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• COVID-19 lockdown restrictions have de-
rived into a reduction pattern of NOx in
2020.

• MLR, RF and KNN are proposed to take
into account meteorological variability.

• Q-Q Mapping post-correction improves
model performance and extreme event
prediction.

• Smaller changes in air quality were ob-
served from modelled BAU scenario.
⁎ Corresponding author.
E-mail addresses: jaime.diez@unican.es (J. González-Par

(M. Santibáñez), ignacio.fernandez@unican.es (I. Fernández

http://dx.doi.org/10.1016/j.scitotenv.2022.153786
0048-9697/© 2022 The Authors. Published by Elsevi
A B S T R A C T
A R T I C L E I N F O
Article history:
Received 13 December 2021
Received in revised form 31 January 2022
Accepted 6 February 2022
Available online 10 February 2022

Editor: Pavlos Kassomenos
In response to the COVID-19 pandemic, governments declared severe restrictions throughout 2020, presenting an un-
precedented scenario of reduced anthropogenic emissions of air pollutants derived mainly from traffic sources. To an-
alyze the effect of these restrictions derived from COVID-19 pandemic on air quality levels, relative changes in NO,
NO2, O3, PM10 and PM2.5 concentrations were calculated at urban traffic sites in the most populated Spanish cities
over different periods with distinct restrictions in 2020. In addition to the changes calculated with respect to the ob-
served air pollutant levels of previous years (2013–2019), relative changeswere also calculated using predicted pollut-
ant levels for the different periods over 2020 on a business-as-usual scenario using Multiple Linear Regression (MLR)
models with meteorological and seasonal predictors. MLR models were selected among different data mining tech-
niques (MLR, Random Forest (RF), K-Nearest Neighbors (KNN)), based on their higher performance and accuracy ob-
tained from a leave-one-year-out cross-validation scheme using 2013–2019 data. A q-q mapping post-correction was
also applied in all cases in order to improve the reliability of the predictions to reproduce the observed distributions
and extreme events. This approach allows us to estimate the relative changes in the studied air pollutants only due
to COVID-19 restrictions. The results obtained from this approach show a decreasing pattern for NOx, with the largest
reduction in the lockdown period above−50%, whereas the increase observed for O3 contrasts with the NOx patterns
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with a maximum increase of 23.9%. The slight reduction in PM10 (−4.1%) and PM2.5 levels (−2.3%) during lock-
down indicates a lower relationship with traffic sources. The developed methodology represents a simple but robust
framework for exploratory analysis and intervention detection in air quality studies.
1. Introduction

The global spread of the COVID-19 pandemic in early March 2020 has
become the largest health crisis in recent years, comparing it to the Spanish
flu of the early 20th century (Munnoli et al., 2020; Sanchez-Lorenzo et al.,
2021). In response to the high mortality caused by the SARS-CoV-2 virus
and its rapid spread, governments around theworld declared severe control
measures and restrictions. Some of the restrictions implemented included
mobility limitations or social distancing regulations. Many countries had
to reinforce lockdown measures to full lockdown for several weeks due to
the emergency situation in which they found themselves, with the closure
of non-essential jobs and the reduction of humanmobility to essential activ-
ities, such as food supply. In addition, remote work was implemented in
many companies to minimize the economic crisis, keeping it beyond the
lockdown period. The restrictions derived from the COVID-19 pandemic
have presented an unprecedented scenario of the reduction of anthropo-
genic emissions of air pollutants derived mainly from the reduction in traf-
fic due to mobility restrictions.

The unforeseen decrease in emissions of air pollutants associated with
traffic activity due to the COVID-19 pandemic and mobility restrictions
for several months throughout 2020 has presented a unique opportunity
to study the impact of a large-scale intervention in human activity on air
quality.Many scientific studies appeared even a fewmonths after lockdown
periods in which changes in pollutant levels were analyzed and quantified.
However, quantifying the effect of COVID-19 pandemic restrictions is not
straightforward, starting with the selection of the base case used to derive
changes in concentrations, which should include as many external factors
that would affect air quality levels as possible to isolate the COVID-19 ef-
fect. The most widely used methodology to quantify the effect of changes
in pollutant concentrations is the comparison with a reference measure-
ment period (Gkatzelis et al., 2021). This has been done using twomain ap-
proaches depending on themeasurement period used: (i) Some studies have
compared the concentrations observed during the lockdown with those ob-
served in the previous period, quantifying the changes through the differ-
ences between the week before and after the lockdown (Stratoulias and
Nuthammachot, 2020; Tobías et al., 2020; Martorell-Marugán et al.,
2021). (ii) Another reference measurement period used was the observa-
tions of previous years in the same period as the lockdown, obtaining the
differences on the same day between different years (Chauhan and Singh,
2020; Mendez-Espinosa et al., 2020; Al-Abadleh et al., 2021). These meth-
odologies allow to identify and quantify empirical relative changes with a
very simple analysis. However, both approaches have some disadvantages
in relating these differences to the effects of the COVID-19 pandemic. The
first approach compares different weeks of the same year, without taking
into account the effects of seasonality. Differences in pollutant concentra-
tions between seasons have been widely studied (Sillanpää et al., 2006;
Pérez et al., 2008; Rogula-Kozłowska et al., 2012) showing for example dif-
ferences in PM2.5 concentrations of 12 μg/m3 in summer and 60 μg/m3 in
winter in Kraków, Poland (Samek et al., 2018). The second approach cor-
rects for these uncertainties that arise due to seasonality by comparing sim-
ilar time periods between years. Observations from 2020 are compared to
measurements of pollutants levels from 2019, and often several previous
years, over the same time period. Seasonal effects for similar periods in dif-
ferent years should not differ, reducing the uncertainties due to this. How-
ever, some uncertainties may still arise due to meteorological variability,
including exceptional events.

Air pollution levels can be strongly affected by meteorological factors.
In addition, emissions from some anthropogenic sources can increase or de-
crease because of the changes in their activity due to meteorological condi-
tions: e.g. increase in road traffic on rainy days or domestic heating in cold
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seasons (Li et al., 2021). On the other hand, meteorological variables such
as wind or precipitation can affect the immission of some pollutants by in-
creasing their dilution, transport or dispersion (Heinsohn and Kabel, 1998).
Several studies have analyzed the importance of meteorological effects on
air quality in different scenarios, showing some differences when they
were taken into account (Carslaw and Taylor, 2009; Barmpadimos et al.,
2011; Henneman et al., 2015). Recent studies have applied several ap-
proaches to reduce the effects of meteorology on the interpretation of air
quality changes due to the COVID-19 pandemic by using statistical and
data mining techniques. In particular, two main approaches have been
used to quantify the effects of meteorology on the analysis of pollutant
changes. First, instead of comparing 2020 observations with a base case
such as the methodology described above, some authors used meteorolog-
ical normalisation to deseasonalise and deweather air pollutant reference
time series (Grange and Carslaw, 2019; Ropkins and Tate, 2021). This ap-
proach consists of reducing the variability in the air quality time series by
training amodelwith independent variables that can explain the variability
and eliminate its influence. The result is a time series with invariant mete-
orological conditions that can then be exposed to further exploratory anal-
ysis. Typically, the models used to explain variability are based onmachine
learning techniques that provide the partial influence of each weather var-
iable, using the entire time series to train the model. Then, one of the meth-
odologies described above should be used in addition to meteorological
normalisation to quantify the related changes with respect to a base case
in order to remove uncertainty derived from meteorological conditions.

Another approach used to account for the influence of meteorology is to
predict pollutant concentrations during the period of intervention (i.e. the
period when COVID-19 restrictions took place) using statistical models de-
veloped from training data sets of observed air quality levels and meteoro-
logical values from previous years. Such predictive models have been used
in previous studies to isolate either short- or long-term interventions on air
quality levels (Carslaw et al., 2012; Bennett et al., 2013; Vu et al., 2019).
This approach is applied in this work to quantify the relative changes in
air quality levels due to COVID-19 pandemic-related restrictions. First, de-
veloped models can predict pollutant concentrations assuming a business-
as-usual (BAU) scenario. The BAU scenario uses meteorological data from
2020 and accounts for seasonality differences, disregarding the effects of
the COVID-19 pandemic. Therefore, the 2020 prediction can be used as a
base case for comparison with actual observed concentrations, providing
a true measure of the relative changes derived from the restrictions imple-
mented during the COVID-19 pandemic (Fu et al., 2021; Kowalski et al.,
2021).

Many statistical and data mining techniques can be used to analyze the
meteorological influence on air quality, with linear regression and Classifi-
cation and Regression Trees (CART) being the most widely used, both of
which allow to carry out the two approaches described above.Multiple Lin-
ear Regression (MLR) methods have been widely applied to predict and
model atmospheric pollutant concentrations (Zhong et al., 2018; Wong
et al., 2021). The predictions resulting from these models can then be
used as BAU scenario for the second approach. An advantage of MLR is
that it is possible to interpret the regressed coefficients (β) as the partial
influence of each meteorological variable on air quality levels, which pro-
vides another way to study the effect of a variable on pollutant concentra-
tions. These β coefficients not only allow to perform the first approach
described above, but the influence of a certain event or condition can be ob-
tained by aggregating it as a dependent variable. In this way, Briz-Redón
et al. (2021) show how lockdown restrictions derived from the COVID-19
pandemic have affected air quality through the partial influence of a lock-
down variable. Briz-Redón et al. (2021) compare the accuracy of MLR
when lockdown is accounted for as a binary variable in the analytical
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expression. However, lockdown restrictions have evolved throughout 2020
differently between cities, making it difficult to characterize them in a
single dependent variable. On the other hand, CART methods generally
provide a more accurate prediction being able to model non-linear rela-
tionships but having a simple and useful interpretation of the relation-
ship between variables. Furthermore, ensemble techniques based on
CART (e.g. random forests) are commonly used in prediction and classi-
fication studies, whereby a BAU scenario predicted by meteorological
data can be obtained to assess the COVID-19 effect (Grange et al.,
2021; Jephcote et al., 2021; Lovrić et al., 2021). These methods can be
also used to perform meteorological normalisation (Grange et al.,
2018; Shi et al., 2021).

However, unambiguous quantification of the impact of COVID-19 on air
quality may not be possible due to the difficulty of knowing whether
changes were due to mobility restrictions or other factors that were not
taken into account. This uncertainty can be reduced by an appropriate se-
lection of air quality stations, e.g. choosing those closest to the emission
sources that are likely to bemost influenced by changes in the emission pat-
terns, such as urban traffic sites.

The aim of this work was to estimate the relative changes in air qual-
ity levels only due to COVID-19 lockdown measures; to calculate the
relative changes for the different periods representing distinct restric-
tion measures over 2020, observed daily concentrations of NO, NO2,
O3, PM10 and PM2.5 at urban traffic stations in Spanish cities with
more than 100,000 inhabitants were compared with predicted daily
concentrations based on a BAU scenario using MLR models with mete-
orological and seasonal predictors. MLR models were selected among
different statistical models (MLR, Random Forest (RF), K-Nearest
Neighbors (KNN)), based on their higher performance and accuracy ob-
tained from a training and cross-validation procedure of a relatively
large data series (2013–2019).

2. Data and methods

The data sources used in this work are publicly accessible in a persis-
tent data repository (González-Pardo et al., 2021b, doi:https://doi.org/
10.5281/zenodo.5642868). On the other hand, the software and scripts
developed in this work were carried out using R (R Core Team, 2021)
and Python (Van Rossum, 1995); and are available at the GitHub repos-
itory: González-Pardo et al., 2021a, https://github.com/Jaimedgp/
AirQualityCOVID.

This study was focused on urban traffic sites from the most populated
Spanish cities (with more than 100,000 inhabitants). Traffic emission
should have been strongly affected by the COVID-19 closure restrictions,
being evenmore noticeable in larger cities with higher traffic under normal
conditions. Moreover, ground-level measurements provided by these air
quality monitoring sites should be more sensitive to changes in emission
source changes and are more relevant to human health.

The entire year 2020 has been divided intofive periods according to the
evolution of the COVID-19 restrictions in Spain: the pre-lockdown period,
from January 1, to March 13; the lockdown period, from March 14, the
date when the Spanish government declared the total lockdown, to May
1; the de-escalation period, fromMay 2, to June 20,when each city reduced
mobility restrictions according to their COVID-19 impact, following the
government's de-escalation plan; the “normality” period, from June 21,
when all Spanish communities already passed all de-escalation phases,
with the Spanish government abolishing all mobility restrictions and end-
ing the state of alarm declared in March, to October 24; and the second
lockdown, fromOctober 25, when the Spanish government had to declared
a new lockdown, less restrictive than the first one, allowing each Region to
make changes to the mobility restrictions. The first lockdown was the only
period where the same measures applied to all the Spanish Regions.

Single-site models were developed for each pollutant in each air quality
station. To build the prediction models, a key data set with pollutant con-
centrations, as dependent variable, and meteorological data, as indepen-
dent variable, was prepared for each air quality station.
3

2.1. Data used in this study

2.1.1. Air quality data
Concentrations of nitrogen monoxide (NO), nitrogen dioxide (NO2),

ozone (O3), particulate matter of less than 10 μm (PM10) and particulate
matter of less than 2.5 μm (PM2.5) have been downloaded from the
European Environment Agency (EEA) (See Table S.1). Road traffic is the
main source of NO and NO2 (Seinfeld and Pandis, 2016), being also
strongly related to PM2.5 levels. Since many traffic sites did not have
PM2.5 data, PM10 concentrations were also included in the study, because
PM2.5 is a fraction of PM10. Although O3 is a secondary pollutant, it was
also included due to its interaction with NOx in the photolytic cycle
(Heinsohn and Kabel, 1998).

Daily pollutants concentrations time series from 2013 to 2020 have
been obtained from EEA using the saqgetr package for R (Grange, 2019).
Despite the reliability of the source, somenegative values of concentrations,
with no physical meaning, were shown being necessary to preprocess the
data removing those values. After the preprocess, only air quality data, by
pollutant, were retained when there were observations available for more
than 3 years and at least the 80% of daily data between March 2020 and
June 2020. These months include the entire time-period of lockdown and
de-escalation phases in Spain. After excluding some pollutants' time series,
210 site-pollutant pairs from 60 air quality monitoring sites were selected
for the study (Table S.2), covering 34 Spanish cities (see Fig. 1) with a
total population of 13,481,269 inhabitants (Instituto Nacional de
Estadística, 2020).

Time series from 2013 until 2019 have been used to model develop-
ment, reserving 2020 observations for the analysis of changes in air pollut-
ant levels. For this purpose, some outliers have been removed from the
training time series, defined as values outside 5 times the interquartile
range. These outliers are not closely related to meteorological events, and
would be difficult to model by the selected predictors.

2.1.2. Meteorological data
Daily meteorological data (Table S.3) have been obtained from the

nearest location to the selected air quality stations with at least 80% of
available records between 2013 and 2020. A good selection of predictors
with high explanatory power of air quality can increase the accuracy and
performance of themodel. Hence, meteorological variables with high influ-
ence in pollutants levels were included in the study (Carslaw and Taylor,
2009).

In particular, daily temperature (maximum, mean and minimum; °C),
precipitation (mm) and surface pressure (maximun and minimum; hPa)
were downloaded from the OpenData platform of the Agencia Estatal de
Meteorología (AEMET) through its Application Programming Interface
(API) using the pyaemet python framework developed for this purpose
(González-Pardo, 2021). The measured temperature variability due to sea-
sonal effect will account for the annual cycle of observed pollutant levels in
their time series. On the other hand, precipitation will affect PM10 and
PM2.5 deposition rates leading to lower levels in ambient air. The surface
wind speed (m/s) and direction (in degrees, being 90° for East) were in-
cluded due to their influence in pollutants transport that will affect the
local measurements. Both were obtained from the National Oceanic Atmo-
spheric Administration (NOAA) using the worldmet R package (Carslaw,
2020). In addition, daily solar radiation (W/m2) and relative humidity
(%) were downloaded from the ERA5-Land reanalysis data set (Muñoz-
Sabater, 2019). Solar radiation has been included because of the influence
of photochemistry on ozone formation from primary air pollutants.

2.2. Model development

A wide range of statistical and data mining techniques have been used
in many different studies for air quality models development, depending
in many cases on the study objectives for both future predictions andmete-
orological normalisation. In this study, three different techniques have been
tested to obtain the best model to predict the 2013–2019 data set of the

https://doi.org/10.5281/zenodo.5642868
https://doi.org/10.5281/zenodo.5642868
https://github.com/Jaimedgp/AirQualityCOVID
https://github.com/Jaimedgp/AirQualityCOVID


Fig. 1.Map showing the urban traffic sites selected for this study.
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studied air pollutants, namely MLR, RF and KNN. The best model obtained
will be used to estimate 2020 air quality levels under a BAU scenario, and
calculate the concentration changes in the selected air pollutants in traffic
sites.

MLR is a simple statistical technique that allows formodelling the linear
relationship that occurs between one dependent, predictand variable (the
concentration of each studied pollutant in this work) and a number of inde-
pendent, predictor variables (meteorological data here) through a set of co-
efficients β (James et al., 2013). Since both the independent and dependent
variables are known, these coefficients can be adjusted by minimizing the
residual sum of squares. In order to assess the effect that persistent meteo-
rological conditions may have on the concentration of the different pollut-
ants, we have analyzed the potential added value of incorporating predictor
information from up to 3 days prior to the target day being predicted in our
MLR models, which were fitted using the lm R function.

Linear regression models are often used as a good benchmark for more
modern data mining techniques such as CART, which are commonly used
in forecasting and classification studies (Petetin et al., 2020a; Fabregat
et al., 2021). Tree-based methods model the independent variable by
segmenting and stratifying the space of the dependent variables, thus
being able to account for non-linearities in the predictor-predictand link.
This is done by means of certain rules imposed on each node that divide
the predictor space into two branches, doing it iteratively until a terminal
node (or leave) is obtained. However, trees are very sensitive to the training
data partition used to build the tree and can easily tend to overfit if no con-
straints are implemented, such as pruning, which canworsen the predictive
performance of the trees. New ensemble techniques have been developed
to improve CART by aggregating many trees following a bagging approach
-all trees are grown in parallel without any pruning constraints-, which al-
lows to increase the predictive power of individual tress while reducing
4

the risk of overfitting the training data. However, if there is a very strong
predictor, most or all of the bagged trees will use it in the top split, thus
being all models highly correlated. To decorrelate the trees, Ho (1995) pro-
posed the RF technique, where only a subset of predictors (mtry) out of the
total available ones (p) are used at each split; mtry≈ p/3 is typically used
in regression problems. These predictors are randomly chosen by means of
bootstrapping. In this study, the RF technique using the randomForest R
package (Liaw and Wiener, 2002) was applied to predict air quality levels
from meteorological data. A sensitivity analysis to the number of trees in
the forest has been performed for 10, 20, 30, 50, 70, 100 and 200 trees in
order to obtain the best model configuration for our target problem.

Another data mining technique tested in this work was KNN, which has
been already used in previous studies to predict drought anomalies (Jiang
et al., 2021). The KNN algorithm estimates the target predictand variable
using the observed values corresponding to the K closest predictor configu-
ration in the training data set. In particular, in this study, the air quality
levels on a given day are estimated based on the observations recorded
on the K days with the most similar meteorological conditions. This algo-
rithm is very sensitive to the value of K used. For lower K, the model will
fit better in the training set tending to overfit. As the K value grows, the gen-
eralisation power of the model increases, improving the accuracy on the
test data set but reducing the variance of the predictions. Hence, a sensitive
analysis of the K parameter has been performed for 1 to 10 nearest neigh-
bors in order to obtain the best KNN configuration for air quality prediction.
A disadvantage of the KNN algorithm is that the closeness metric, defined
by the Euclidean distance, is calculated equally for all predictors, regardless
of their relative explanatory power. Therefore, the inclusion of less explan-
atory variables may result in a loss of precision.

In order to minimize the bias-variance trade-off (Von Luxburg and
Schölkopf, 2011; Friedman et al., 2017), an empirical quantile-quantile



Table 1
The five periods into which the year 2020 has been divided
according to the evolution of the COVID-19 pandemic restric-
tions in Spain.

Periods Starting dates

Pre-lockdown 2020-01-01
Lockdown 2020-03-14
De-escalation 2020-05-01
Normality 2020-06-21
Second lockdown 2020-10-25
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mapping (q-q mapping) post-correction has been applied to the three tech-
niques described above. To do so, the R package downscaleR (Iturbide et al.,
2018) was used, which allows for adjusting a set of n quantiles of the prob-
ability density function (PDF) of the prediction to the corresponding ob-
served empirical PDF (Déqué, 2007). This technique has been widely
used by the climate community to match the low-resolution outputs of
global numerical models to the available observations (Maraun, 2013;
Manzanas et al., 2018).

To assess the predictive performance of the three techniques consid-
ered, a leave-one-year-out cross-validation scheme was applied for
2013–2019 period using the caret R package (Kuhn, 2021). Only 10 repre-
sentative sites per pollutant were selected for this cross-validation experi-
ment due to the high computational cost, focusing on those sites with
more available data, located in high population cities and providing a
good representation of spatial variability (Table S.4). The performance
comparison was made based on the Root Mean Square Error (RMSE), the
bias ratio (predicted mean divided by the observed one), the variance
ratio (predicted variance divided by the observed one) and the Pearson cor-
relation. Moreover, since some of the studied pollutants present a pro-
nounced annual cycle, an unseasonalised correlation was also considered.
Then, the overall best model found according to these performancemetrics
was employed to predict the 2020 daily air pollutant concentrations and an-
alyze the changes in such levels due to the COVID-19 restrictions.

The quantification of the COVID-19 pandemic restrictions' effect was
done bymeans of the daily percentage relative change (RCi) for each pollut-
ant between the daily air quality observations from 2020 and a daily refer-
ence concentration using the following equation:

RCi %½ � ¼ 100 � Ci,obs − Ci,ref

Ci,ref
(1)
Fig. 2. Box plots of the relative change of air pollutants in 2020 with respect to 2013–20
border). The filled colour represents each studied period (Table 1); the line inside the b
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where for each pollutant Ci, obs is the observed air quality level on day i in
2020, and Ci, ref is the reference air quality level on the same day i. Two ap-
proaches have been studied for this reference concentration, resulting in two
relative changes, RC and RC*: (i) RC, using the average observations in
2013–2019 (Ci, ref=Ci, 2013–2019), and (ii)RC*, using the 2020 prediction ob-
tained by the best-fit model using meteorological data (Ci, ref = Ci,BAU-2020).
The difference betweenRC andRC* explains the influence of meteorological
variability on air quality during 2020. Analyses of the changes in air quality
levels by COVID-19were performed for the five periods described in Table 1
according to the evolution of the restrictions, obtaining the average RC and
RC* for each pollutant and each period at each site. A workflow of the meth-
odology used in this work is shown in Fig. S.1.

3. Results and discussion

3.1. Observed changes in air pollutant levels

Before accounting for meteorological variability, the observed relative
change (RC) of each pollutant was obtained by comparing the 2020 observa-
tions with the average concentrations during the same periods of the previous
years (Ci, ref=Ci, 2013–2019), according to Eq. (1). The average RCwas then ob-
tained for the five periods described in Table 1 for each studied city. For cities
with several urban traffic sites, an average RCwas calculated. Box plots of the
observed RC from the 34 studied cities are shown in Fig. 2, and the average
and standard deviation for all of these cities is presented in Table 2.

Although some variabilities between cities can be observed in Fig. 2, on
average the analysis of the RC shows a decrease in NO and NO2 concentra-
tions during all periods affected by the pandemic, being higher for NO. The
largest reduction for both pollutants was observed during the lockdown pe-
riod (−60% and− 55.1% respectively) while in the de-escalation and nor-
mality periods the 2020 observations increased back to values close to
previous years. Finally, in the last period after the second lockdown, con-
taminant levels decreased again but with less reduction than in the first
lockdown (−36% and − 27.6% respectively). These abrupt changes in
NOx concentrations during the lockdownperiodwere consistentwith previ-
ous studies using the same methodology. Similar RC were observed in
Madrid and Barcelona (Baldasano, 2020), Valencia (Donzelli et al., 2021)
and in some southern European cities such as Nice, Rome, Valencia and
Turin (Sicard et al., 2020).

In contrast, O3 shows similar but opposite behaviour to that found for
NO and NO2, with the mean concentration increasing in lockdown period
19 observations (RC, black border) and with respect to predicted values (RC*, grey
oxes represents median values.



Table 2
Average relative percentage change RC [%] and standard deviations of NO, NO2, O3, PM10 and PM2.5 concentrations in 2020 respect of 2013–2019 values (C2013–2019) at
studied cities for each period.

Periods NO [%] NO2 [%] O3 [%] PM10 [%] PM2.5 [%]

Pre-lockdown 0.2 ± 14.2 −7.8 ± 9.7 −13.8 ± 10.2 30 ± 22.6 21.2 ± 21.4
Lockdown −60.1 ± 19.5 −55.1 ± 8.3 4.4 ± 12.9 −12.9 ± 12.7 0.2 ± 13.4
De-escalation −43.2 ± 23.8 −42.5 ± 9.4 −0.7 ± 8.3 −10.8 ± 15.4 −9 ± 15.5
Normality −23.9 ± 20.2 −21.5 ± 8.8 5.3 ± 9.3 −7.6 ± 16.3 −16.7 ± 9.6
Second lockdown −36 ± 20.3 −27.6 ± 13.5 24.5 ± 14.8 −11.1 ± 17 −18.9 ± 10.3
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and decreasing in de-escalation. However, for O3 the largest increase was
obtained in the second lockdown period, with a previous increase observed
in normality period. This increase in O3 concentrations opposite to the NOx

decrease was also obtained by some authors (Collivignarelli et al., 2020;
Ropkins and Tate, 2021; Sicard et al., 2020) being in our study lower in
magnitude. PM10 concentrations did not change significantly during the
pandemic with averages ranging from −7.6% at normality to−12.9% at
lockdown. However, these values represent a large decrease compared to
the levels of the pre-lockdownperiodwith an average RC of 30%. Similarly,
PM2.5 presents a smooth decreasing trend throughout 2020 ranging from
21.2% in pre-lockdown to −18.9% in the second lockdown.

Since in urban traffic sites NO and NO2 are mainly emitted by road traf-
fic sources, the reduction in their concentration observed in 2020 can be ex-
plained by the mobility restrictions implemented during the lockdowns. In
the first months of 2020, when no restrictions were implemented, the ob-
served concentrations of NO and NO2 were similar to the previous years.
The reductions in NOx were greater in lockdown and second lockdown pe-
riods as the mobility restrictions and enclosure were declared. During the
first lockdown, more dramatic restrictions were implemented with total
lockdown and the closure of non-essential jobs resulting in the greatest re-
ductions in NOx concentrations. The impact of traffic restrictions during
COVID-19 lockdown on NO2 levels in three European urban megacities
(London, Milan and Paris) has been recently studied by Collivignarelli
et al. (2021). These authors reported higher reductions in NO2 levels in
London and Paris (between −65.7 and −80.8%) and smaller ones in
Milan (−8.6 to −42.4%) with respect to the average of Spanish traffic
sites (−55%), although a large variability was found at the studied Spanish
cities, from a minimum of−12.9% in Burgos to a maximum of−65.8% in
Palma de Mallorca. Ceballos-Santos et al. (2021) also analyzed the relative
change in NO2 concentration during lockdown at the urban traffic sites of a
small Spanish region (Cantabria),finding an average reduction of−56.1%.
They also found a change in the daily behaviour of NO andNO2 levels, dras-
tically reducing the peaks corresponding to the rush hours, around 8 a.m.
and 8 p.m., when arrivals and departures in work environments, educa-
tional centres, and shopping centres occur.

In the periods of de-escalation and normality, mobility restrictions were
gradually reduced until they were abolished. The return of humanmobility
led to an increase in road traffic, which explains the smaller reductions ob-
served in both periods. Since NO is more predominant than NO2 in vehicle
emissions, the greater reduction observed for NO suggests that the reduc-
tions obtained in 2020 were mainly due to the traffic restrictions imple-
mented due to the COVID-19 pandemic.

On the other hand, the near-mirror image of O3 and NO behaviour can
be explained by the role of NO in the O3 titration process (NO+O3→NO2

+O2). Therefore, decreasing NO emissions and concentration could lead to
a reduction of O3 consumption, whichwould result in an increase of its con-
centrations (Briz-Redón et al., 2021; Ropkins and Tate, 2021). However,
the pattern of RC observed was less clear compared to NO and NO2, being
lower in magnitude. Since O3 is a secondary pollutant produced mainly in
the presence of NOx, volatile organic compounds (VOCs) and solar
radiation, this discrepancy can be attributed to changes in its precursors
(Martorell-Marugán et al., 2021; Sicard et al., 2020; Siciliano et al., 2020;
Adam et al., 2021). While similar reductions in NOx emissions have oc-
curred worldwide during the pandemic, different decreases in VOCs emis-
sions have resulted in different VOCs/NOx ratios, leading to different
rates of O3 production. Furthermore, since meteorological variability was
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not taken into account in this section, the O3 changes observed in Fig. 2
may also be due to a change in solar radiation during these periods with re-
spect to the same periods of the reference years (Adams, 2020; Tobías et al.,
2020).

The increase observed in pre-lockdown for PM10 concentrations in a
period supposedly similar to the values of previous years and the abrupt
change observed in the next period can be explained by some exceptional
events that occurred in this period, likely the intrusion of Saharan dust.

However, although the RC obtained are in line with the expected effect
of mobility restrictions on air quality, the comparison of the 2020 observa-
tions with the 7-year baseline values does not take into account any factors
that may influence the change in air quality behaviour compared to previ-
ous years. Therefore, to isolate the COVID-19 lockdown effect, meteorolog-
ical variability was taken into account by modelling air quality using the
historical relationship between pollutant concentrations and dailymeteoro-
logical values.

3.2. Predictive model selection: cross-validated results

The performance of MLR, RF and KNN was assessed under a cross-
validated framework (see Section 2.2) to select the best model configura-
tion to predict 2020 air quality data. The cross-validated results obtained
for MLR with regards to the sensitivity to meteorological persistence are
shown in Fig. S.2. All pollutants show similar bias ratios close to 1 (the
ideal value) regardless meteorological persistence is considered or not.
The other four performance metrics obtained show an improvement
when meteorological data from previous days are introduced, especially
when the previous day (t = 0, −1) is taken into account, with lesser im-
provements obtained for the two previous days (t = 0, −1, −2) and 3
days before (t = 0,−1,−2,−3). It is worth noting the poorer results ob-
tained for the variance ratio with values below 0.5 (except for O3), which
are far from the ideal value of 1. The best results, except for RMSE, were ob-
tained for O3 with variance ratio of 0.63 and correlation of 0.76. The good
performance of MLR for O3 in bias and variance can be explained by its al-
most normal distribution, while the good correlation may be due to its
strong annual cyclical nature that can be described by the meteorological
variables used. On the other hand, the worst correlations and variance re-
sultswere obtained for PM10 and PM2.5 Thismay suggest that these pollut-
ants are the least related to the meteorological variables selected as
predictors. In addition, unlike O3, PM10 and PM2.5 do not have a strong an-
nual cycle, and their time series have a more irregular profile, being more
difficult tomodel usingMLR. Furthermore, compared to NOx and O3, a lim-
ited number of urban traffic sites had measurements of PM10, and mainly
PM2.5, reducing the size of the training data set.

For RF, the cross-validated results obtained with regards to the sensitiv-
ity to the number of trees considered (ntree) are shown in Fig. S.3. As for
MLR, the bias ratio is around 1 for all pollutants and ntree values, with
the highest value for NO. Also, the variance ratios are lower than expected
with values around 0.5, obtaining the best result of variance and correla-
tions for O3 and the worst for PM10. Fig. S.3 shows an improvement in
both correlations and RMSE values as the number of trees increases. How-
ever, this improvement results in a lower and worse variance ratio, which
can be explained by the bias-variance trade-off mentioned in Section 2.2.

Finally, the cross-validated results obtained for KNN in relation to the
choice of K are shown in Fig. S.4. Unlike MLR and RF, KNN was able to
achieve variance ratios close to 1 for all pollutants when only the nearest
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neighbor was used (K = 1). However, this is at the cost of delivering low
correlations and high RMSE values. Nevertheless, as K increases, both cor-
relations and RMSE improve significantly, while obtaining lower variance
ratios.

Figs. S.2 to S.4 show theworst results for the variance ratio for the three
data mining techniques studied, indicating the difficulty for modelling the
distribution of air quality observations. Theseweak results can be explained
by the poor capacity of the models to predict extreme pollution events such
as the high NO and NO2 concentrations observed during winter periods.
Therefore, a q-q mapping post-correction was applied in all cases in order
to improve the reliability of the predictions to reproduce the observed dis-
tributions. An example of the q-q mapping correction of the probability
density function for the MLR at the Escuelas Aguirre site, Madrid, is
shown in Fig. 3.

The cross-validated results obtained for the three studied techniques
after the q-q mapping correction was applied are shown in Figs. S.5–S.7.
As expected, the variance ratios show a significant improvement, with
values close to 1 for MLR and KNN, and around 0.7 for RF. The other met-
rics have similar results to those obtained without q-q mapping, with a
slight improvement in correlations and a higher RMSE for some models.
Based on these results, the best model configuration was defined for each
technique. In particular, results are obtained from the MLR with 3 days of
meteorological persistence (t = 0, −1, −2, −3), the RF with 100 trees
and KNN with K = 10; the performance metrics obtained for these models
are shown in Fig. 4, comparing “raw” (i.e. prior to q-qmapping) predictions
and after q-q mapping post-correction. Although the “raw” predictions
present nearly negligible biases with respect to observations regardless of
the data mining technique used, and the correlations and the RMSE
attained are also good, the variance of these “raw” predictions is in general
low. The q-q mapping technique is able to improve the predictions' var-
iance so that it becomes similar to that of the observations. This ensures
that our q-q mapping is not acting as a predictive technique (the real
predictive capacity comes from the set of predictors used, which is skill-
fully exploited by the data mining techniques proposed) but just as a
post-correction, which improves the representation of high-order mo-
ments (including not only the variance, but also the extremes) in the
predictions.

The comparison of the three techniques shows both for correlation and
for RMSE the worst results for the KNNmodel. However, the variance ratio
Fig. 3. The probability density function observed (black solid) and predicted without (
(Madrid) site using multiple linear regression technique with meteorological data of the
the reader is referred to the web version of this article.)
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obtained for KNN remains close to 1, with the RF being the lowest with
values around 0.7. Overall, the best trade-off for all the studied metrics
once applied the q-q mapping procedure is obtained for MLR model
with 3 days of meteorological persistence, and it was therefore selected
for the 2020 prediction as the BAU scenario to analyze the lockdown ef-
fect due to the COVID-19 pandemic. The better performance obtained
for the MLR model with respect to other statistical techniques such as
RF was also observed by Venter et al. (2020) using similar predictors.
Fig. 5 shows an example of the observed and predicted time series
(2013–2019) at the Escuelas Aguirre site (Madrid) for the 5 studied pol-
lutants.

3.3. Comparison between observed and estimated relative changes in air pollutant
levels

Following the results from the previous section, daily concentrations for
2020 were predicted from meteorological variables using the MLR tech-
nique with q-q mapping post-correction. These predictions were used as
BAU scenario to compare with observed concentrations in 2020, using
Eq. (1) (Ci,ref = Ci,BAU-2020) to calculate relative changes when meteorolog-
ical variability was taken into account (RC*).

The estimated RC* obtained from the predicted values are compared
with the observed RC in Fig. 2. Observed and estimated relative changes
show a similar pattern during the periods affected by the pandemic for
the studied pollutants, mainly for NO and NO2. The lockdown period
shows the largest reduction for both pollutants, followed in the next two pe-
riods by an increase back to values close to BAU and ending with a second
reduction in the last period. However, the reduction observed in these pe-
riods using the 2020 predictions is smaller inmagnitude than that obtained
with previous years' values averaging from −60.1% for NO and −55.1%
for NO2 in the lockdown period using C2013–2019 as reference to −54.7%
and − 51.3% respectively (see Table 3). These new values were similar
to those obtained in previous studies with machine learning techniques
(Petetin et al., 2020a, 2020b). Furthermore, the differences in relative
changes between methodologies were consistent with the results obtained
by Venter et al. (2020) and Shi et al. (2021). These differences are larger
for the summer periods of de-escalation (21.8% for NO and 11.2% for
NO2) and normality period (23.8% for NO and 8.8% for NO2), being also
larger in magnitude for NO in all periods. In fact, this methodology allows
red dashed) and with (red solid) q-q mapping post-correction for Escuelas Aguirre
3 previous days. (For interpretation of the references to colour in this figure legend,



Fig. 4.Box plots comparing the cross-validated results obtained for the bestmodel configuration found for each of the three datamining techniques consideredwithout (grey-
bordered) and with q-q mapping post-correction (black-bordered). Colours correspond to the Multiple Linear Regression model with 3 days of meteorological persistence
(orange), the K-Nearest Neighbor model with K = 10 (yellow) and the Random Forest model with 100 trees (green). Each box plot contains the results obtained for the
10 sites shown in Table S.4 for each pollutant. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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to see NO concentrations return to BAU values for the normality period
(−0.1% for the relative change). Since these reductions between RC and
RC* in pandemic periods for NO and NO2 were obtained considering
Fig. 5.Comparison between observed time series (black) of pollutant concentrations at th
linear regressionmodel with 3 days ofmeteorological persistencewith q-qmapping (blue
the references to colour in this figure legend, the reader is referred to the web version o
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meteorological variability, it is reasonable to relate them to anomalous me-
teorological conditions during 2020 that may have reduced their observed
concentrations.
e Escuelas Aguirre trafficmonitoring site (Madrid) and those predicted by amultiple
). Daily data from January 2013 to December 2019 are shown. (For interpretation of
f this article.)



Table 3
Average relative percentage change RC* [%] and standard deviations of NO, NO2, O3, PM10 and PM2.5 concentrations in 2020 respect to predicted values CBAU-2020 at stud-
ied sites for each period.

Periods NO [%] NO2 [%] O3 [%] PM10 [%] PM2.5 [%]

Pre-lockdown −17.2 ± 13.1 −10.7 ± 13.6 15.3 ± 18.3 23.5 ± 20.4 10.5 ± 12.2
Lockdown −54.7 ± 28.9 −51.3 ± 10.3 23.9 ± 15.5 −4.1 ± 12.8 −2.3 ± 16.2
De-escalation −21.4 ± 31.5 −31.3 ± 13.5 1.0 ± 9.9 −1.2 ± 24.1 6.3 ± 20.2
Normality −0.1 ± 28.6 −12.7 ± 13.7 1.1 ± 10.6 −5.5 ± 20.2 −2.7 ± 11.9
Second lockdown −25.8 ± 32 −22.9 ± 14.6 23.5 ± 20.7 −0.4 ± 15.6 −10.1 ± 18.1
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During the pre-lockdown period no lockdown restrictions were imple-
mented. Therefore, BAU predicted air quality levels for an ideal model
are expected to be equal to observed values (relative changes should
move to zero). However, Fig. 2 and Table 3 show average RC* of −17.2,
−10.7, 15.3, 23.5 and 10.5% for NO, NO2, O3, PM10 and PM2.5, respec-
tively. The negative RC* observed for NOx during this period can be consid-
ered as model overprediction, most likely caused by the lack of predictors
with a high impact on these pollutant concentrations. Thus, the highest pre-
dicted concentrations of NOx in this period can be explained by the lack of
emissions rates from road traffic as predictors. These emissions rates may
have been lower in the early 2020 because of the progressive implementa-
tion of urban mobility plans, such as Low Emission Zones (LEZ), with re-
spect to the first years of the reference period (2013–2019). In addition,
although total lockdown was declared on 14 March 2020 in Spain, the
COVID-19 health crisis started much earlier with the first case in Spain in
January 2020. While the months after the declaration of lockdown are un-
doubtedly more affected by the mobility restrictions derived from the
COVID-19 pandemic, the pre-lockdown period cannot be isolated from
the effects of COVID-19, with a decline in economic and social activity in
Spain and especially in large cities such as Madrid or Barcelona. These de-
creases in NOx concentrations prior to lockdown restrictions were not ob-
served in Table 2 for RC, although they could be related to a decrease in
traffic mobility. However, the estimated RC* relative changes obtained
from the predicted values were able to distinguish these discrepancies
that might have been masked by meteorological variability in the RC re-
sults.

With respect to the other pollutants in the pre-lockdown period, the
model underpredicts their concentration levels (positive relative changes
in Table 3). In the case of O3, the RC* obtained in this period shift to posi-
tive values instead of the negative ones obtained for RC in Section 3.1,
which is consistent with the negative values obtained for NOx in the same
period and the closemirror behaviour of both according to theNOx titration
cycle (Grange et al., 2021; Venter et al., 2020). This increase of RC* with
respect to RC for O3 is also observed for the lockdown period with an aver-
age RC* of 23.9%, 19.5% higher than that observed in Section 3.1 and con-
sistent with the average 20% increase observed by Betancourt-Odio et al.
(2021) in Madrid. This suggests that meteorological conditions were not
favourable for O3 production during thesemonths. However, the difference
between RC* for the pre-lockdown and lockdown periods was smaller than
that obtained for RC (8.6% and 16.6% respectively) aswas the case for NOx.

Regarding PM, the underpredicted values during pre-lockdown can be
explained by the lack of some predictors, such as intrusion of Saharan
dust (Salvador Martinez, 2020) into the Spanish territory, which increases
the PM10 concentration, or atmospheric stability-related variables, which
may strongly affect PM10 and PM2.5 levels. Since the model was able to
better correct this underprediction for PM2.5 than for PM10, the inclusion
of Saharan dust intrusion as a predictor in future PM10 models is recom-
mended.

The discrepancies obtained between observed and estimated values
during the pre-lockdown were also observed by other scientific studies
(Grange et al., 2021; Sicard et al., 2020). Grange et al. (2021) suggest to
use this period as a validation phase to calculate the model offset in order
to subtract this from the predictions, obtaining smaller reductions for pe-
riods affected by constraints.

Still, the relative changes in air pollutant concentrations shown in Fig. 2
and Table 3 based on estimated levels should be attributed more to COVID-
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19 restrictions during the pandemic than those calculated from observed
concentrations, because 2020 BAU predicted concentrations were obtained
from the same meteorological conditions under which the pollutants were
measured. However, more accurate models, including additional, more ex-
plicative predictors might improve the results of this approach.

4. Conclusions

Different data mining techniques (MLR, RF, KNN) developed to predict
air pollutant concentrations (NO, NO2, O3, PM10 and PM2.5) at Spanish
urban traffic sites, using meteorological variables as predictors, were com-
pared from a leave-one-year-out cross-validation using 2013–2019 data. A
quantile-quantile mapping post-correction was also applied, improving
models' performance and the prediction of extreme pollution events. The
results from this cross-validated experiment showed the best overall perfor-
mance for all metrics studied for theMLR, as well as better results when the
meteorological data of the previous 3 days were introduced as predictors.
Using MLR models trained from historical data (2013–2019), we predicted
the business-as-usual air quality levels in 2020 to calculate the relative
changes in air pollutant concentrations only due to the COVID-19 restric-
tions.

The main outcomes revealed a pattern of decrease for NO and NO2 in
which abrupt reductions appear in the periods affected by the enclosure,
with the largest reduction in the first lockdown (−54.7% for NO and
−51.3% for NO2) when more dramatic restrictions were implemented.
These results obtained for NOx are consistent with previous studies and
support the hypothesis of relating its decrease to strong traffic reductions
occurring due to mobility restrictions derived from the COVID-19 pan-
demic. The slight reduction in PM10 (−4.1%) and PM2.5 levels (−2.3%)
obtained during the lockdown period might indicate a minor relationship
with traffic sources. On the other hand, an increase in O3 concentrations
has been obtained with a near-mirror behaviour with NOx pattern. This in-
crease in O3 concentrations has been also observed by previous studies and
is consistent with changes in the emissions of its precursors.

The methodology implemented in this work was able to reveal differ-
ences between relative changes, masked by meteorological variability.
Thus, the predicted BAU scenario allows to reduce the abrupt changes ob-
tained for the observed relative change RC and to obtain reductions in
NOx concentrations prior to the lockdown restrictions, probably due to
the implementations of urban mobility schemes or due to an early decrease
inmobility due to COVID-19. Therefore, thismethodology represents a sim-
ple but robust framework for exploratory analysis and intervention detec-
tion in air quality studies; in particular, it helps to interpret the air quality
improvement associated with mobility restrictions resulting from the
COVID-19 pandemic and the imperative need to implement urban mobility
schemes such as LEZs or electrification of the vehicle fleet to decrease NOx

concentrations. However, results have also revealed that air quality inter-
ventions, such as those observed in 2020, can lead to an increase in ozone
levels, which is responsible for respiratory infections. Therefore, the imple-
mentation of traffic restrictions should be followed by interventions on
other O3 precursors, such as VOCs.
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