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Artetxe, Garikoitz Beobide, ...,

Antonio Luque, Sonia
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SUMMARY

Capture and sensing of emerging pollutants is one of the increasing
environmental concerns due to the adverse ecological and human
health effects. Here, we report the synthesis of a supramolecular
metal-organic framework (SMOF) [CrCu6(m-H2O)6(m3-OH)6(m-adeni-
nato-kN33:kN9)6](SO4)1.5 which is able to capture anionic drugs
and exhibits magnetic properties useful for sensing purposes. The
features of the nucleobase decorated CrCu6 building block allow
the incorporation of up to 9 drug molecules (i.e., ibuprofen and nap-
roxen in this work) per heptameric entity. In addition, we provide a
simple way to quantify the incorporated number of drug molecules
through a magnetic sustentation experiment in which the field
required to keep the particles attached to the electromagnet pole
is linearly related to the total mass of the anionic counterion. In
this way, it also provides an easy way to determine the amount of en-
trapped drug molecules, making this SMOF a promising candidate
for environmental remediation technologies.

INTRODUCTION

Emerging pollutants (pharmaceutical, agricultural, and industrial) detected in many

aquatic matrices (groundwater, wastewater, and drinking water) are one of the

increasing environmental concerns due to the adverse ecological and human health

effects.1 Among them, pharmaceutical pollutants such as drugs are released into the

environments by domestic wastewaters and pharmaceutical sewage without any

regulation, leading to the increased level of pollution that may affect living organ-

isms.2 Therefore, developing facile methods to eliminate drugs from water media

and effective methodologies to analyze their quantities is a crucial issue.

In this work, we focus on the development of a methodology to efficiently capture

anionic drugs, in particular the widely prescribed anti-inflammatory medicines

ibuprofen and naproxen, and quantitatively analyze their number. Among all of

the techniques explored so far, the one based on adsorbents is considered one of

the most appropriate options, given that it shows an excellent removal capacity.3

More specifically, up to now, the most commonly used adsorbents have been acti-

vated carbon, zeolites, mesoporous silica, cyclodextrins, and chitosan beads.4 In

this challenging quest for the ideal adsorbent, metal-organic frameworks (MOFs)

have emerged as a suitable platform.5 These ordered crystalline porous materials

are renowned due to their high surface areas, tunable pores, well-defined channels,

facile loading, and intriguing functionalities, which allow them to fulfill several appli-

cations.6–10
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A related burgeoning field is that of supramolecular metal-organic frameworks

(SMOFs), in which the coordination bonds are released from guiding the crystal

structure, and supramolecular interactions (p-p stacking interactions and/or

hydrogen bonds) play this role instead.11 The hallmark feature of SMOFs in compar-

ison with MOFs is their facile assembling/disassembling reversibility at room tem-

perature due to the protonation/deprotonation of ligands, which may be used for

the incorporation of various species. Meanwhile, SMOFs exhibiting magnetic prop-

erties are highly promising, not only for molecule capture but also for their facile

sensing.

As previously mentioned, monitoring drug molecules is important for the quantita-

tive evaluation of the pollution level. Conventional analytical methods to quantify

adsorbed molecules mainly include solid-phase extraction (SPE) or liquid-liquid

extraction (LLE) coupled with chromatographic or chromatographic-mass spectrom-

etry techniques. However, the selectivity and sensitivity of these methods are often

not sufficient for the direct determination of pollutants at very low concentrations.12

Therefore, alternative analysis methods are in high demand.13

Magnetic solid-phase extraction (MSPE) is an emerging type of SPE based on the

dispersing of magnetic adsorbents in the solution of targeted compounds.14–16

This technique uses an external magnetic field to isolate adsorbents with targeted

compounds. Eventually, analytes can be eluted from the adsorbent surface with

various solvents for the consequent analysis. In contrast to the conventional SPE

techniques, MSPE does not require time-consuming processes such as column pass-

ing, filtration, or centrifugation. It is also advantageous due to its simplicity, low cost,

higher efficiency, selectivity, sensitivity, and recyclability of most adsorbents. There-

fore, synthesizing magnetic adsorbents and using the MSPE method to evaluate the

concentration of the adsorbed species is of high interest.

Recently, we reported the synthesis of bioinspired SMOF [Cu7(m-H2O)6(m3-OH)6(m-

adeninato-kN3:kN9)6](NHEt3)2(SO4)2, which combines intrinsic porosity with

interesting magnetic features.17 In this compound, the heptanuclear Cu7(m-

H2O)6(m3-OH)6(m-adeninato-kN3:kN9)6]
2+ wheels are joined together by means of

p-p stacking interactions, and the central [Cu(OH)6]
4� core is antiferromagnetically

coupled to the external ferromagnetic Cu6 ring, leading to a S = 5/2 ground state.

The above-mentioned heptanuclear entity has been recurrently described in some

other SMOFs,18,19 and it has been recently reported as a building unit of a

MOF.20 Worthy of mention is the case of SMOFs that can accommodate different

types of anionic species due to the nature and size of their voids. The molecular

recognition capacity provided by the adeninato ligands decorating the outer surface

of the wheel-shaped heptamer allows the incorporation of both organic and inor-

ganic guests.17–19

In this study, we propose a facile synthesis of SMOF [CrCu6(m-H2O)6(m3-OH)6(m-ad-

eninato-kN3:kN9)6](SO4)1.5 with maximized magnetic properties in comparison

with the previously reported SMOF with heptameric Cu7 species. The enhanced

magnetic interaction is achieved by introducing kinetically inert Cr(III) ions, forming

CrCu6 species. Meanwhile, the protonation/deprotonation of adenine nucleobases

leads to room temperature (RT) reversible assembly/disassembly, enabling efficient

drug capture during SMOFs reassembly. Moreover, the synthesized compound ex-

hibits paramagnetic properties at RT, which are used to develop a novel type of

MSPE for the adsorbed molecule quantification. To be more specific, SMOFs with

adsorbed ibuprofen and naproxen molecules in liquid media are exposed to the
2 Cell Reports Physical Science 2, 100421, May 19, 2021
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variablemagnetic field, and the number of adsorbedmolecules is determined by the

strength of the applied magnetic field required to attract the particles suspended in

a liquid.
RESULTS AND DISCUSSION

Design and synthesis of SMOF

Encouraged by the appealingmolecular andmagnetic properties displayed by [Cu7(m-

H2O)6(m3-OH)6(m-adeninato-kN3:kN9)6](NHEt3)2(SO4)2, a new heterometallic SMOF of

formula [CrCu6(m-H2O)6(m3-OH)6(m-adeninato-kN3:kN9)6](SO4)1.5, has been designed

and synthesized to maximize the magnetic response and simultaneously increase its

chemical stability due to the well-known inertness of the Cr(III) octahedral complexes.

The synthesis required a fine-tune between the pH value of the reaction media and

the proportions of the reagents (see Experimental procedures for more details). Ac-

cording to our expectations, we achieved the above-mentioned CrCu6 heptanuclear

unit, in which the central position is now occupied by Cr(III). Note that despite Cu(II)

metal atoms in the pristine material presenting an octahedral geometry with the usual

Jahn-Teller tetragonal elongation, the rigidity of the wheel-shaped heptanuclear entity

provokes a less pronounced Jahn-Teller effect for the central atom. This, in turn, favors

the replacement of the central position byCr(III) and promotes the formation of the het-

erometallic [CrCu6(m-H2O)6(m3-OH)6(m-adeninato-kN3:kN9)6]
3+ (CrCu6) species (Fig-

ure 1). Each heptanuclear entity acts as a 4-connected node, in which the p-p stacking

interactions between adeninato ligands provide a supramolecular porous architecture

(44.3% of unit cell volume) with cds (CdSO4-like) topology and (65.8) point symbol.21

Full characterization and detailed structural description are given in the Supplemental

information (Figures S2–S4; Table S3).

Magnetic properties clearly differ with respect to the homometallic Cu7 analogs as

the orthogonality between the Cr(III) t2g and Cu(II) eg magnetic orbitals leads to

the ferromagnetic S = 9/2 ground state instead of the ferrimagnetic S = 5/2 ground

state of the Cu7 analogs. Themolar magnetic susceptibility (cM) and the cMT product

for CrCu6, measured at 1 kOe after cooling without an applied magnetic field (zero

field cooled [ZFC]) together with the magnetization curve at 2 K are gathered in the

Supplemental information. The cMT value increases as temperature decreases from

RT, which is associated with intramolecular ferromagnetic interactions. A plateau is

achieved between 7 and 40 K with the cMT value�12.72 emu K/mol Oe (close to the

theoretical 12.375 emu K/mol Oe value for a ST = 9/2 and g = 2.0). Below 7 K, the

cMT value decreases sharply, probably due to intermolecular antiferromagnetic in-

teractions, similar to those observed in the homometallic Cu heptamers.17

The fitting of the cMT data (Figures S5 and S7) was performed using the MagProp

software tool distributed with DAVE.22 The resulting magnetic coupling constants

(J1 = +80 and J2 = +51 cm�1; g = 2.04; zJ0 = �0.024 cm�1) are in concordance

with the magnetic topology inferred from the saturation magnetization of CrCu6
clusters. In general terms, peripheral Cu(II) atoms are ferromagnetically coupled

(J1 > 0) due to the countercomplementarity between the magnetic orbitals induced

by the double bridge adenine/hydroxide.22 The obtained magnetic coupling

values for both magnetic pathways lie within the range described in the

references.17–19,23–25

Although this compound establishes complex magnetic interactions at low temper-

atures, at RT, it is well placed in the paramagnetic regime. Therefore, the attraction

force exerted by a relatively strong external magnetic field (i.e., that of magnets or
Cell Reports Physical Science 2, 100421, May 19, 2021 3



Figure 1. Structure of SMOF [CrCu6(m-H2O)6(m3-OH)6(m-adeninato-kN3:kN9)6]
3+

(A) [CrCu6(m-H2O)6(m3-OH)6(m-adeninato-kN3:kN9)6]
3+ heptameric discrete entity.

(B) Lateral view of the heptameric entity showing the interacting SO4
2� counterions.

(C) Porous supramolecular architecture showing the voids within the crystal structure.
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electromagnets) on the particle of the samples is too weak to overcome the earth

gravity attraction under normal conditions, and as a consequence, no displacement

takes place on these particles.

However, under reduced gravity conditions, such as when the particles are

immersed in a liquid, the magnetic field attraction can be strong enough to avoid

them from depositing at the bottom and even to promote their motion (Figure 2).

The equation mediating the attraction force between the paramagnetic particles

and the magnetic field implies F = 7 (m , H), where the gradient 7 is the change

of the m , H product per unit of length m: magnetic dipole of the particle and
4 Cell Reports Physical Science 2, 100421, May 19, 2021



Figure 2. Magnetic field attraction at

room temperature

Particles immersed in methanol attached

to the poles of an electromagnet.
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H: external magnetic field, and the direction is that of the maximum increase of

m , H. If m is in the same direction as H, as it happens for paramagnetic particles,

then the gradient pulls the particles into regions of maximumH field.26 This equation

is strictly only valid for zero-size magnets, but it is often a good approximation for

tiny particles, as in this case. Taking into account the paramagnetic nature of the par-

ticles, their magnetic dipole can be expressed based on the external magnetic field

and taken away from the gradient as the particles are so small that the magnetic

dipole moment can be considered constant all along the particle (Equation 1):

FP = m0

cM

MW
$rP$VP$H$VðHÞ (Equation 1)

where FP is the magnetic attraction force on the particle, m0 is the permeability of the

vacuum, cM is the molar susceptibility,MW is the molecular weight of the compound

(excluding the solvent molecules located in the pores as they freely exchange with

the media), rP is the density of the compound, VP is the particle volume, and H

and 7 (H) are the magnetic field and field gradient in the center of the particle,

respectively. This implies that the magnetic force on the particles is not going to

be uniform on the whole surface of the pole but that it achieves a maximum value

on its edge pointing toward the central axis of the pole. It means that at the bottom

of the pole perimeter, where the magnetic attraction force is opposite to the grav-

itation force, the particles of these compounds can accumulate, as can be observed

in Figure 2. This phenomenon was corroborated using 3 different solvents: CCl4,

H2O, and MeOH. The denser the solvent, the lower the magnetic field required to

maintain the particles attached to the pole of the electromagnet.

All of the above-described features make this compound an appealing material,

since it combines meaningful magnetic response even in the paramagnetic regime,

a porous nature, and enhanced chemical stability. As a result, the molecules trapped

within the voids will modify the material density, thereby altering the value at which

the magnetic field is no longer able to sustain the particles of this compound. In

addition to that, the rich acid-base chemistry of the adenine nucleobase allows us

to dissolve the SMOF in acid aqueous solutions while retaining the molecular struc-

ture of the heptameric entities. Note that the bridging m-kN3:kN9 coordination

mode leaves the pyrimidine N1 and the imidazole N7 positions of adeninato ligands

as suitable acceptor positions for protonation without altering the key features of the

wheel-shaped heptamer. This process was previously attempted with the homome-

tallic Cu7 analog, but its lability makes the acid media attack not only the base po-

sitions in the adeninato ligand but also the hydroxide anions that bridge the central

metal atom to the peripheral ones, leading to its decomposition as clearly deduced

from the adeninium sulfate precipitation. However, the presence of the inert Cr(III)
Cell Reports Physical Science 2, 100421, May 19, 2021 5
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atom at the central position plays a crucial role as it provides kinetic inertness toward

the protonation of the hydroxides, being the protonation taking place only at the nu-

cleobases that are able to deal with it without collapsing the molecular structure of

the heptameric entities. This feature allows its complete dissolution, which requires a

pH close to 1.8. The obtained solution is stable for a few hours before the thermo-

dynamically favored breakdown of the heptameric unit starts with the appearance

of the previously mentioned adeninium sulfate precipitate. This fact confirms the ki-

netical stability of the CrCu6 entity in an acidic media. However, if the solution is not

allowed to stand for such a long time at these very acidic pH values, for example by

basifying with NaOH up to pH 6.5, then it again provides the starting compoundwith

the same peculiar magnetic features provided by the presence of the CrCu6 entity

(Figures S10–S13; Table S4). More concisely, it can be stated that the heptanuclear

entity is retained since the magnetization value of the recycled CrCu6 compound re-

mains at the expected values (Ms = 9.21) described for the pristine material. More-

over, the comparison between the thermogravimetric measurements of both CrCu6
heptanuclear entities shows only a significant distinction on the amount of solvent

present in each compound. All of the features corresponding to the heterometallic

heptanuclear entity are also ensured by the similarity of the infrared (IR) spectra and

by XPS (X-ray photoelectron spectroscopy) measurements. It should be noted here

that the crystal structure of the reconstituted compound seems to be altered as

deduced from its powder X-ray diffraction (PXRD) (Figure S14), but this polymor-

phism has been also reported for the homometallic Cu7 analogs.
17–19

Ibuprofen and naproxen drug molecule incorporation into SMOF

At this point, we decided to combine all of these features to provide amaterial that is

able to actively entrap drugs of extensive use such as the anionic anti-inflammatory

naproxen and ibuprofen molecules, which are a source of concern regarding water

contamination.27–31 These drugs have been selected because of their capability to

form supramolecular interactions with the heptameric entity, either hydrogen

bonding or p-p stacking interactions, but also because their anionic nature (pKa =

4.2 and 5.3, respectively) allows the replacement of the SO4
2� anions to balance

the positive charge of the heptameric cluster. For this purpose, an acidic solution

of the CrCu6 heptamer is dropped into a solution containing these anionic drugs

at concentrations of 248, 413, and 826 mM (corresponding to 51, 85, and 170 mg/

L for ibuprofen and 57, 95, and 190 mg/L for naproxen; see the Supplemental infor-

mation). The mixture of the CrCu6 heptamer solution and the one containing the cor-

responding anionic drug leads to CrCu6 heptamer:drug ratios of 1:6, 1:10, and 1:20.

During the addition of the highly acidic solution of the heptamer, the pH of the so-

lution was kept between pH 7 and 8 by the simultaneous addition of 1 M NaOH to

prevent the precipitation of the highly insoluble neutral forms of the drugs. As the

heptamer was added to the drug, a green suspension appeared but interestingly,

the amount of precipitate clearly increased as the concentration of the drug solution

increased. The integrity of the heptameric discrete units has been checked by XPS

measurements (Figure S18). The bond energies of both the external ring Cu(II)

and the central Cr(III) metal centers do not change, indicating that their immediate

chemical environment remained unaltered. Additional characterization of the result-

ing precipitates (see the Supplemental information) indicated that the amount of the

anionic form of the drug captured by the heptameric entities differs from 1:3 (for

naproxen), 1:6 (for ibuprofen and naproxen), and 1:9 (for ibuprofen and naproxen).

The incorporation of a maximum of 9 monoanionic drug molecules per heptameric

entity enables us to assume that in the acidic solution of CrCu6, the heptameric en-

tities have been able to incorporate 6 H+, probably located on the non-coordinated
6 Cell Reports Physical Science 2, 100421, May 19, 2021



Figure 3. Drug active capture dependence toward pH and concentration

Relationship between the protonation of the adeninato ligand, the captured drug ratio per

heptamer, and drug concentration in the batch.
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endocyclic N2 atoms of the adenines in such a way that the discrete entities acquire a

9+ charge, allowing us in turn to capture up to 9 anions of these drugs per formula.

Apparently, depending on the concentration/ratio of the drug solution, the addition

of these highly protonated 9+ entities into a nearly neutral solution leads to 2

competing processes: (1) the neutralization of these acidic entities and (2) their pre-

cipitation in the form of a cationic heptamer-anionic drug insoluble compound (Fig-

ure 3). At high drug concentrations, the second process takes place before any

neutralization process, and it results in the isolation of H6CrCu6/ibuprofen 1:9 and

H6CrCu6/naproxen 1:9 compounds. At intermediate concentrations, partial neutral-

ization takes place before the anionic drug is able to precipitate it, giving rise to sam-

ples of H3CrCu6/ibuprofen 1:6 and H3CrCu6/naproxen 1:6 compounds. At the lower

end of the concentrations, the neutralization can be completed for CrCu6/naproxen

1:3, but for the ibuprofen analog, amixture of the apparently 1:3 and 1:6 compounds

is achieved. The incorporation of the drugs and the stoichiometry of the resulting

products have been corroborated by means of Fourier transform IR (FTIR) spectros-

copy, elemental analysis, and thermogravimetric analysis (TGA) measurements, as

indicated in the Supplemental information. The capture efficiency decreases upon

lowering the concentration and the CrCu6:drug ratio, probably because the sulfate

anion also provides an insoluble CrCu6 species and competes with these anionic

drugs (see Supplemental information for more details).
Magnetic sustentation experiments to sense the number of incorporated drug

molecules

As previously stated, under the strong magnetic field generated by an electro-

magnet, the paramagnetic response of these compounds is enough to provide

mobility to the particles immersed in a solvent and to attach them to the lower

end of the magnetic pole. In this case, all of the samples contain the same paramag-

netic heptameric CrCu6 entity, but they differ on the nature and amount of the coun-

terions. Thus, the variation of the magnetic field at which the sustentation of the par-

ticles ends will depend on the counterion total mass that makes the gravitation
Cell Reports Physical Science 2, 100421, May 19, 2021 7



Figure 4. Schematic illustration of the magnetic sensing fundamentals

Influence of the replacement of the anionic part in the minimum magnetic force required to detach

the particles from the magnetic pole during the magnetic sustentation experiments.
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attraction increase and necessarily displaces the critical magnetic field toward

higher values (Figure 4).

The use of an electromagnet provides a unique opportunity to exactly determine the

minimum magnetic field required by each compound for their particles to fall from

the pole bottom edge. According to Equation 1, it depends on the molecular sus-

ceptibility, which, in the paramagnetic regime, can be estimated using the spin-

only expression depicted by Equation 2:

cM =
½4SCrðSCr + 1Þ�+ 6$½4SCuðSCu + 1Þ�

8T
(Equation 2)

Furthermore, matching the magnetic and gravitation attraction forces, the exact

magnetic field value at which the particles will fall from the pole can be calculated.

However, one must bear in mind the flotation force exerted by the solvent on the

particles, which only applies to the compound framework and not to the volume

occupied by the pores of thematerial, as themolecules placed there freely exchange

with the solvent. This leads to Equation 3:

m0

½4SMðSM + 1Þ�+ 6$½4SCuðSCu + 1Þ�
8T$MWF

$rF$VF$H$VðHÞ=

ðrF � rSÞ$VF$g

(Equation 3)

To find the dependence between the counterion total mass and the magnetic field

required to keep the particles attached to the electromagnet pole, the volume occu-

pied by the framework (VF) in the particle must be divided into the volumes occupied

by the heptameric entity (VH) and by the counterions (VC): VF = VH + VC. The attrac-

tion of the magnetic field can be expressed only on VH as it is the only source of the

paramagnetism responsible for this attraction, but the gravitation-flotation part re-

quires both terms VH and VC. Relating VH and VC, through the molecular density rH

and rC and molecular weights (MWF = MWH + MWC) of both components (Equa-

tion 4), Equation 5 is derived:

VC =
nMWC$ rH
rC$MWH

$VH (Equation 4)
8 Cell Reports Physical Science 2, 100421, May 19, 2021



Figure 5. Magnetic field profile

(A) Magnetic field profile (H and H , 7(H)) on the electromagnet pole along the dashed line. The

different colors refer to the applied intensity current: increasing from 0.0 to 2.5 A (step: 0.1 A).

(B) H , 7(H) dependence on the magnetic field at the center of the pole. Left: second-order

polynomial fitting of the entire magnetic field range; right: linear fit within the range at which the

experimental data appear for these compounds.
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m0

½4SCrðSCr + 1Þ�+ 6$½4SCuðSCu + 1Þ�
8T$MWH

rH $VH$H$VðHÞ= (Equation 5)
ðrH � rSÞVH $g+ ðrC � rSÞ
nMWC$ rH
rC$MWH

$VH$g

Isolating the total counterion mass (nMWC)leads to Equation 6:

nMWC = m0,rC
½4SCrðSCr + 1Þ�+ 6$½4SCuðSCu + 1Þ�

8T$ðrC � rSÞ
H$VðHÞ � ðrH � rSÞg$rC$MWH

ðrC � rSÞrH
(Equation 6)

Assuming that the counterions molecular density will not differ significantly and that

the remaining parameters apart from nMWC and H ,7(HP) are constant, Equation 6

can be simplified into a linear equation with 2 constant terms (A and B) (Equation 7):

nMWC = A$ H$VðHÞ+B (Equation 7)

As can be deduced from Equation 7, to obtain information on the number of drug

molecules captured by the heptameric units, it is necessary to know the magnetic

field profile along the electromagnet pole and its variation when modifying the

applied current (Figure 5).

According to Equation 7, the experimental data depicted on a nMWC versus H ,

7(H) graph fits satisfactorily to a straight line (Figure 6). The same can be observed

if the experimental data are plotted on a nMWC versusH graph due to the linear rela-

tionship between H , 7(H) and H for magnetic fields reported in the experiment

(Figure 5B).
Cell Reports Physical Science 2, 100421, May 19, 2021 9



Figure 6. Linear dependencies of themagnetic field strength onmolecular weight of the captured

drug molecules

(A) Dependence of the molecular weight of the captured drug with respect to H , 7(H).

(B) Dependence of the molecular weight of the captured drug with respect to H.
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In summary, the facile reversible assembling/disassembling capacity and the mag-

netic response of the herein reported ferromagnetic SMOF has allowed some un-

precedented capabilities for this type of material. Making use of the features of

the CrCu6 building block, we have captured ibuprofen and naproxen with different

stoichiometries: 1:3, 1:6, and 1:9, depending on the drug concentration. This fact is

possible due to the different protonation states that the CrCu6 building block can

display without altering its molecular structure, which is directly related to the pres-

ence of multiple donor sites in the adenine nucleobase. Furthermore, focusing on

the paramagnetic response at RT of the CrCu6 entity, we have provided a simple

way to quantify the incorporated number of drug molecules. In a magnetic susten-

tation experiment, the field required to keep the particles attached to an electro-

magnet pole is linearly related with the total mass of the anionic counterion. In

this way, we afford a method not only for the capture of anionic drugs but also for

determining the amount of entrapped drug molecules in this class of innovative

functional material, which makes it an inspirational example of the capabilities that

supramolecularly assembled metal-organic materials can afford. Video S1 provides

a fast insight into this novel magneto-sensing technique.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and reagents should be directed to

and will be fulfilled by the lead contact, Oscar Castillo (oscar.castillo@ehu.eus).

Materials availability

All of the unique reagents generated in this study are available from the lead contact

with a completed materials transfer agreement.

Data and code availability

The accession number CCDC 2021699 for the supplementary crystallographic data

of the compound reported in this article can be obtained free of charge via https://

www.ccdc.cam.ac.uk/structures/search?, by e-mailing data_request@ccdc.cam.a-

c.uk or by contacting the Cambridge Crystallographic Data Centre (12 Union

Road, Cambridge CB2 1EZ, UK; fax: +44-1223-336033). Otherwise, the published
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article includes all of the important datasets generated or analyzed during this study.

This study did not generate any code.

Synthesis of [CrCu6(m-H2O)6(m3-OH)6(m-adeninato-kN3:kN9)6](SO4)1.5
All of the chemicals were of reagent grade and were used as commercially obtained.

Adenine (0.8 mmol, 0.108 g) was dissolved in a 20-mL water/methanol mixture (1:1

volume ratio), and was heated under continuous stirring for 20 min. Then, a 20-mL

aqueous solution of Cu(II) sulfate pentahydrate (0.8 mmol, 0.200 g) and Cr(III) sulfate

monohydrate (0.2 mmol, 0.078 g) was added. Immediately after, a green suspension

was formed (pH 3.0). This suspension is dissolved through acidification with sulfuric

acid until a light green solution was obtained at pH 1.5. Subsequently, the pH of the

solution was shifted to 9.2 by adding triethylamine, and a green suspension was ob-

tained, which was left in a crystallizer sealed with sealing film (ParafilmM), slightly

holed to allow the slow solvent evaporation. After 3 days, the suspension recrystal-

lized as green needle-shaped crystals suitable for single-crystal X-ray diffraction

analysis. Yield: 50%–60% (based on Cr). FTIR (KBr pellets, cm�1): 3,388 vs, 3,200

sh, 1,642 vs, 1,603 vs, 1,548 s, 1,463 m, 1,402 m, 1,304 m, 1,277 m, 1,195 m,

1,152 m, 1,108 m, 1,033 w, and 935 w.

Single-crystal X-ray crystallography

The crystallographic data and details of the refinement parameters for compound

[CrCu6(m-H2O)6(m3-OH)6(m-adeninato-kN3:kN9)6](SO4)1.5 are gathered in Table S2. All

non-H atomswere refined anisotropically, except for those corresponding to disordered

entities. TheH atoms belonging to adeninato ligands have beengeometrically fixed and

refined according to a riding model with an isotropic thermal parameter linked to the

atom to which they are attached (120%). The H atoms of the coordination water mole-

cules and hydroxide groups have been located in the difference Fourier map or using

the routine CALC-OH32 implemented in the WinGX software suite.33 The refinement

of the latter H atoms has been performed with an isotropic thermal parameter of

150% with respect to their parent atom. Regarding the crystallization water molecules,

not all of them could be placed in the Fourier map due to their high structural disorder;

therefore, their contribution was removed using the SQUEEZE34 procedure as imple-

mented in PLATON35 software. Accordingly, the H atoms of the located crystallization

water molecules were not included due to this high disorder within the voids. During

the structural resolution of the heptameric CrCu6 entity, the initial resolution showed

anomalous elongated ellipsoids for a series of atoms attributed to the adeninato ligands.

These large values of the thermal movements were related to a disorder implying 2

coplanar puric bases with inverted dispositions regarding the bridging mode

(m-kN3:kN9/m-kN9:kN3). This disorder was modeled by refining the occupation of

each part (A and B) and ensuring they add up to a total occupation factor of 1.

Crystal data: CCDC-2021699, C30H42CrCu6N30O23S1.5, M = 1,678.98, green needle,

0.11 3 0.05 3 0.03 mm, monoclinic, space group C2/c, a = 15.583(3) Å, b =

22.219(4) Å, c = 27.400(3) Å, b = 95.502(2)�, V = 9,300.0(3) Å3, Z = 4, Dc = 1.199

g/cm3, F000 = 3,365.4, m = 3.295 mm�1, T = 298(2) K, qmax = 59.871�, 14,606 total

reflections, 2,202 with I > 2s(I), Rint = 0.0982, 6,738 data, 413 parameters, 40 re-

straints, GooF = 0.975, R = 0.1154 and wR = 0.3030 [I > 2s (I)], R = 0.2132 and

wR = 0.3765 (all reflections), �0.413 < Dr < 0.661 e/Å3.

Powder X-ray diffraction

The PXRD patterns were collected on a Phillips X’Pert Powder Diffractometer with

copper Ka radiation. See more details on these measurements in Figure S14. Addi-

tional details can be found in the Supplemental experimental procedures.
Cell Reports Physical Science 2, 100421, May 19, 2021 11
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Magnetic susceptibility and magnetization measurements

Magnetic measurements were performed on polycrystalline samples with a Quan-

tum Design SQUID susceptometer covering the temperature range 5–300 K, at a

magnetic field of 1,000 G. Magnetization as a function of the magnetic field (H)

was measured using the same magnetometer in the �50 % H/kOe % 50 at 2 K after

cooling the sample in zero field. See more details on these measurements in Figures

S5 and S6.

Magnetic sustentation experiments

A Newport Pagnell England Electromagnet Type C sourced by a Hewlett Packard

6655A System DC Power Supply is used to provide a variable magnetic field under

which the particles of the compound dispersed inmethanol are attached to the lower

end of the electromagnet pole until the magnetic field decreases enough for the

gravitation to prevail and the particles to fall down. See more details on these mea-

surements in Figures S8, S9, and S19 and Table S9.

Thermogravimetric characterization

Thermogravimetric measurements (TGA/differential thermal analysis [DTA]) were

carried out in a METTLER TOLEDO TGA/SDTA851 thermal analyzer under a syn-

thetic air atmosphere (79% N2/21% O2) with a flow rate of 50 cm3/min, between

25�C and 800�C, with a heating rate of 5�C/min. See more details on these measure-

ments in Figures S1, S11, and S17 and Tables S1, S5, and S8.

XPS

XPS measurements were performed on a SPECS system equipped with a Phoibos

150 1D-DLD analyzer and an Al Ka monochromatic radiation source. See more de-

tails on these measurements in Figure S18.

UV-visible (UV-vis) and FTIR spectroscopy

UV-vis spectra were recorded on a LAMBDA 850 spectrophotometer stabilized at

300 K. The absorbance was measured in Suprasil quartz cuvettes (10 mm,

3,500 mL). The IR spectra were recorded on a FTIR 8400S Shimadzu spectrometer

in the 4,000–400 cm�1 spectral region. See more details on these measurements

in Figures S13, S15, and S16 and Tables S5 and S6.

Elemental analyses

Elemental analyses (C, H, N) were performed on an Organic Elemental Thermo Sci-

entific Modelo FLASH 2000 microanalyzer. The metal content was determined by

inductively coupled plasma-atomic emission spectroscopy (ICP-AES) performed

on a Horiba Yobin Yvon Activa spectrometer. See more details on these measure-

ments in Table S7.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.xcrp.

2021.100421.
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Porous supramolecular architectures based on
p-stacking interactions between discrete
metal-adenine entities and the non DNA
theobromine/caffeine nucleobases. Cryst.
Growth Des. 18, 3465–3476.

19. Pascual-Colino, J., Beobide, G., Castillo, O.,
Lodewyckx, P., Luque, A., Pérez-Yáñez, S.,
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