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Abstract—Zero-IF self-oscillating mixers (SOMs), based on 

injection locking, enable a compact direct frequency conversion 
and substantially mitigate the phase noise problem of heterodyne 
SOMs. Despite these advantages, their operation is complex and 
susceptible to exhibit a variety of dynamical effects. Here the need 
for an optimum selection of the operation point in the static 
injection-locked curve is demonstrated, as well as the inability of 
the oscillator to follow the variations of the input signal from a 
certain modulation frequency. Then a noise analysis of the down-
converted signal is presented, based on a conversion-matrix 
formalism applied to a semi-analytical formulation.  
Keywords—injection-locking, noise analysis, envelope transient 

I. INTRODUCTION 

The zero-IF self-oscillating mixers (SOMs) presented in 
[1]-[2] enable a direct frequency conversion that avoids the 
need for both an oscillator and a mixer. As a result, they reduce 
power consumption and size, of general interest for the 
implementation of compact transmitter and receivers, such as 
those used in RFID and sensor systems. Zero-IF SOMs are 
based on the injection locking of an oscillator by an RF signal, 
which substantially mitigates the phase noise problem of 
heterodyne SOMs. Zero-IF SOMs can be used under both 
amplitude and frequency modulations, and the demodulation 
can be easily carried out by amplifying the voltage drop in a 
resistor of the bias circuitry. Their interest and potential are 
demonstrated in the recent work [2], which presents a 
sourceless bank of zero-IF SOMs to receive and demodulate 
simultaneously different data streams. 

Despite their demonstrated usefulness, the operation of 
modulated injection-locked oscillators is complex and 
susceptible at exhibiting a variety of dynamical effects. The 
work [3] presented an analysis of the boundaries between zero-
IF and heterodyne SOM operation in terms of the input 
frequency and power, as well as an analysis of possible 
instantaneous unlocking under amplitude modulations. 
However, other distortion mechanisms associated with their 
oscillatory nature have not yet been investigated. Their 
knowledge and accurate prediction should allow an optimized 
design of these compact circuits to take advantage of their full 
potential.  

Here we will demonstrate the need for a proper choice of 
the operation point in the static injection-locked curve to avoid 
a relevant distortion of the demodulated signal. The impact of 
the modulation frequency will also be analyzed, showing the 
inability of the oscillator to follow the variations of the input 
signal above a certain value of the modulation frequency. Then 
a noise analysis of the down-converted signal will be presented, 

based on a conversion-matrix formalism applied to a semi-
analytical formulation of the injection-locked oscillator. 
Initially, an analytical study of a simple cubic-nonlinearity 
oscillator, enabling insight into the problem, will be carried out. 
Then, a FET-based oscillator at 800 MHz will be considered. 

II. DYNAMICAL EFFECTS AT THE MODULATION SCALE 

The cubic-nonlinearity oscillator of Fig. 1 is injection 
locked with an independent source 𝑔௜௡ሺ𝑡ሻ of amplitude 𝐺௜௡ and 
frequency 𝜔௜௡.  Limiting the analysis to DC and the 
fundamental frequency, it is described with the equations: 

 𝐴ሺ0ሻ𝑉଴ ൅ 𝐵ሺ0ሻ𝐼଴ሺ𝑉଴,𝑉ଵሻ ൌ 0, 

𝐴ሺ𝜔௜௡ሻ𝑉ଵ ൅ 𝐵ሺ𝜔௜௡ሻ𝐼ଵሺ𝑉଴,𝑉ଵሻ ൌ 𝐺௜௡𝑒௝ఝ 
(1) 

where 𝑉଴, 𝑉ଵ and  𝐼଴, 𝐼ଵ are the components at DC and 𝜔௜௡ of 
the voltage 𝑣ሺ𝑡ሻ and the current 𝑖ሺ𝑡ሻ, 𝑉ଵ is an amplitude and 𝜑 
is the phase shift between 𝑔௜௡ሺ𝑡ሻ  and 𝑣ሺ𝑡ሻ . The frequency 
dependent functions are 𝐴ሺ𝜔ሻ ൌ 𝑗𝜔𝐶ሺ𝑅 ൅ 𝑗𝜔𝐿ሻ ൅ 1  and 
𝐵ሺ𝜔ሻ ൌ 𝑅 ൅ 𝑗𝜔𝐿. Because the two equations are coupled, 𝑉଴ 
will vary with 𝜔௜௡. One obtains a closed curve 𝑉଴ሺ𝑓௜௡ሻ, where 
𝑓௜௡ ൌ 𝜔௜௡/2𝜋 , though only the stable lower section of this 
curve has been represented in Fig. 2(a) and (b).  

 
Fig. 1. Cubic-nonlinearity oscillator. The circuit parameter values are 𝑎ଵ ൌ

െ0.2 Ωିଵ, 𝑎ଶ ൌ 0.01 A/V2, 𝑎ଷ ൌ 0.02 A/V3, 𝐿 ൌ 0.1 nH, 𝑅 ൌ 0.1 Ω, 𝐶 ൌ 0.1 
nF. The injection source amplitude is 𝑉௜௡ ൌ 0.02 V. 

When considering an input modulation, the state variables 
become time variant, and proceeding like in [4] one obtains: 

𝐴ሺ0ሻ𝑉଴ሺ𝑡ሻ ൅ 𝐵ሺ0ሻ𝐼଴ሺ𝑡ሻ െ 

𝑗𝐴ఠሺ0ሻ𝑉ሶ଴ሺ𝑡ሻ െ 𝑗𝐵ఠሺ0ሻ𝐼ሶ଴ሺ𝑡ሻ ൌ 0, 

𝐴ሺ𝜔௜௡ሻ𝑋ଵሺ𝑡ሻ ൅ 𝐵ሺ𝜔௜௡ሻ𝐼ଵሺ𝑡ሻ െ 

𝑗𝐴ఠሺ𝜔௜௡ሻ𝑋ሶଵሺ𝑡ሻ െ 𝑗𝐵ఠሺ𝜔௜௡ሻ𝐼ሶଵሺ𝑡ሻ ൌ 𝐺௜௡ሺ𝑡ሻ𝑒௝ఝሺ௧ሻ 

(2) 

where 𝑋ଵ ൌ 𝑉ଵ𝑒௝థ
ሺ௧ሻ and the subscript 𝜔  indicates frequency 

differentiation. As a meaningful example, we will consider an 
injection locking source at the free-running frequency 𝜔௜௡ ൌ
2𝜋𝑓௢ , where 𝑓௢ ൌ 1.583  GHz is the free-running frequency, 



and a frequency modulation Δ𝑓௠ሺ𝑡ሻ ൌ 𝐴௠𝑢ሺ𝑡,𝑇௠ሻ,  where 
𝑢ሺ𝑡,𝑇௠ሻ is a 𝑇௠ periodic pulse taking values ሺ0,1ሻ in, 𝐴௠ ൌ 4 
MHz and 𝑓௠ ൌ 2𝜋/𝑇௠ ൌ 1  MHz. Tracing the demodulated 
signal 𝑉଴ሺ𝑡ሻ versus the instantaneous frequency shift Δ𝑓ሺ𝑡ሻ ൌ
𝜙ሶ ሺ𝑡ሻ/2𝜋, one obtains the black curve traced in Fig. 2(a), which 
exhibits a minimum. The instantaneous frequency and 
demodulated voltage 𝑉଴ሺ𝑡ሻ are traced versus time in Fig. 2(c) 
and (d) (blue curves). The demodulated voltage exhibits two 
maxima per period. This undesired effect is due to the minimum 
of the black curve in (a). Thus, a suitable choice of the operation 
point is required. For a higher modulation frequency 𝑓௠ ൌ 10 
MHz one obtains the results in Fig. 2(b). Even though the 
modulation frequency excursion is the same as before, the 
projection over the static curve is smaller. This is because the 
oscillation is unable to follow the fast variations of the input 
signal [black waveforms in Fig.  2(c) and (d)], which is due to 
the impact of the time derivatives in (2).  

 ⋅ Synchronized steady state solution             FM trajectory  

 
(a) 

 
       (b) 

 𝑓௠ ൌ 1 MHz                    𝑓௠ ൌ 10 MHz  

 
(c) 

 
(d) 

Fig. 2. FM analysis for 𝑓௠ ൌ 1 MHz, 10 MHz. (a) Evolution of the baseband 
signal 𝑉଴ሺ𝑡ሻ along the synchronization curve for 𝑓௠ ൌ 1 MHz. (b) For 𝑓௠ ൌ 10 
MHz in (b). (c) Baseband signal 𝑉଴ሺ𝑡ሻ versus the normalized time 𝑡/𝑇௠. (d) 
Instantaneous frequency shift Δ𝑓ሺ𝑡ሻ versus 𝑡/𝑇௠. 

Now a practical zero-IF SOM at 790 MHz shown in Fig. 3, 
based on the transistor ATF34143, will be considered. In view 
of the above results, the element values were optimized to avoid 
any extremes in the curve providing the DC signal versus 𝜔௜௡ 
(Fig. 4), obtained with harmonic balance (HB) [3]. The 
boundaries of the locking band are given by the turning-point 
bifurcations T1 and T2 [4], and the stable section is the lower 
one. A rectangular FM signal with amplitude 𝑉௜௡ ൌ 0.07 V and 
a frequency deviation of 4 MHz has been introduced, using 
different modulation frequencies: 1 MHz, 5 MHz, 10 MHz, and 
15 MHz. The demodulated voltage has been traced versus the 
instantaneous frequency 𝑓௜௡ ൅ Δ𝑓ሺ𝑡ሻ (in red). The same curve 
(in red) is obtained for the four modulation frequencies, so the 
oscillation can follow the input signal in all cases.  

The down-conversion gain depends on the device bias point. 
At a constant input frequency, this can be analyzed by sweeping 
the gate-bias voltage  𝑉 ௌ and performing an envelope-transient 
simulation at each sweep step. After removing the initial 
transient, the results are projected over the static injection-
locked curve, and this projection gives rise to a vertical red line, 
for each VGS. For 𝑉௜௡ ൌ 0.07 V and 𝑓௠ ൌ 15 MHz, one obtains 
the results in Fig. 5(a). As 𝑉 ௌ increases, there is a widening of 
the projection, which should imply a larger down-conversion 
gain. Note that near the turning point there is a qualitative 
change, due to the advance, in dynamic conditions, of the 
bifurcation that delimits the synchronization band. Fig. 5(b) and 
(c) compare the demodulated waveforms for 𝑉 ௌଵ ൌ െ0.258 V 
and 𝑉 ௌଵ ൌ -0.219 V. As expected from Fig. 5(a), a higher gain 
is obtained for 𝑉 ௌଶ. The two waveforms have been compared 
with the ones obtained experimentally with a simple bias tee.    

 
Fig. 3 Prototype on Rogers 4003C substrate. (a) Schematic. (b) Photograph. 

 
Fig. 4. Demodulated solution vs. the instantaneous frequency compared with 
the static curve obtained for Vin = 0.07 V. Measurements are superimposed.  

   

 
Fig. 5. FM demodulator. (a) Baseband amplitude at the output port versus the 
gate bias voltage for Vin = 0.07 V and fin = 790 MHz. (b) and (c) Experimental 
validation of the FM demodulation (with 𝑓௠ ൌ 15 MHz) for two values of VGS.  



III.   NOISE ANALYSIS 

For an insightful noise analysis, we use a semi-analytical 
formulation, obtained by applying the Implicit Function 
Theorem (IFT) to the harmonic balance (HB) system [5]: 

𝐻ିଵሺ𝑉଴,𝑉ଵ,𝜑,𝜔ሻ ≡ 𝑌ሺ𝑉଴,𝑉ଵ,െ𝜔ሻ𝑉ଵ െ 𝐺௜௡𝑒ି௝ఝ ൌ 0, 

𝐻଴ሺ𝑉଴,𝑉ଵ,𝜔ሻ𝑉଴ ≡ 𝐺଴ሺ𝑉଴,𝑉ଵ,𝜔ሻ𝑉଴ ൌ 0, 

𝐻ଵሺ𝑉଴,𝑉ଵ,𝜑,𝜔ሻ ≡ 𝑌ሺ𝑉଴,𝑉ଵ,𝜔ሻ𝑉ଵ െ 𝐺௜௡𝑒௝ఝ ൌ 0 

(3) 

where 𝑌 is the total admittance function at 𝜔 and െ𝜔, and 𝐺଴ 
is the DC conductance and 𝑉ଵ  is the oscillation amplitude. 
System (3) can be compactly written as 𝐻ഥሺ𝑉଴,𝑉ଵ,𝜑,𝜔ሻ ൌ 0ത . 
For a manageable analytical study, we will assume a small-
frequency modulation Δ𝜔௠ሺ𝑡ሻ, so the injection signal is: 

𝑔௜௡ሺ𝑡ሻ ൌ 2𝑅𝑒 ൛𝐺௜௡𝑒௝൫ఝା∆ఝ೘
ሺ௧ሻ൯𝑒௝ఠ೔೙௧ൟ 

   ≃ 2𝑅𝑒 ൛ሺ𝐺௜௡ ൅ 𝑗𝑉௜௡∆𝜑௠ሺ𝑡ሻሻ𝑒௝ሺఠ೔೙௧ାఝሻൟ 

   ൌ 2𝑅𝑒 ሼሺ𝐺௜௡𝑒௝ఝ ൅ ∆𝑢ሺ𝑡ሻሻ𝑒௝ఠ೔೙௧ሽ,  

(4) 

where ∆𝜑௠ሺ𝑡ሻ ൌ ׬ Δ𝜔௠ሺ𝑠ሻ
௧
଴ 𝑑𝑠. The modulation component 

Δ𝑢ሺ𝑡ሻ ≡ 𝑗𝑉௜௡∆𝜑௠ሺ𝑡ሻሻ𝑒௝ఝ ൌ න Δ𝑈ሺΩሻ𝑒௝ஐ௧𝑑Ω
ஶ

ିஶ
 (5) 

fulfills Δ𝑈ሺΩሻ ൌ 0 for |Ω| ൐ 𝜔௕  (modulation bandwidth). An 
equivalent noise source 𝑔௡ሺ𝑡ሻ with the components Δ𝑁௞ሺΩሻ, is 
also considered. Variables undergo the increments:Δ𝑋തሺΩሻ ൌ
ሺΔ𝑉଴ሺΩሻ,Δ𝑉ଵሺΩሻ,Δ𝜑ሺΩሻሻ and the system becomes: 

𝐽𝐻ሺ𝑉଴,𝑉ଵ,𝜑,𝜔 ൅ ΩሻΔ𝑋തሺΩሻ ൌ Δ𝐺̅ሺΩሻ (6) 

where 𝐽𝐻 is the Jacobian matrix of 𝐻ഥ with respect to ሺ𝑉଴,𝑉ଵ,𝜑ሻ 
and the components of Δ𝐺̅ ൌ Δ𝑁ഥሺΩሻ ൅ Δ𝑈ഥሺΩሻ are: 

 Δ𝑁ഥሺΩሻ ൌ ൫Δ𝑁ିଵሺΩሻ,Δ𝑁଴ሺΩሻ,Δ𝑁ଵሺΩሻ൯
௧
, 

       Δ𝑈ഥሺΩሻ ൌ ൫Δ𝑈ሺെΩሻ∗, 0,Δ𝑈ሺΩሻ൯
௧
 

(7) 

The baseband perturbation ∆𝑉଴ሺΩሻ  can be expressed in 
terms of the noise and modulation components as: 

Δ𝑉଴ሺΩሻ ൌ 𝑄തାሺΩ,𝜑ሻሺΔ𝑁ഥሺΩሻ ൅ Δ𝑈ഥሺΩሻሻ (8) 

where 𝑄തାሺΩ,𝜑ሻ ൌ ൫𝑄ିଵሺΩ,𝜑ሻ,𝑄଴ሺΩ,𝜑ሻ,𝑄ଵሺΩ,𝜑ሻ൯  is a 
vector of sensitivity coefficients that depend on the phase shift 
𝜑. Note that  ∆𝑉଴ሺΩሻ is, in fact, an amplitude perturbation with 
the power spectral density (PSD): 

〈|Δ𝑉଴ሺΩ,𝜑ሻ|ଶ〉  ൌ 𝑆௨ሺΩ,𝜑ሻ ൅ 𝑆௡ሺΩ,𝜑ሻ, 

𝑆௡ሺΩ,𝜑ሻ ൌ ෍ |𝑄௞ሺΩ,𝜑ሻ|ଶ〈|Δ𝑁௞ሺΩሻ|ଶ〉
ଵ

௞ୀିଵ

, 

𝑆௨ሺΩ,𝜑ሻ ൌ  |𝑄ିଵሺΩ,𝜑ሻ|ଶ〈|Δ𝑈ሺെΩሻ|ଶ〉 

                  ൅ |𝑄ଵሺΩ,𝜑ሻ|ଶ〈|Δ𝑈ሺΩሻ|ଶ〉 

          ൅ 2𝑅𝑒 𝑄ିଵሺΩ,𝜑ሻ∗𝑄ଵሺΩ,𝜑ሻ〈Δ𝑈ሺെΩሻΔ𝑈ሺΩሻ〉 

(9) 

And the baseband signal to noise ratio is given by: 

𝑆𝑁𝑅଴ሺ𝜑ሻ ൌ
׬ 𝑆௨ሺΩሻ𝑑Ω
ఠ್
ିఠ್

׬ 𝑆௡ሺΩሻ𝑑Ω
ఠ್
ିఠ್ 

 (10) 

The analysis has been applied to the circuit in Fig. 3 at 
𝑓௜௡ ൌ 790 MHz. For a sinusoidal FM input with amplitude 
𝑉௜௡ ൌ 0.07  V, 𝑓௠ ൌ 15  MHz and frequency deviation of 4 
MHz, equation (10) provides 𝑆𝑁𝑅଴ ൌ 25 dB. Fig. 6(a) presents 
the variation of the three coefficients versus Ω: 𝑄଴  (directly 
accounting for baseband noise) is dominant for all Ω, and, as 
expected, 𝑄ଵ  and 𝑄ିଵ  are identical for low offset. The three 
coefficients exhibit a resonance effect at about 200 MHz due to 
the system poles since the coefficients are transfer functions. 
The baseband noise spectrum is also shown in Fig. 6(a) (right 
axis). Flicker noise is not considered to better appreciate the 
consistency with the sensitivity coefficients. Fig. 6(b) presents 
the measurements with an R&S FSWP8-Phase Noise Analyzer 
at three 𝑓௜௡  values. Fig. 6(c) presents the analyzed and 
measured variation of the baseband noise versus 𝑓௜௡ at a 100 
kHz offset. The figure provides the variation of the baseband 
noise along the closed solution curve in Fig. 4.    

 
Fig. 6. Noise analysis. (a) Sensitivity coefficients and baseband noise. (b) 
Experimental measurements for three input frequencies. (c) Baseband noise 
versus fin at 100 kHz offset (solid line) with measurements superimposed. 
 

IV. CONCLUSION 
The need for a suitable selection of the operation point of 

zero-IF frequency converters, avoiding any extremes of the 
static injection-locked curve, has been demonstrated. One must 
also take into account that beyond a certain modulation 
frequency, the oscillator instantaneous frequency is unable to 
follow the input signal. In a downconverter, the noise behavior 
is determined by the baseband noise spectral density.  
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