.91 ± 0.38 21 ± 4 31 ± 5 33 ± 6 -1
105 HATLAS J004202.4-275650 10.51004 -27.9471 6.34 ± 0.31 8 ± 1 25 ± 5 41 ± 7 -1
106 HATLAS J004218.4-302835 10.57666 -30.47626 4.9 ± 0.4 13 ± 2 25 ± 4 32 ± 5 0
107 HATLAS J004226.7-295508 10.61104 -29.91892 4.3 ± 0.39 19 ± 3 31 ± 5 36 ± 6 -1
108 HATLAS J004336.8-294629 10.90347 -29.77478 4.84 ± 0.4 14 ± 3 25 ± 5 32 ± 6 -1
109 HATLAS J004531.3-273655 11.38037 -27.61537 4.65 ± 0.4 17 ± 3 29 ± 5 35 ± 6 -1
110 HATLAS J004615.0-321825 11.56239 -32.30682 5.65 ± 0.37 14 ± 2 33 ± 5 48 ± 7 -1
111 HATLAS J004920.9-310555 12.33711 -31.09873 4.96 ± 0.4 17 ± 3 32 ± 5 41 ± 7 -1
112 HATLAS J005133.0-285422 12.88762 -28.90616 3.91 ± 0.38 24 ± 4 35 ± 6 38 ± 7 -1
113 HATLAS J005216.5-283325 13.06888 -28.55688 4.73 ± 0.4 16 ± 3 29 ± 6 36 ± 7 -1
114 HATLAS J005906.3-284622 14.77608 -28.77279 3.79 ± 0.37 24 ± 4 34 ± 6 36 ± 6 -1
115 HATLAS J005940.0-312519 14.9166 -31.42208 3.59 ± 0.36 21 ± 4 29 ± 5 29 ± 5 -1
116 HATLAS J010105.2-333447 15.27156 -33.57965 4.96 ± 0.4 16 ± 3 30 ± 5 38 ± 6 -1
117 HATLAS J010126.1-313311 15.35888 -31.55307 5.11 ± 0.39 14 ± 3 29 ± 5 38 ± 7 -1
118 HATLAS J010137.7-310438 15.40711 -31.07724 4.37 ± 0.39 21 ± 4 34 ± 6 40 ± 7 2
119 HATLAS J010216.1-331339 15.56692 -33.22763 6.35 ± 0.3 7 ± 1 23 ± 4 38 ± 7 -1
120 HATLAS J010322.9-290946 15.84526 -29.16287 6.35 ± 0.3 7 ± 1 23 ± 4 38 ± 7 -1
121 HATLAS J010641.5-295536 16.67308 -29.92658 4.34 ± 0.39 21 ± 4 33 ± 6 39 ± 7 -1
122 HATLAS J011217.8-325839 18.0741 -32.97742 4.97 ± 0.4 16 ± 3 31 ± 6 40 ± 7 -1
123 HATLAS J011459.2-295600 18.74664 -29.93332 4.19 ± 0.39 19 ± 3 29 ± 5 33 ± 6 0
124 HATLAS J011502.9-311639 18.76194 -31.27742 3.55 ± 0.36 23 ± 4 31 ± 6 32 ± 6 -1
125 HATLAS J011717.8-313434 19.3242 -31.57618 5.63 ± 0.37 12 ± 2 29 ± 5 41 ± 7 0
126 HATLAS J011756.9-312505 19.48717 -31.418 5.03 ± 0.39 14 ± 3 26 ± 5 34 ± 7 -1
127 HATLAS J011931.6-275452 19.88175 -27.91452 4.49 ± 0.39 16 ± 3 26 ± 5 31 ± 6 1
128 HATLAS J012048.8-305828 20.20345 -30.97436 5.49 ± 0.38 13 ± 2 30 ± 6 42 ± 8 -1
129 HATLAS J012050.3-331932 20.2097 -33.32547 5.58 ± 0.37 11 ± 2 25 ± 4 36 ± 6 -1
130 HATLAS J012213.2-302146 20.55511 -30.36281 4.08 ± 0.38 18 ± 3 27 ± 5 30 ± 5 0
131 HATLAS J012410.4-274606 21.04342 -27.76847 4.42 ± 0.39 26 ± 3 42 ± 6 50 ± 7 0
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No. H-ATLAS name α (deg) δ (deg) zunbiasedMMF SMMF (mJy/beam) Reliability
250 µm 350 µm 500 µm

132 HATLAS J012435.8-311231 21.14933 -31.20873 5.33 ± 0.39 15 ± 2 33 ± 5 45 ± 7 -1
133 HATLAS J012919.5-334807 22.33135 -33.80198 5.8 ± 0.36 10 ± 2 25 ± 5 36 ± 7 0
134 HATLAS J013155.8-311145 22.98238 -31.19597 5.26 ± 0.39 11 ± 2 22 ± 4 30 ± 6 0
135 HATLAS J013437.1-294945 23.65446 -29.82918 4.14 ± 0.39 20 ± 4 30 ± 6 34 ± 6 -1
136 HATLAS J013600.1-331414 24.00026 -33.23716 4.64 ± 0.4 19 ± 3 32 ± 5 40 ± 6 1
137 HATLAS J124559.5+325855 191.49782 32.98193 5.04 ± 0.39 14 ± 3 26 ± 5 34 ± 7 -1
138 HATLAS J124818.4+331525 192.07671 33.25682 6.22 ± 0.32 8 ± 2 24 ± 5 38 ± 8 -1
139 HATLAS J124821.7+324712 192.09048 32.78667 3.74 ± 0.37 21 ± 4 29 ± 6 31 ± 6 -1
140 HATLAS J125005.3+295627 192.52188 29.9409 4.94 ± 0.4 13 ± 3 25 ± 5 33 ± 6 -1
141 HATLAS J125041.9+323216 192.67448 32.53773 4.54 ± 0.4 17 ± 3 29 ± 6 35 ± 7 1
142 HATLAS J125048.4+263632 192.70163 26.60883 3.6 ± 0.36 22 ± 4 30 ± 5 31 ± 6 -1
143 HATLAS J125335.7+231935 193.39875 23.32631 3.59 ± 0.36 31 ± 5 42 ± 6 43 ± 6 1
144 HATLAS J125413.6+221132 193.55682 22.19217 4.11 ± 0.38 24 ± 3 35 ± 5 40 ± 6 -1
145 HATLAS J125547.7+224229 193.9489 22.70793 5.64 ± 0.37 11 ± 2 26 ± 5 38 ± 7 -1
146 HATLAS J125729.5+291649 194.37289 29.28026 5.48 ± 0.38 13 ± 2 30 ± 5 42 ± 7 1
147 HATLAS J125858.8+224602 194.74495 22.76724 6.35 ± 0.3 7 ± 1 22 ± 4 36 ± 6 -1
148 HATLAS J130233.7+264025 195.64042 26.67359 3.85 ± 0.37 31 ± 4 44 ± 6 47 ± 6 -1
149 HATLAS J130303.9+225541 195.76613 22.92814 4.74 ± 0.4 17 ± 3 30 ± 5 37 ± 6 0
150 HATLAS J130317.0+305015 195.82088 30.8375 4.57 ± 0.4 17 ± 3 29 ± 5 36 ± 6 1
151 HATLAS J130337.1+311655 195.90467 31.28193 5.34 ± 0.39 11 ± 2 24 ± 5 33 ± 6 1
152 HATLAS J130406.1+243843 196.02545 24.64537 4.79 ± 0.4 15 ± 3 27 ± 5 33 ± 6 0
153 HATLAS J130548.2+240824 196.45068 24.14001 4.52 ± 0.39 16 ± 3 26 ± 5 31 ± 6 1
154 HATLAS J130615.7+263834 196.56545 26.6429 3.86 ± 0.37 20 ± 4 28 ± 5 30 ± 6 1
155 HATLAS J130835.6+243036 197.14837 24.50999 5.12 ± 0.39 16 ± 3 32 ± 6 42 ± 8 -1
156 HATLAS J131051.0+243309 197.71234 24.55262 3.56 ± 0.36 26 ± 5 35 ± 6 35 ± 6 -1
157 HATLAS J131133.9+273020 197.89108 27.50556 4.08 ± 0.38 20 ± 4 30 ± 6 34 ± 6 -1
158 HATLAS J131218.0+330614 198.075 33.10383 4.49 ± 0.39 18 ± 3 29 ± 5 35 ± 6 -1
159 HATLAS J131354.8+285257 198.47817 28.8826 4.44 ± 0.39 17 ± 3 27 ± 5 33 ± 6 -1
160 HATLAS J131457.5+334250 198.73942 33.71387 5.23 ± 0.39 12 ± 2 26 ± 5 34 ± 7 -1
161 HATLAS J131650.8+254045 199.2116 25.6793 5.18 ± 0.39 13 ± 2 26 ± 5 35 ± 7 0
162 HATLAS J131732.7+225516 199.38609 22.9211 3.83 ± 0.37 25 ± 5 35 ± 7 37 ± 7 -1
163 HATLAS J131800.5+350909 199.50228 35.15254 4.27 ± 0.39 21 ± 4 32 ± 6 38 ± 7 1
164 HATLAS J131818.7+261439 199.578 26.2442 6.01 ± 0.34 11 ± 1 30 ± 4 46 ± 6 0
165 HATLAS J131953.4+231355 199.9723 23.23182 3.7 ± 0.37 24 ± 4 33 ± 5 34 ± 6 -1
166 HATLAS J132037.2+272629 200.15492 27.44151 3.68 ± 0.37 21 ± 4 29 ± 6 30 ± 6 -1
167 HATLAS J132122.8+261443 200.34519 26.24517 3.8 ± 0.37 28 ± 4 40 ± 6 42 ± 7 -1
168 HATLAS J132158.0+251200 200.49181 25.19987 3.93 ± 0.38 23 ± 4 33 ± 6 36 ± 7 0
169 HATLAS J132240.6+314953 200.66932 31.83131 3.55 ± 0.36 20 ± 4 27 ± 5 28 ± 5 -1
170 HATLAS J132247.9+234915 200.6994 23.8208 4.66 ± 0.4 14 ± 3 25 ± 5 31 ± 6 -1
171 HATLAS J132306.3+244457 200.77612 24.74909 4.23 ± 0.39 23 ± 4 36 ± 5 41 ± 6 -1
172 HATLAS J132354.5+345052 200.97727 34.84778 4.21 ± 0.39 19 ± 4 30 ± 5 34 ± 6 -1
173 HATLAS J132442.3+262451 201.17616 26.41423 4.79 ± 0.4 19 ± 3 35 ± 5 43 ± 7 -1
174 HATLAS J132525.3+310641 201.35521 31.11126 5.44 ± 0.38 12 ± 2 27 ± 5 38 ± 7 -1
175 HATLAS J132810.7+253419 202.04466 25.57205 4.13 ± 0.38 22 ± 4 33 ± 6 37 ± 6 1
176 HATLAS J132854.8+243545 202.2282 24.59587 4.35 ± 0.39 17 ± 3 28 ± 5 32 ± 6 -1
177 HATLAS J132928.9+274016 202.37052 27.67114 4.45 ± 0.39 17 ± 3 28 ± 5 33 ± 6 -1
178 HATLAS J132932.8+243125 202.38677 24.52368 3.59 ± 0.36 23 ± 4 31 ± 6 32 ± 6 -1
179 HATLAS J132949.9+283751 202.45776 28.63093 4.09 ± 0.38 22 ± 4 32 ± 6 36 ± 6 -1
180 HATLAS J133102.3+334218 202.75967 33.70496 4.33 ± 0.39 17 ± 3 27 ± 5 32 ± 6 -1
181 HATLAS J133115.7+322657 202.81525 32.44905 4.87 ± 0.4 14 ± 3 26 ± 5 32 ± 6 -1
182 HATLAS J133131.1+272503 202.87978 27.41749 5.02 ± 0.39 17 ± 3 33 ± 5 43 ± 6 -1
183 HATLAS J133245.4+260531 203.18921 26.09199 4.2 ± 0.39 20 ± 4 30 ± 5 34 ± 6 -1
184 HATLAS J133404.6+321017 203.51898 32.17136 4.57 ± 0.4 16 ± 3 27 ± 5 33 ± 6 -1
185 HATLAS J133406.6+300930 203.5275 30.15842 4.9 ± 0.4 13 ± 2 24 ± 4 31 ± 6 0
186 HATLAS J133416.2+284601 203.56736 28.76707 4.24 ± 0.39 17 ± 3 26 ± 5 30 ± 6 -1
187 HATLAS J133437.9+244547 203.65811 24.76305 4.33 ± 0.39 19 ± 4 30 ± 6 35 ± 7 -1
188 HATLAS J133447.6+302524 203.69846 30.42342 3.92 ± 0.38 21 ± 4 31 ± 5 34 ± 6 -1
189 HATLAS J133734.5+233433 204.39369 23.57589 5.06 ± 0.39 14 ± 3 28 ± 5 37 ± 7 -1
190 HATLAS J133803.8+333002 204.51599 33.50048 5.12 ± 0.39 13 ± 2 26 ± 5 35 ± 7 1
191 HATLAS J133812.8+321941 204.55317 32.32804 3.61 ± 0.36 21 ± 4 29 ± 6 30 ± 6 -1
192 HATLAS J134207.7+352858 205.53188 35.48283 4.08 ± 0.38 22 ± 4 33 ± 5 37 ± 6 -1
193 HATLAS J134256.5+255754 205.73562 25.96504 3.61 ± 0.36 23 ± 4 31 ± 6 32 ± 6 -1
194 HATLAS J134301.8+232138 205.75738 23.36044 5.76 ± 0.36 10 ± 2 24 ± 5 36 ± 7 -1
195 HATLAS J134422.2+265845 206.09236 26.97918 4.48 ± 0.39 19 ± 3 31 ± 6 37 ± 7 -1
196 HATLAS J134515.4+304455 206.31416 30.74855 3.81 ± 0.37 22 ± 4 31 ± 6 33 ± 6 2

Table B.2 (cont.)



264 Appendix B

No. H-ATLAS name α (deg) δ (deg) zunbiasedMMF SMMF (mJy/beam) Reliability
250 µm 350 µm 500 µm

197 HATLAS J134531.6+281303 206.38154 28.21738 5.06 ± 0.39 13 ± 2 25 ± 5 33 ± 6 -1
198 HATLAS J134534.3+284050 206.39279 28.68045 5.6 ± 0.37 12 ± 2 28 ± 5 40 ± 7 -1
199 HATLAS J134622.9+233256 206.5955 23.54898 5.08 ± 0.39 16 ± 3 32 ± 5 42 ± 7 -1
200 HATLAS J134735.5+245809 206.89795 24.9692 4.94 ± 0.4 16 ± 3 30 ± 6 39 ± 7 -1
201 HATLAS J134944.5+273609 207.43532 27.60259 3.87 ± 0.37 22 ± 4 31 ± 6 34 ± 6 -1
202 HATLAS J222645.4-292709 336.68912 -29.45246 4.46 ± 0.39 23 ± 4 37 ± 6 44 ± 8 -1
203 HATLAS J224121.3-305125 340.33885 -30.85684 4.17 ± 0.39 18 ± 4 28 ± 5 32 ± 6 -1
204 HATLAS J224211.1-335351 340.5464 -33.89737 5.03 ± 0.39 17 ± 3 34 ± 5 44 ± 7 -1
205 HATLAS J224221.7-350505 340.59061 -35.08485 3.72 ± 0.37 22 ± 4 31 ± 6 33 ± 6 -1
206 HATLAS J224625.4-352050 341.60585 -35.34713 3.54 ± 0.36 23 ± 4 31 ± 5 31 ± 5 -1
207 HATLAS J225017.9-321548 342.57478 -32.26341 3.97 ± 0.38 25 ± 4 36 ± 5 39 ± 6 -1
208 HATLAS J225416.8-293024 343.57008 -29.50654 5.76 ± 0.36 10 ± 2 24 ± 4 36 ± 6 -1
209 HATLAS J225929.3-292611 344.87215 -29.43648 5.3 ± 0.39 13 ± 2 27 ± 5 37 ± 6 -1
210 HATLAS J230233.6-324821 345.63999 -32.80592 6.35 ± 0.3 7 ± 1 22 ± 4 35 ± 7 -1
211 HATLAS J230421.2-340806 346.08818 -34.13486 4.24 ± 0.39 19 ± 3 30 ± 5 34 ± 6 -1
212 HATLAS J230604.4-324951 346.51814 -32.83094 4.74 ± 0.4 14 ± 3 25 ± 5 31 ± 6 -1
213 HATLAS J230648.5-295046 346.70199 -29.8462 4.89 ± 0.4 15 ± 3 28 ± 5 35 ± 6 -1
214 HATLAS J230718.6-325452 346.82762 -32.91445 4.98 ± 0.4 15 ± 3 29 ± 6 38 ± 7 0
215 HATLAS J231057.8-334828 347.74092 -33.80789 4.73 ± 0.4 15 ± 3 26 ± 5 32 ± 6 0
216 HATLAS J232149.3-351916 350.45546 -35.32113 5.14 ± 0.39 13 ± 2 27 ± 5 36 ± 7 -1
217 HATLAS J232322.3-355631 350.84293 -35.942 3.8 ± 0.37 26 ± 4 36 ± 6 39 ± 6 -1
218 HATLAS J232505.8-331012 351.2741 -33.16989 5.7 ± 0.37 8 ± 2 20 ± 4 30 ± 6 -1
219 HATLAS J232550.2-320153 351.45898 -32.03141 3.82 ± 0.37 21 ± 4 30 ± 5 32 ± 6 2
220 HATLAS J232631.8-340353 351.63244 -34.06465 3.51 ± 0.36 24 ± 4 31 ± 6 32 ± 6 -1
221 HATLAS J232954.3-300820 352.47639 -30.13893 3.62 ± 0.36 22 ± 4 31 ± 6 31 ± 6 0
222 HATLAS J233136.8-330350 352.90326 -33.06386 5.06 ± 0.39 14 ± 3 28 ± 5 36 ± 7 -1
223 HATLAS J233245.1-354618 353.18775 -35.77158 5.33 ± 0.39 15 ± 3 33 ± 6 45 ± 9 -1
224 HATLAS J233254.3-345553 353.22623 -34.9313 4.52 ± 0.39 21 ± 4 34 ± 6 41 ± 7 0
225 HATLAS J233344.1-323041 353.43366 -32.51129 4.54 ± 0.4 14 ± 3 24 ± 5 29 ± 6 -1
226 HATLAS J233806.0-321923 354.52505 -32.32305 5.32 ± 0.39 12 ± 2 25 ± 5 34 ± 6 -1
227 HATLAS J233900.7-352059 354.75279 -35.34978 5.12 ± 0.39 15 ± 3 30 ± 5 39 ± 7 -1
228 HATLAS J234151.2-353451 355.46321 -35.58076 4.69 ± 0.4 16 ± 3 28 ± 6 35 ± 7 -1
229 HATLAS J234611.7-330157 356.54882 -33.03263 4.15 ± 0.39 20 ± 4 30 ± 6 34 ± 7 0
230 HATLAS J235016.4-304754 357.56828 -30.79842 4.83 ± 0.4 15 ± 3 28 ± 5 35 ± 6 1
231 HATLAS J235122.0-352516 357.84158 -35.42107 4.94 ± 0.4 14 ± 3 26 ± 5 34 ± 7 -1
232 HATLAS J235423.2-322301 358.5965 -32.38369 3.58 ± 0.36 25 ± 5 33 ± 6 34 ± 6 -1
233 HATLAS J235542.5-341236 358.92699 -34.2099 5.31 ± 0.39 11 ± 2 23 ± 4 32 ± 6 0
234 HATLAS J235608.0-351731 359.03331 -35.29186 4.39 ± 0.39 17 ± 3 27 ± 5 32 ± 5 1
235 HATLAS J235636.6-305628 359.15239 -30.94124 4.63 ± 0.4 14 ± 3 24 ± 5 30 ± 6 -1
236 HATLAS J235730.8-332701 359.3782 -33.45037 5.32 ± 0.39 12 ± 2 25 ± 5 34 ± 6 -1
237 HATLAS J235917.5-320511 359.82304 -32.08649 4.2 ± 0.39 19 ± 4 28 ± 5 33 ± 6 1
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Appendix C: Candidate lensed galaxies

We show here the images of the 40 lensed galaxies candidates selected after cross-matching
the robust high-z subsample of 283 high-z candidates with a sample of 1,776,242 known-low
redshift galaxies from SDSS DR14. H-ATLAS sources and SDSS associations are marked
with a pink and a green square, respectively. Einstein rings according to the Einstein radii
estimated in Table 2.4 are drawn as red circles. Those examples predicted as lenses by one
of the models derived with our CNN have their ID names highlighted in orange.
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Figure C: Images (47 x 47 arcsec2) of the 40 associations found between the robust high-z
subsample of 283 high-z candidates and a sample of 1,776,242 known-low-redshift galaxies
from SDSS DR14.
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Appendix D: CNN results for DES strong lenses

We present here the probability scores (Plens) achieved for a sample of DES strong lens
candidates presented in Jacobs et al. (2019) and Huang et al. (2020). The model applied
was trained with the clean KiDS-like training data set in g, r, and i bands.

ID Plens Ref

DES J000223.6-350716.4 1 [1]
DES J003119.7-642037.7 1 [1]
DES J005012.3-465143.6 1 [1]
DES J010127.8-334319.2 1 [1]
DES J010158.0-491738.2 1 [1]
DES J010910.7-045510.1 1 [1]
DES J012201.0-583718.6 1 [1]
DES J012431.2-520702.8 1 [1]
DES J012753.2-453233.9 1 [1]
DES J012921.3+003916.9 1 [2] (Grade B)
DES J013322.1-125201.2 1 [1]
DES J013403.8-200709.0 1 [1]
DES J013442.4+043350.0 1 [2] (Grade B)
DES J013650.9-220027.3 1 [1]
DES J014546.8-354127.3 1 [1]
DES J014918.8-134904.6 1 [1]
DES J015319.3-135131.0 1 [1]
DES J015843.7-130132.9 1 [1]
DES J020108.0-155117.0 1 [1]
DES J020304.0-233802.6 1 [1]
DES J020517.0-012320.5 1 [1]
DES J020613.5-011417.4 1 [1]
DES J020706.7-272644.8 1 [1]

ID Plens Ref

DES J021225.2-085210.8 1 [1]
DES J022042.3-453003.1 1 [1]
DES J022416.2-162236.1 1 [2] (Grade B)
DES J022434.5-000228.0 1 [2] (Grade A)
DES J023249.9-032325.9 1 [1]
DES J023307.1-043838.1 1 [1]
DES J023527.2-481821.0 1 [1]
DES J023745.4-180102.1 1 [1]
DES J023929.7-321129.6 1 [1]
DES J024809.5-395548.3 1 [1]
DES J024857.6-605403.5 1 [1]
DES J024958.7-505638.4 1 [1]
DES J025623.4-270718.6 1 [1]
DES J025948.2-080446.0 1 [1]
DES J030945.1-143716.1 1 [1]
DES J031050.1-174629.3 1 [2] (Grade B)
DES J031105.6-260104.0 1 [1]
DES J031710.2-262515.9 1 [1]
DES J031937.7-575107.9 1 [1]
DES J032037.0-162422.2 1 [1]
DES J032251.9-394609.7 1 [1]
DES J032711.3-324634.2 1 [1]
DES J032727.2-132622.6 1 [1]

Table D: Plens scores achieved for a sample of DES strong lens candidates presented in
[1] Jacobs et al. (2019) and [2] Huang et al. (2020). The grades stand for the level of
confidence on the candidates (A>B).
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ID Plens Ref

DES J032813.6-214019.5 1 [1]
DES J033202.6-132510.2 1 [1]
DES J033845.7-161923.0 1 [1]
DES J034021.4-253330.1 1 [1]
DES J034435.1-444744.0 1 [1]
DES J034713.3-453506.0 1 [1]
DES J034744.5-245431.5 1 [1]
DES J035242.4-382544.9 1 [1]
DES J035346.2-170639.2 1 [1]
DES J040312.8-151257.7 1 [1]
DES J041238.9-195410.9 1 [1]
DES J041538.6-401232.1 1 [1]
DES J041544.5-414346.2 1 [1]
DES J042042.8-542237.4 1 [1]
DES J042438.7-331741.7 1 [1]
DES J043141.6-431740.7 1 [1]
DES J045751.1-433134.2 1 [1]
DES J045847.9-404503.8 1 [1]
DES J050106.7-505447.3 1 [1]
DES J051641.6-441644.5 1 [1]
DES J053142.5-315851.3 1 [1]
DES J053349.3-253654.4 1 [1]
DES J053605.2-533847.1 1 [1]
DES J054358.0-303449.5 1 [1]
DES J055734.4-415950.3 1 [1]
DES J201419.4-575701.5 1 [1]
DES J220044.5-412820.2 1 [1]
DES J221156.8-543839.9 1 [1]
DES J221912.4-434835.1 1 [1]
DES J231200.4-475411.6 1 [1]
DES J232128.4-463049.4 1 [1]
DES J233459.2-640407.0 1 [1]
DES J235519.2-613637.0 1 [1]
DES J032222.6-422421.8 1 [1]
DES J001916.3-413650.6 1 [1]
DES J002228.5+014813.3 1 [2] (Grade B)
DES J010104.0-173203.8 1 [2] (Grade B)
DES J011357.1-292439.2 1 [1]
DES J015909.6-185660.0 1 [1]
DES J022930.5-033836.2 1 [1]
DES J025052.3-552411.7 1 [1]
DES J042930.8-224359.6 1 [1]
DES J053804.6-473513.7 1 [1]
DES J205308.7-504652.4 1 [1]
DES J213156.3-465544.2 1 [1]
DES J014713.9-120648.0 1 [1]

ID Plens Ref

DES J015042.4-024206.5 1 [1]
DES J043303.5-271423.4 1 [1]
DES J025021.2-254513.8 1 [1]
DES J044311.8-202647.7 1 [1]
DES J230521.7-000211.6 1 [1]
DES J014235.0-164817.5 1 [1]
DES J025335.3-354731.5 1 [1]
DES J033628.6-381208.8 1 [1]
DES J224503.8-501725.3 1 [1]
DES J044805.3-580721.3 1 [1]
DES J041013.3-303725.9 1 [1]
DES J002847.0-510849.0 1 [1]
DES J014944.9-380653.7 1 [1]
DES J014504.3-045551.0 1 [1]
DES J031941.3-173404.4 1 [1]
DES J035720.6-595154.4 1 [1]
DES J212447.2-412815.7 1 [1]
DES J031309.8-200631.5 1 [1]
DES J035447.5-242015.0 1 [1]
DES J032242.4-233954.9 1 [1]
DES J043748.1-513628.0 1 [1]
DES J233130.5+003733.4 1 [1]
DES J020929.3-064311.8 1 [1]
DES J013542.8-203335.5 1 [1]
DES J041242.9-264632.3 1 [1]
DES J014106.1-171323.7 1 [1]
DES J013515.5-172415.4 1 [1]
DES J013642.3-194605.3 1 [1]
DES J034745.4-364737.1 1 [1]
DES J015009.1-030438.3 1 [1]
DES J045733.8-354953.3 1 [1]
DES J022014.3-533510.9 1 [1]
DES J225954.8-450448.5 1 [1]
DES J044909.5-291816.4 1 [1]
DES J012533.6-414218.0 1 [1]
DES J222609.3+004142.1 1 [1]
DES J013522.8-423223.5 1 [1]
DES J225403.0-405549.1 1 [1]
DES J020144.7-273942.4 1 [1]
DES J015824.8-003959.4 1 [1]
DES J015930.8-431756.8 1 [1]
DES J051200.8-504122.8 1 [1]
DES J040314.1-150244.9 1 [2] (Grade B)
DES J042934.7-601126.3 1 [1]
DES J014953.7-130609.7 1 [1]
DES J213217.6-430535.1 1 [1]
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DES J011756.9-242824.6 1 [1]
DES J033459.3-263431.7 1 [1]
DES J021958.0-145645.6 1 [2] (Grade B)
DES J032125.6-153003.5 1 [1]
DES J015153.4-144824.8 1 [2] (Grade A)
DES J042816.3-321800.0 1 [1]
DES J030151.3-442626.0 1 [1]
DES J013718.8-083055.9 1 [1]
DES J014741.0-472640.3 1 [1]
DES J024129.6-594932.9 1 [1]
DES J205615.8-423857.2 1 [1]
DES J011218.1-043458.7 1 [1]
DES J202518.3-420456.9 1 [1]
DES J233734.7-473024.1 1 [1]
DES J010238.3+015856.7 1 [1]
DES J055949.5-354012.5 1 [1]
DES J013354.7-643413.0 1 [1]
DES J024217.3-162441.8 1 [2] (Grade B)
DES J040322.7-543237.1 1 [1]
DES J233607.1-535235.8 1 [1]
DES J014556.3+040229.0 1 [1]
DES J012453.1-144302.6 1 [1]
DES J010210.3-001906.2 1 [2] (Grade B)
DES J030352.3-502351.9 1 [1]
DES J053724.4-464702.4 1 [1]
DES J024216.2-020749.3 1 [1]
DES J004741.6-060611.5 1 [2] (Grade B)
DES J004405.3-044820.9 1 [2] (Grade B)
DES J014134.0-404033.3 1 [1]
DES J001310.1-033545.5 1 [1]
DES J013050.5-160008.5 1 [1]
DES J011301.2-034315.6 1 [2] (Grade B)
DES J033030.8-212711.3 1 [1]
DES J040624.5-264625.0 1 [1]
DES J010510.1-182322.2 1 [2] (Grade B)
DES J221913.2-450450.6 1 [1]
DES J230527.8-444146.6 1 [1]
DES J030920.6-380545.7 1 [1]
DES J230003.2-445423.3 1 [1]
DES J011408.4-361313.5 1 [1]
DES J032801.2-402957.2 1 [1]
DES J023906.5-204718.0 1 [1]
DES J005650.7-411736.8 1 [1]
DES J001542.8-463611.0 1 [1]
DES J043022.2-205110.0 1 [1]
DES J011336.9-185939.1 1 [2] (Grade B)

ID Plens Ref

DES J013415.8-291039.9 1 [1]
DES J001309.6+004003.6 1 [1]
DES J012932.0-114214.0 1 [1]
DES J010530.3-295249.1 1 [1]
DES J015947.0-481812.7 1 [1]
DES J045229.7-354027.2 1 [1]
DES J012611.9-131642.1 1 [1]
DES J050304.8-355306.7 1 [1]
DES J041906.5-295937.8 1 [1]
DES J045332.3-553527.8 1 [1]
DES J022307.7-052758.0 1 [2] (Grade B)
DES J013639.1+000818.1 1 [1]
DES J230136.4-650157.7 1 [1]
DES J003406.4-240525.9 1 [1]
DES J020622.0-205420.2 1 [1]
DES J214052.0-014937.8 1 [1]
DES J010202.9-150028.3 1 [1]
DES J022629.9+020646.9 1 [1]
DES J034805.8-265513.7 1 [1]
DES J023505.9-451054.2 1 [1]
DES J234930.1-511339.0 1 [1]
DES J213758.0-012923.9 1 [1]
DES J034130.8-513044.7 1 [1 ]
DES J031337.4-361039.9 1 [1]
DES J050921.4-534212.6 1 [1]
DES J005735.2-590518.5 1 [1]
DES J021408.0-020628.4 1 [1]
DES J223421.4-411040.0 1 [1]
DES J215252.9-525006.0 1 [1]
DES J014908.0-313738.3 1 [1]
DES J032028.0-415919.7 1 [1]
DES J020504.9-403828.2 1 [1]
DES J014313.2-501012.8 1 [1]
DES J042909.0-282616.8 1 [1]
DES J001552.1-023045.1 1 [1]
DES J011540.8-352019.4 1 [1]
DES J044129.2-431414.0 1 [1]
DES J035736.8-581053.4 1 [1]
DES J022547.7-150531.9 1 [1]
DES J002457.0-340053.2 1 [1]
DES J031005.4-090314.5 1 [1]
DES J024328.0-214201.9 1 [1]
DES J024314.7-000859.6 1 [2] (Grade B)
DES J045741.3-411524.7 1 [1]
DES J005834.7-520159.6 1 [1]
DES J020651.2-180721.2 1 [1]
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DES J045008.8-571520.0 1 [1]
DES J015050.0-221615.3 0.999 [1]
DES J223851.0-431730.2 0.999 [1]
DES J024244.3-481136.8 0.999 [1]
DES J020526.1-353947.4 0.999 [1]
DES J021514.3-290925.6 0.999 [1]
DES J010540.5-393926.2 0.999 [1]
DES J021631.0-292006.7 0.999 [1]
DES J033717.2-315213.5 0.999 [1]
DES J033641.8-202111.2 0.999 [1]
DES J014326.9-085021.3 0.999 [1]
DES J035652.5-145758.8 0.999 [1]
DES J014433.3-114211.8 0.999 [1]
DES J033420.2-494040.4 0.999 [1]
DES J030032.7-514444.2 0.999 [1]
DES J013002.9-374457.8 0.999 [1]
DES J010548.0-372542.5 0.999 [1]
DES J030437.7-584647.8 0.999 [1]
DES J034527.9-245918.5 0.999 [1]
DES J024106.6-411507.0 0.999 [1]
DES J021737.2-051329.4 0.999 [1]
DES J044640.0-271447.5 0.999 [1]
DES J023727.3-091308.5 0.999 [1]
DES J041108.0-225635.2 0.999 [1]
DES J010450.9+002514.5 0.999 [2] (Grade B)
DES J210102.0-562947.6 0.998 [1]
DES J211921.5-000946.6 0.998 [1]
DES J004602.0-015628.2 0.998 [1]
DES J031543.3-622035.6 0.998 [1]
DES J051012.8-323205.7 0.998 [1]
DES J012428.5-291856.2 0.998 [1]
DES J042218.2-213245.9 0.998 [1]
DES J043348.7-445605.7 0.997 [1]
DES J050547.0-614950.6 0.997 [1]
DES J023648.1+032130.0 0.997 [1]
DES J233551.9-515217.8 0.996 [1]
DES J011842.6-615613.2 0.996 [1]
DES J051603.2-220847.1 0.996 [1]
DES J004127.1-010747.3 0.996 [2] (Grade B)
DES J030021.6-500128.9 0.996 [1]
DES J021036.8-535152.6 0.995 [1]
DES J210607.2-441153.6 0.995 [1]
DES J001153.1-461421.9 0.995 [1]
DES J013026.5-152012.9 0.994 [1]
DES J030919.7-133212.3 0.994 [1]
DES J012302.4-131321.7 0.994 [2] (Grade B)

ID Plens Ref

DES J041341.1-234422.1 0.994 [1]
DES J025219.9-473237.8 0.994 [1]
DES J012227.3-365426.6 0.994 [1]
DES J040011.3-155247.6 0.994 [2] (Grade B)
DES J224836.4-012334.0 0.993 [1]
DES J044615.0-200142.7 0.993 [1]
DES J045639.7-294621.8 0.993 [1]
DES J011758.7-052717.7 0.993 [1]
DES J052833.4-381141.8 0.992 [1]
DES J033458.4-183838.5 0.992 [1]
DES J004039.5-373249.3 0.992 [1]
DES J030516.7-163613.1 0.991 [1]
DES J010807.1-033446.6 0.991 [2] (Grade B)
DES J012025.8-182001.7 0.989 [1]
DES J041149.7-314454.7 0.989 [1]
DES J030750.5-504204.4 0.988 [1]
DES J032860.0-383309.8 0.988 [1]
DES J025914.1-152148.7 0.987 [1]
DES J212651.1-005827.3 0.986 [1]
DES J202855.8-523118.4 0.986 [1]
DES J025330.8-123903.2 0.986 [1]
DES J005804.9-231713.7 0.986 [1]
DES J015815.3-291218.1 0.985 [1]
DES J033338.5-183708.5 0.985 [1]
DES J014831.5-225127.9 0.983 [1]
DES J031418.6-284156.4 0.982 [1]
DES J051013.2-563754.2 0.980 [1]
DES J051116.8-313432.2 0.980 [1]
DES J032016.1-311917.4 0.980 [1]
DES J004257.3-371858.4 0.980 [1]
DES J012420.6-240147.7 0.978 [1]
DES J005746.8-164444.5 0.978 [2] (Grade B)
DES J010111.8+001002.3 0.977 [2] (Grade B)
DES J234501.2-412610.9 0.977 [1]
DES J041639.6-590852.9 0.976 [1]
DES J012153.1-175538.6 0.976 [2] (Grade B)
DES J010519.6+014456.5 0.975 [1]
DES J015642.7-101100.2 0.974 [1]
DES J054605.1-200025.5 0.973 [1]
DES J010535.3+000700.8 0.972 [2] (Grade B)
DES J033458.6-603450.0 0.970 [1]
DES J022931.0-290816.3 0.970 [1]
DES J025135.3-122001.2 0.964 [1]
DES J212212.4-425060.0 0.964 [1]
DES J022809.1-125252.3 0.964 [2] (Grade A)
DES J235902.2-553805.9 0.963 [1]

Table D (cont.)



Appendix D 273

ID Plens Ref

DES J024604.9-060739.0 0.962 [2] (Grade A)
DES J033410.9-481713.3 0.962 [1]
DES J061312.3-555224.5 0.960 [1]
DES J004613.9-574157.5 0.958 [1]
DES J030348.2-462626.4 0.957 [1]
DES J035418.3-160952.2 0.957 [1]
DES J011646.8-243702.1 0.956 [1]
DES J025243.3-214533.7 0.955 [1]
DES J003727.1-413149.9 0.955 [1]
DES J005828.8-002745.7 0.954 [2] (Grade B)
DES J010605.5+003246.7 0.954 [2] (Grade A)
DES J223233.8-595953.2 0.951 [1]
DES J005212.9-465026.9 0.950 [1]
DES J210504.9-493441.8 0.949 [1]
DES J050417.6-354806.1 0.947 [1]
DES J213047.0+015956.7 0.947 [1]
DES J235846.3-563849.9 0.944 [1]
DES J000729.3-443446.2 0.942 [1]
DES J014905.2-165854.8 0.940 [1]
DES J222052.0-594927.0 0.939 [1]
DES J205158.4-645037.1 0.939 [1]
DES J031435.5-212759.9 0.938 [1]
DES J032629.5-564542.1 0.937 [1]
DES J002510.1-313927.2 0.935 [1]
DES J041809.9-545735.0 0.935 [1]
DES J050747.0-534841.3 0.933 [1]
DES J014656.0-092952.0 0.932 [1]
DES J233448.3-571503.6 0.931 [1]
DES J004659.6+012736.1 0.930 [1]
DES J012503.5-364559.0 0.930 [1]
DES J042225.3-403155.8 0.928 [1]
DES J024228.9-294305.3 0.927 [1]
DES J013250.0-470737.2 0.921 [1]
DES J232346.1-003038.0 0.919 [1]
DES J030918.0-623942.4 0.916 [1]
DES J022140.1-021020.3 0.916 [1]
DES J012052.2-152400.9 0.916 [1]
DES J015452.6-482855.2 0.913 [1]
DES J010146.0+031423.6 0.908 [2] (Grade B)
DES J022501.0-053620.9 0.907 [2] (Grade B)
DES J045901.5-204506.8 0.904 [1]
DES J024449.4-301916.8 0.902 [1]
DES J021050.2-011905.8 0.901 [1]
DES J024551.4-512951.0 0.900 [1]
DES J024303.0-000600.2 0.897 [1]
DES J214006.3-420746.4 0.896 [1]

ID Plens Ref

DES J062500.1-452608.7 0.894 [1]
DES J001718.1+015818.6 0.891 [1]
DES J010159.6-212655.4 0.889 [1]
DES J010659.1-443201.4 0.888 [1]
DES J010315.9+000456.3 0.888 [2] (Grade A)
DES J031127.2-423219.1 0.885 [1]
DES J010726.3+031249.0 0.884 [2] (Grade B)
DES J031741.7-211818.0 0.882 [1]
DES J035649.1-240841.1 0.881 [1]
DES J215410.9+003758.4 0.880 [2] (Grade B)
DES J043123.0-542244.5 0.879 [1]
DES J040205.7-220556.3 0.874 [1]
DES J015148.4-323715.8 0.874 [1]
DES J051407.3-545654.1 0.872 [1]
DES J032903.9-565658.0 0.872 [1]
DES J040025.0-162352.4 0.871 [2] (Grade A)
DES J040058.1-135724.1 0.871 [2] (Grade A)
DES J050655.4-422044.7 0.867 [1]
DES J013823.0-284408.0 0.866 [1]
DES J034919.5-485733.3 0.863 [1]
DES J024553.8-004218.7 0.861 [2] (Grade B)
DES J232243.8-640956.3 0.860 [1]
DES J040715.6-571303.2 0.860 [1]
DES J041142.8-510734.9 0.853 [1]
DES J044229.7-292040.8 0.853 [1]
DES J054224.3-594959.0 0.852 [1]
DES J025340.0-205015.0 0.851 [1]
DES J005616.4-012332.6 0.851 [2] (Grade B)
DES J010306.0-432253.2 0.849 [1]
DES J004827.2+031117.1 0.845 [1]
DES J025051.8-161007.8 0.842 [1]
DES J041644.8-552500.3 0.842 [1]
DES J012441.3-015734.0 0.841 [1]
DES J030729.8-624105.4 0.836 [1]
DES J020234.1-215622.8 0.829 [1]
DES J022844.7-554756.0 0.826 [1]
DES J024440.9-000837.2 0.825 [1]
DES J031638.8-223633.3 0.823 [1]
DES J024116.0-063213.9 0.822 [2] (Grade A)
DES J030221.9-213755.5 0.817 [1]
DES J030647.3-230434.9 0.813 [1]
DES J221205.9-412823.3 0.812 [1]
DES J010228.8-002514.5 0.808 [2] (Grade B)
DES J214915.3-001251.5 0.801 [1]
DES J044248.9-625705.1 0.791 [1]
DES J013327.1-313704.4 0.780 [1]
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DES J231111.7-454658.1 0.777 [1]
DES J010257.5-291121.8 0.775 [1]
DES J053745.8-471120.3 0.762 [1]
DES J050842.6-274637.4 0.762 [1]
DES J023435.2-622254.5 0.760 [1]
DES J230304.7-511501.8 0.751 [1]
DES J033056.9-522813.0 0.746 [1]
DES J034834.6-130646.9 0.740 [1]
DES J220335.8-640820.7 0.739 [1]
DES J022805.7-051733.7 0.737 [2] (Grade B)
DES J011838.8-052638.8 0.734 [2] (Grade A)
DES J003507.6-252657.6 0.733 [1]
DES J015609.6-102933.4 0.733 [2] (Grade B)
DES J035606.2-560729.4 0.732 [1]
DES J010454.6+000400.5 0.725 [2] (Grade B)
DES J204511.4-634452.5 0.719 [1]
DES J024249.3-003519.7 0.714 [2] (Grade B)
DES J041111.0-481939.6 0.714 [1]
DES J235138.1-545254.0 0.705 [1]
DES J023558.8-060410.6 0.700 [2] (Grade B)
DES J050504.7-461157.5 0.699 [1]
DES J011241.9-550952.9 0.694 [1]
DES J010434.5-003106.6 0.694 [2] (Grade B)
DES J005339.2-050200.9 0.693 [1]
DES J053003.3-610942.5 0.689 [1]
DES J024714.1-375006.1 0.677 [1]
DES J035808.4-295058.7 0.676 [1]
DES J010944.4-143936.0 0.674 [2] (Grade B)
DES J005602.5+030054.7 0.671 [2] (Grade B)
DES J014926.2-382531.4 0.670 [1]
DES J005617.5-022534.3 0.667 [2] (Grade B)
DES J010355.9+001907.3 0.658 [2] (Grade B)
DES J232557.4-005226.7 0.656 [1]
DES J005007.4-183837.7 0.650 [2] (Grade B)
DES J010124.8-170109.1 0.650 [2] (Grade B)
DES J010015.4-001618.5 0.649 [2] (Grade B)
DES J023944.1-462040.8 0.645 [1]
DES J203911.5-545945.4 0.640 [1]
DES J022019.6-041149.6 0.639 [2] (Grade B)
DES J025603.6-121517.9 0.637 [1]
DES J020441.1-150135.8 0.630 [2] (Grade A)
DES J020556.9-020834.7 0.628 [1]
DES J003846.2-293606.8 0.625 [1]
DES J023016.8-312200.8 0.622 [1]
DES J030848.0-210613.9 0.615 [1]
DES J001802.3-454934.4 0.609 [1]

ID Plens Ref

DES J034748.7-315850.3 0.609 [1]
DES J232956.1-532837.7 0.602 [1]
DES J043715.5-642830.1 0.597 [1]
DES J211356.3-011426.5 0.594 [1]
DES J211627.3-594701.8 0.576 [1]
DES J040821.9-535400.9 0.566 [1]
DES J031032.5-464702.3 0.559 [1]
DES J211005.4-563930.6 0.556 [1]
DES J040445.8-143433.6 0.554 [2] (Grade B)
DES J221552.1-013814.0 0.551 [1]
DES J001424.3+004145.5 0.547 [1]
DES J005055.2-172032.5 0.546 [1]
DES J010709.0+011729.0 0.537 [2] (Grade B)
DES J022546.1-073738.4 0.536 [1]
DES J062623.1-573030.1 0.535 [1]
DES J004109.0-004348.9 0.519 [1]
DES J044343.9-622805.7 0.516 [1]
DES J023602.3-512143.8 0.508 [1]
DES J211243.1+000920.8 0.507 [1]
DES J004701.6-290517.6 0.503 [1]
DES J015602.7-641730.0 0.500 [1]
DES J031958.1-475915.5 0.496 [1]
DES J062809.4-502359.8 0.495 [1]
DES J010752.7-142652.8 0.492 [2] (Grade B)
DES J215907.2-430746.1 0.487 [1]
DES J035048.6-482422.3 0.487 [1]
DES J023211.2+001339.2 0.485 [1]
DES J010952.7-333533.2 0.484 [1]
DES J024745.4-003128.9 0.477 [2] (Grade B)
DES J043806.2-322852.2 0.467 [1]
DES J002700.1-041323.6 0.466 [1]
DES J043756.8-650216.3 0.457 [1]
DES J222835.2-465023.8 0.457 [1]
DES J015904.0-341304.3 0.450 [1]
DES J040427.2-171229.5 0.448 [2] (Grade B)
DES J210635.5-540227.9 0.447 [1]
DES J212707.0-514951.0 0.446 [1]
DES J012109.4-243057.3 0.445 [1]
DES J003640.8+004607.3 0.427 [2] (Grade B)
DES J060246.9-452443.2 0.424 [1]
DES J052528.0-442413.5 0.422 [1]
DES J041825.8-612526.9 0.421 [1]
DES J040257.6-525842.4 0.414 [1]
DES J221638.2-441919.8 0.413 [1]
DES J235933.5+020823.6 0.412 [2] (Grade A)
DES J211825.7-431739.6 0.410 [1]
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DES J032602.9-481235.8 0.408 [1]
DES J031902.2-531819.7 0.406 [1]
DES J055424.3-223806.2 0.404 [1]
DES J010017.3+000009.7 0.401 [2] (Grade B)
DES J213906.0-425132.5 0.400 [1]
DES J011607.3-281224.9 0.399 [1]
DES J010236.7-000546.7 0.397 [2] (Grade B)
DES J031103.5-131402.8 0.397 [2] (Grade B)
DES J000316.4-334804.3 0.393 [1]
DES J211209.0-014524.5 0.393 [2] (Grade A)
DES J033906.5-583016.9 0.392 [1]
DES J045443.7-623400.4 0.390 [1]
DES J031830.0-194227.6 0.389 [1]
DES J010651.6-625813.8 0.388 [1]
DES J025144.2-061329.4 0.388 [1]
DES J054627.5-332922.7 0.381 [1]
DES J220106.5-604702.7 0.380 [1]
DES J051300.2-384743.2 0.376 [1]
DES J034802.3-214503.0 0.375 [1]
DES J034948.0-150008.4 0.369 [1]
DES J000644.6-442950.5 0.366 [1]
DES J020206.6-244503.8 0.364 [1]
DES J224844.0-443150.9 0.364 [1]
DES J062019.0-562858.3 0.361 [1]
DES J045536.7-253046.1 0.356 [1]
DES J023953.1-013456.0 0.355 [1]
DES J062415.8-470942.0 0.353 [1]
DES J032216.4-523440.4 0.349 [1]
DES J061227.5-392036.3 0.349 [1]
DES J030505.5-102411.7 0.340 [1]
DES J050849.3-214430.7 0.333 [1]
DES J221857.6-450425.6 0.325 [1]
DES J055311.2-285336.9 0.324 [1]
DES J214454.4-414952.6 0.316 [1]
DES J033356.0-144008.9 0.316 [1]
DES J025925.9-520642.9 0.315 [1]

ID Plens Ref

DES J024706.5-591731.7 0.305 [1]
DES J052221.1-603624.0 0.305 [1]
DES J015752.3-531155.2 0.290 [1]
DES J053444.8-534716.3 0.281 [1]
DES J022709.0-471855.8 0.256 [1]
DES J225506.3-412320.2 0.256 [1]
DES J222629.0-463605.4 0.248 [1]
DES J232510.9-411124.9 0.236 [1]
DES J230824.7-021213.6 0.233 [1]
DES J030745.3-181108.1 0.230 [1]
DES J001332.8-423929.1 0.227 [1]
DES J014252.9-183115.8 0.214 [1]
DES J011241.1-190244.3 0.213 [1]
DES J015216.3-583842.3 0.213 [1]
DES J002606.7-550432.9 0.188 [1]
DES J011005.8-023230.1 0.182 [2] (Grade B)
DES J230822.2-021131.7 0.179 [1]
DES J214546.4-430649.3 0.176 [1]
DES J052423.7-272111.4 0.171 [1]
DES J030416.1-492126.1 0.162 [1]
DES J032407.0-355611.0 0.138 [1]
DES J024700.1-443211.0 0.138 [1]
DES J024803.4-033144.9 0.126 [1]
DES J022057.7-383303.3 0.110 [1]
DES J001030.4-431514.9 0.108 [1]
DES J211723.6-005651.9 0.085 [1]
DES J024524.8-530145.4 0.058 [1]
DES J011225.8+022238.3 0.052 [2] (Grade A)
DES J212512.0-650426.7 0.045 [1]
DES J010131.3+003412.0 0.028 [2] (Grade B)
DES J022534.0-050211.4 0.021 [2] (Grade B)
DES J050600.5-204900.5 0.018 [1]
DES J034204.6-535514.1 0.015 [1]
DES J054302.1-375237.2 0.013 [1]
DES J030553.4-145252.3 0.009 [2] (Grade B)
DES J002134.0-404001.8 0 [1]

Table D (cont.)
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8.1 Introducción

La segunda mitad del siglo XX fue testigo del florecimiento como ciencia de la Cosmología
observacional. La detección de la radiación del fondo cósmico de microondas (RFCM)
en 1964, junto con el descubrimiento de su estructura y anisotropías en 1992; las canti-
dades observadas de elementos ligeros (hidrógeno, deuterio, helio, y litio) en el universo;
su expansión acelerada, medida y confirmada en 1998; y su estructura a gran escala consti-
tuyen las principales evidencias observacionales que apoyan el modelo ΛCDM. Este modelo
paramétrico, a menudo referido como el modelo estándar de la Cosmología, es actualmente
nuestra mejor explicación para todas las observaciones del Universo. De acuerdo con este
modelo, en el universo existen tres componentes principales: primero, la energía oscura,
que parece comportarse como una constante cosmológica (Λ); segundo, la materia oscura;
y por último la materia ordinaria. Según las últimas medidas de las anisotropías de la
RFCM (Planck Collaboration, 2020), sólo el 4.9% de la densidad de energía en el universo
corresponde a matera bariónica. La conocida como materia oscura, materia no bariónica
débilmente interactuante, representa el 26.4% mientrás que el 68.7% restante se identifica
como energía oscura.

La expansión acelerada es uno de los fenónemos más misteriosos del universo, conse-
cuencia de lo poco que sabemos sobre la energía y la materia oscura. Y por tanto, todavía
estamos lejos de tener un conocimiento completo de nuestro universo. Por esta razón,
se están realizando numerosos esfuerzos por desarrollar teorías y modelos que concuerden
con todas las pruebas que sostienen el modelo ΛCDM, pero que arrojen luz sobre aquellas
observaciones que no alcanza a explicar. Revelar la naturaleza de estos dos componentes
oscuros del universo es uno de los desafíos de la Cosmología para los próximos años. Esta
desafiante tarea requiere poder sondear el universo primitivo con gran detalle. En este
contexto, el desarrollo de técnicas de detección de objetos astronómicos débiles con alto
corrimiento al rojo (redshift) se convierte en una cuestión de gran importancia.
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8.2 Detección multifrecuencia de fuentes extragalacticas

Durante las últimas décadas, los avances en la sensibilidad de las observaciones (especial-
mente en la parte infrarroja del espectro) y los progresos en el procesamiento de datos nos
han permitido sondear el universo a alto redshift en mayor profundidad. La observación
directa de galaxias en el rango z ∼ 1−10 nos da la oportunidad de estudiar la historia de la
formación de galaxias y estrellas en diferentes épocas cósmicas (ver, por ejemplo, de Zotti
et al., 2010; Eales, 2015). Sin embargo, a pesar del constante aumento de la sensibilidad
de los detectores y del diámetro de los telescopios, las observaciones del universo distante
aún tienen un flujo limitado, siendo visibles sólo aquellos objetos que están por encima
del umbral de detección del instrumento. En un universo en el que prevalece la ley del
cuadrado inverso, un límite de flujo implica que las galaxias con mayor redshift accesibles
a cualquier observatorio estarán entre sus objetos detectados más débiles. Esta situación
se ve aliviada para las fuentes seleccionadas en el rango submilimétrico del espectro elec-
tromagnético gracias a la fuerte corrección negativa K, que lleva a que las galaxias con
alto redshift sean relativamente fáciles de detectar en longitudes de onda submilimétricas
en comparación con sus equivalentes a bajo redshift (Blain and Longair, 1993). Además,
las posibles alineaciones fortuitas de objetos de fondo con lentes en primer plano pueden
ampliar los límites aún más, al mejorar el flujo de objetos que no podrían detectarse de
otra manera. Pero incluso con la ayuda de la corrección K y del efecto lente gravita-
cional, las técnicas de procesamiento de señales son una herramienta fundamental para
llegar a las galaxias más débiles y distantes. Esto es particularmente cierto para los rangos
de microondas e infrarrojo lejano del espectro electromagnético, donde las fluctuaciones
del fondo infrarrojo cósmico crean un ruido de confusión cuyo nivel es comparable con la
densidad de flujo de las galaxias típicas a alto refshift.

8.2.1 Técnicas de filtrado y detección

El filtrado es un tipo de procesamiento de señal que permite seleccionar las frecuencias
deseadas, o eliminar las que no interesan, de unos datos brutos para favorecer la detección
de una determinada señal. En el formalismo matemático, un filtro viene representado por
la siguiente operación:

L : f(x)→ g(x) = Lf(x) (8.12)

donde f son los datos de entrada, L representa al filtro, g es la señal de salida obtenida
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tras el filtrado, y x es la variable independiente. Un filtro lineal es aquel en el que la
señal filtrada es una función lineal de los datos de entrada. Y se dice que un filtro es
homogéneo, o invariante en el tiempo, si su señal de salida se retrasa un cierto tiempo τ
cuando la señal de entrada también se retrasa ese mismo tiempo. La homogeneidad de un
filtro puede expresarse como g(x− τ) = Lf(x− τ). La mayoría de los filtros utilizados en
un amplio abanico de campos científicos son lineales y homogéneos. Cualquier filtro lineal
invariante en el tiempo se puede caracterizar por su respuesta de impulso. Esto significa
que para cualquier señal de entrada, la salida se puede obtener en términos de la entrada
y la respuesta al impulso. La función de respuesta al impulso de un filtro es su salida
cuando recibe una breve señal de entrada, llamada impulso. Este impulso generalmente se
modela para señales continuas como una delta de Dirac, cuyo valor en x es obtenido por
la integral:

f(x) =

∫
f(u)δ(x− u)du (8.13)

La linealidad y continuidad del filtro L implican que

Lf(x) =

∫
f(u)Lδ(x− u)du (8.14)

Denotando la respuesta al impulso del filtro L como h(x) = Lδ(x), podemos reescribir
Eq. (8.14) de la siguiente forma:

Lf(x) =

∫ ∞
−∞

f(u)h(x− u)du = h⊗ f (8.15)

donde ⊗ representa una convolución. Esta ecuación muestra que un filtro lineal homogéneo
equivale a una convolución con la respuesta al impulso h del filtro. El teorema de la con-
volución establece que la convolución de dos funciones, h y f , en un punto de coordenadas
x se puede expresar como:

Lf(x) = h(x)⊗ f(x) =

∫ ∞
−∞

ĥ(q)f̂(q)e−iqxdq (8.16)

donde ĥ(q) y f̂(q) son las correspondientes transformadas de Fourier de h(x) y f(x),
respectivamente, de acuerdo con la siguiente convención:

f̂(q) =
1

2π

∫ ∞
−∞

f(x)eiqxdx, f(x) =
1

2π

∫ ∞
−∞

f̂(q)e−iqxdq (8.17)
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La transformada de Fourier ĥ(q) de la respuesta al impulso h(x) también se conoce como
función de transferencia del filtro. Considerándolo todo, vemos que el proceso de filtrar una
imagen con un filtro lineal homogéneo equivale a multiplicar la transformada de Fourier
de la imagen por esta función de transferencia. Esta función de transferencia puede, por
tanto, considerarse como un dispositivo selectivo de frecuencia, en el sentido de los modos
de Fourier. Esta propiedad hace que trabajar en el espacio de Fourier sea la mejor opción.
Además, las señales que queremos detectar pertenecen a fuentes compactas o puntuales,
cuyos perfiles son bien conocidos. Los modos de Fourier de estas fuentes compactas se
obtienen fácilmente de sus perfiles. Por estas razones, el filtrado ha demostrado ser muy
adecuado para la detección de fuentes compactas incrustadas en un fondo ruidoso. Solo
tenemos que diseñar funciones de transferencia capaces de reducir la contribución de las
frecuencias responsables del ruido, a la vez que conserven las frecuencias características
correspondientes a las fuentes compactas.

El filtrado adecuado de imágenes astronómicas debe comenzar por ser continuo en el
espacio de Fourier. El siguiente paso es encontrar un filtro que mejore la detección de
fuentes compactas incrustadas en un fondo ruidoso, reduciendo dicho ruido y conservando
la señal. El criterio más utilizado para lograr esto busca aumentar tanto como sea posible
la relación señal/ruido (S/R) de las fuentes que tratamos de detectar. Supongamos una
señal s con amplitud A en la posición x0 incrustada en un fondo ruidoso de dispersión σ.
El cociente S/R de esta señal se define como la relación entre su amplitud y la desviación
estándar de todo el campo:

S/R =
s(x0)

σ
=
A

σ
(8.18)

Obviamente, el cociente S/R en la imágen filtrada cambia dependiendo del filtro utilizado.

Los métodos monofrecuencia estándar para la detección de fuentes puntuales en la
RFCM y el infrarrojo lejano se basan en técnicas de ondículas (wavelets, Vielva et al., 2003;
Barnard et al., 2004; González-Nuevo et al., 2006) o en el filtro ‘ajustado’ (matched filter,
Tegmark and de Oliveira-Costa, 1998; Herranz et al., 2002; Barreiro et al., 2003; López-
Caniego et al., 2006, vease también Herranz and Vielva (2010) para una revisión). Las
wavelets son muy adecuadas para la detección de fuentes compactas debido a su capacidad
para descomponer el comportamiento de la señal en distintas escalas, mientras que el filtro
ajustado es el detector lineal óptimo porque proporciona la máxima amplificación S/R
para una fuente con una forma conocida (generalmente la función de dispersión de punto,
o PSF en lo sucesivo, del telescopio) incrustada en ruido estadísticamente homogéneo
y correlacionado espacialmente. Por defecto, estas técnicas solo se aplican a imágenes
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del cielo en una sóla frecuencia. Incluso para observatorios multifrecuencia como Herschel
Space Observatory (Pilbratt et al., 2010) o Planck (Tauber et al., 2010), los procedimientos
de detección estándar han producido catálogos de fuentes individuales para cada banda de
frecuencia (ver, por ejemplo, Planck Collaboration, 2011, 2014, 2016; Maddox et al., 2018).
El siguiente paso lógico, por tanto, es potenciar la señal de fuentes débiles combinando las
detecciones de diferentes bandas en una sola detección, es decir, “detección multifrecuencia”.
La mayoría de los algoritmos ciegos de separación de componentes que se utilizan para
componentes difusos en el rango de microondas e infrarrojo lejano no pueden lidiar con
la alta diversidad de comportamientos espectrales asociados a las diferentes poblaciones
de fuentes compactas extragalácticas (ver, por ejemplo, Leach et al., 2008). Sin embargo,
en los últimos años se han propuesto varias técnicas de detección de fuentes compactas
multifrecuencia en la literatura (Herranz and Sanz, 2008; Herranz et al., 2009; Lanz et al.,
2010, 2013; Planck Collaboration, 2018). En particular, si se conoce el perfil espacial y la
distribución espectral de energía (SED) de las fuentes, y si se conoce también el espectro
de potencias cruzado, o se puede estimar a partir de los datos, el método de detección
lineal óptimo es el multifiltro ajustado (matched multifilter o MMF, Herranz et al., 2002).
Esta generalización supera al filtro ajustado monofrecuencia en términos de relación S/R.

8.2.2 El multifiltro ajustado

En primer lugar, supongamos que se toman imágenes a N frecuencias diferentes del mismo
área del cielo. Para simplificar, también asumimos que en las imágenes solo hay una fuente
puntual, de amplitud Aν en cada frecuencia, centrada en el origen de coordenadas. La
señal en estas imágenes se puede describir como:

yν(x) = fνsν(x) + nν(x) (8.19)

donde yν es la señal total en el píxel x, fν es la dependencia frecuencial de la fuente
puntual, sν es la contribución de la fuente puntual a la señal total, y nν representa el ruido
de fondo en cada píxel, que alberga tanto el ruido instrumental como el perteneciente a
otras contribuciones detectadas. Estas variables se miden para cada una de las frecuencias
de observación ν = 1, ..., N consideradas.

Antes de obtener ninguna imagen, la señal de esta fuente puntual llega a un detector.
La resolución angular de este detector es mayor que el tamaño angular intrínseco de la
fuente puntual. Luego, su señal se convoluciona, en cada frecuencia de observación ν, con
el haz de antena correspondiente. Suponemos, de nuevo por simplicidad, que los haces de
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antena pueden describirse bien mediante funciones gaussianas bidimensionales simétricas.
La señal de la fuente puntual puede entonces escribirse como:

sν(x) = Aντν(x) (8.20)

donde τν(x) es el perfil espacial de la fuente, y x = |x| debido al supuesto de que las
antenas consideradas son simétricas. El ruido de fondo nν(x) se puede modelar como un
campo aleatorio homogéneo e isotrópico con valor promedio igual a cero. El espectro de
potencias cruzado P = (Pν1ν2) entre los ruidos en dos de estas frecuencias, ν1 and ν2, es
definido por:

〈nν1(q)n∗ν2(q′)〉 = Pν1ν2δ
2
D(q− q′) (8.21)

siendo nν(q) la transformada de Fourier de nν(x), δ2
D la delta de Dirac bidimensional, y

el símbolo ∗ indica conjugación compleja.

El conjunto de N filtros lineales invariantes en el tiempo ψν que componen el MMF
son aquellos que producen los siguientes mapas:

ωψν (b) =

∫
yν(x)ψν(x; b)dx =

∫
yν(q)ψν(q)e−iq·bdq (8.22)

donde b define una traslación desde el origen de coordenadas, ων(b) representa cada imagen
filtrada en la frecuencia ν en la posición b, y yν(q) y ψν(q) son las transformadas de Fourier
de yν(x) y ψν(x), respectivamente. El primer paso en este método multifrecuencia es filtrar
cada imagen yν con uno de estos filtros lineales ψν . En el siguiente paso, todos los mapas
filtrados ωψν visto en la Eq. (8.22) se combinan de acuerdo con:

ωψ(b) =
∑
ν

ωψν (b) (8.23)

Este mapa filtrado total es una imagen en la que la señal de la fuente se ha realzado
mientras que el ruido se ha reducido significativamente. Los dos requisitos necesarios para
garantizar que el campo filtrado sea óptimo para la detección de fuentes puntuales son:

1. El filtro debe ser un estimador insesgado de la amplitud de la fuente. Esto significa
que, después de filtrar la imagen, el valor de amplitud A de la fuente debe recuperarse,
en promedio, tras muchas realizaciones, en la posición de la fuente. Para un caso
concreto, incluso después del filtrado, siempre habrá alguna contribución del ruido.
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2. El filtro debe ser un estimador demáxima eficiencia. Esto significa que la varianza σ2
ψ

alrededor del valor promedio recuperado de A tiene que ser lo más pequeña posible.

Como dijimos anteriormente, el filtro que buscamos se llama multifriltro ajustado, y se
introdujo por primera vez para la detección de cúmulos Sunyaev-Zel’dovich (SZ) en mapas
multifrecuencia (Herranz et al., 2002). El MMF es el método de detección lineal óptimo
cuando la dependencia de la frecuencia y el perfil espacial de las fuentes se conocen, o se
consideran conocidos, y el espectro de potencias cruzado del ruido se conoce o se puede
estimar a partir de los datos. En el espacio de Fourier, el MMF se puede escribir de la
siguiente manera:

Ψ(q) = αP−1F,

α−1 ≡
∫

FtP−1 F dq,

σ2 =

∫
ΨtPΨ dq = α

(8.24)

donde Ψ(q) = [ψν(q)] es el vector columna de los filtros; F = [fντν ], siendo fν la depen-
dencia frecuencial y τν el perfil de la fuente en cada frecuencia ν; P−1 es la matriz inversa
del espectro de potencias cruzado P; y σ2 es la varianza de la imagen filtrada producida.
En la Eq. (8.24) y en la siguiente discusión, q ≡ |q| es el módulo del vector de onda en el
espacio de Fourier, puesto que asumimos perfiles circularmente simétricos para las fuentes.
Y dado que el espectro de potencias cruzado solo depende del módulo q, todas las fórmulas
se pueden expresar en términos de q en lugar de usar el vector completo. Finalmente, α
en la Eq. (8.24) se puede interpretar como la normalización requerida para garantizar que
los filtros ψν sean estimadores insesgados de la densidad de flujo de las fuentes en estudio.
Más detalles pueden encontrarse en Herranz et al. (2002) y Lanz et al. (2010, 2013).

El MMF se ve reducido a una matriz diagonal de N filtros ajustados, uno en cada
frecuencia, si el ruido en los mapas considerados no presenta una correlación entre las
diferentes frecuencias. Por lo tanto, un enfoque multifrecuencia propiamente dicho solo
puede llevarse a cabo si los mapas considerados muestran correlaciones entre ellos. El
comportamiento espectral fν de las fuentes no es conocido a priori solo con la informa-
ción de las imágenes. Por lo tanto, es necesario encontrar alguna forma de modelar esta
desconocida dependencia frecuencial. Lanz et al. (2010) mostró que el MMF puede gen-
eralizarse para el caso en el que esta dependencia no se conoce. A pesar de esto, en este
trabajo hemos incorporado una SED específica al MMF con el fin de derivar estimaciones
fotométricas del redshift de las fuentes en estudio. Para abordar este problema, es muy útil
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reescribir el vector F = [fντν ] en la forma matricial F = T(q)f(ν), siendo la matriz diago-
nal T(q) = [τ1(q),..., τN (q)] y el vector de dependencia frecuencial f(ν) = [fν ]. Gracias a
ello, podemos incluir toda la dependencia de q en la matriz T, separándola completamente
de la dependencia en ν. De esta manera, la Eq. (8.24) se puede reescribir como:

Ψf (q) = αf P−1Tf , α−1
f =

∫
f tTP−1 Tfdq = f tHf (8.25)

donde matriz H =
∫

TP−1 Tdq, y nos basamos en el hecho de que Tt = T y el vector
f no depende de q. Esta reformulación del MMF es muy conveniente para su posterior
implementación. La parte del filtrado que conlleva más tiempo es el cálculo de las matrices
P y T, ya que deben calcularse para todos los valores de q. En el caso que estamos con-
siderando en este trabajo, la única cantidad que varía durante el proceso de maximización
es el redshift de la fuente que queremos estimar. Esto nos permite calcular las integrales
de la matriz H solo una vez para cada conjunto de imágenes de la fuente considerada. La
estimación de la amplitud A de una fuente puntual presente en un conjunto de imágenes
después de aplicar estos filtros viene dada por:

AΨf = ωΨf (0) = αfAf
tHf (8.26)

8.3 Aplicación del multifiltro ajustado a fuentes de H-ATLAS

En esta tesis hemos extendido el trabajo previo realizado con la técnica del multifiltro
ajustado a las imágenes astronómicas en el rango submilimétrico proporcionadas por Her-
schel -ATLAS. Esta técnica multifrecuencia permite, por un lado, aumentar la significancia
estadística y el cociente S/R de las detecciones y, por otro lado, proporciona una esti-
mación fotométrica de los redshifts de las fuentes. Este enfoque se basa en el modelado
semi-analítico del pico de emisión térmica de la SED de galaxias polvorientas dado por
Pearson et al. (2013) (Eq. 2.1). El uso de plantillas para modelar la SED no es estric-
tamente necesario para utilizar el MMF, pero resulta muy útil para la estimación del
redshift. Hemos limitado nuestro análisis a las tres bandas cubiertas por el instrumento
SPIRE, centradas en 250, 350 y 500 µm.

Hemos probado nuestra técnica tanto con simulaciones realistas (Fig. 2.1) como con
fuentes de H-ATLAS para las que se conocen con precisión sus redshifts (Fig. 2.2), con-
cluyendo que el multifiltro ajustado, en efecto, conduce a una S/R mejorada con respecto
a la detección en una única frecuencia, y que los redshifts fotométricos estimados son rel-
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ativamente precisos. Esto es especialmente cierto para aquella fuentes de H-ATLAS con
un comportamiento espectral cercano a la SED utilizada en el rango 0.8 < z < 4.3. Fuera
de este rango, hemos estudiado el sesgo en la estimación de los redshifts fotométricos del
MMF, y hemos proporcionado factores de corrección hasta z ∼ 7.0.

En total, 410,997 fuentes puntuales de H-ATLAS (Valiante et al., 2016; Maddox et al.,
2018) se han vuelto a analizar con este filtro multifrecuencia. Se ha llevado a cabo una
selección de fuentes de H-ATLAS a alto redshift, para las que el multifiltro ajustado fun-
ciona mejor, en base a criterios en el flujo, el color, el cociente S/R, y la concordancia entre
la fotometría observada y el modelo de SED usado (ver Fig. 2.4). Como resultado tenemos
607 fuentes divididas en dos muestras:

• Una muestra de 370 objetos brillantes a alto redshift, con z̄ = 2.13 y σz = 0.65 (ver
Tabla B.1) Esta muestra contiene 62 de los 80 candidatos a ser sistermas lensados
identificados en Negrello et al. (2017), e incluye 17 de las 20 galaxias con lentes
fuertes confirmadas. Se ha logrado una mejora promedio del 76% en la S/R para
esta muestra con el MMF en comparación con la obtenida en la banda de 500 µm.
Además, se ha obtenido una mejora promedio del 16% y una ligera mejora del 0.2%
para las bandas de 350 µm y 250 µm, respectivamente (ver Fig. 2.9). Mediante
la correlación cruzada de esta muestra a alto z con un catálogo de galaxias a bajo
redshift de SDSS DR14, encontramos 40 candidatos potenciales para ser sistemas
con lentes gravitacionales. En la Fig. C se muestran imágenes de estos candidatos,
algunas de las cuáles revelan sobredensidades de galaxias a z < 1 que podrían indicar
la presencia de grupos de galaxias actuando como lentes.

• Una segunda muestra de 237 fuentes a alto redshift, con z̄ = 4.62 y σz = 0.71,
candidatos a ser “500 µ-risers” (débiles a 250 y 350 µm, pero brillantes a 500 µm) que
antes estaban cerca del límite de detección de H-ATLAS pero ahora están confirmados
con el MMF como detecciones con alta significancia (ver Tabla B.2). Hemos logrado
mejoras promedio de 25%, 55% y 76% en las relaciones S/R para las bandas de 500,
350 y 250 µm, respectivamente (ver Fig. 2.11). Esto refleja claramente que es en este
tipo de objetos débiles donde nuestro método MMF alcanza su máximo potencial en
términos de mejora de S/R.

El multifiltro ajustado ha demostrado ser capaz de incrementar la sensibilidad de los
objetos más débiles y mejorar su fotometría. También es capaz de devolver redshifts
fotométricos más robustos que los que se obtendrían usando los flujos del catálogo de H-
ATLAS, como lo demuestran los valores de la media µ y mediana µ1/2 mostrados en las
Tablas 2.1 y 2.3.
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La ejecución de una búsqueda no ciega, utilizando las posiciones ya conocidas de fuentes
en el catálogo de H-ATLAS, nos permite comparar directamente nuestro método con la
rutina de detección de H-ATLAS. Sin embargo, dado que, al final, la imagen de detección
de H-ATLAS simplemente se reduce al canal de 250 µm (Valiante et al., 2016), en el futuro
planeamos aplicar este método realizando una búsqueda ciega sobre todo el campo de visión
de H-ATLAS. De ese modo podremos explotar la información de las otras longitudes de
onda y ser capaces de detectar fuentes débiles que ahora estaríamos perdiendo.

El trabajo aquí realizado también podría ampliarse en el futuro centrándose única-
mente en las fuentes ya confirmadas. Uno de los posibles análisis o mejoras más profundas
sería repetir la ejecución del MMF utilizando otras SED diferentes del modelo definido
en Pearson et al. (2013). Por ejemplo, SEDs derivadas de las galaxias polvorientas ul-
traluminosas Arp200; SMM J2135-0102; “The Cosmic Eyelash” a z = 2.3 (Ivison et al.,
2010) o H-ATLAS J142413.9 + 022304 alias G15.141 en z = 4.23 (Cox et al., 2011), las
cuales son representaciones características de las galaxias submilimétricas locales. Este
procedimiento nos mostraría cuánto cambian los redshifts y las densidades de flujo según
la SED utilizada, y nos ayudaría a seleccionar fuentes de una manera más robusta. Este
análisis adicional también permitiría comprobar si el sesgo metodológico observado en las
simulaciones se debe a la forma particular de la SED empleada. No obstante, pensamos
que el modelo utilizado aquí es la mejor opción, ya que no es una SED derivada de una
sola fuente, sino un modelo empírico basado en 40 objetos de H-ATLAS, que ya ha sido
utilizado en varios trabajos repvios (Eales, 2015; Ivison et al., 2016; Bianchini et al., 2016,
2018; Negrello et al., 2017; Fudamoto et al., 2017; Bakx et al., 2018; Donevski et al., 2018).

8.4 Distribución de materia oscura en cúmulos de galaxias

Como hemos dicho, la materia oscura constituye uno de los principales componentes del
universo. A pesar de ello, su naturaleza aún nos es desconocida. Lo que sí sabemos es que
no puede estar formada por ninguna de las patículas ordinarias ya descubiertas, es fría, no
relativista y debilmente interactuante. Fueron las observaciones de las curvas de rotación
de diversas galaxias las que llevaron a la conclusión de que un importante porcentaje de la
masa de las galaxias se debe un componente no luminoso, bautizado como materia oscura,
puesto que dichas curvas no podían explicarse teóricamente sólo teniendo en cuenta la
materia ordinaria asociada a las estrellas.

La masa de las galaxias está dominada por materia oscura, y la evidencia más reveladora
que tenemos de su existencia se debe a su interacción gravitatoria. Por lo tanto, una de
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las formas de estudiar las propiedades de la materia oscura es a través de esta interacción,
siempre que la concentración de materia oscura sea lo suficientemente grande. Los cúmulos
de galaxias son una excelente opción para ello (Kravtsov and Borgani, 2012). Los cúmulos
son las estructuras más masivas en equilibrio dinámico y, por lo tanto, son sondas altamente
sensibles y útiles de la formación de estructuras gravitacionales y de la evolución de las
galaxias a lo largo de la historia del universo. Estimar el perfil de masa en la zona más
central de los cúmulos es de particular interés, ya que esta altamente densa región contiene
las mayores densidades de materia oscura. Estas medidas pueden ser útiles para acotar las
propiedades físicas de la materia oscura (Arabadjis et al., 2002; Markevitch et al., 2004;
Serra and Domínguez Romero, 2011), y para distinguir entre materia oscura y teorías
alternativas de la gravedad (Clowe et al., 2006). Si la materia oscura tiene una sección
eficaz de interacción pequeña, o si la materia oscura es ultraligera, es en estas regiones
donde se esperaría ver desviaciones de los modelos que predicen una materia oscura fría
no colisionante (Rocha et al., 2012; Kaplinghat et al., 2013, 2014). Además, si la materia
oscura se aniquila o interactúa consigo misma, se espera que la densidad en la región
central de los cúmulos de galaxias sea sensible a estas interacciones. En particular, si la
sección eficaz de auto-interacción es significativamente mayor que 1 cm2g−1, el perfil de
masa debería aplanarse en la región más central y, si el cúmulo está fusionandose, deberían
poder observarse dos picos separados, correspondientes a la contribución de la galaxia más
brillante del cúmulo (BCG) y al pico de la distribución de materia oscura.

Los perfiles de masa central en los cúmulos de galaxias pueden inferirse de varias formas,
cada una de las cuales explora un rango de radios diferente. Estos métodos incluyen el
estudio de la cinemática estelar, del efecto lente gravitatoria, del efecto SZ, y de la emisión
en rayos X, los cuales cubren un rango en distancia de 10 kpc a 1 Mpc (Newman et al.,
2009; Umetsu et al., 2011; Hogan et al., 2017; Andrade et al., 2019). El estudio de la
desviación de la luz en presencia de objetos masivos, y los fenómenos resultantes de ello,
es lo que se conoce como efecto lente gravitatoria (gravitational lensing). Las estimaciones
más precisas de la distribución de la materia en la región central de las galaxias se deben,
de hecho, al análisis de lentes gravitacionales. Este efecto aumenta el brillo aparente y
el tamaño angular de las fuentes, facilitando el estudio de objetos que, de lo contrario,
serían demasiado débiles para ser detectados. Los objetos responsables de este suceso
se denominan lentes o deflectores. El efecto lente producido por lentes extensas, como
galaxias y cúmulos de galaxias, que da lugar a imágenes múltiples muy magnificadas y/o
distorsionadas de las fuentes se conoce como efecto lente fuerte (strong lensing). Los
eventos de strong lensing tienen lugar cuando el observador, la lente, y la fuente están
suficientemente bien alineados a lo largo de la línea de visión. Para fuentes puntuales, se
producirán imágenes múltiples mientras que para emisiones más extendidas, a menudo hay
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imágenes distorsionadas, que pueden adquirir la forma de anillos o arcos. La extensión de
las fuentes implica que la luz procedente de distantas zonas de la misma se desvía de manera
diferente y, por lo tanto, las imágenes producidas se distorsionan. Todas las imágenes
pertenecientes a la misma fuente llevan la misma información espectral, y es mediante
un análisis espectral como se pueden identificar las imágenes múltiples. El ejemplo más
espectacular de imágenes distorsionadas son los arcos gravitacionales observados cerca del
centro de muchos cúmulos de galaxias masivos (ver Figuras 0.2 y 3.1).

A lo largo de las últimas décadas, el efecto lente ha demostrado ser una herramienta
importante para la Cosmología observacional, dando lugar a un campo de investigación
independiente. Los métodos de lente fuerte se basan en el estudio de las magnificaciones,
formas, y posiciones de las imágenes multiples de fuentes lensadas, las cuáles se utilizan
para acotar la distribución de masa de la lente. Estas imágenes pueden aparecer desde
a unos pocos hasta a cientos de kiloparsecs del centro del cúmulo. La interpretación de
las observaciones de lentes fuertes en cúmulos de galaxias puede ser difícil debido a las
distorsiones introducidas en las galaxias lensadas y a la falta de información (tal como los
redshifts de las fuentes, Blandford and Narayan, 1992; Schneider et al., 1992; Wambsganss,
1998; Narayan and Bartelmann, 1996; Kneib, 2002). Afortunadamente, en los últimos
años, datos de mayor calidad nos han permitido confirmar espectroscópicamente muchas
familias de imágenes múltiples, reduciendo el nivel de incertidumbre y permitiendo recon-
strucciones detalladas del efecto lente en muchos cúmulos de galaxias (Broadhurst et al.,
2005). Los métodos de reconstrucción del efecto lente se clasifican a grandes rasgos en
métodos paramétricos y métodos flexibles (free-form methods). Los modelos paramétricos
son la elección natural para modelar el efecto lente fuerte en cúmulos cuando el número
de observaciones es relativamente pequeño, como en el caso de quasars lensados, donde
normalmente solo se tienen tres o cuatro imágenes múltiples. Estos modelos requieren que
se hagan suposiciones iniciales sobre la distribución de masa del cúmulo. Algunas de estas
suposiciones son, por ejemplo, que los halos de materia oscura siguen a la materia luminosa
en el cúmulo, o que los perfiles de las galaxias tienen ciertas simetrías. Sin embargo, si el
número de medidas observacionales es suficientemente alto, por ejemplo, de unas pocas de-
cenas a un centenar, es posible reconstruir con precisión el perfil de masa de un cúmulo de
galaxias, incluida su subestructura, usando un método flexible. La ventaja de los métodos
flexibles es que no se necesitan suposiciones iniciales sobre la distribución de masa en el
cúmulo de galaxias. Los modelos del efecto lente derivados con estos métodos son útiles en
casos donde la geometría de la lente es compleja, como en el cúmulo MACS0717. En este
caso, un modelo de lente flexible pudo predecir correctamente la posición de nuevas famil-
ias de galaxias lensadas, que fueron más tarde confirmadas espectroscópicamente (Diego
et al., 2015). Incluso en los casos en que el cúmulo es más regular, estos métodos han de-
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mostrado ser precisos para predecir diferentes observaciones posteriormente confirmadas.
Por ejemplo, predijeron acertadamente el tiempo y la posición de la reaparición de SN
Refsdal (Diego et al., 2016), o el redshift de la familia de imágenes lensadas en el sistema
7 del cúmulo A370 (Diego et al., 2018a).

8.5 Análisis del efecto lente fuerte en MACS J1206.2-0847

En esta tesis hemos llevado a cabo un análisis del efecto lente gravitatoria fuerte en el
cúmulo de galaxias MACS J1206.2-0847 (J1206 de ahora en adelante) para estimar y
acotar la distribución de materia oscura en su región central. J1206 es un cúmulo a
z = 0.439 muy brillante en rayos X (y por inferencia, muy masivo) en estado dinámico
relajado (Biviano et al., 2013). Su BCG es facilmente identificable, y se encuentra en el
centro del cúmulo. Una de las imágenes lensadas más peculiares en este cúmulo es un arco
gravitacional tangencial muy brillante de unos 15 segundos de arco, extendiendose al oeste
de la BCG. El análisis más actual del efecto lente fuerte en este cúmulo ha sido realizado
por Caminha et al. (2017) con un enfoque paramétrico flexible. En ese trabajo hicieron uso
de 82 imágenes múltiples identificadas espectroscópicamente, pertenecientes a 27 galaxias
de fondo con 1.01 ≤ z ≤ 6.06.

Hemos usado datos de imágenes públicas obtenidos de los instrumentos ACS y WFC3
del telescopio Hubble. Como miembros del cúmulo hemos seleccionado una muestra de 56
galaxias, incluyendo la BCG. Todas estas galaxias están enumeradas en la Tabla 4.1, y las
más cercanas a la BCG se muestran en la Fig. 4.1. Nos hemos limitado a utilizar galaxias
brillantes confirmadas espectroscópicamente, cercanas a la BCG y a los arcos observados,
que caigan en el campo de visión, y cuyo redshift esté en el intervalo 0.425 ≤ z ≤ 0.453.
El método de reconstrucción del efecto lente utilizado solo es sensible a las galaxias que
están realmente cerca de un arco (unos pocos segundos de arco) o que son muy masivas y,
por lo tanto, su radio de influencia efectivo es mayor que unos pocos segundos de arco.

Respecto a las imágenes múltiples observadas, hemos utilizado las mismas identifica-
ciones que en Caminha et al. (2017). Sin embargo, nosotros redefinimos algunos de sus
sistemas añadiendo a los arcos alargados bien resueltos diversos marcadores individuales.
La adición de marcadores adicionales en sistemas bien resueltos ha demostrado mejorar en
gran medida la precisión y estabilidad de las soluciones derivadas por el método WSLAP+
utilzado en este trabajo (Diego et al., 2016) debido a la gran extensión de los arcos gigantes.
En concreto, añadimos nuevos marcadores a los arcos 2b (arco tangencial largo situado 20"
al oeste de la BCG), 4b (arco radial recto junto a la BCG apuntando al noroeste), y 7c
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(arco radial curvo junto a la BCG apuntando al nordeste). En total, hemos usado 97
posiciones de imágenes lensadas en este trabajo. Todas ellas están listadas en la Tabla 4.2,
y las más cercanas a la BCG pueden verse en la Fig. 4.2.

El problema fundamental para analizar el efecto lente es averiguar cuáles son las posi-
ciones β = (βx, βy) de las galaxias que están siendo lensadas, y la distribución de masa
m(θ) del cúmulo, dadas una serie de imágenes lensadas cuyas posiciones θ = (θx, θy) se
conocen. Esto se consigue resolviendo la conocida como ecuáción de la lente:

β = θ −α(θ,m(θ)) (8.27)

donde α es el ángulo de desviación causado por el cúmulo, definido como

α(θ) =
4G

c2

DLDLS

DS

∫
Σ(θ′)

θ − θ′

|θ − θ′|2
d2θ′ (8.28)

donde Σ(θ) es la densidad de masa superficial del cúmulo, y DL, DS y DLS son las
distancias de diámetro angular al cúmulo, a las galaxias de fondo, y del cúmulo a las
galaxias de fondo, respectivamente.

El análisis del efecto lente de J1206 se ha realizado utilizando el código WSLAP+
(Diego et al., 2005a,b, 2007; Sendra et al., 2014). Se trata de un método híbrido puesto
que trata Σ como la combinación de dos componentes:

• Una componente difusa, construida como la superposición de Nc funciones Gaus-
sianas distribuidas cada una en una de las celdas de una cuadrícula. En este trabajo
se han utilizado una cuadrícula de 1024 celdas iguales (cuadricula regular), y otra
cuadrícula con 480 celdas de distinto tamaño (cuadricula adaptativa). Estos dos
grids se muestran en la Fig. 4.3.

• Una componente compacta, que da cuenta de la masa asociada con las galaxias indi-
viduales en el cúmulo. Para este cúmulo se ha modelado adoptando la distribución
de luz observada en el filtro F160W, y asignando inicialmente a cada una de las 56
galaxias seleccionadas una masa proporcional a su brillo superficial. Esta masa es
posteriormente reajustada en un proceso de optimización. Esta componente suele
dividirse en varias capas, cada una conteniendo un cierto número de galaxias. Esta
división permite tratar de diferente manera distintos tipos de galaxias.

Tras descomponer la componente difusa en una serie de funciones de masa individuales,
podemos formular la Eq. 8.27 como un sistema de ecuaciones en el que los observables
dependen linealmente de todas las incognitas:
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Θ = Γ X (8.29)

(
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θy
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=

(
Υx Ix 0

Υy 0 Iy

) cβx
βy

 (8.30)

donde los elementos ij de la matriz Ix son ‘1’s si el pixel θi (coordenada x) procede de la
fuente βj (coordenada y), y cero en los demás casos. La matriz Iy es definida de forma
análoga, y la matriz 0 contiene todo ceros. En este sistema de ecuaciones, los observables
del efecto lente fuerte (θx y θy) están contenidos en el array Θ, las posiciones desconocidas
de las fuentes (βx y βy) y la densidad de masa superficial Σ residen en el array X, y la
matriz Γ da cuenta de la física y la geometría de la cuadrícula utilizada.

La solución a este sistema lineal de ecuaciones es hallada minimizando una función
cuadrática de X (ver Eq. 4.14), con la restricción de que dicha solución ha de ser positiva.
La convergencia de este algoritmo cuadrático es rápida, permitiendo explorar múltiples
soluciones en un tiempo relativamente corto. Pueden obtenerse diferentes soluciones mod-
ificando la composición de la componente compacta, la configuración de la cuadrícula y/o
los redshifts de los sistemas sin medidas espectroscópicas. Para tener en cuenta las in-
certidumbres y la variabilidad en los modelos, exploramos una gama de configuraciones
en las que cambiamos las suposiciones para los dos componentes principales de nuestro
método: la relación luz-masa de las galaxias (componente compacta) y la definición de la
cuadrícula (componente difusa). El número de galaxias miembros del cúmulo es siempre
54. Se han considerado 9 tipos de modelos, que se pueden agrupar en cinco categoría o
casos, de acuerdo con la definición de la componente compacta:

• Caso 1. Todas las galaxias excepto la BCG están en la misma capa. Se asume que
todas las galaxias siguen la misma relación luz-masa. Se han considerado las dos
cuadriculas: Nc = 480 (1a) y Nc = 1024 (1b).

• Caso 2. Todas las galaxias están en la misma capa y siguen la misma relación luz-
masa. Se han considerado las dos cuadriculas: Nc = 480 (2a) y Nc = 1024 (2b).

• Caso 3. Todas las galaxias están en la misma capa y, a exceción de la BCG, siguen
una relación luz-masa de 1 a 1. La contribución de la BCG a la masa se reduce a la
mitad. Se han considerado las dos cuadriculas: Nc = 480 (3a) y Nc = 1024 (3b).

• Caso 4. Todas las galaxias están en la misma capa y, a excepción de la BCG, siguen
una relación luz-masa de 1 a 1. La contribución de la BCG a la masa se reduce en
un tercio. Se han considerado las dos cuadriculas: Nc = 480 (4a) y Nc = 1024 (4b).
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• Caso 5. La BCG es excluida de la componente compacta, y sólo la componente
difusa contribuye con su masa a la región central. Las demás galaxias siguen la
misma relación luz-masa. Sólo se ha usado la cuadrícula con 480 celdas (5a) puesto
que la reconstrucción del arco 7c con la cuadríacula regular no era muy buena.

Todos estos modelos se han comparado entre sí en base a su capadidad para reproducir
con mayor precisión dos arcos radiales alargados situados cerca de la BCG: el arco recto
4b (Fig. 4.10) y el arco curvo 7c (Fig. 4.11). El modelo que mejor reproduzca estos dos
arcos ofrecerá, en principio, la mejor estimación de la distribución de materia oscura en
la región central de J1206. Las métricas utilizadas para comparar los arcos modelados
con los datos se han basado en su posición y morfología. Se utilizó un análisis χ2 para
comparar estas métricas. Sorprendentemente, todos los modelos reproducen bastante bien
estos dos arcos, independientemente de la configuración elegida para la cuadrícula y la
elección de la relación luz-masa de las galaxias. La geometría de estos arcos radiales se
debe principalmente a la naturaleza alargada del halo de materia oscura, que es reproducido
por todos los modelos. Estimamos, y posteriormente sustraímos, la contribución bariónica
estelar para poder estimar la contribución restante de la componente de materia oscura en
la región central. Tras comparar las imágenes radiales predichas frente a las observadas para
todos los modelos, identificamos el modelo que mejor reproduce la masa en la región central
(modelo 2b). En la Fig. 4.14, mostramos una comparativa entre los perfiles de la masa total
proyectada de J1206 obtenidos mediante el análisis de la dinámica galáctica en Biviano
et al. (2013) (curva roja); el análisis del efecto lente fuerte realizado en Caminha et al.
(2017) (curva verde); y en este trabajo (curva rosa), observando una buena compatibilidad
entre los tres perfiles. Finalmente, el perfil de densidad de la componente de materia
oscura en J1206 se muestra en la Fig. 4.15. Este modelo puede describirse usando un perfil
gNFW con radio de escala rs = 167 kpc y pendiente γgNFW = 0.7. Nuestra estimación
del radio de escala no concuerda con los resultados anteriores de la distribución de masa
en este cúmulo, aunque debe tenerse en cuenta que la falta de observaciones a radios altos
impide una estimación sólida de este parámetro. Esta estimación conduce a un parámetro
de concentración c200 ∼ 12, que cae en el rango predicho para cúmulos relajados. Esto
respalda la conclusión de Biviano et al. (2013) de que el cúmulo se encuentra en un estado
dinámico relajado. Los resultados de nuestro modelado del efecto lente no son indicativos
de un perfil poco plano en la región central del cúmulo, como se esperaría para modelos
de materia oscura en los que interactúa consigo misma. Por el contrario, por encima de 10
kpc, encontramos una pendiente cercana a la pendiente esperada para modelos estándar
con materia oscura fria. Esta es una conclusión importante ya que nuestro modelo no hace
ninguna suposición sobre el perfil de masa en la región interior, aparte de suponer que el
componente bariónico traza la masa luminosa.
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Usando el modelo 2b hemos sido capaces de predecir la posición de imágenes de fuentes
que no fueron utilizadas en nuestro análisis, debido a haber sido observadas cerca de
galaxias masivas, y de nuevas imágenes multiples que no han sido observadas (Fig. 4.12).
También hemos estimado, usando el modelo 2b, las posiciones de las 27 galaxias siendo
lensadas (Fig. 4.16). Entre ellas, podemos destacar los sistemas con ID = 4, 5, 6, y 7.
Estas galaxias están todas en un intervalo estrecho de redshift, 1.424 ≤ z ≤ 1.426, y
probablemente formando un grupo puesto que también están muy cerca posicionalmente.
En la Fig. 4.17 se muestra una version reconstruida del plano de la fuente con estas 4
galaxias. Se puede observar cómo las galaxias 4 y 5 están ya interactuando, y que las
galaxias 6 y 7 están a menos de 10 kpc de distancia.

8.6 Identificación automática de lentes fuertes

El análisis de los fenómenos de lente gravitatoria fuerte ha demostrado ser una herramienta
cosmológica extremadamente útil. El único inconveniente es que estos eventos son poco
comúnes, con solo unos pocos sistemas lensados esperados al inspeccionar miles de obje-
tos. El advenimiento de una gran cantidad de datos de la actual y próxima generación de
surveys, los cuáles observarán muchos más sistemas lensados, podría parecer que resuelve
este problema. Sin embargo, las búsquedas tradicionales en imágenes de las característi-
cas del efecto lente se han basado exclusivamente en la inspección visual de los objetivos.
Y esto no es práctico para tal cantidad de datos. Por lo tanto, el desarrollo de técni-
cas de búsqueda automática de sistemas lensados ha adquirido una gran importancia en
los últimos años. Los métodos de aprendizaje profundo han demostrado tener un gran
éxito y pueden utilizarse para una gran variedad de propósitos científicos en astronomía
extragaláctica y cosmología. Nosotros hemos encontrado en las redes neuronales convolu-
cionales (CNNs) un buen punto de partida para identificar sistemas fuertemente lensados
en imágenes astronómicas.

8.6.1 Redes neuronales convolucionales

Las redes neuronales artificiales (ANNs) son modelos computacionales inspirados en el
comportamiento de las redes neuronales biológicas del cerebro humano. Constan de una
o más capas de neuronas unidas por conexiones. Estas neuronas son la unidad básica
de cálculo en una red neuronal. Cada neurona en una capa recibe uno o más valores de
entrada de las neuronas ubicadas en la capa anterior, o de una fuente externa si pertenecen
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a la capa de entrada. Cada una de estas entradas tiene un peso asociado (w), que se asigna
dependiendo de su importancia relativa respecto a las otras entradas. Todas las neuronas
tienen un parámetro de aprendizaje adicional que actúa como compensación de sesgo (b).
Las neuronas realizan una combinación lineal ponderada de todos los valores recibidos a la
que suman el sesgo. Finalmente, se aplica una función escalar f , conocida como función de
activación, a esta suma ponderada para calcular una salida escalar y. El proceso descrito
se muestra en la Fig. 5.1. En ese esquema, la neurona toma hasta n entradas numéricas
diferentes xi y las asocia con el mismo número de pesos wi.

Una CNN (Fukushima, 1980; LeCun et al., 1998, 2015) es un tipo de ANN diseñada
para aplicarse en imágenes, que esencialmente son matrices de valores en píxeles. Las
CNNs son la arquitectura de aprendizaje profundo más popular. Han demostrado ser muy
eficaces en los últimos años para tareas de visión artificial, como el reconocimiento de
patrones y la clasificación de imágenes (Russakovsky et al., 2015). La principal ventaja
de una CNN con respecto a otros algoritmos de reconocimiento de patrones es que de-
tecta y extrae automáticamente las características más representativas de las imágenes sin
ninguna supervisión humana. A diferencia de las redes neuronales regulares, la mayoría
de las neuronas en las CNNs se organizan en disposiciones tridimensionales (ancho, alto y
profundidad). Las neuronas dentro de estas capas 3D solo están conectadas a una pequeña
región de la capa anterior. Cada capa transforma los datos de entrada 3D en un volumen
de salida 3D. En el boceto que se muestra en la Fig. 5.7, la capa de entrada roja recibe
la imagen, por lo que su ancho y alto deben coincidir con las dimensiones de la imagen.
Por otro lado, la profundidad será el número de canales de la imagen. Por ejemplo, serían
tres (rojo, verde y azul) en el caso de una imagen en color, o mayor en el caso de tener
varias imágenes astronómicas de la misma fuente extragaláctica observadas a diferentes
frecuencias. La capa de salida final solo tendrá una dimensión, ya que el volumen 3D ini-
cial de imágenes se reduce a un solo vector de puntajes de clase, establecido a lo largo de
la dimensión de profundidad. La longitud de este vector dependerá del número de clases
posibles en el problema de clasificación.

Además de las capas de entrada y salida, la arquitectura de las CNN consta de otras
capas con funciones concretas. La capa convolucional es el núcleo de una CNN, realizando
la mayor parte del trabajo computacional. Una CNN típica suele tener más de una capa
convolucional. Los parámetros de cada capa convolucional consisten en un conjunto de
filtros aprendibles del mismo tamaño y más pequeños que las imágenes de entrada, a lo
largo de las dimensiones alto y ancho, pero se extienden en toda su profundidad. Como
se puede ver en la Fig. 5.8, cada filtro se desliza sobre las imágenes, calculando, para
cada posición del filtro, la suma de la multiplicación entre los elementos del filtro y los
elementos de la submatriz de la imagen cubierta por el filtro. El proceso da como resultado
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un mapa de activación bidimensional para cada filtro. La red aprenderá filtros capaces de
reconocer algún tipo de característica visual presente en las imágenes. Cuantos más filtros
tenga la red, más funciones se podrán extraer y mejor será su capacidad de detectar
patrones complejos en nuevas imágenes. Después de cada operación de convolución, se
aplica una función de activación ReLU. Esta es una operación que reemplaza todos los
valores negativos en los mapas de activación por ceros. El propósito es introducir no
linealidad en la CNN, ya que la convolución es una operación lineal, pero la mayoría de los
datos reales no son lineales.

Es frecuente insertar periódicamente una capa de agrupación después de la capa con-
volucional. Su función es reducir progresivamente las dimensiones de cada mapa de ac-
tivación, pero conservando la información más importante. Esto permite disminuir el
número de parámetros y trabajo computacional en la red. La capa de agrupación funciona
de forma independiente en cada segmento de profundidad de las imágenes y las reduce es-
pacialmente mediante una operación determinada. Existen diferentes tipos de agrupación
espacial según el tipo de operación utilizada. El mapa de activación rectificado de entrada
se divide en ventanas de las que se toma el elemento más grande (agrupación máxima), el
promedio (agrupación promedio) o la suma de todos los elementos (agrupación de suma).
Un ejemplo de agrupación máxima se puede observar en la Fig. 5.9.

Las operaciones vistas hasta ahora se encargan de extraer las características útiles de
las imágenes, introducir no linealidad en la red y reducir las dimensiones de los mapas de
características haciendo que la red sea invariable a pequeñas distorsiones en las imágenes.
Finalmente, tras la última capa convolucional, los mapas de características se aplanan como
un vector unidimensional y llegan a una o varias capas completamente conectadas. Todas
las neuronas de esta capa tienen conexiones con todos los mapas de activación procedentes
de las capas anteriores. El objetivo de esta capa es aprender combinaciones no lineales de
estas características y clasificar las imágenes de entrada de acuerdo con las clases existentes.
Su resultado es una vector de probabilidades para las diferentes etiquetas de clase en que las
imágenes pueden ser clasificadas. La clase que recibe la mayor probabilidad se elige como
decisión de nuestra clasificación. La Fig. 5.10 muestra un ejemplo de CNN que contiene
todas las capas explicadas.

Una vez que se ha decidido la arquitectura de la CNN (número y tipo de capas, número
y tamaño de los filtros, etc.) se puede proceder a su entrenamiento. Los demás parámetros
y pesos se pueden inicializar con valores aleatorios, o asignarse en base a un conocimiento
previo. También tenemos que configurar cómo la red manejará los datos de entrenamiento.
Consiste en decidir el tamaño del lote y el número de épocas. El tamaño del lote es el
número de porciones en las que se van a dividir los datos de entrenamiento, mientras que la
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cantidad de épocas, o ciclos de aprendizaje, es la cantidad de veces que todo el conjunto de
datos de entrenamiento pasa por la CNN. El número de iteraciones por época dependerá
del tamaño del conjunto de datos de entrenamiento y del tamaño del lote. Por ejemplo, si
se tienen 10,000 ejemplos y el tamaño del lote es 50, se necesitarán 200 iteraciones para
completar 1 época. En cada época cambia el orden y la composición de los lotes, por lo
que la red ve los ejemplos en un orden diferente en cada ciclo. Una vez decidido esto, las
imágenes de entrenamiento se pueden introducir en la red, pasando por todas sus capas,
hasta encontrar para cada imagen de entrada las probabilidades de pertenecer a cada clase
posible. El error total sobre todas las clases en la capa de salida se evalúa utilizando una
función de pérdida. Un método de retropropagación se usa para calcular los gradientes de
la función de pérdida con respecto a todos los pesos en la red, y un algoritmo de descenso
de gradiente actualiza todos los pesos para minimizar el error en la capa de salida, como
se muestra en la Ec. (5.4). Una vez que se alcanzan los pesos óptimos, podemos decir
que la CNN ha aprendido a clasificar correctamente las imágenes del conjunto de datos de
entrenamiento y está lista para trabajar con un conjunto de datos de prueba.

Sin embargo, a veces el aprendizaje no es exitoso y la red ni siquiera clasifica lo sufi-
cientemente bien la muestra de entrenamiento, o funciona mucho mejor con los datos de
entrenamiento que con los de prueba. En este último caso, se dice que el modelo está
sobreajustado. Este tipo de problemas de aprendizaje se pueden diagnosticar fácilmente
monitorizando el desempeño de la CNN a lo largo del tiempo durante el entrenamiento.
Entre las técnicas existentes para evitar el sobreajuste, el abandono es, con mucho, la
técnica de regularización más popular. Como se muestra en la Fig. 5.6, el abandono con-
siste en asignar a todas o algunas de las neuronas de la red una cierta probabilidad de
quedar temporalmente desactivadas durante el tiempo de entrenamiento, de modo que la
arquitectura de la red cambiará en cada iteración. La otra forma habitual de reducir el
sobreajuste es aumentar el número de ejemplos en los datos de entrenamiento mediante
el ‘aumento de datos’. Esto consiste en aplicar a las imagenes diferentes técnicas como
inversiones, traslaciones, rotaciones, escalados, cambios en el brillo o la inclusión de ruido.

El rendimiento de cualquier modelo de clasificación, como los producidos por las redes
neuronales, sobre unos datos de prueba, de los que se conocen los resultados verdaderos,
puede describirse usando una matriz de confusión. Esta tabla muestra el número de aciertos
y de fallos para cada clase, así como qué clases reciben los fallos del resto. La suma de
todas las celdas en la matriz de confusion debe coincidir con la cantidad de ejemplos
en la muestra de prueba. En el caso concreto de una clasificación binaria, como la que
consideramos aquí para intentar predecir si una imágen es o no una lente, se establece
un valor de umbral para decidir si un ejemplo pertenece a una u otra clase. El valor
por defecto para dicho umbral, sobre el que son construidas las matrices de confusión, es
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0.5. Por tanto, los ejemplos con probabilidades mayores que 0.5 son predichos como lentes
mientrás que los demás se consideran no lentes. Todos los ejemplos de los datos que son
lentes se denominan positivos (P ) mientrás que los que no lo son se denominan negativos
(N). Los verdaderos positivos (TP ) son los ejemplos de lentes identificados correctamente
como lentes. Los verdaderos negativos (TN) son los ejemplos de no lentes identificados
correctamente como no lentes. Los falsos positivos (FP ) son los ejemplos de no lentes
que la red predice erróneamente como lentes. Los falsos negativos (FN) son los ejemplos
de lentes que la red predice erróneamente como no lentes. Un ejemplo de las matrices de
confusión utilizadas en este trabajo es mostrado en la Tabla 5.1.

Estamos ya en disposición de definir algunas tasas importantes que se pueden calcular
a partir de la información dada por la matriz de confusión. La tasa de verdaderos positivos
(TPR o Recall) indica la probabilidad de detección y se define como el cociente TP/P
(Eq. 5.12). La tasa de falsos positivos (FPR) nos informa de la probabilidad de una falsa
alarma, y se define como el cociente FP/N (Eq. 5.13). La exactitud (Acc) indica cuántas de
las predicciones hechas por el clasificador son correctas (Eq. 5.14). Y por su lado tenemos
la precisión (Pre), que nos dice la proporción de lentes correctamente identificadas con
respecto al total de identificaciones de lentes realizadas sobre los datos (Eq. 5.15). Es, por
tanto, un indicador de la pureza de la clasificación realizada.

El método más comúnmente utilizado para cuantificar la habilidad clasificadora de un
modelo es la curva ROC (Característica Operativa del Receptor; Dorfman and Alf, 1968;
Powers, 2011). Esta curva representa FPR frente a TPR para diferentes umbrales de
probabilidad (Pthr). Algunos ejemplos de curvas ROC se pueden ver en la Fig. 6.4. El
AUC (área bajo la curva) proporcionada por esta curva es el factor de mérito estándar
utilizado para comparar el desempeño de varios modelos de clasificación. Indica cuánto es
capaz un modelo de distinguir entre clases. Buscamos maximizar los TP y minimizar los
FP . Por lo tanto, cuanto más hacia la izquierda en el eje x y hacia arriba en el eje y esté
la curva, mayor será el AUC y mejor será el modelo.

Finalmente, una vez introducidas las cantidades anteriores, podemos definir Fβ :

Fβ = (1 + β2)
Pre×Recall

(β2Pre+Recall)
(8.31)

de modo que Fβ=0 = Pre, Fβ=∞ = Recall, y 0 ≤ Fβ ≤ 1. Fβ = 0 cuando TP = 0,
mientrás que Fβ = 1 si no hay FP ni FN . La importancia relativa en esta expresión
de Pre y Recall depende del valor que tome β. Fβ puede calcularse para un valor Pthr
específico, y el funcionamiento del clasificador se mide usando el valor máximo de Fβ
alcanzado para cualquier Pthr:
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Fβ = maxpFβ(p) (8.32)

Cuando se buscan sistemas lensados, tener una alta precisión, o una baja tasa de
contaminación, es importante debido al hecho de que en los datos reales las lentes son más
raras de ver que en los datos simulados por un factor de ∼ 1000. Es por ello que en este
trabajo hemos tomado β = 0.03 para priorizar Pre sobre el Recall.

La configuración de CNN utilizada en este trabajo es una adaptación de la red desa-
rrollada para la clasificación morfológica de galaxias en Domínguez Sánchez et al. (2018),
ahora dirigida a la identificación de lentes fuertes. Ha sido construida y entrenada en
Python 3.6 usando la biblioteca Keras, una interfaz de programación de alto nivel y código
abierto para la aplicación de redes neuronales. La arquitectura básica de esta CNN se
muestra en la Fig. 5.11. Se compone de 4 capas convolucionales con filtros cuadrados de
diferentes tamaños (6×6, 5×5, 2×2 y 3×3, respectivamente) y una capa completamente
conectada. Después de cada capa convolucional, se aplica una función de activación ReLu.
Y después de la segunda y tercera capas convolucionales, se aplica una agrupación máxima
de 2 × 2. Al principio, el abandono se realizaba después de cada capa convolucional con
tasas de 0.25 o 0.5, como se muestra en el esquema. Sin embargo, después de realizar algu-
nas pruebas con simulaciones del efecto lente similares a los que observaría el survey KiDS,
decidimos eliminar todos los abandonos excepto el de la capa completamente conectada.
La arquitectura de la red se mantuvo así desde ese momento.

Hemos utilizado diferentes datos de entrada para la red a lo largo de este trabajo y,
en consecuencia, la capa de entrada no siempre ha sido la misma. La capa de entrada
que se muestra en la Fig. 5.11 corresponde a la red utilizada en la Sec. 6.1, donde hemos
entrenado usando imágenes similares a KiDS, de 101×101 píxeles, en tres bandas diferentes
(g, r y i). Por tanto, las matrices leídas por la red tienen dimensiones (101,101,3). En
la Sec. 6.2 entrenamos usando imágenes similares a las que observará el satélite Euclid,
también de 101 × 101 píxeles, solo en la banda visible, por lo que las matrices leídas por
la red tienen dimensiones (101,101,1). En Sec. 6.3 entrenamos la red nuevamente usando
simulaciones inspiradas en Euclid, pero con 66× 66 píxeles, y la imagen está disponible en
cuatro bandas diferentes (VIS, J, Y y H). Las matrices leídas por la red esta vez tienen
dimensiones (66,66,4). Finalmente, en la Sec. 7.4 la red se entrena usando dos imágenes
pseudo-espectrales, con 56 × 56 píxeles, para cada ejemplo por clasificar. Por tanto, las
matrices a introducir en la red tienen dimensiones (56,56,2). En todos los casos, los valores
de flujo de las imágenes se normalizan al máximo en cada banda antes de ingresar en la
red, para no trabajar con números grandes.
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Los modelos se entrenan utilizando una tabla con los resultados esperados (aprendizaje
supervisado) como clasificadores binarios, entre lentes (1) y no lentes (0). Se usa una
función de activación sigmoide en la última capa completamente conectada para convertir
los puntajes de salida en probabilidades distribuidas entre 0 y 1. En el proceso de apren-
dizaje usamos la función de pérdida de entropía cruzada binaria (Eq. 5.18). El método
de descenso del gradiente utilizado aquí es la optimización adam (Kingma and Ba, 2015)
con una tasa de aprendizaje de 0.001. El resultado una vez que se ha entrenado la red
es un vector de puntuaciones de probabilidad entre 0 y 1, cuya longitud concuerda con el
número de ejemplos dados a la red. Una probabilidad de 0 significa la menor confianza de
que el ejemplo dado es una lente, mientras que una probabilidad de 1 significa la confianza
más alta de que se trata de una lente. Usamos 25 épocas de entrenamiento al probar
diferentes estrategias para trabajar con la red, como cambiar el tamaño de las muestras de
entrenamiento o probar diferentes preprocesados de datos. Y 60 épocas, con la opción de
detener el proceso de forma anticipada si la optimización ha convergido, cuando se lleva a
cabo el entrenamiento definitivo para un determinado conjunto de datos. El tamaño del
lote se fija siempre en 30. En el proceso de entrenamiento, se realizan varias técnicas de
aumento de datos, acercando y alejando las imágenes (0.75 a 1.3 veces el tamaño original),
rotándolas (dentro de 45◦), volteándolas y desplazándolas tanto vertical como horizontal-
mente (en un 5%). Esto asegura que los modelos derivados no sufran de sobreajuste ya
que los datos de entrada varían de una época de entrenamiento a la siguiente. La propor-
ción de lentes/no lentes no está necesariamente equilibrada en los conjuntos de datos de
entrenamiento utilizados. Teniendo esto en cuenta, nos aseguramos de equilibrar los pesos
asignados a las clases de lentes y no lentes durante el entrenamiento para evitar sesgos no
deseados en el desempeño de la CNN.

8.6.2 Buscando lentes fuertes con redes neuronales convolucionales

En la última parte de esta tesis se ha presentado el desempeño en la búsqueda de lentes
gravitacionales fuertes de varios modelos basados en la misma red neuronal convolucional
(Fig. 5.11). Hemos considerado, tanto en el entrenamiento como en el testeo, datos que
imitan la respuesta o proceden de diferentes surveys astronómicos. En primer lugar, se
llevaron a cabo varias pruebas con datos simulados basados en KiDS (de Jong et al., 2013).
Gracias a estas pruebas descubrimos que se obtiene un mejor rendimiento de la red al
normalizar previamente los datos al valor máximo en cada una de las bandas consideradas,
reducir la frecuencia de la técnica de abandono, y usar la técnica de detención anticipada
cuando no se observan mejoras en la muestra de validación. Aproximadamente el 13% de
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los ejemplos basados en KiDS presenta un enmascaramiento artificial aleatorio en algunos
píxeles, que consideramos se incluyeró para imitar un excesivo ruido en los datos o una
mala respuesta del detector. No obstante, al considerar estas máscaras excesivas, puesto
que ocultan en bastantes casos por completo las características de las lentes presentes en
las imágenes, y al lograr mejores resultados entrenando sin ellas, decidimos eliminar estos
ejemplos de los datos de entrenamiento, y crear un muestra de datos de prueba sin ellos.

Nuestro mejor modelo obtenido entrenando con datos basados en KiDS ha logrado
un AUC = 0.955 cuando se prueba en el conjunto de datos de prueba completo, y un
AUC = 0.982 cuando se eliminan los ejemplos que contienen máscaras artificiales (ver
Fig. 6.16). Un 15% de los ejemplos simulados en estos datos de prueba utilizan imágenes
reales tomadas de una muestra preliminar de galaxias brillantes observadas con el survey
KiDS. Cuando nuestro modelo se aplica a estos ejemplos concretos, el AUC cae a 0.832,
pero con un modelo entrenado y probado utilizando exclusivamente estos ejemplos logramos
un AUC = 0.888 (ver Fig. 6.17). Este es un claro ejemplo de las diferencias de eficiencia
que pueden surgir cuando los modelos entrenados mediante simulaciones son puestos a
prueba con datos reales. Y, por tanto, es importante que las simulaciones sean lo más
realistas posible. Posteriormente, hemos probado nuestro mejor modelo en imágenes de
una muestra de candidatos a lentes gravitacionales fuertes de los surveys SDSS y DES,
logrando precisiones del 65% y 83%, respectivamente. En las figuras 6.18, 6.19 y 6.20 se
muestran imagenes de algunos de estos sistemas junto a las probabilidades asignadas por
nuestro modelo. Hay ejemplos tanto bien como mal clasificados. Por último, este modelo
también se ha aplicado a los 40 posibles candidatos a lentes identificados en la Sección 2.7,
entre los que se pronostican 7 como lentes (ver en Fig. C aquellos ejemplos con el nombre
resaltado en naranja), y a un conjunto de posibles lentes identificadas visualmente gracias
al proyecto Galaxy Zoo 2 (Willett et al., 2013). El 86% de estos últimos ejemplos han sido
identificados como lentes por nuestro modelo (ver Fig. 6.21).

Por otro lado, el mejor modelo obtenido entrenando con datos similares a Euclid en
la banda visible arroja un AUC = 0.921 (ver Fig. 6.25). Este modelo se obtuvo usando
criterios ligeramente más estrictos para definir las lentes que los utilizados para evaluar
dicho modelo en el conjunto de datos de prueba. Como puede verse, a pesar del hecho
de que las imágenes basadas en Euclid tienen una relación S/R más alta que las imágenes
basadas en KiDS, los resultados del AUC son mucho mejores para estas últimas. Después de
entrenar un modelo solo con imágenes en la banda r de los datos basados en KiDS, podemos
confirmar que proporcionar a la red más información, en forma de bandas adicionales,
mejora su rendimiento. Por lo tanto, la razón por la que la CNN funciona peor con los
datos de Euclid es que solo poseen una banda.
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El siguiente paso ha sido entrenar y probar la red con datos basados en Euclid más
realistas, utilizando sus cuatro bandas previstas (VIS, J, Y y H), como parte un desafio
entre diversos métodos dirigidos a la identificación de sistemas lensados. En esta ocasión
nos propusimos lograr un modelo con una alta precisión, ya que el método de evaluación
utilizado en el desafío penalizaba la cantidad de falsos positivos. Se consideraron varios mo-
delos, que fueron entrenados con definiciones más agresivas para las lentes que la utilizada
en la evaluación, entre los cuales el ‘50-pixel model’ proporcionó los mejores resultados
con Fβ = 0.9859 (ver Fig. 6.35) y AUC = 0.700 (ver Fig. 6.34). Logramos obtener una
clasificación de lentes lo suficientemente pura en el desafío, pero a costa de perder más
lentes de las detectadas (ver Tabla 6.24). Mostramos en la Fig. 6.37 una muestra aleatoria
de 35 ejemplos de verdaderos positivos con Plens = 1.0. Después de comprobar visualmente
algunos falsos positivos con probabilidades altas, encontramos que ≈ 33% son verdaderas
lentes reconocibles a simple vista, pero que no cumplen con los requisitos de evaluación del
desafío (ver Fig. 6.38). Estas son noticias alentadoras, ya que nuestros modelos agresivos
son capaces de reconocer patrones de sistemas lensados en ejemplos menos claros que los
utilizados en su entrenamiento.

Tenemos la intención de seguir explorando la capacidad de los algoritmos basados
en CNNs. Nuestro objetivo a largo plazo es desarrollar modelos buscadores de lentes
automatizados lo más precisos posible, que sean capaces de extraer características difíciles
de reconocer para el ojo humano. Otro aspecto importante es asegurar que estos modelos no
dependan del instrumento ni de las características de la encuesta utilizadas para obtener las
imágenes. Hemos visto aquí que es posible aplicar modelos entrenados con datos basados
en KiDS a imágenes basadas en Euclid, o procedentes de SDSS y DES, logrando buenos
resultados. Los modelos derivados deben ser robustos frente a pequeños cambios en los
datos. Abordaremos esto explorando todas las posibilidades de las CNN y combinando las
lentes ya detectadas de diferentes surveys con imágenes simuladas de sistemas fuertemente
lensados en diferentes condiciones.

Finalmente, hemos mostrado los primeros resultados de un trabajo en curso destinado a
desarrollar un método de identificación automática de cuásares lensados en J-PAS (Bonoli
et al., 2020). J-PAS es un survey único con 54 filtros fotométricos estrechos que nos per-
mitirá tener un buen conocimiento de la SED de los objetos observados, así como medidas
fotométricas precisas de sus redshifts. Se espera que explore unos 8000 grados cuadra-
dos y observe, entre otros objetos, más de medio millón de cuásares, entre los que una
cantidad no despreciable estará afectada por el efecto lente gravitatoria. En este trabajo
hemos creado simulaciones del efecto lente gravitatoria sobre cuásares, también simula-
dos, basados en el sistema fotométrico de J-PAS. Como lentes se han usado galaxias rojas
detectadas en un pequeño campo de visión de J-PAS ya explorado (ver Fig. 7.6). Estas sim-
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ulaciones del efecto lente, junto con ejemplos no lensados de galaxias, quásares y estrellas
observados con J-PAS, se han utilizado para entrenar nuestra CNN. En lugar de entrenar
la red con las imágenes en todas las bandas consideradas, reducimos toda esta informa-
ción a dos pseudo-espectros para cada ejemplo. Estos pseudo-spectros fueron construidos
proyectando los datos en todas las bandas a lo largo de los ejes x e y de las imágenes
(ver Fig. 7.5). Aunque se pierda parte de la información, las características morfológicas
y espectrales más relevantes de los ejemplos, para poder clasificarlos, se conservan, y se
reduce la complejidad de la red. En la Fig. 7.7 se muestran ejemplos de los pseudo-spectros
de algunos cuásares lensados. Y en las figuras 7.8 y 7.9 se muestran los pseudo-spectros de
algunos ejemplos de estrellas/cuásares y galaxias, respectivamente. Hemos comparado el
desempeño de dos modelos, uno entrenado con galaxias, quásares y estrellas, como ejemp-
los sin lentes, y el otro entrenado sólo con galaxias, como casos no lensados. Encontramos
que ambos modelos logran resultados muy buenos (ver Fig. 7.11), pero observamos que
entrenar con una mayor diversidad de ejemplos reduce significativamente la cantidad de
falsos positivos (ver Tabla 7.5) y la probabilidad que el modelo asigna a los mismos (ver
Tabla 7.6).

Nuestro deseo es comprobar a continuación el rendimiento de la CNN al aumentar la
cantidad de cuásares lensados con magnificaciones pequeñas, que seguramente serán menos
fáciles de clasificar. Aumentar el número de estrellas, cuásares y galaxias considerados como
ejemplos no lensados también está entre nuestros propósitos. A más largo plazo, nuestro
objetivo es probar los modelos que obtengamos sobre las fuentes detectadas en el campo
de visión completo de J-PAS. Las identificaciones correctas logradas de cuásares lensados
serán de interés para el survey WEAVE-QSO (Pieri et al., 2016), cuyos objetivos serán los
cuásares observados por J-PAS.

8.7 Conclusiones y proyección futura

No ha transcurrido mucho tiempo desde que las redes neuronales convolucionales comen-
zaron a usarse en cosmología, pero han logrado convertirse en una de las herramientas más
atractivas para analizar datos, en particular para fines de clasificación. Y seguramente su
relevancia seguirá creciendo cada vez más debido a su capacidad para detectar característi-
cas sin supervisión humana. Hemos mostrado en este trabajo cómo pueden emplearse con
éxito para buscar lentes fuertes en imágenes astronómicas. Pero también son utilizadas
para distinguir entre diferentes fuentes astronómicas o radiaciones, en la clasificación mor-
fológica de galaxias o para medir redshifts fotométricos. Para todos estos propósitos, tener
un buen conocimiento de la SED observada es crucial para que la red pueda caracterizar
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la naturaleza o estimar el redshift de los objetos detectados. Aunque los surveys espec-
troscópicos permiten análisis precisos de las fuentes, se requieren prolongadas campañas
de seguimiento para cada objetivo. Por otro lado, los grandes surveys fotométricos pro-
porcionan datos para tantas fuentes como aparezcan en las imágenes, pero la resolución en
longitud de onda depende de cuán estrechos sean los filtros, perdiéndose información sobre
las características espectrales individuales. Por esta razón, es gratificante la existencia
de surveys con bandas estrechas como J-PAS o PAU (Eriksen et al., 2019). Con sus 54
filtros estrechos, J-PAS permite aumentar la precisión produciendo un espectro completo
de baja resolución, que cubre una amplia gama de longitudes de onda visibles. Si bien las
técnicas automáticas de aprendizaje profundo, como las redes neuronales convolucionales,
nos ayudan a manejar más fácilmente las grandes cantidades de datos procedentes de los
surveys a gran escala actuales y futuros, los pseudo-espectros de J-PAS son útiles para
resolver las amplias características espectrales de la objetos observados, más rápido que
los obtenidos con surveys espectroscópicos. Esperamos que se lleven a cabo numerosos
estudios astrofísicos mediante la combinación de estos dos ingredientes, produciendo signi-
ficativos resultados científicos. Aunque las redes neuronales son realmente poderosas por
sí mismas, hemos visto que un preprocesamiento adecuado de los datos es importante. En
este sentido, la combinación de técnicas adaptativas de filtrado concretas, como el multifil-
tro ajustado, que optimiza la detección de fuentes sobre ruido de fondo, y redes neuronales
convolucionales también sería un proyecto interesante a desarrollar en el futuro.

Centrándonos en el efecto lente gravitatoria, es un fenómeno que involucra dos objetos
separados en redshift y con diferentes comportamientos espectrales, en los que general-
mente se pueden ver estructuras azules tenues en forma de arco alrededor de galaxias
rojas luminosas. En este trabajo hemos confirmado que tener observaciones a diferentes
longitudes de onda arroja mejores resultados al buscar lentes fuertes. Por lo tanto, la
gran cantidad de bandas fotométricas de J-PAS puede proporcionar una visión clara para
detectar sistemas lensados, distinguir la fuente de la lente debido a sus diferencias espec-
trales e identificar múltiples imágenes de la misma fuente debido a la similitud espectral
en las imágenes observadas. Uno de los principales objetivos de J-PAS es medir redshifts
fotométricos precisos para galaxias de hasta z ∼ 1, lo que facilita significativamente el de-
scubrimiento de sistemas lensados para que puedan ser estudiados posteriormente por este
u otros surveys. Cuantas más observaciones estén disponibles, mejores análisis del efecto
lente se pueden realizar. Y esto es importante, ya que las estadísticas del efecto lente son
una forma prometedora de derivar restricciones sobre los parámetros cosmológicos. Gracias
a las técnicas de detección automática, como las redes neuronales convolucionales, y a los
surveys a gran escala, como Euclid y LSST, que esperan observar ∼ 105 lentes fuertes, la
búsqueda y análisis de eventos con lentes fuertes es un campo de investigación prometedor.
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