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Abstract

The present work proposes a numerical approach to the problem of the calcu-
lation of the load sharing in planetary transmissions by measuring the strains
in the root of the sun gear teeth, a rather common experimental procedure.
The approach to model the virtual strain gauges is described in detail. This
technique is modelled mimicking the experimental measuring procedure. The
presented technique is employed in different simulation scenarios including
in-phase and sequentially phased transmissions. Moreover, various tangential
position errors are included. These configurations cover the most common
scenarios in industrial applications. From these scenarios, the results show
discrepancies between the real load sharing and the measured data. The
nature of these discrepancies is studied in depth from the geometrical point
of view.
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ESSP Equally Spaced Sequentially Phased

FE Finite Element
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Fpi Contact force on the planet i

Fpj Contact force on the planet j

LSR Load Sharing Ratio

N Number of planets

Nj,i Node i in section j under load

Noj,i Node i in section j under no load

SGLR Strain Gauge Load Ratio

Xpe
p−p Peak to peak value of the strains in planet e

X
pf
p−p Peak to peak value of the strains in planet f

Z Number of teeth in the FE model

Zp Planet number of teeth

Zr Ring number of teeth

Zs Sun number of teeth

φi Planet angular spacing

θ Angular position

ε Contact ratio

ad Addendum

dt Mounting distance

dd Dedendum

et Tangential error

h Depth of the local FE model

m Module

ro Tip rounding arc radius

wk(j) Number of nodes in section j
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1. Introduction

Gear transmissions are a recurrent solution in different ambits of life.
These transmissions provide a wide variety of advantages that makes them
the most appropriate solution for various applications. More concretely, plan-
etary gear trains have proved to be the best solution in order to work with
high loads in a limited space, in comparison with other possible gear trans-
missions that normally would need of a higher size to deal with the same
amount of torque. Furthermore, there exists the possibility of different speed
ratios in the transmission just by changing its configuration. As a result of
these advantages and several others, planetary gear trains are vastly used in
sectors such as automotive industry, both in internal combustion [1, 2] and
electric cars [3, 4], renewable energies [5, 6], and rotorcraft industries [7, 8].

The research and industry fields in gears have experienced a still ongoing
development in the virtual world. Therefore, as years passed by, more and
more models, to recreate planetary gear transmissions, have been presented.
One of those is the one employed as base for this work, which was presented by
Iglesias et al. in [9]. Apart from that model, in literature, countless number
of them can be found in different shapes, based on different approaches, and
with various levels of complexity. To name a few examples, there are lumped-
parameter and purely analytical models such as [10, 11, 12, 13, 14, 15], other
hybrid models with combination of FE and multibody models [5, 16] or FE
and analytical approaches as in [1, 7, 17].

Despite its reduced cost and outstanding development, virtual modelling
has not completely substituted experimental works in gears. There still exist
numerous research works in gears from the experimental point of view, such
as [18, 19, 20, 21, 22] to name a few, which prove to facilitate more accurate
results in relation to the real performance of the transmission. In this scope,
the study of the load sharing in planetary transmissions plays an important
role, given the importance of the study of the component resistance and
durability. In relation to this, different techniques have been chosen along
the years to measure the load sharing in a planetary transmission. Thus,
Singh et al. in [23] proposed the measuring of the load sharing by placing
both root and hoop gauges along the ring gear. On the contrary, Boguski
et al. proposed in [24] a new method for measuring the load on the planets
by positioning strain gauges inside the planet pins. Thus, measuring the
bending of the pin due to the tangential load in planet. Finally, Dai et al. [25]
present a technique to measure root strains in spur planetary transmissions,
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positioning the strain gauges in the sun gear.
In spite of all the studies presented above, a numerical approach to anal-

yse the reliability of the load sharing measurements from the strains in the
tooth root has been developed. This numerical approach allows quantifying
the error inherent to the experimental procedure. Thus, given the fact of
the need of these experimental results for the certification of the planetary
gearboxes for wind turbines [18, 26], this analysis provides the opportunity to
the manufacturers to quantify inaccuracies in the experimental results with
respect to the real load sharing and avoid problems in terms of the durability
of the components. To this aim, this work provides a numerical analysis for
3-planet planetary transmissions with different mesh phasing and tangential
pinhole position errors and evaluates the discrepancies between two methods
to obtain its load sharing.

Hereinafter, Section 2 presents a compilation of the relevant points for
this research amongst all the aspects that compose the model presented in
[9]. Also, as part of Section 2 the virtual modelling of the strain gauges
(Section 2.2) is detailed and the sequence followed by the contacts in Section
2.3. Then, in Section 3 the cases of study are gathered in look for the most
representative cases for the ongoing research. Finally, Section 4 gathers the
results and discussion and as a consequence of those results in Section 5 some
conclusions are extracted.

2. Modelling

In this work, a 2D spur gear planetary transmissions model, previously
developed by Iglesias et al. [9], is employed and modified for the purpose of
this research.

As a first step in this model, the wheels are carved applying the vectorial
approach presented in [27] following the characteristics of the teeth profile.
Then, the mounting of the transmission is performed. In this step, the φi and
the dt are defined. As a consequence of the number of teeth in each wheel
and the φi, the mesh phasing is set. The classification of the transmissions
regarding these details are gathered in [28]. The φi and the mesh phasing
play a crucial role in the transmission behaviour, as seen in [28, 29, 30]. Once
the mounting is set, an example is shown in Fig.1, the input data have to
be defined. Thus, the input torque, the angular positions to study, and the
errors in the transmission are established. In the scope of this work only the
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Figure 1: Mounting of the planetary transmission

tangential pinhole position error is considered, for its definition the procedure
followed is analogous to the one presented in [28].

Once the mounting is finished and the input data defined, the model
consists on a tool to solve the static load balance in a planetary transmission
from a quasi-static point of view. This balance is found by looking for the
load balance in each of the planets, and considering the load on the wheels
supports in case floatability is considered. For the calculation of the balance
in each wheel, it is necessary to obtain the contact forces in the interactions
between wheels. In order to solve the contact problem, a hybrid formulation
of analytical and FE approaches, is selected as the best option. This approach
combines a pair of FE models and the analytical approach presented by
Weber in [31] employed for external contact in gears, which was expanded
afterwards by Iglesias et al. in [9] including internal contact too.

In terms of the FE models, there are a global model and a local model
following the proposal by Brauer in [32], these models for the sun gear are
shown in Fig.3. The first reproduces the body of the wheel and a Z number of
teeth, this point will be explained in more detail in section 2.1. Secondly, the
local model provides a FE model of the active flank with an h depth, which
was determined in [9]. The load applied in both of the models is unitary and
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has the opposite direction, thus, by summing the results up the distortion in
the tooth flank due to the point force is erased. Likewise, the deflection of the
teeth and the body of the gear are calculated for such unitary force. Then,
this scenario is repeated for any load case along the flank of the tooth. Thus,
the flexibility of the wheel is obtained. The next step consists on using the
analytical approach to calculate the deformations in the local area due to a
Hertzian load on the flank. This last step is iterated looking for convergence.
Finally, all these steps are combined, by using the superposition principle
[32], to obtain the deflections in the teeth due to the load.

At the same time, the geometry of the wheels is employed to calculate
the overlap between teeth, supposing that the profiles are rigid and that they
are allowed to overlap. Thus, the possible contacts are calculated and the
actual contacts correspond to those where the overlap exists. These possible
contacts are illustrated in Fig.2 and the number of them that are considered
depend on the contact ratio, as it will be explained in more depth in section
2.1. Finally, relating the stiffness obtained from the deflections and the
overlaps, the contact forces are obtained.
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Figure 2: Contact between sun-planet

From the contact forces, firstly, the balance in each planet is searched.
Once the balance in every planet is attained, there should also exists a bal-
ance in the whole transmission. To that aim, given the lack of angular ac-
celeration and the friction or damping losses, the input torque should equal
the output torque that planets induce on the planet-carrier. This stands for
configurations such as the studied, where the fixed member is the ring gear.

Once the balance is attained and the contact problem is solved, the im-
mediate load sharing amongst the planets can be calculated for any angular
position, by following the procedure defined in section 2.4.
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2.1. Finite-element Models

As mentioned before, the contact problem employs a hybrid point of view.
The FE models employed in this approach consist on a global and a local
FE models shown in [9, 28]. For this work, the information is extracted from
the global model, presented in Fig.3a. The measuring of strains in the sun
gear root is a technique employed in some cases [18, 25]; this is the preferred
procedure whenever the sun gear is big enough to dispose the gauges and
necessary telemetry. In addition, these measurements are necessary in order
to certify the gearbox, at least in the wind generators business. However,
this represents one possibility, another possible technique consists on mea-
suring the strains in the ring gear, at least for flexible rings such as the ones
presented in [23, 33].

This model is developed using the partial differential equation toolbox in
MATLAB. It is a 2-D model discretized by using triangular elements with
nodes only at every vertex. Although the model creates FE models for every
gear, in this work the focus will be set on the sun gear, and this will be
the only FE model referred from now on. In the FE model, apart from the
gear body a Z number of teeth is represented. In relation to the boundary
conditions, the nodes along the inner circle, where the gear is mounted on
the shaft, are embedded. The rest of the nodes and elements are free in the
plane.
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a) Global b) Local

Figure 3: FE models for the sun gear

Going back to the Z number of teeth in the model, this is obtained by
using (1). The Z number considers all the possible contacts given the contact
ratio (Fig. 2), and gathers the teeth that suffer strains due to the contact
and also all the adjacent teeth affected by that contact. Also, this expression
accounts for high contact ratio spur gears.

Z = 2 · Ceil(ε+ 1) (1)

In equation (1) the function ceil rounds the ε+1 to the next integer in
the positive direction. For the simulations performed in this work, Z will be
equal to 6, given the contact ratios specified in Tab.3.
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Table 1: Theoretical contact ratios in the studied configurations

Configuration Parameter Value

ESIP Contact ratio (sun-planet) 1.294

Contact ratio (planet-ring) 1.395

ESSP Contact ratio (sun-planet) 1.295

Contact ratio (planet-ring) 1.397

2.2. Virtual strain gauges

In the following, the modelling of the virtual strain gauges is described.
This approach obtains the strains in the root of the sun gear teeth by pro-
cessing the already existing information in the global FE model. Thus, the
change in the distance between adjacent nodes in different sections is ob-
tained using (5). The first step to take consists on identifying in the FE
model the nodes that are relevant, select them and gather the coordinates of
their initial position. For this, three conditions are established:

- The nodes have to belong to the root circumference.
- They must be in the arc that connects the trochoids of consecutive teeth,

but avoiding the nodes along the trochoid.
- At the first and last teeth this number of nodes just have to be on the

root circumference.
Avoiding the trochoid of the teeth profile, the stress concentration effect

that appears in this zone with the load would be avoided. Therefore, the
strain gauge data will not be distorted by such effect. Taking all the previous
into account, the nodes selected appear in Fig.4 and their coordinates are
stored. Thus, the initial position of the nodes of interest is monitored. In
this initial configuration no load is applied in any of the Z teeth. By this
procedure, the number of noded sections where the strains are measured will
be Z+1, always.

Secondly, in order to establish the initial length of the strain gauge each
section of nodes is analysed separately. In every section, the distance between
each pair of consecutive nodes is calculated by using (2). This equation
approximates the distance as a straight line, a good enough approximation
given the reduced length and therefore the negligible curvature.
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a) Z teeth

b) Root between teeth

Figure 4: Detail of the selected nodes.

Noj,iNoj,i+1 =
√

(Noj,(i+1)x −Noj,ix)2 + (Noj,(i+1)y −Noj,iy)2 (2)

The subindexes x and y identify the horizontal and vertical components
of the nodes Cartesian coordinates.

The summation of the distances between the nodes that belong to each
of the sections provides the length of the strain gauge. Equation (3) provides
the reference value of that length whenever there is no load in the model.

Loj = Σ
wk(j)−1
i=1 Noj,iNoj,i+1 (3)

Then, equation (4) provides the results for the same calculation when
load is applied in the model. The lack of the subindex o in the equation
identifies this detail.
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Lj = Σ
wk(j)−1
i=1 Nj,iNj,i+1 (4)

Once these values are known, the strain in each of the monitored sec-
tions will correspond to the difference in length of each section between the
unloaded and the loaded configuration (5).

∆Lj = Lj − Loj (5)

With the previous steps, the strains in a supposed strain gauge could
be model, and the strain gauge positioned in any of the monitored sections.
However, in order to obtain the measurements of a strain gauge placed in one
of the sections of nodes monitored, it is important to define the acquisition
sequence, and to take into account the effect of any contact on such strain
gauge. In the following section, all of this is explained.

2.3. Contact sequence

In order to manage the information acquired by the strain gauge its lo-
cation is greatly relevant. The strain gauge is considered to be positioned
in the (Z/2)+1 section, which is the midst of the model. Thus, the initial
single contact in the first tooth will have a small, but notable, influence on
the gauge. As commented before, the number Z of teeth show all the teeth
that are notably influenced by a contact on the middle tooth. Consequently,
the gauge placement assures the measuring of the strains produced by any
contact in any of the considered teeth.

Thus, the contact sequence starts with a single contact in the first tooth,
which will produce a small strain in the gauge. After this, the contact will
continue to the point that there will appear a double contact both in the
first and second tooth. In such scenario, firstly, the strains due to the first
contact will be monitored and, then, the ones due to the second. Finally,
the superposition principle will sum up the effects of both contacts. This
strategy will be applied continuously during the Z meshing cycles in the Z
teeth, considering every possible contact that affect the strain gauge.

In Fig.5, the contact sequence for the cases considered in this work is
presented. The snapshots for simple and double contact are represented.
Every snapshot includes the strain gauge representation by a thick red line
between teeth 3 and 4.

In order to virtually recreate what is presented in Fig.5, the strains in
every section between teeth are calculated in every contact position. Then,
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Figure 5: Snapshots of the contact sequence for single and double contact

due to the employed model, the relative position of the contact has to be
taken into consideration to obtain the strain in the gauge. For instance, the
contact in the first tooth considered would relate to the strain obtained in
the last of the noded sections. As contacts continue, the strains that are
considered change from one section to the next whenever the tooth where
the contact appears changes too. After repeating this procedure for every
contact position in each of the considered meshing cycles, the whole sequence
of strains in the gauge is determined.

Finally, it is necessary to point out that for the simulations performed
for this work, 8 meshing cycles in the sun gear have been considered. As ex-
pressed before, at least Z meshing cycles are necessary, in this case, Z equals
to 6. However, the sequentially phased configuration includes a delay in the
contacts between consecutive planets, which makes necessary considering a
higher number of meshing cycles. In conclusion, by measuring the strains
in 8 meshing cycles for every case of study, the acquisition of all the crucial
information in terms of strains is assured.
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2.4. Load sharing calculation

In this work, the load sharing amongst planets will be calculated employ-
ing different definitions.

Firstly, for the immediate calculation of the load sharing, the LSR is the
magnitude chosen. This was employed previously in [28, 34], also referred as
Load Sharing Factor (LSF) in [1, 24, 35]. This LSR allows to observe the
amount of load in each planet, compared to the inlet torque at any moment
of the simulation. The analytical definition of the LSR appears in equation
(6). The load sharing by this definition is calculated as the amount of load
in a planet e divided by the total load in all the planets. This calculation is
performed whenever the static balance is attained in the whole transmission.

LSRpe =
Fpe

ΣN
f=1Fpf

(6)

In order to address the differences between the calculation of the load
sharing by using the LSR and the strain measurements Fig.6 & Fig.7 are
included. These represent ideal scenarios of the behaviour of both ESIP and
ESSP transmissions without any tangential error in the pinhole of the planets.
A sketch of the LSR and the strains in the gauges shows this behaviour. In
both figures, the LSR is a continuous calculation. On the contrary, the strains
in the contact with each planet are measured during a period of time. In
each of the measurements of strains, the peak-to-peak value in the strains is
obtained.
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Figure 6: Comparison of the LSR and the strain measurements in the ESIP transmissions
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Figure 7: Comparison of the LSR and the strain measurements in the ESSP transmissions

As seen in Fig.7, there exists a synchronicity between the peaks in the
LSR and the strains. The maximum level of load, signalled by the maximum
in the LSR, coincides with the peak of peak-to-peak value in the strains.
After this, the calculation of the load sharing from the strains, which will
be referred in the following as SGLR, is calculated. This magnitude refers
to the size of each peak-to-peak value compared to the total of summation
of every peak-to-peak value. Thus, the peak-to-peak value corresponding to
each planet will be the same and will lead to a uniform result in the SGLR.
On the contrary, a transmission with a sequential mesh phasing will have a
fluctuating LSR, different to the SGLR as seen in Fig.6. Thus, the SGLR
will only coincide with the real load sharing in the transmission in the ideal
scenario of an ESIP transmission without any error, as seen in Fig.6. In order
to obtain the SGLR (7) is used.

SGLRpe =
Xpe

p−p

ΣN
f=1X

pf
p−p

(7)
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In equations (6) & (7) the subindex f is used as an auxiliary subindex to
sum up the contributions of every planet in the transmission.

3. Cases of study

Hereinafter, the cases of study considered to analyse the measuring of the
load sharing in various configurations of planetary transmissions are com-
piled. The load sharing is obtained both by the calculation of the LSR and
also by the measurements using virtual strain gauges, and the consequent
calculation of the SGLR.

In this work, the focus is on the mesh phasing and the effect of the
pinhole tangential position error. In every transmission, the planets will be
equally spaced, and in terms of phasing there will be in-phase (ESIP) and
sequentially phased (ESSP) transmissions. To this aim, the number of teeth
considered for each gear is gathered in Tab.2. These configurations respond
to the most common configurations employed in planetary transmissions for
wind generators [5, 20, 36].

Table 2: Number of teeth for each gear in the considered transmissions

Zr Zp Zs

ESIP 165 44 75
ESSP 166 45 74

In more depth, in Tab.3 the geometrical characteristics of the teeth are
compiled apart from the number of teeth. The geometry of these profiles
includes a tip rounding arc to avoid problems due to the contact on the
edges.

Table 3: Geometrical specifications of the teeth profiles

Parameter Value

Module (mm) 4.5

Pressure angle (o) 20

Addendum 1·m
Dedendum 1.25·m

Tip rounding arc radius (mm) 0.05·m
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Apart from the effect of the mesh phasing, seven sizes for tangential
pinhole position error are considered. Every possible combination in terms of
phasing and errors are gathered in Tab.4. These will be the cases considered
for the simulations in this work. For every scenario a torque of 1200 Nm is
applied counter-clockwisely.

Table 4: Compilation of the studied scenarios

Configuration Tangential error
ESIP 0 µm 1.25 µm 2.5 µm 3.75 µm 5 µm 6.25 µm 7.5 µm
ESSP 0 µm 1.25 µm 2.5 µm 3.75 µm 5 µm 6.25 µm 7.5 µm

None of the mentioned configurations include flexibility in the shafts that
support the wheels. This decision is due to the need of observing the pure
effect of the load in the transmission and in the strain measurements, to
which aim, the lack of floatability is a great asset. Nonetheless, in a future
further step, the focus should be on the inclusion of floatability in the gear
supports, increasing the realism of the simulations. However, it is important
to highlight the importance of this consideration knowing that a more rigid
system is more sensitive to any error, as it can be seen in [37] where the
stiffness is increased by augmenting the N . This effect will probably be seen
whenever the radius of the shaft mounting is modified, or the geometry of
the teeth, or even the number of teeth. Thus, leading to a more rigid system
more sensitive to errors, which translate in higher imbalances for a given
error.

4. Results and discussion

Hereinafter, the results to the cases of study are summarised. As a first
step to comprehend the obtained results, Fig.8 & Fig.9 present the detail
of sun-planet contacts, where the contacts are highlighted by a red circle
and numbered as presented in Fig.2. In the in-phase configuration only one
figure is presented given the fact that every contact is at the same situation
for any of the planets. These figures prove the differences in the contacts due
to the mesh phasing. Both configurations are ideally perfect, therefore, the
difference in the pairs of teeth in contact is caused by the mesh phasing.
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4

5

Figure 8: Detail of the sun-planet contact in the initial position for ESIP transmission

On the contrary, in a sequentially phased transmission every contact is at
a different point along the meshing line, as seen in Fig.9. Thus, the number
of teeth pairs in contact varies from one planet to the other. Likewise, the
meshing stiffness varies in each of the contacts and will influence the load
sharing and the strains.
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a) Planet 1
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b) Planet 2

4

c) Planet 3

Figure 9: Detail of the sun-planet contact in the initial position for ESSP transmission

As a consequence of those differences in the contacts, in Fig.10 a series of
mechanical scenarios are plotted in order to introduce the physical explana-
tion for the obtained results. Thus, the figure shows snapshots of 3 instants
throughout the simulations. In every instant a blue dotted box shows the
stiffness observed in the contact on each planet. This stiffness is related di-
rectly with the contact forces and the strains suffered by the strain gauge.
Besides, this stiffness is affected by the mesh phasing. Then, given the data
in each of these instants, considering the peak-to-peak value proportional to
that stiffness, the SGLR is induced.

As shown in Fig.10, the springs present differences in stiffness due to the
mesh phasing in the sequentially phased scenario. For the strains experienced
by the strain gauge, the differences due to the mesh phasing are not visible
given the fact that the same cycle is repeated for every contact at different
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moments along the simulation. Although the cycles in the strains are not
affected by the mesh phasing, it is notable for the LSR in each of the instants.
Given that, discrepancies are expected between the results obtained by using
each of the proposed techniques. This is a consequence of the fact that the
strain gauge only observes what happens in each planet, and not on the
rest, for a period of time, but whenever the sun will reach every different
planet will observe analogous conditions. However, the LSR observes the
circumstances in every planet at the same time, and therefore, it is affected
directly by the conditions in the whole transmission and not only in one of
the planets as it happens with the SGLR.

Figure 10: Spring comparison in snapshots for the LSR and SGLR discrepancies without
errors

In order to observe in detail the magnitudes mentioned in section 2.4, the
LSR is presented, together with the strain measurements. This is presented
for the case where there is a tangential position error of 1.25 µm. These
magnitudes are shown both for the in-phase (Fig.11) and sequentially phased
(Fig.14) transmissions. By using this scenario, all the effects can be analysed
and explained. Later, the results for all the other cases studied are presented

20



together in order to show the tendencies that can be identified both in the
LSR and the strains measurements.

Regarding the strains measured in the root of the teeth in the sun gear,
these are shown in Fig.11 for the ESIP transmission with a 1.25 µm tangential
error. Given the applied torque and the direction of the rotation in the sun
gear, the contacts in the successive teeth start by compressing the gauge. The
closer the contact gets to the gauge, the higher the measured compressing
strain. However, whenever the contact becomes a double contact both in the
tooth before and after the strain gauge, there is a combination of traction
and compression that leads to the tipping point located right after the 4th

meshing cycle in the sun. In the meshing cycles afterwards, the strains are
tractions in the gauge whose amplitude diminishes as the meshing continues,
given the fact that the contacts happen further from the gauge. As seen in the
lower graph in Fig.11, due to the tangential error included in the mounting
of the planet 1, the amount of load in this planet is lower than in the other
planets, as it can be expected in these conditions. For in-phase transmissions,
this error affects equally the planet 2 & 3, therefore, the behaviour of the
LSR and strains in planets 2 & 3 are perfectly identical, that is the reason
why these lines overlap. Besides, the error in the planet 1 translates also in
a lower peak-to-peak value in the strains due to the contact with this planet.
At the same time, the error narrows the width of the different strain sections
in the strain graph in the planet 1. This narrowing is visible in the moment
when the slope in the graph changes. This narrowing is due to the lower
load in that planet together with the flexibility of the tooth, which leads to
a lower effective contact ratio in that planet compared to the rest.
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Figure 11: LSR and strain measurements ESIP@et[1,25]

Whenever the results in the strain measurements are observed together
with the LSR results more effects can be identified. In Fig.11 some dotted
lines are included in order to show the synchronicity in a relevant event such
as the peak values in the strains and in the LSR. The changes in the LSR
are related with the changes in the meshing stiffness, as well as the change
of the pairs of teeth in contact. The inexistence of mesh phasing makes this
changes synchronous in each planet except for the small delay in the planet 1
due to the tangential error. In terms of the LSR, the variations in the planet
1 inside a meshing cycle are bigger than in the other planets. However, the
average load in this planet is lower than in the rest of planets and, thus, the
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strains are smaller.
These effects are studied in more depth varying the size of the tangential

error in the mounting of the planet 1, as seen in Fig.12 & Fig.13. Thus, the
variation of this error creates a tendency that continues along the simulations
and prove the effects commented before. The higher the error, the bigger the
imbalance in the LSR, and the lower the load in the planet with the error.
Because of that, the lower the strains in the contact with that planet. At
the same time, the impact of the error in the width of the events in the
strains and LSR becomes more visible the higher the error, proving what
was commented but was difficult to spot for the case with 1.25 µm error.

In Tab.5, the numerical results to the magnitudes of interest are gathered.
In this case, the lack of mesh phasing uniforms the results in the maximum
LSR (Max. LSR) and in the SGLR. This uniformity continues in the cases
where there is tangential error in the planet 1. Even though there is an
error, planets 2 & 3 conserve the uniformity in the mentioned results. Apart
from that, the numerical results prove that the measuring of the strains to
calculate the load sharing tend to minimise the impact of the tangential error.
Thus, the SGLR in the planet 1 is higher than the average LSR, as well as
the SGLR in planets 2 & 3 is lower than the average LSR. Therefore, the load
sharing obtained in the SGLR is more uniform and diminishes the impact of
the tangential error.

Table 5: Numerical results for the ESIP transmission in every case of study

et (µm) Planet 1 Planet 2 Planet 3
Avg. LSR Max. LSR SGLR Avg. LSR Max. LSR SGLR Avg. LSR Max. LSR SGLR

0 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333
1.25 0.2829 0.2949 0.2872 0.3586 0.3651 0.3564 0.3586 0.3651 0.3564
2.5 0.2328 0.2564 0.2465 0.3836 0.3967 0.3767 0.3836 0.3967 0.3767
3.75 0.1834 0.2179 0.2076 0.4083 0.4281 0.3962 0.4083 0.4281 0.3962

5 0.1346 0.1796 0.1688 0.4327 0.4592 0.4156 0.4327 0.4592 0.4156
6.25 0.0869 0.1413 0.1309 0.4566 0.4897 0.4345 0.4566 0.4897 0.4345
7.5 0.0516 0.1035 0.0935 0.4742 0.5 0.4533 0.4742 0.5 0.4533

On the other hand, for ESSP configurations, as shown before in Fig.9 the
contacts in each of the planets differ. Thus, the meshing stiffness is different
and also will be the LSR and the strains, as shown in Fig.14. The mesh
phasing provokes a delay between the peak values in the LSR. Then, the
error adds a little difference in the behaviour of the planets, a tangential
error equals to a small delay in the mesh phasing, thus, the peak values in
the LSR are not equal to each other. However, in the configuration without
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Figure 12: Strain gauge data in ESIP with various errors

24



0 2 4 6 8

Sun meshing cycles

0

0.1

0.2

0.3

0.4

0.5

L
S

R

Load sharing ratio

planet1 planet2 planet3

a) 0 µm

0 2 4 6 8

Sun meshing cycles

0

0.1

0.2

0.3

0.4

0.5

L
S

R

Load sharing ratio

planet1 planet2 planet3

b) 2.5 µm

0 2 4 6 8

Sun meshing cycles

0

0.1

0.2

0.3

0.4

0.5

L
S

R

Load sharing ratio

planet1 planet2 planet3

c) 3.75 µm

0 2 4 6 8

Sun meshing cycles

0

0.1

0.2

0.3

0.4

0.5
L

S
R

Load sharing ratio

planet1 planet2 planet3

d) 5 µm

0 2 4 6 8

Sun meshing cycles

0

0.1

0.2

0.3

0.4

0.5

L
S

R

Load sharing ratio

planet1 planet2 planet3

e) 6.25 µm

0 2 4 6 8

Sun meshing cycles

0

0.1

0.2

0.3

0.4

0.5

L
S

R

Load sharing ratio

planet1 planet2 planet3

f) 7.5 µm

Figure 13: Load Sharing Ratio in ESIP with various errors
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error the peak values are identical. Later, relating the strain measurements
and the LSR, it is visible how there is a synchronicity between the peak
values in the LSR and in the strains, and how these peaks are separated by
the mesh phasing. Besides, the peak values of the strains in each planet are
not identical either. Thus, the error modifies the geometry of the contact
and the situation where the highest strain appears in any planet is not equal
to the others.
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Figure 14: LSR and strain measurements ESSP@et[1,25]

However, this difference is purely due to the tangential error. In Fig.15
& Fig.16 in the case without error every peak is identical to the rest, but the
bigger the error, the bigger the difference between these peaks. This effect
is due to the modification of the sequential phasing. The mesh phasing in a
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sequential configuration is uniformly divided in N parts. A tangential error
modified this division and, thus, each contact affects the rest but not equally,
therefore, an imbalance is created and the load in each of the planets will not
be the same. This stands also for the strains, given the fact that they are
a direct consequence of the contact forces. The numerical values extracted
from these results are gathered in Tab.6.

The numerical results gathered prove how these measurements tend to
diminish the influence of both the mesh phasing and the tangential error.
Thus, the results of the SGLR prove to be more uniform than the maximum
values in the LSR. Thus, SGLR overestimates the uniformity in the load
balance in the ESSP transmission studied.

Table 6: Numerical results for the ESSP transmission in every case of study

et (µm) Planet 1 Planet 2 Planet 3
Avg. LSR Max. LSR SGLR Avg. LSR Max. LSR SGLR Avg. LSR Max. LSR SGLR

0 0.333 0.363 0.333 0.333 0.363 0.333 0.333 0.363 0.333
1.25 0.2844 0.3136 0.2888 0.3579 0.3893 0.3585 0.3578 0.3875 0.3527
2.5 0.2358 0.266 0.2446 0.3822 0.4142 0.3833 0.3821 0.4179 0.372
3.75 0.1877 0.2188 0.2011 0.4062 0.4407 0.4078 0.4062 0.4485 0.3911

5 0.1401 0.1719 0.1562 0.4299 0.467 0.4303 0.43 0.4776 0.4135
6.25 0.0933 0.1251 0.1106 0.4533 0.4931 0.453 0.4534 0.5061 0.4364
7.5 0.0475 0.0769 0.0656 0.4761 0.517 0.4753 0.4764 0.5344 0.459

In a further step, the tendencies of the inaccuracies between the real
maximum of the load sharing, obtained from the LSR, and the load sharing
obtained by the SGLR are represented in Fig.17. This figure gathers the
maximum value of these discrepancies. In this scenario, it is important to
observe the fact that in the in-phase transmission without any error, the
existing ideal balance leads to an accurate calculation of the load sharing with
the SGLR. However, in the same scenario but with sequential phasing, there
exists a discrepancy between the LSR and the SGLR. Thus, the accuracy of
the load sharing calculated from the strain measurements is quantified. Then,
the increment of the tangential error in the planet 1 mounting increases these
inaccuracies. In terms of the growth of the inaccuracy in the calculation of
the load sharing, in the ESIP configuration this pace seems to be uniform for
any tangential error until the 7.5 µm tangential error that produces moments
where the contact in the planet 1 is lost, as seen in Fig.13f. On the contrary in
the ESSP transmission this pace varies with the tangential error and different
slopes can be identified in the graph. The variation between the scenarios
with 0 error and 1.25 present a slight variation, however, in the scope from
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Figure 15: Strain gauge data in ESSP with various errors
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Figure 16: Load Sharing Ratio in ESIP with various errors
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2.5-5 there is a higher slope, which changes from then on to a lower slope,
even lower than the one in the ESIP transmission’s results. Finally, in the last
case where there is lost of contact in the planet with error the development of
the discrepancy is highly affected, losing any kind of linear proportion with
any of the previous values.
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Figure 17: Discrepancies between the maximum LSR and the SGLR results (Graph)

In more depth, in Tab.7 the numerical values of the mentioned discrepan-
cies for every case of study in each planet are gathered. These values prove
how the phasing creates a discrepancy in the results, but this discrepancy
is uniform for the 3 planets. Then, the tangential error modifies this uni-
formity. In the ESIP configuration planet 1 behaves differently to planets 2
& 3, who have identical behaviour. On the contrary, in the ESSP transmis-
sion the impact of the error is higher and modifies the behaviour of every
planet, being the planet 3 the most affected. By this, this planet will be
the one that provides the highest inaccuracy in the results obtained by this
measuring technique.
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Table 7: Discrepancies between maximum LSR and SGLR results (numerical results)

Planet 1(%) Planet 2(%) Planet 3(%)
ESIP@et[0] 0 0 0
ESSP@et[0] 9 9 9
ESIP@et[1.25] 2.31 2.61 2.61
ESSP@et[1.25] 7.44 9.24 10.44
ESIP@et[2.5] 2.97 6 6
ESSP@et[2.5] 6.48 9.36 13.91
ESIP@et[3.75] 3.09 9.57 9.57
ESSP@et[3.75] 5.31 9.87 17.22
ESIP@et[5] 3.24 13.08 13.08
ESSP@et[5] 4.71 11.01 19.23
ESIP@et[6.25] 3.12 16.56 16.56
ESSP@et[6.25] 4.35 12.03 20.91
ESIP@et[7.5] 3 14.01 14.01
ESSP@et[7.5] 3.39 12.51 22.62

5. Conclusions

In this section, the conclusions extracted from the results of the proposed
study are gathered.

Firstly, the use of strain gauges in the sun gears tooth root to measure
the load sharing in planetary transmissions prove to be inaccurate under
some conditions. Accuracy is directly affected by the lack of continuous
monitoring. This technique just obtains the load sharing for a period of time
and therefore, measures only the effects that appear in that time window.

Secondly, the mesh phasing proves to have a crucial impact given the
fact that this measuring procedure is not synchronous. Therefore, the syn-
chronization between the strain gauge acquisition and the imbalance-creating
factor is crucial in order to obtain the right load sharing measurements by
using strain gauges in the sun gear tooth root. In case this synchronization
does not exist, the strain gauge would miss the effect of the temporary flaw.

Also, results prove an increment in the error made by the strain gauge
with the size of the error. This error is proved to increase at a higher rate than
linearly with the size tangential error. The lose of uniformity in the sequence
or in the in-phase meshing, produced by the tangential error, proves to play
an important role in the measuring technique reliability.

Furthermore, there exists an inherent error by the introduction of a se-
quence in the meshing. Thus, the calculation procedure to induce the load
sharing from the strain gauge data is not appropriate, or if used, some degree
of error has to be expected and assumed.
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Finally, the influence of the errors accentuate the previously mentioned
effect and increment the imbalance in the transmission, as well as the discor-
dance between the results obtained by LSR and strain gauges measurements.
The existence of the discrepancies between the results of the two measure-
ments is independent of the transmission studied; the results prove that these
inaccuracies appear in any transmission other than an ideal ESIP with no
error.

6. Acknowledgements

The authors would like to acknowledge Project DPI2017-85390-P funded
by the Spanish Ministry of Economy, Industry, and Competitiveness for
supporting this research. Moreover, the authors acknowledge the Project
PID2020-116213RB-I00 funded by the Ministry of Science and Innovation.
Finally, the authors acknowledge SIEMENS-GAMESA for its collaboration
in this work.

References

[1] A. Kahraman and S. Vijayakar, “Effect of Internal Gear Flexibility on
the Quasi-Static Behavior of a Planetary Gear Set,” Journal of Mechan-
ical Design, vol. 123, no. 3, p. 408, 2001.

[2] M. Inalpolat and A. Kahraman, “Dynamic modelling of planetary gears
of automatic transmissions,” Proceedings of the Institution of Mechanical
Engineers, Part K: Journal of Multi-body Dynamics, vol. 222, no. 3,
pp. 229–242, 2008.

[3] Y. Tian, J. Ruan, N. Zhang, J. Wu, and P. Walker, “Modelling and con-
trol of a novel two-speed transmission for electric vehicles,” Mechanism
and Machine Theory, vol. 127, pp. 13–32, sep 2018.

[4] W. Du, S. Zhao, L. Jin, J. Gao, and Z. Zheng, “Optimization design and
performance comparison of different powertrains of electric vehicles,”
Mechanism and Machine Theory, vol. 156, p. 104143, 2021.

[5] J. Helsen, F. Vanhollebeke, B. Marrant, D. Vandepitte, and W. Desmet,
“Multibody modelling of varying complexity for modal behaviour anal-
ysis of wind turbine gearboxes,” Renewable Energy, vol. 36, pp. 3098–
3113, nov 2011.

32



[6] F. Viadero, A. Fernández, M. Iglesias, A. De-Juan, E. Liaño, and M. A.
Serna, “Non-stationary dynamic analysis of a wind turbine power drive-
train: Offshore considerations,” Applied Acoustics, vol. 77, pp. 204–211,
2014.

[7] R. G. Parker, V. Agashe, and S. M. Vijayakar, “Dynamic Response of
a Planetary Gear System Using a Finite Element/Contact Mechanics
Model,” Journal of Mechanical Design, vol. 122, no. 3, p. 304, 2000.

[8] I. Delgado, P. Dempsey, L. Antolick, and D. Wade, “Continued eval-
uation of gear condition indicator performance on rotorcraft fleet,” in
American Helicopter Society International - Airworthiness, CBM and
HUMS Specialists’ Meeting 2013, pp. 344–365, 2013.

[9] M. Iglesias, A. Fernandez del Rincon, A. De-Juan, A. Diez-Ibarbia,
P. Garcia, and F. Viadero, “Advanced model for the calculation of mesh-
ing forces in spur gear planetary transmissions,” Meccanica, vol. 50,
no. 7, pp. 1869–1894, 2015.

[10] P. Velex and L. Flamand, “Dynamic Response of Planetary Trains to
Mesh Parametric Excitations,” Journal of Mechanical Design, vol. 118,
no. 1, p. 7, 1996.

[11] A. Singh, “Load sharing behavior in epicyclic gears: Physical expla-
nation and generalized formulation,” Mechanism and Machine Theory,
vol. 45, no. 3, pp. 511–530, 2010.

[12] F. Chaari, T. Fakhfakh, R. Hbaieb, J. Louati, and M. Haddar, “In-
fluence of manufacturing errors on the dynamic behavior of planetary
gears,” The International Journal of Advanced Manufacturing Technol-
ogy, vol. 27, pp. 738–746, jan 2006.

[13] M. Shuai, Z. Ting, J. Guo-guang, C. Xiao-lin, and G. Han-jun, “Analyti-
cal investigation on load sharing characteristics of herringbone planetary
gear train with flexible support and floating sun gear,” Mechanism and
Machine Theory, vol. 144, 2020.

[14] L. Ryali and D. Talbot, “A dynamic load distribution model of planetary
gear sets,” Mechanism and Machine Theory, vol. 158, 2021.

33



[15] C. Zhang, J. Wei, F. Wang, S. Hou, A. Zhang, and T. Lim, “Dynamic
model and load sharing performance of planetary gear system with jour-
nal bearing,” Mechanism and Machine Theory, vol. 151, 2020.

[16] J. Liu, R. Pang, S. Ding, and X. Li, “Vibration analysis of a plane-
tary gear with the flexible ring and planet bearing fault,” Measurement,
vol. 165, p. 108100, dec 2020.

[17] V. Abousleiman and P. Velex, “A hybrid 3D finite element/lumped
parameter model for quasi-static and dynamic analyses of plane-
tary/epicyclic gear sets,” Mechanism and Machine Theory, vol. 41, no. 6,
pp. 725–748, 2006.

[18] H. Aurrekoetxea, M. Eng, G. Gearbox, I. R. D. Ocenda, E. Eng, and
G. Gearbox, “Experimental and theoretical study of Load mesh factor
for different boundary conditions in wind gearbox planetary stages,”

[19] W. Bartelmus and R. Zimroz, “A new feature for monitoring the con-
dition of gearboxes in non-stationary operating conditions,” Mechanical
Systems and Signal Processing, vol. 23, pp. 1528–1534, jul 2009.

[20] T. Barszcz and R. B. Randall, “Application of spectral kurtosis for de-
tection of a tooth crack in the planetary gear of a wind turbine,” Me-
chanical Systems and Signal Processing, vol. 23, pp. 1352–1365, may
2009.

[21] A. Mbarek, A. Del Rincon, A. Hammami, M. Iglesias, F. Chaari, F. Vi-
adero, and M. Haddar, “Comparison of experimental and operational
modal analysis on a back to back planetary gear,” Mechanism and Ma-
chine Theory, vol. 124, pp. 226–247, 2018.

[22] D. Peng, W. A. Smith, R. B. Randall, and Z. Peng, “Use of mesh phasing
to locate faulty planet gears,” Mechanical Systems and Signal Process-
ing, vol. 116, pp. 12–24, 2019.

[23] A. Singh, A. Kahraman, and H. Ligata, “Internal Gear Strains and Load
Sharing in Planetary Transmissions: Model and Experiments,” Journal
of Mechanical Design, vol. 130, no. 7, p. 072602, 2008.

34



[24] B. Boguski, A. Kahraman, and T. Nishino, “A New Method to Measure
Planet Load Sharing and Sun Gear Radial Orbit of Planetary Gear
Sets,” Journal of Mechanical Design, vol. 134, no. 7, p. 071002, 2012.

[25] X. Dai, C. G. Cooley, and R. G. Parker, “Dynamic tooth root strains and
experimental correlations in spur gear pairs,” Mechanism and Machine
Theory, no. 101, pp. 60–74, 2016.

[26] “IEC61400 – 4: Design Requirements for wind turbine gearboxes.”

[27] F. L. Litvin and A. Fuentes, Gear Geometry and Applied Theory. Cam-
bridge University Press, sep 2004.

[28] J. Sanchez-Espiga, A. Fernandez-del Rincon, M. Iglesias, and F. Vi-
adero, “Influence of errors in planetary transmissions load sharing un-
der different mesh phasing,” Mechanism and Machine Theory, vol. 153,
2020.

[29] M. Inalpolat and A. Kahraman, “A theoretical and experimental in-
vestigation of modulation sidebands of planetary gear sets,” Journal of
Sound and Vibration, vol. 323, no. 3-5, pp. 677–696, 2009.

[30] R. G. Parker and J. Lin, “Mesh Phasing Relationships in Planetary and
Epicyclic Gears,” Journal of Mechanical Design, vol. 126, no. 2, p. 365,
2004.

[31] K. Weber, C. Banaschek, The deformation of loaded gears and the effect
on their load carrying capacity. 1951.

[32] J. Brauer, “A general finite element model of involute gears,” Finite
Elements in Analysis and Design, vol. 40, pp. 1857–1872, aug 2004.

[33] H. Ligata, A. Kahraman, and A. Singh, “An Experimental Study of the
Influence of Manufacturing Errors on the Planetary Gear Stresses and
Planet Load Sharing,” Journal of Mechanical Design, vol. 130, no. 4,
p. 041701, 2008.

[34] M. Iglesias, A. Fernandez del Rincon, A. De-Juan, P. Garcia, A. Diez-
Ibarbia, and F. Viadero, “Planetary transmission load sharing: Manu-
facturing errors and system configuration study,” Mechanism and Ma-
chine Theory, vol. 111, pp. 21–38, 2017.

35



[35] A. Kahraman, “Static Load Sharing Characteristics of Transmission
Planetary Gear Sets : Model and Experiment,” Transmission and Driv-
eline Systems Symposium, no. 1, pp. 1–10, 1999.

[36] W. Shi, C.-W. Kim, C.-W. Chung, and H.-C. Park, “Dynamic modeling
and analysis of a wind turbine drivetrain using the torsional dynamic
model,” International Journal of Precision Engineering and Manufac-
turing, vol. 14, pp. 153–159, jan 2013.

[37] A. Bodas and A. Kahraman, “Influence of Carrier and Gear Manufac-
turing Errors on the Static Load Sharing Behavior of Planetary Gear
Sets,” JSME International Journal Series C, vol. 47, no. 3, pp. 908–915,
2004.

36


