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1. Abstract 
The goal of this project is the design, implementation and characterization of a Doherty Power 

Amplifier (DPA) with bias tuning at 3.5 GHz. The transistor used is a commercial GaN HEMT 

from Cree inc., with a class AB for the main and a changing class C to AB for the peak. The 

maximum power provided by the DPA is 28.5W. The efficiency is 67.7% at saturation, and 

60.3% at 6 dB back-off. The maximum gain is 14.7 dB with a more linear function than the 

standard DPAs. 

2. WiMAX 
This DPA is working at 3.5 GHz, which is the frequency used by the communications standard 

WiMAX.  

WiMAX (Worldwide Interoperability for Microwave Access) is a broadband wireless alternative 

to cable and DSL. It is a last mile technology that allows high bitrates and high service area 

(about 50 Km). The standard that defines this technology is the IEEE 802.16. This technology is 

widely adopted for rural zones, where the population density is low, and the deployment of 

fiber or cable would be too expensive. 

IEE 802.16 is divided in two categories: 

- Fixed (IEE 802.16-2004), that operates in the band of 2.5-3.5 GHz and in the license-

free 5.8 GHz band. 

- Mobile (IEE.802.16), that operates in the band of 2-6 GHz. 

Since WiMAX adopts high order modulations, power amplifier needs to be back-off: Doherty 

scheme provides good efficiency in this condition. 

3. Design 
Taking as starting point the DPA design made by Jorge Moreno Rubio for its Ph.D. thesis, some 

changes are made in order to adapt it to a bias tuning implementation. 

 

Fig. 1: Original design vs. changes proposed. 
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3.1 Gate bias functions 
The bias tuning here adopted is based on dynamic change of the peak amplifier working 

conditions, to obtain better performances. One way to control it is changing the gate voltage 

depending on the input signal. Changing the behavior of the peak can lead to a more linear 

gain and phase. 

 

 

The evaluated bias voltage versus input power functions are: 

- The original one, a continuous DC voltage of -7V. 

- A function with an initial value of -7V that changes abruptly into a value of -2.73V 

(same bias of main amplifier). 

- A function with an initial value of -7V that at a certain point (threshold) rises lineally 

ending in a value of -2.73V (figures 2 and 3). 

The function eventually chosen is the one that changes gradually. This makes the peak 

amplifier initially work as a class C amplifier, and at a certain point starts to rise the voltage 

and then gradually works as a class AB amplifier. This guarantees high efficiency in the back-off 

region, and maximum power delivering by the peak stage at saturation.  
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Fig. 2: Vgs function. 

 

 
Fig. 3: Vgs function 
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3.2 Hybrid 
The original hybrid (used as an input power splitter) is replaced with a hybrid that delivers the 

same power to both amplifiers (Figures 4 and 5). 

  
Fig. 4: Hybrid coupler design. 
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Fig. 5: Hybrid coupler simulations. 

3.3 Threshold  
The threshold of the function must be adapted, in order to see which variations produces and 

to decide the optimum point in which the voltage starts to rise. 

The most important changes are produced in the gain, the phase, the efficiency, the PAE and 

the output power. 
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3.3.1 Phase and gain 

- Threshold=36 
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Fig. 6: Gain and phase with a threshold of 36 (the red ones). The blue one is the phase of the original design. 
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Fig. 7: Gain and phase with a threshold of 25 (the red ones). The blue one is the phase of the original design. 
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Fig. 8: Gain and phase with a threshold of 20 (the red ones). The blue one is the phase of the original design. 



Page 5 
 

 

- Threshold=10 
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Fig. 9: Gain and phase with a threshold of 10 (the red ones). The blue one is the phase of the original design. 
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Fig. 10: Gain and phase with a threshold of 5 (the red ones). The blue one is the phase of the original design. 
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Fig. 11: Gain and phase with a threshold of 0 (the red ones). The blue one is the phase of the original design. 



Page 6 
 

3.3.2 Efficiency and PAE 
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Fig. 12: PAE (blue) and efficiency (red). 
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Fig. 13: PAE (blue) and efficiency (red). 
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- Threshold=20 
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Fig. 14: PAE (blue) and efficiency (red). 
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Fig. 15: PAE (blue) and efficiency (red). 
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- Threshold=5 
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Fig. 16: PAE (blue) and efficiency (red). 
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Fig. 17: PAE (blue) and efficiency (red). 
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3.3.3 Output power 
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Fig. 18: Output power 
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Fig. 19: Output power 
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Fig. 20: Output power 
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Fig. 21: Output power 
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Fig. 22: Output power 
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Fig. 23: Output power. 
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The decrement of the threshold makes the gain and phase become more linear at high input 

power, but this also makes the efficiency and PAE decrease, especially at back-off. Moreover, 

the output power increases. This means that is necessary to make a trade-off; so the threshold 

used is 21. 

Using this threshold makes the gain and phase become more linear than the original one, also 

the maximum gain is 14.389dB. 
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Fig. 24: Phase and gain with the threshold chosen. 

 

The efficiency has a maximum peak of 66.7% and a second peak of 60.9% at 6dB back-off. 
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Fig. 25: Efficiency and PAE with the threshold chosen. 
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Finally, the output power reaches the maximum value of 26 W and saturates with a lower 

value of the input power. 
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Fig. 26: Output power with the threshold chosen. 

 

3.4 2-tone simulation 
2-tone simulation offers a way to see the distortion produced by intermodulation products. 

The two frequencies taken, are separeted from the RF frequency (3.5 GHz) a certain delta 

value. Three simulations are made according to different values of delta, 28 MHz, 7 MHz and 1 

MHz. The CIMD3 (intermodulation distortion of third order) is the difference between the 

carrier and the first intermodulation component, the way to calculate it is the one seen in 

ecuations 3 and 4. 

                                                                                                                    [1] 

                                                                                                                                 [2] 

                                                   [3] 

                                                   [4] 
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Fig. 27: CIMD3 for delta 28Mhz 7MHz and 1MHz, respectively. 

 

As seen in figure 27 the lowest CIMD3 value is 18.33dB for an intermodulation separation of 

1MHz and the maximum output power. 

3.5 The most linear gain 
A study is made to calculate which values of Vgs make the gain as flatter as possible; it is taken 

a separation of 5dB in Pav. The result can be seen in figure 28. This result is convenient in gain, 

but makes the efficiency drop, and lead to a function that is very difficult to implement. Also, if 

the current supplied by the main amplifier changes, the function also changes. 
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Fig. 28: Gain applying the point to point function. 
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3.6 Bias tee 
Another important step is to design and check the bandwidth of the bias tee, which is going to 

be set in the Vgs feeding port. The way to measure it, is to compare the signal injected into the 

bias tee and the signal seen at the peak’s gate. To obtain a more realistic and a no resonances 

result in the simulation, it is necessary to add the generator internal resistor. With this 

configuration the bandwidth is 13.5MHz. One way to increase this value is to put a parallel 

resistor, taking into account that the signal is attenuated. For example, with a parallel resistor 

of 50Ω, the bandwidth is 25.6MHz, and the attenuation is 6dB. 
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Fig. 29: Signal seen at the gate with a resistor in parallel. 



Page 16 
 

3.7 Stability 
The K factor (Stabfact1) allows obtain how far the circuit is from behaving unstable, if k>1 the 

circuit is in the stability zone. 
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Fig. 30: K factor from 50 MHz to 8 GHz. 

 

Another way to check which Γs and ΓL  values lead to instability, are the stability circles. The 

figure 31 shows that any value of Γs and ΓL  makes the circuit stable. 

indep(S_StabCircle1) (0.000 to 51.000)

S
_

S
ta

b
C

ir
c
le

1

indep(L_StabCircle1) (0.000 to 51.000)

L
_

S
ta

b
C

ir
c
le

1

 
Fig. 31: Stability circles. 

 

3.8 Matching networks 
Both input and output must be adapted in order to obtain the best performance at the central 

frequency (3.5 GHz). The original design was already adapted, and with the changes made, the 

hybrid, it is only necessary to adjust a little bit the input lines. 
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Fig. 32: S parameters. 

3.9 Layout 

Once all the designs and simulations are done, it is time to do the layout. One thing changed 

from the design is the dual feed in the peak and main’s bias gate. This must allow feed the gate 

with a SMA connector or with soldered microstrip paths, as seen in figure 33. 

 
Fig. 33: Detailed view of the peak’s bias. 

The microstrip circuit used is a Taconic substrate with copper metallization (RF35 with εr=3.5, 

H=0.76mm and T=0.035 mm).  

The size of the final circuit is 105x129 mm (Figure 34). 
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Fig. 34: Complete layout. 

3.10. Momentum Simulations 
The changes made in the original design show the necessity of being checked whit momentum, 

the electromagnetic simulator of ADS. The most critical parts are the hybrid (figure 35) and the 

line set in the input second harmonic tuner of the main (figure 37).  

 

 
Fig. 35: Hybrid layout’s. 

A mesh frequency of 21GHz is taken and a mesh density of 20 cells/wavelength. It is made 

adaptive S-parameters simulation, the band taken is from DC to 21GHz with 30 points/step. 
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Fig. 36: Results of the hybrid using momentum. 

The momentum simulation shows that the power delivered to the main and peak falls in 

0.1dB, which is not a significant decrement. 

The other electromagnetic simulation done is the line set in the input second harmonic tuner 

of the main. 

 

Fig. 37: Line’s layout. 
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Fig. 38: Simulation of the original line vs. momentum simulation 

The results do not change so much, S21 and S12 remain at a 0dB level and S11 and S22 below    

-20dB. 
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4. Comparison between both designs 
In order to adapt the design made by Jorge Moreno Rubio for its Ph.D. thesis to a bias tuning 

configuration, some changes are made. In this section we are going to make a deeper analysis 

to all this changes. 

4.1 Hybrid 
The optimized input divider ratio of the original hybrid was found to be 42% for the main, and 

58% for the peak. Nevertheless, the hybrid used for bias tuning delivers the same power to 

both amplifiers. To achieve this all the lines that compose the hybrid were changed. 

 
Fig. 39: Original results vs. bias tuning results. 

4.2 Bias tee 
As has been mentioned before, the bias tuning configuration has of two ways of feeding in the 

peak and main’s bias gate. This must allow feed the gate with a SMA connector or with 

soldered microstrip paths. The original DPA design only allows feed through soldered paths. 

To obtain a higher bandwidth on the bias tee at the peak amplifier, the capacitor with the 

highest value was removed; also the two 50 Ω resistors were changed with a 20 Ω resistor. 

                   
Fig. 40: Original layout vs. bias tuning layout. 
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4.3 Second harmonic tuning 
Due to the changes made in the hybrid and the bias tee, the length of the input lines in the 

second harmonic closers (Figure 41), were adapted to obtain the same circuit size in both 

designs and having a good matching and power performance. 

                
Fig. 41: Original main’s input line vs. bias tuning main’s input line. 
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Fig. 42: Original s-parameters vs. bias tuning s-parameters. 

5. Measurement 

5.1 First measures 
The first step on the measurement is to see if the transistors are working fine, and set the bias 

working point. It is used a DC power source with four channels, channel one for the main’s Vgs, 

channel two for the peak’s Vgs, channel three for the main’s Vds and channel four for the 

peak’s Vgs. Two amp meters measure the Ids from the main and peak and four voltmeters to 

measure the different Vgs and Vds. 
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Fig. 43: Picture of the fabricated DPA with the most important parts highlighted. 

Setting the Vds at 28V, and varying the Vgs, the results obtained show the transistor starts to 

supply Ids current above a Vgs=-3.2V, so the value taken to set the transistor off is a Vg=-3.5V. 

The transistor reaches a Ids=200mA with a Vgs=-2.75V 

 
Fig. 44: DC work station 



Page 23 
 

5.2 Spectrum analyzer measures 
Next step is to connect the DPA to a RF signal generator and to a Spectrum analyzer and do all 

the power measurements. The measure bench is set as seen in figure 40, so to extract the Pin 

and Pout is necessary to calibrate first the work station. It is needed to set the value for the A, 

B and C parameters as seen on figure 46 and equations [5], [6] and [7]. 

                                                                                                          [5] 

                                                                                                             [6] 

                                                                                                             [7] 

This is a first approach to see how the DPA is working, future measurements with the network 

analyzer will give a more accurate characterization of the behaviour of the DPA. 

 
Fig. 45: Measure bench diagram. 

  
Fig. 46: A, B and C parameters diagram. 
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With a quick analysis it is noticed that the optimum frequency is shifted to 3.35 GHz (figure 

47). 

 
Fig. 47: Gain measure varying the frequency. 

 

After setting this frequency value, it is time to understand how the polarization point changes 

the DPA performance. 

 
Fig. 48: Gain and efficiency with different peak’s Vgs. 

With a higher Vgs on the peak, the efficiency is higher and the gain is more linear, because the 

peak is set on with a lower Pin. 
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5.3 Network analyzer measures 
The network analyzer allows us to make a deeper analysis of the system, after a previous 

accurate calibration. 
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Fig. 49: S21 simulated (red) versus S21 measured (blue). 

The S parameters measurements confirm the initial suspicion; the circuit is shifted in 

frequency, from 3.5GHz to 3.35GHz. 
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Fig. 50: S11 simulated (red) versus S11 measured (blue). 
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Fig. 51: S22 and S12 simulated (red) versus S22 and S12 measured (blue). 

Once the S-parameter analysis is made, a power sweep measurement is performed. 

The DPA has been characterized at different frequencies and bias conditions.  

5.3.1 Frequency sweep 

Setting a bias point of Vds=28V, Vgs_peak=-6.5V and Id_main=210mA, and sweeping the 

frequency. 

 
Fig. 52: Pout for the different frequencies. 
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Fig. 53: Gain for the different frequencies. 

 
Fig. 54: Efficiency for the different frequencies. 

The best performance measured is at 3.4 GHz, the output power is higher, the gain is higher 

and more linear and the efficiency is higher: moreover, the Doherty effect at back off is 

noticeable. 
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5.3.2 Frequency 3.5 GHz 

Setting a bias point of Vds=28V, Id_main=210mA and changing the values of Vgs_peak, -6.5V,   

-8V and -10V. 

 

 
Fig. 55: Results for the different Vgspeak. 
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5.3.3 Frequency 3.45 GHz 

- Setting a bias point of Vds=28V, Vgs_peak=-6.5V, and changing the values of Id_main 

210mA and 50mA.  

 
Fig. 56: Results for the different Idmain. 

- Setting a bias point of Vds=28V, Id_main=210mA and changing the values of Vgs_peak, -

6.5V, -8V and -10V. 
 

 
Fig. 57: Output power for the different Vgs. 
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Fig. 58: Gain for the different Vgs. 

 
Fig. 59: Efficiency for the different Vgs. 
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5.3.4 Frequency 3.35 GHz 

Setting a bias point of Vds=28V, Vgs_peak -6.5V and -8V, and Id_main 210mA and 50mA.  

 

 
Fig. 60: Pout for the different bias. 

 

 
Fig. 61: Gain for the different bias. 

 



Page 32 
 

 
Fig. 62: Efficiency for the different bias. 

6. Conclusions 
The design in ADS shows that a more linear phase and gain is possible without sacrificing 

efficiency using bias tuning. 

The final microstrip realization has shown a frequency shift to 3.35 GHz. The best performance 

is obtained biasing with an Id_main=210mA, Vgs_peak=-6.5V and a Vds=28V,  with a maximum 

output power of 43 dBm, a maximum gain of 11 dB and efficiency higher than 40 % at back off. 

The bias tuning part cannot be tested because the baseband part of the setup is still 

uncompleted. 
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