
ARTICLE

Finding genetically-supported drug targets for
Parkinson’s disease using Mendelian randomization
of the druggable genome
Catherine S. Storm 1, Demis A. Kia1, Mona M. Almramhi1,2, Sara Bandres-Ciga3, Chris Finan 4,5,6,

International Parkinson’s Disease Genomics Consortium (IPDGC)*, Aroon D. Hingorani 4,5,7 &

Nicholas W. Wood 1✉

Parkinson’s disease is a neurodegenerative movement disorder that currently has no disease-

modifying treatment, partly owing to inefficiencies in drug target identification and validation.

We use Mendelian randomization to investigate over 3,000 genes that encode druggable

proteins and predict their efficacy as drug targets for Parkinson’s disease. We use expression

and protein quantitative trait loci to mimic exposure to medications, and we examine the

causal effect on Parkinson’s disease risk (in two large cohorts), age at onset and progression.

We propose 23 drug-targeting mechanisms for Parkinson’s disease, including four possible

drug repurposing opportunities and two drugs which may increase Parkinson’s disease risk.

Of these, we put forward six drug targets with the strongest Mendelian randomization

evidence. There is remarkably little overlap between our drug targets to reduce Parkinson’s

disease risk versus progression, suggesting different molecular mechanisms. Drugs with

genetic support are considerably more likely to succeed in clinical trials, and we provide

compelling genetic evidence and an analysis pipeline to prioritise Parkinson’s disease drug

development.
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Parkinson’s disease (PD) is a neurodegenerative movement
disorder that currently has no disease-modifying treatment.
Despite efforts, around 90% of drugs that enter clinical

trials fail, mostly due to insufficient efficacy or safety1–3. This
contributes to the staggering $1.3 billion mean price of bringing a
new drug to the market1.

Incorporating genetics in drug development could be one of
the most efficient ways to improve the process, because drugs
with genetic support are considerably more likely to succeed in
clinical trials4–6. “Druggable” genes encode proteins that have
been targeted by medications or are possible to target with a small
molecule or monoclonal antibody7,8. While genome-wide
association studies (GWAS) have effectively identified single
nucleotide polymorphisms (SNPs) linked to PD risk and
progression9–11, the GWAS design cannot reliably pinpoint
causal genes and directly inform drug development.

Mendelian randomization (MR) is a genetic technique that can
predict the efficacy of a drug by mimicking a randomized con-
trolled trial12–15. SNPs associated with expression levels of a gene
(expression quantitative trait loci, eQTLs) may be analogous to
lifelong exposure to a medication targeting the encoded
protein8,16. The association between the same genetic variants
and a disease (the outcome) can then be extracted from a GWAS
for the outcome (Fig. 1a). The SNP-gene-expression and SNP-
disease associations can be combined using MR to infer the causal
effect of the exposure on the outcome. Since the exposure and
outcome can be measured in two independent cohorts, openly
available data from two large-scale GWASs can be used for one
well-powered MR study. Because of Mendel’s law of independent
assortment, individuals are “randomized” at conception to have
genetically higher or lower expression levels of the druggable gene
(Fig. 1b). Individuals are generally unaware of their genotype, so
the MR study is effectively blinded.

In this study, we use eQTLs in blood and brain tissue to predict
the efficacy of over 3000 drug-targeting mechanisms in two
independent PD case-control cohorts and examine several PD
progression markers (Fig. 1c). Where possible, we repeat the
analysis using SNPs associated with circulating levels of the
encoded proteins. Using large-scale, openly available data and
MR techniques, we propose a list of genetically-supported drug
targets for PD, including repurposing opportunities of already-
licensed or clinical-phase drugs.

Results
Mimicking medications with expression quantitative trait loci.
The druggable genome encompasses human genes that encode
drug targets, including proteins targeted by approved and
clinical-phase drugs, proteins similar to approved drug targets
and proteins accessible to monoclonal antibodies or drug-like
small molecules in vivo7. The most comprehensive version to date
includes 4863 genes, and we sought to identify openly available
eQTL data for these genes to mimic exposure to the corre-
sponding medications7. Although the transcript level is biologi-
cally a step before the protein level, expression GWASs cover
many genes across the genome and provide tissue specificity.
Gene expression GWAS data thus provide a very good resource
for high-level screens to develop drug-targeting hypotheses.

We used eQTL data from blood (31,684 mostly European-
ancestry individuals)17 and brain tissue (1387 prefrontal cortex
samples of mostly European ancestry, including 679 healthy
controls, 497 schizophrenia, 172 bipolar disorder, 31 autism
spectrum disorder, 8 affective disorder patients)18. We kept
eQTLs with false discovery rate (FDR) < 0.05 and located
within 5 kb of the associated gene to increase the specificity of
the eQTL.

As such, eQTLs were available for 2786 and 2448 druggable
genes in blood and brain tissue, respectively, and these were
clumped at r2= 0.2. Compared to a lower clumping threshold,
this increases the number of SNPs available per gene, which in
turn improves the power to detect an effect and makes it possible
to test for biases in the MR estimate (as discussed later). When
clumping at r2= 0.2, SNPs are not strictly independent. We
therefore used MR methods that incorporate a linkage disequili-
brium matrix based on the 1000 genomes EUR reference panel in
the MR analysis, which accounts for correlation between
SNPs19,20. These methods therefore take linkage disequilibrium
into account.

Discovery phase identifies 31 potential drug targets to prevent
PD. The largest GWAS available for a PD trait studied disease
risk in European-ancestry individuals, which we obtained from
the International PD Genomics Consortium (IPDGC)9. Our
discovery cohort consisted of 13,708 PD patients and 95,282
controls collected for a 2014 GWAS meta-analysis21. The MR
effect estimate for each SNP (Wald ratio) was calculated, and
where >1 eQTL was available per gene after clumping, Wald
ratios were meta-analysed, weighted by inverse-variance (IVW).
Genetically-determined expression of 31 genes (11 in blood only;
17 in brain tissue only; three in both blood and brain tissue) was
significantly associated with PD risk in the discovery cohort at
FDR < 0.05. All remained significant when clumping at r2= 0.001
(Supplementary Data 1).

15 potential preventative agents replicate in an independent
PD case-control cohort. We sought to replicate all genes that
reached significance in the discovery phase using the Wald ratio
or IVW method in an independent PD case-control cohort
(Fig. 1). The replication population consisted of 8036 PD patients
and 5803 controls (no overlap with the discovery cohort)9. The
MR methods were identical to those used in the discovery phase.

Genetically-predicted expression of 15 genes (four in blood
only; nine in brain tissue only; two in both tissues) replicated
using the Wald ratio or IVW method (Fig. 2 and Supplementary
Data 1). BST1, CD38, CHRNB1, CTSB, GPNMB, LGALS3, MAPT,
MMRN1, NDUFAF2, PIGF, VKORC1 and WNT3 reached
FDR < 0.05; ACVR2A, HSD3B7 and MAP3K12 reached nominal
significance. GPNMB and HSD3B7 reached significance in both
blood and brain tissue. Of these 15 potential drug targets to
prevent PD, nine were not nominated by the PD risk GWAS
meta-analysis9.

Three replicated genes encode targets of approved or clinical-
phase drugs with an appropriate direction of effect for PD
protection, presenting a possible repurposing opportunity:
CHRNB1, NDUFAF2 and VKORC1 (Table 1 and Supplementary
Data 1). The GPNMB protein is a receptor targeted by
glematumumab, an antibody-drug conjugate that is being
evaluated for several types of cancer22. After binding to GPNMB,
the drug is internalised by the cell and is cytotoxic. Since this
mechanism of action does not reflect a change in GPNMB levels,
we do not consider glematumumab a potential candidate for
repurposing. We find that CD38-inhibitors such as daratumu-
mab, licensed to treat multiple myeloma, and MAP3K12-
inhibitors such as CEP-1347 may increase PD risk. Interestingly,
CEP-1347 failed to modify PD progression in a phase 3 clinical
trial23, and our data may provide a genetic explanation why CEP-
1347 was unsuccessful.

MR quality control suggests that CD38, CTSB, GPNMB
and MAP3K12 have the most robust MR evidence for PD risk.
We completed a series of quality control steps to prioritise
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the replicated genes. The direction of effect was consistent
between the discovery and replication phases for all 15 replicated
genes (Supplementary Data 2). Previous eQTL-based MR stu-
dies have reported heterogeneity in magnitude and direction of
effect between tissues8,24, and we found that raised HSD3B7
expression was associated with raised PD risk in blood and
reduced PD risk in brain tissue (Fig. 2). This pattern was

consistent between the discovery and replication phase.
Although this may suggest opposing effects between tissues,
there was only one eQTL available for HSD3B7 in brain and
two eQTLs in blood (discovery phase). Results based on one
or two SNPs should be interpreted with caution, because it
is not possible to perform the additional quality control
discussed below.

Fig. 1 Overview of MR and our study. a Genetic variants associated with the expression of a gene are called eQTLs, and they mimic life-long exposure to
higher or lower levels of gene expression (the exposure). These variants affect PD (the outcome) through the exposure only, i.e. there is no horizontal
pleiotropy. b MR is analogous to a randomized controlled trial, where individuals are randomly allocated to a genotype according to Mendel’s law of
independent assortment14. c Workflow and summarized results of our MR study. eQTL expression quantitate trait locus, MR Mendelian randomization, PD
Parkinson’s disease, pQTL protein quantitative trait locus.
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The IVW method assumes that (1) the genetic variant(s) must
be associated with the exposure, (2) the genetic variant(s) must
not be associated with any confounders, and (3) the genetic
variant(s) must not be associated directly with the outcome. This
means that the SNP should affect the outcome (PD risk) through
the exposure (gene expression) only, so the y-intercept of the IVW
regression is fixed at zero25. This assumption is violated if there is
genetic pleiotropy, where a SNP affects the outcome through an
alternative pathway. This kind of pleiotropy may arise due to
measured and unmeasured confounders, for example if the SNP is
an eQTL for another gene that is not tested in this MR study. If
pleiotropy pushes the effect in one direction, the IVW method yield
a biased effect estimate. The MR-Egger method relaxes this
assumption by not constraining the y-intercept. If the MR-Egger
y-intercept significantly deviates from zero, this suggests that there
is directional pleiotropy. This method assumes that any pleiotropic
effects are independent of the gene-exposure association26.

If several meta-analysis methods yield a similar result, such as
the MR-Egger and maximum likelihood methods, we consider
the MR result more robust25,27,28. The latter allows more
uncertainty in the SNP-exposure and SNP-outcome
associations29. These methods are only possible if >2 SNPs are
available per gene, and all genes with >2 SNPs reached at least

nominal significance using the maximum likelihood method
(uncorrected p < 0.05). The magnitude and direction of effect
were largely consistent between methods, except for BST1. For
BST1, the MR-Egger estimate was in the opposite direction to the
IVW and maximum likelihood results (Supplementary Data 1).
All genes with >2 SNPs available passed the MR-Egger intercept
test except BST1, explaining the deviant MR-Egger estimate for
this gene (Supplementary Data 2).

Nevertheless, if SNPs for a gene are pleiotropic in opposing
directions, the MR-Egger y-intercept will still be zero. The
Cochran’s Q and I2 tests usefully assess overall heterogeneity
between Wald ratios. NDUFAF2, WNT3 and VKORC1 did not
pass the Cochran’s Q (p < 0.05) nor I2 (I2 > 0.50) tests
(Supplementary Data 2). This means that there is significant
heterogeneity in the MR result for these genes, and such
heterogeneity among Wald ratios can for example happen if at
least one SNP for the gene is pleiotropic30.

We repeated the analysis in the discovery outcome data using
only SNPs that were specifically associated with our replicated
genes. In other words, we removed any SNPs associated with the
expression of any other gene in the original eQTL dataset. All
replicated genes remained significant in this analysis (Supple-
mentary Data 8 and 9).

Fig. 2 Fifteen potential preventative drug targets reach significance in two independent PD case-control cohorts. Forest plots showing the discovery-
phase results for the 15 replicated genes. The centre of the error bars represents the PD odds ratio per 1-standard-deviation increase in gene expression,
calculated using the Wald ratio (if 1 SNP) or IVW (if >1 SNP) and corrected for the number of genes tested. Results are colour-coded according to the
tissue (red= blood, blue= brain tissue). 95% CI 95% confidence interval, FDR false discovery rate, OR odds ratio, PD Parkinson’s disease.

Table 1 Four potential drug-targeting mechanisms for PD may constitute repurposing opportunities for existing drugs.

Gene Outcome (tissue) Drug name Clinical phase Indications/Uses

CHRNB1 Risk (brain) Rocuronium Approved Muscle relaxant in anaesthesia
NDUFAF2 Risk (brain) Metformin Approved Type 2 diabetes mellitus, polycystic ovarian syndrome
RHD Dyskinesia (brain) Roledumab Phase 2 Prevent alloimmunisation in Rhesus negative mothers

carrying a Rhesus positive child
VKORC1 Risk (blood) Warfarin Approved Prophylactic anticoagulation

*high risk of falls in Parkinson’s disease

These drugs are either approved or in clinical trial phase, and the mechanism of action is consistent with the direction of our MR effect estimate. The second column displays the potential effect on PD
and target tissue. Clinical phase and drug indication based on https://clinicaltrials.gov/ and the British National Formulary. Direction of effect was confirmed using https://www.drugbank.ca or https://
www.ebi.ac.uk/chembl/ databases.
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In addition, a spurious MR result may arise from a locus where
the SNP-exposure and SNP-outcome associations are rooted in
two distinct causal SNPs in close linkage disequilibrium30. When
the SNP is significantly associated with both exposure and
outcome, this can be probed using colocalization analysis31.
There is evidence that proteins with both MR and colocalization
evidence are more likely to be successful drug targets32; this may
simply reinforce that GWAS-nominated drug targets are more
likely to reach approval4. Using the discovery outcome data, we
had sufficient power ðPPH3þ PPH4≥ 0:8Þ to perform a
colocalization analysis for 13 genes (see ‘Methods’ and Supple-
mentary Data 7). Of these, ACVR2A, BST1, CHRNB1, CTSB,
GPNMB, HSD3B7, LGALS3, MAPT, MMRN1 and VKORC1 had
strong evidence of colocalization ðPPH4≥ 0:75Þ. All genes with
sufficient power colocalized in the replication data (BST1, CD38,
GPNMB, HSD3B7, MAPT, MMRN1, VKORC1 and WNT3).
Similarly, Kia et al. recently found that eQTLs in brain tissue for
CD38 and GPNMB based on a different eQTL dataset colocalize
with PD risk loci33, strengthening the evidence for the encoded
proteins as drug targets for PD.

Four potential targets for preventative drugs may also affect
PD age at onset. Pharmacologically delaying the age of onset of a
debilitating disease may have a considerable impact on both
socioeconomic burden of disease and quality of life by providing
disability-free years to people at risk. Evidence from polygenic
risk score analyses suggests that genetic risk of PD is correlated
with PD age at onset11,34–36. We therefore asked whether
expression of the genes reaching significance in our MR discovery
phase for PD risk also predict PD age of onset. We sourced
openly available summary statistics from a PD age of onset
GWAS, including 17,996 patients (Fig. 1c). Based on the same
analysis pipeline as the replication step for PD risk, expression of
four genes predicted PD age of onset at p < 0.05: BST1 in blood,
CD38 in brain tissue, CTSB in brain tissue and MMRN1 in brain
tissue (Fig. 3 and Supplementary Data 3). CD38 and MMRN1
remained significant when clumping at r2= 0.001. There were >2
SNPs available for BST1, CD38 and CTSB, and the IVW, max-
imum likelihood and MR-Egger methods yielded a consistent
direction of effect for these genes (Supplementary Data 1). All
three genes passed the MR-Egger intercept (p > 0:05), Cochran’s
Q (p > 0:05), and I2 tests (ðI2 < 0:50Þ. BST1 and MMRN1
remained significant when removing SNPs associated with
expression of any other gene in the original eQTL dataset

(Supplementary Data 8 and 9). Of the four genes, we had suffi-
cient power ðPPH3þ PPH4≥ 0:8Þ to perform a colocalization
analysis for BST1, and we found strong evidence of colocalization
(PPH4≥ 0:75; Supplementary Data 7).

If increased expression of a gene predicts reduced PD risk, this
gene should be associated with a delayed age at onset. This was
consistently the case for all four genes that reached significance
for age at onset. Overall, these data suggest that there may be
some shared molecular mechanisms driving PD risk and age at
onset, yet this overlap may be incomplete.

There is little overlap between drug targets to prevent PD and
reduce PD progression. The PD risk GWAS data afford large
discovery and replication cohorts, which is a great advantage in
MR. Nevertheless, it is currently not possible to reliably predict
PD, limiting the immediate usefulness of a drug to prevent or
delay this condition. Many clinical trials for PD use progression
markers such as the Unified PD Rating Scale (UPDRS) to evaluate
drug efficacy, and it remains unclear how the molecular
mechanisms driving PD risk relate to clinical progression. We
used MR to probe whether expression of any of the 4863 drug-
gable genes is significantly associated with PD progression,
measured by the UPDRS (total and parts 1 to 4), mini-mental
state examination (MMSE), Montreal cognitive assessment
(MOCA), modified Schwab and England activities of daily living
scale (SEADL), Hoehn and Yahr stage, dementia, depression, and
dyskinesia. The MR pipeline for each progression marker was
identical to the discovery phase for PD risk (Fig. 1).

We used openly available summary statistics from a GWAS for
these PD progression markers in 4093 European PD patients,
followed over a median of 2.97 years10. 3455 druggable genes had
an eQTL available for MR using a PD progression marker (2752
in blood, 2353 in brain tissue), and eight genes reached
significance across five progression outcomes (Fig. 4 and
Supplementary Data 1). One of these, RHD, encodes the target
of a clinical-phase medication with an appropriate direction of
effect, possibly representing a repurposing opportunity (Table 1).

IRAK3 expression in blood was significantly associated with
UPDRS parts 2 and 4, depression, and dyskinesias. LMAN1
expression in blood reached significance for dyskinesias and
UPDRS part 2. Reaching significance for several progression
markers strengthens the evidence for these two genes. No genes
reached significance for both PD risk and progression. Since age
at motor symptom onset may be considered an early marker of

Fig. 3 Four potential preventative drugs may also affect PD age at onset. Forest plot; the centre of the error bars represents the standard-deviation
change in PD age at onset per 1-standard-deviation increase in gene expression, calculated using the Wald ratio (if 1 SNP) or IVW (if >1 SNP) and colour-
coded by tissue (red= blood, blue= brain tissue). A negative beta corresponds to a younger age at onset, and a positive beta corresponds to an older age
at onset. 95% CI 95% confidence interval, PD Parkinson’s disease.
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PD progression, we also used our MR approach to assess whether
genes discovered by our progression analysis causally predict age
at onset. Of the genes that reached significance for a progression
marker, none reached nominal significance using the age at onset
data (Supplementary Data 3 and 4). CD177, IRAK3, RHD and
STK4 remained significant when removing SNPs associated with
expression of any other gene in the original eQTL dataset
(Supplementary Data 8 and 9). It was not possible to perform a
reliable colocalization analysis in our progression study, since the
discovered genes did not have sufficient power to do so (i.e.
PPH3þ PPH4< 0:8).

The direction of effect was consistent between the IVW,
maximum likelihood and MR-Egger methods for all genes except
RHD, where the MR-Egger method opposed the direction of the
IVW and maximum likelihood methods. CD177 (depression),
RHD (dyskinesia), PYGL (UPDRS part 4) and STK4 (Hoehn and
Yahr) reached significance when clumping at r2 ¼ 0:001.
ADAM32 (Hoehn and Yahr), IRAK3 (dyskinesia), LMAN1
(UPDRS part 2), and RHD (dyskinesia) passed MR-Egger
intercept, Cochran’s Q and I2 tests (Supplementary Data 2).
Taken together, these five genes have the most robust MR
evidence for modifying a PD progression marker.

Protein quantitative trait locus data provide further genetic
evidence. Most clinically-used drugs target proteins, not gene
expression, and genetic variants associated with protein levels
(protein quantitative trait loci, pQTLs) may model drug target
effects more accurately than eQTLs8. Even with high throughput
protein assays, however, the spectrum of reliable, well-powered
GWAS data on protein targets is limited. Many genetic studies on
protein levels are based on plasma and lack tissue diversity37–39.
Of the 23 proposed targets, we found pQTLs for BST1, CD38,
CTSB, GPNMB and LGALS3 for PD risk, as well as PYGL and
QDPR for UPDRS part 437–40.

Our MR analysis found that BST1, CTSB and LGALS3 levels
were consistently associated with PD risk (p < 0.05; Fig. 5 and
Supplementary Data 5). The result for GPNMB (risk) and PYGL
(UPDRS part 4) lost significance when using data from different
pQTL studies. The direction of effect was consistent between the
pQTL and eQTL results for all genes except BST1, and the MR-
Egger intercept, Cochran’s Q and I2 tests suggest that the BST1
results may be biased by genetic pleiotropy (Supplementary
Data 6). This illustrates the importance of MR quality control—
maximizing the number of SNPs available per drug target and
validation with different data types and independent replication
cohorts is essential for a reliable effect estimate.

Discussion
This work explicitly seeks to identify new drug targets for PD, and
we provide genetic evidence in favour of 23 potential disease-
modifying drug targets. Tables 2 and 3 summarize the evidence
supporting these genes. The genes were prioritised using several
meta-analysis methods (IVW, MR-Egger and maximum like-
lihood), the MR-Egger intercept test, Cochran’s Q test, the I2 test,
a pQTL study, colocalization analysis and previously published
MR and colocalization evidence. This allowed us to look for
pleiotropy due to both measured and unmeasured confounders25.
We propose six drug targets with the strongest MR evidence:
CTSB, GPNMB, CD38, RHD, IRAK3 and LMAN1.

We identifed four genes encoding targets for existing drugs
warranting further discussion (Table 1). NDUFAF2 encodes a
subunit of a target of metformin, an approved medication for type
2 diabetes mellitus. There is extensive evidence for a relationship
between diabetes mellitus and PD41, and several rodent studies
have investigated the potential of metformin as a neuroprotective
agent41–43. We found significant heterogeneity in the MR result
for this gene. Although this may be because at least one SNP for
this gene is pleiotropic, we speculate that this could occur if the

Fig. 4 Genetically-predicted expression of eight genes in blood or brain tissue is associated with PD progression markers. Forest plot; the centre of the
error bars show the standard-deviation change in each progression marker, per 1-standard-deviation increase in gene expression, calculated using the Wald
ratio (if 1 SNP) or IVW (if >1 SNP). Results are colour-coded by tissue (red= blood, blue= brain tissue) and corrected for the number of genes tested. 95%
CI 95% confidence interval, DEPR depression, FDR false discovery rate, HY Hoehn and Yahr, DEPR depression, UPDRS2-4 Unified Parkinson’s Disease
Rating Scale parts 2 to 4.
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effect is driven by a subset of PD patients. This, however, remains
a subject for future research, because the GWAS data used in this
study are not stratified by any kind of PD subtype. Epidemiolo-
gical studies on the relationship between long-term medication
use and incidence of a disease are an invaluable contribution to
evaluating preventative agents for PD. A retrospective cohort
study of over 6000 patients with type 2 diabetes mellitus found
that more than four years of metformin use maybe associated
with a reduced PD incidence44. Our MR study thus provides
further evidence in favour of repurposing anti-diabetic drugs
for PD.

Other medications may not be as suitable for repurposing. To
our knowledge, there is no evidence linking PD and the drug
roledumab, which is currently in a phase II clinical trial to pre-
vent alloimmunisation in Rhesus negative mothers carrying a
Rhesus positive child (NCT02287896). Our evidence suggests that
RHD expression in brain tissue, rather than blood, is associated
with PD dyskinesia. Next, CHRNB1 encodes the beta subunit of
the muscle acetylcholine receptor at the neuromuscular junction,

which is inhibited by muscle relaxants used during surgical
anaesthesia. VKORC1 encodes the catalytic subunit of the vitamin
K epoxide reductase, and this enzyme is targeted by the oral
anticoagulant warfarin. The key adverse effect of warfarin treat-
ment is haemorrhage, and since PD is a movement disorder
where patients experience frequent falls, any potential benefit of
warfarin treatment would likely be outweighed by the added risk
of haemorrhagic strokes and complications of bleeding.

The two-sample MR design allowed us to explore different
tissues and PD traits, and we identified different candidates to
prevent, delay onset, and slow progression of PD (Figs. 2, 3
and 4). Although we found that four of the drug targets for PD
risk may also affect PD age at onset, we found very different
candidates for progression. Age at motor symptom onset can be
considered an early sign of PD progression, and it is striking that
none of the genes that reached significance for a progression
outcome reached significance in the age at onset data. These
results are in line with the GWAS data, finding little overlap
between loci associated with PD risk, age at onset and progression

Fig. 5 Protein quantitative trait loci in blood provide further genetic evidence. Forest plots showing the results for all proteins and outcomes where a
pQTL was available. The centre of the error bars show the (a) PD odds ratio and (b) standard-deviation change in UPDRS part 4 score, per 1-standard-
deviation increase in circulating protein levels, calculated using the Wald ratio (if 1 SNP) or IVW (if >1 SNP). The “pQTL Source” column indicates which
pQTL study the SNPs were derived from. 95% CI 95% confidence interval, OR odds ratio, PD Parkinson’s disease, pQTL protein quantitative trait locus,
UPDRS Unified Parkinson’s Disease Rating Scale.
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markers9–11. This may reflect the limited sample size of current
PD progression GWAS data. Nevertheless, this raises questions
about what drives PD susceptibility versus progression, painting a
yet unclear picture of partially overlapping molecular
mechanisms.

Our candidates to slow PD progression may be of most
immediate relevance, because currently PD cannot be accurately
predicted. A preventative agent would need to be highly tolerable
and have a very safe side effect profile, and our approach is not
well suited for systematically evaluating the safety aspects of our
proposed candidates in this study. To our knowledge, the data

used here are from the largest openly available progression
GWAS to date. We did not find any non-overlapping PD pro-
gression GWAS with sufficient power for a replication step in our
progression analysis, which would have to measure progression in
a similar way to the study used here. As such, the preventative list
carries more robust evidence, because each gene reached sig-
nificance in two large, independent cohorts. Replication is critical
to validating scientific findings and eliminating false positives,
and this has been an crucial lesson for genetic research45–47.
Replication is not common practice in MR yet48, and it is a key
strength of our study. Although including all samples available in

Table 2 Evidence supporting druggable genes whose expression was significantly associated with PD risk or age at onset using
the Wald ratio or IVW method.

Gene PD
outcome

Tissue Replication Sign. with
max. lik.

Sign. with
MR-Egger

MR-Egger
intercept test

Cochran’s
Q test

I2 test pQTL
evidence

Coloc Previously
published MR
or coloc
support

GPNMB Risk Blood ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ MR9

Risk Brain ✓ ✓ ✓ ✓ ✓ ✓ ✓ MR24; coloc33

CTSB Risk Brain ✓ ✓ x ✓ ✓ ✓ ✓ ✓ MR9

Age
at onset

Brain ✓ x ✓ ✓ ✓

VKORC1 Risk Blood ✓ ✓ x ✓ ✓ ✓ ✓
CD38 Risk Brain ✓ ✓ x ✓ ✓ ✓ x x Coloc33

Age
at onset

Brain ✓ x ✓ ✓ ✓

MAP3K12 Risk Blood ✓ ✓ x ✓ ✓ ✓ x
NDUFAF2 Risk Brain ✓ ✓ x ✓ ✓ ✓ x
BST1 Risk Blood ✓ ✓ x x ✓ ✓ ✓ ✓ MR9

Age
at onset

Blood ✓ x ✓ ✓ ✓ ✓

HSD3B7 Risk Blood ✓ ✓ ✓ ✓ x
Risk Brain ✓ ✓ MR24

LGALS3 Risk Brain ✓ ✓ ✓
ACVR2A Risk Brain ✓ ✓
CHRNB1 Risk Brain ✓ ✓ MR9

MAPT Risk Brain ✓ ✓
MMRN1 Risk Brain ✓ ✓

Age
at onset

Brain

PIGF Risk Brain ✓
WNT3 Risk Blood ✓ ✓ x ✓ x x x MR9

✓ pass, x fail, blank not possible to test, coloc colocalization, max. lik. maximum likelihood, MR Mendelian randomization, PD Parkinson’s disease, pQTL protein quantitative trait locus, sign significant.

Table 3 Evidence supporting druggable genes whose expression was significantly associated with a PD progression trait using
the Wald ratio or IVW method.

Gene PD outcome Tissue Sign. with
max. lik.

Sign. with
MR-Egger

MR-Egger
intercept test

Cochran’s Q test I2 test pQTL
evidence

Coloc

RHD Dyskinesia Brain ✓ x ✓ ✓ ✓
IRAK3 Dyskinesia Blood ✓ ✓ ✓ ✓ ✓

Depression Blood ✓ ✓ x ✓ ✓
UPDRS part 2 Blood ✓ x x ✓ ✓
UPDRS part 4 Blood ✓ ✓ x ✓ ✓

ADAM32 Hoehn and Yahr Brain ✓ x ✓ ✓ ✓
LMAN1 UPDRS part 2 Blood ✓ x ✓ ✓ ✓

Dyskinesia Blood ✓ ✓ x ✓ ✓
PYGL UPDRS part 4 Brain ✓
CD177 Depression Brain
QDPR UPDRS part 4 Blood ✓ ✓ ✓ x x x
STK4 Hoehn and Yahr Brain x x x

✓ pass, x fail, blank not possible to test, coloc colocalization, max. lik. maximum likelihood, MR Mendelian randomization, PD Parkinson’s disease, pQTL protein quantitative trait locus, sign significant,
UPDRS Unified Parkinson’s Disease Rating Scale.
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one analysis would maximise statistical power46,49, using inde-
pendent discovery and replication cohorts allowed us to validate
our proposed drug targets. Since our overarching intention was to
provide genetic evidence to improve success rates in clinical trials,
we made this decision to reduce the number of false positives.

Our study has valuable advantages compared to previous
MR projects studying PD using QTL data. In the latest GWAS
meta-analysis for PD risk in Europeans, Nalls et al. selected SNPs
associated with PD risk and used MR to identify whether any of
these loci alter expression or methylation of genes within 1Mb of
the SNP9. This contrasts with our exposure-centred MR analysis,
where we chose SNPs associated with the expression of a drug-
gable gene, rather than the disease outcome. More recently, Baird
and colleagues conducted a transcriptome-wide MR study for a
series of brain diseases and found six genes whose expression in
brain tissue was significantly associated with PD risk24. Two of
these were also discovered in our study: GPNMB and HSD3B7.
The remaining four were either not part of the druggable genome,
rendering the encoded proteins less actionable drug targets, or did
not reach significance in our discovery or replication cohorts,
illustrating the importance of replication. Furthermore, our MR
study is the first to study druggable genes in the context of PD age
at onset and progression.

Nevertheless, progression and age at onset studies are parti-
cularly affected by collider bias50–52. For example, if expression of
a gene and depression are both associated with disease risk, that
gene’s expression will be artificially associated with depression in
a cohort containing only cases. In a progression study, genetic
variants that cause disease will thus be associated with other risk
factors for disease. The druggable genes we identified in our
progression study did not reach significance in our risk study, so
this kind of collider bias is less likely to have occurred for our
candidate genes. The age at onset analysis was comparably more
affected, since we tested genes that reached significance for PD
risk. Overall, this emphasises the importance of MR quality
control methods (including replication) for identifying reliable
causal effects, representative sampling in GWAS, as well as
continued development of methods to formally test for collider
bias53,54.

Another key limitation of this study is that MR cannot fully
recapitulate a clinical trial. MR mimics lifelong, low-dose expo-
sure to a drug and assumes a linear relationship between exposure
and outcome. This differs from a clinical trial, which typically
investigates comparably high doses of drug over a much shorter
timeframe. The MR result may therefore not directly correspond
to the effect size in practice and does not perfectly predict the
effect of a drug.

In addition, the eQTL cohorts contained some non-European
individuals17,18, three of the pQTL studies sourced were based on
Icelandic, Scottish and German cohorts38–40, and the PD popu-
lations were comprised of European individuals only9–11. Linkage
disequilibrium patterns differ between populations, which may
compromise how well our QTLs mimic drug action in the PD
cohorts and introduce bias to the MR effect estimate25.

It is difficult to interpret which tissue would be the most
appropriate site of action. Whereas the genes that reached sig-
nificance in both blood and brain tissue may have stronger MR
evidence, targeting the protein of a widely expressed gene may
lead to systemic side-effects. Brain tissue may be more biologi-
cally relevant for neurodegeneration, but a drug acting in the
blood stream may not need to cross the blood–brain barrier to
exert its effect. A limitation of using brain tissue is that gene
expression is quantified post-mortem, and measured expression
levels are influenced by RNA degradation occurring after cell
death as well as transcriptional changes occurring in response to
death55. We included both blood and brain tissue eQTLs to

capture as many genes as possible and explore two potential tissue
sites of action, but we note that it is difficult to prioritise genes
based on which tissue(s) they reached significance in.

Furthermore, the sample size of our blood eQTL data
(n= 31,684) is larger than that for brain tissue eQTLs (n= 1387)
and the blood pQTL study (n= 750–4137). A larger sample size
allows greater power to detect QTLs, meaning there are more
SNPs per gene. Nevertheless, it is unclear how well QTL data
mimic medications that modulate activity levels of the protein.
We are encouraged that five of the seven proteins we were able to
probe using both eQTL and pQTL data were successfully vali-
dated, adding to existing evidence that regulatory variants may be
used for robust causal inferences in drug target MR8. Never-
theless, this MR study does not provide functional evidence for
the proposed drug targets, and the MR process does not replace
pre-clinical evaluation of drug targets in vitro and in vivo.
Genomic approaches serve as adjuncts thereto, promising to
better prioritise drug targets carried forward to clinical phase
trials.

A 9.6% vs. 13.8% success rate for drugs from phase 1 trials to
approval may mean a $480 million difference in the median
research and development cost of bringing a new drug to the
market1. The druggable genome resource has opened up new
avenues for drug target identification using existing genetic
data7,56,57, and if genetic evidence increases success rates even by a
few percent, this could have a substantial effect on drug develop-
ment costs4,5. As such, MR a highly compelling, time- and cost-
effective adjunct to the randomized controlled trial. We have made
our code openly available for use beyond PD research (https://
github.com/catherinestorm/mr_druggable_genome_pd/)58, and we
have demonstrated ways to prioritise drug targets based on genetic
data. We have provided human genetic evidence of drug efficacy for
PD, and we hope that these data will serve as a useful resource for
prioritising drug development efforts.

Methods
All DNA positions are based on the human reference genome build hg19
(GRCh37). Data processing was completed using R software version 3.6.359.

Exposure data. Tissue-specific eQTL data were obtained from the eQTLGen
(https://eqtlgen.org/) and PsychENCODE consortia (http://
resource.psychencode.org/); full descriptions of the data are available in the original
publications17,18. Briefly, the eQTLGen data consisted of cis-eQTLs for 16,987
genes and 31,684 blood samples, of which most were healthy European-ancestry
individuals. We downloaded the full significant cis-eQTL results (FDR < 0.05) and
allele frequency information from the eQTLGen consortium on 13 May 2020.

The PsychENCODE data included 1387 prefrontal cortex, primarily-European
samples (679 healthy controls, 497 schizophrenia, 172 bipolar disorder, 31 autism
spectrum disorder and 8 affective disorder patients). We downloaded all significant
eQTLs (FDR < 0.05) for genes with expression >0.1 fragments per kilobase per
million mapped fragments (FPKM) in at least ten samples and all SNP
information, accessed on 13 May 2020.

We obtained an updated version of the druggable genome containing 4863
genes from the authors of the original publication7, double-checking the
druggability level for all genes marked as approved or in clinical trials
(“druggability tier 1”). We removed non-autosomal genes, leaving 4560 druggable
genes. We filtered both eQTL datasets to include SNPs 5 kb upstream of the target
druggable gene start or 5 kb downstream of the target druggable gene end position.

We sought freely available pQTL data from blood or brain tissue for all
druggable genes that reached significance for any PD outcome in our study. Out of
23 pQTL studies identified, four studies (1) reported significant pQTLs in
individuals of European descent for any of the druggable proteins proposed by our
eQTL analysis, (2) provided all the SNP information required for MR and (3)
reported SNPs that were available in our PD outcome data37–40. Sun and colleagues
measured 3622 proteins in 3301 healthy European blood donors from the
INTERVAL study and identified 1927 pQTLs for 1478 proteins. Emilsson and
colleagues measured 4137 proteins in the serum of 5457 Icelanders from AGES
Reykjavik study. Effect alleles and effect allele frequencies were obtained from the
authors. Suhre and colleagues measured 1124 proteins in 1000 blood samples from
a German population. Hillary and colleagues measured 92 proteins in the blood of
750 healthy Scottish controls.
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In total, we found pQTLs that were available in the appropriate PD outcome
data for seven of our druggable proteins of interest: BST1, CD38, CTSB, GPNMB,
LGALS3, PYGL and QDPR. All pQTLs included in our analysis had p < 5e−6 in
the original pQTL study. All pQTLs were found on the same chromosome as the
associated gene except for: rs62143198 for PYGL, rs62143197 for QDPR, rs4253282
for GPNMB, rs2731674 for GPNMB37. These latter four SNPs are therefore acting
in trans.

Outcome data. All PD data were obtained from the IPDGC, and details on
recruitment and quality control are available in the original publications9–11,21. In
the discovery phase for PD risk, we used openly available summary statistics from a
2014 case-control GWAS meta-analysis, which included 13,708 PD patients and
95,282 controls21.

In the replication phase for PD risk, we obtained summary statistics from 11
case-control GWAS studies included in the most recent PD risk GWAS meta-
analysis from the authors9. The 11 studies, as named and described in the PD
GWAS meta-analysis, were Spanish Parkinson’s, Baylor College of Medicine/
University of Maryland, McGill Parkinson’s, Oslo Parkinson’s Disease Study,
Parkinson’s Progression Markers Initiative (PPMI), Finnish Parkinson’s, Harvard
Biomarker Study (HBS), UK PDMED (CouragePD), Parkinson’s Disease
Biomarker’s Program (PDBP), Tübingen Parkinson’s Disease cohort (CouragePD)
and Vance (dbGap phs000394). These yielded a total of 8036 PD cases and 5803
controls. We meta-analysed the data using METAL (version 2011-03-25) using
default settings, weighting by sample size60. The overall genomic inflation factor
was λ ¼ 1:116, and when scaled to 1000 cases and 1000 controls λ1000 ¼ 1:017.
Based on genomic inflation factors and quantile–quantile plots of the original
GWASs9,21, we considered our quantile–quantile plot to show adequate agreement
with the expected null distribution (Supplementary Fig. 1).

For the progression marker analyses, we used summary statistics from the
largest publicly available GWAS meta-analyses for PD age at onset and clinical
progression10,11. For age at onset, this includeed 17,996 PD cases, and age at onset
was defined as self-reported age at motor symptom onset or PD diagnosis. The
authors reported a high correlation between age at diagnosis and age at onset.

The progression GWAS meta-analysis included 4093 PD patients from 12
cohorts, followed over a median of 2.97 years (mean visits per individual over the
study period: 5.44). We downloaded summary statistics for nine continuous
outcomes and four binomial outcomes (https://pdgenetics.shinyapps.io/
pdprogmetagwasbrowser/). Continuous outcomes included Hoehn and Yahr stage
(PD progression rating scale), total UPDRS/Movement Disorder Society revised
version total (PD progression rating scale), UPDRS parts 1 to 4 (1= non-motor
symptoms, 2=motor symptoms, 3=motor examination, 4=motor
complications), MOCA (cognitive impairment), MMSE (cognitive impairment)
and SEADL (activities of daily living and independence). The binomial outcomes
we used were dementia, depression, dyskinesia, as well as reaching Hoehn and
Yahr stage 3 or more.

Mendelian randomization. MR analyses were completed using the R package
“TwoSampleMR” (version 0.5.4)61, unless stated otherwise. The exposure and
outcome data were loaded and harmonized using in-built functions. SNPs were
then clumped at r2 < 0:2 using European samples from the 1000 Genomes
Project20,61. Steiger filtering was used to remove genes where SNPs explained a
greater proportion of variation in the outcome (PD trait) than variation in the
exposure (gene expression). For the eQTL analysis, the Steiger filtering excluded
0–403 genes per outcome tested in a tissue, representing 0–15% of all genes studied
per outcome tested in a tissue.

Wald ratios were calculated for all SNPs. These were meta-analysed using the
IVW, MR-Egger and maximum likelihood methods, including a linkage
disequilibrium matrix to account for correlation between SNPs; this function uses
the R package “MendelianRandomization” version 0.4.229. Forest plots were
produced using the R package “forestplot”.

Where >2 SNPs were available per exposure, we assessed whether the MR-Egger
intercept significantly deviated from zero, as well as Cochran’s Q and I2 methods to
test for heterogeneity between Wald ratios62. FDR-corrected p-values were
calculated within each exposure-outcome combination to correct for multiple
testing. In the discovery study for PD risk and the PD progression studies, we
considered FDR < 0.05 significant. In the replication studies for PD risk and age at
onset, as well as the pQTL study, we considered nominal p < 0.05 significant.

For genes which reached significance using the IVW method (>1 SNP
available), we carried out another MR analysis, clumping at r2< 0:001. If >1–2
SNPs were available at this clumping threshold, Wald ratios were meta-analysed
using the IVW, MR-Egger, weighted mode and weighted median methods.

Colocalization. We carried out a colocalization analysis for PD risk, age at onset
and progression outcomes using the R package “coloc”31. We harmonized exposure
and outcome datasets using the “TwoSampleMR” package. We used default priors:
p1 ¼ 10�4, p2 ¼ 10�4, p12 ¼ 10�5. p1, p2 and p12 are the prior probabilities that a
SNP in the tested region is significantly associated with expression of the tested
gene, the tested PD outcome, or both, respectively. The colocalization yields

posterior probabilities corresponding to one of five hypotheses: PPH0, no asso-
ciation with either trait; PPH1, association with expression of the gene, but not the
PD trait; PPH2, association with the PD trait, but not expression of the gene;
PPH3, association with the PD trait and expression of the gene, with distinct causal
variants; PPH4, association with the PD trait and expression of the gene, with a
shared causal variant31. A low PPH3 and PPH4 in combination with a high PPH0,
PPH1 and/or PPH2 indicates limited power in the colocalization analysis31. We
therefore restricted our analysis to genes reaching PPH3þ PPH4 ≥ 0:8.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data generated in this study and a data dictionary (Supplementary Information) are
provided in the Supplementary Information. Tissue-specific eQTL data were obtained
from the eQTLGen (https://eqtlgen.org/) and PsychENCODE consortia (http://
resource.psychencode.org/). The druggable genome data were obtained via from the
original authors; an immediately accessible version of the druggable genome is available
in the supplementary materials of the original publication7. Subsets of the most recent
PD risk GWAS were obtained from the original authors9. GWAS summary statistics for
PD age at onset are available on the IPDGC website (http://pdgenetics.org/resources).
Parkinson’s progression GWAS data can be found here: https://pdgenetics.shinyapps.io/
pdprogmetagwasbrowser/.

Code availability
The code used for this study is openly available on GitHub, accompanied by instructions
for use and required tools (https://github.com/catherinestorm/
mr_druggable_genome_pd). Data processing was completed using R software (version
3.6.3), with packages TwoSampleMR (version 0.5.4), MendelianRandomization (version
0.4.2), coloc (version 4.0.4), dplyr (version 1.0.0), readr (version 1.3.1), stringr (version
1.4.0), tidyverse (version 1.3.0), forestplot (version 1.9), plyr (version 1.8.6), devtools
(version 2.3.0), remotes (version 2.1.1). The GWAS meta-analysis was completed using
METAL (version 2011-03-25).
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