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Abstract

This article proposes a coeffi cient constancy test in semi-varying coeffi cient mod-

els, which only needs to estimate the restricted coeffi cients under the null hypothe-

sis. The test statistic resembles the union-intersection test after ordering the data

according to the varying coeffi cients’explanatory variable. This statistic depends

on a trimming parameter that can be chosen by the data-driven calibration method

we propose. A bootstrap test is justified under fairly general regularity conditions.

Under more restrictive assumptions, the critical values can be tabulated, and trim-

ming is unnecessary. The proposed test can be applied to specification testing of

partial effects in the direction of non(semi)-parametric alternatives. The finite sam-

ple performance is studied by means of Monte Carlo experiments, and a real data

application for modelling education returns.
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1. INTRODUCTION

This article proposes a coeffi cient constancy test for semi-varying coeffi cient (SVC)

models, where some partial effects are constant and others are non(semi)-parametric

functions of an explanatory variable. Existing tests are based on the discrepancy between

the restricted and unrestricted sum of squared residuals using smooth estimates of the

varying coeffi cients. See Kauermann and Tutz (1999), Cai et al. (2000), Fan and Zhang

(2000), Fan et al. (2001), Li et al. (2002), Fan and Huang (2005), and Cai et al.

(2017) among others. In this paper, we propose using a union-intersection (UI) test

statistic based on the concomitants (induced order statistics) of the varying coeffi cients’

expanatory variable. Therefore, there is no need to estimate the possibly discontinuous

unrestricted varying coeffi cients under the alternative hypothesis.

The classical CUSUM of residuals in time series models forms a basis for testing the

stationarity of the errors, while the CUSUM of concomitant residuals forms a basis for

testing that regressors and regression errors are independent in mean. Likewise, the UI

tests were proposed for parameter stability testing in time series, and we propose using

the UI tests for coeffi cient constancy testing in varying coeffi cient models. While the UI

tests in time series are based on partial sums of sequential observations, our UI test is

based on partial sums of concomitants.

The test can be carried out with parametric, semiparametric, or non-parametric alter-

natives in mind. In particular, it can be applied to specification testing of partial effects

in the direction of semiparametric alternatives, which complements existing specification

tests for the regression model. Our test is omnibus, for the constant coeffi cients’hypoth-

esis, when the varying coeffi cients’variable is independent in mean of the explanatory

variables’cross-products, and also in pure varying coeffi cient models with no constant

coeffi cients. A bootstrap-assisted test is justified under fairly general conditions. The test

statistic depends on a trimming parameter, like other UI tests, to avoid observations close

to the boundary of the varying coeffi cients’support. Such parameter should be chosen

small in order to detect as many alternatives as possible. We provide a data-driven trim-

ming calibration method for choosing the smallest amount of trimming that minimizes

the error level of the test. Under restrictive assumptions, trimming can be avoided, and

the critical values can be tabulated. Under these restrictions, we propose a Neyman-type

test and a functional likelihood ratio (LR) test, optimal under local alternatives.
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There is a large body of literature that supports using SVC models in economics.

The partly linear regression (PLR) model has been proven useful for identifying partial

effects in models with unobserved explanatory variables by means of proxy variables. For

instance, Olley and Pakes (1996) applied the PLR model to identify output elasticities in

a Cobb-Douglas production function specification, where investment is used as a proxy

variable of unobserved productivity. See, for instance, Levinsohn and Petrin (2003),

Wooldridge (2009b) or Lee et al. (2019) for further developments. Frölich (2008) provides

a detailed discussion on using the PLR model to overcome problems with endogenous

variables. The test we propose can be used to test a linear regression specification in the

direction of a PLR model. When partial effects are expected to vary according to some

control variable, the SVC model provides a flexible way of modelling partial effects. For

instance, production function models with output elasticities depending on intermediate

production and management expenses, e.g. Li et al., 2002. Wang and Xia (2009) and Fan

and Huang (2005) use US district data on the Boston area to study the relation between

house prices and different explanatory variables, with varying coeffi cients depending on

population lower income status. Chou et al. (2004) proposed a model where the varying

coeffi cients depend on age in a model for health insurance and savings over the life cycle.

In all these applications, a significance test for the varying coeffi cient control variable is

well motivated. In particular, the test we propose can be used to test the parametric

specification of partial effects in the direction of non(semi)-parametric alternatives.

The rest of the article is organized as follows. The next section presents the testing

problem. Section 3 introduces the test statistic, justifies the validity of the test under

regularity conditions, and discusses the data-driven calibration algorithm for trimming

choice. Section 4 investigates the finite sample properties of the test by means of Monte

Carlo experiments. Section 5 reports an application of our proposal for modelling edu-

cation returns controlling for unobserved individual ability using IQ as proxy variable.

Conclusions and final remarks are in Section 6. Mathematical proofs are gathered in an

appendix at the end of the article.

3



2. TESTING PROBLEM

Assume that the random variable Y and the R1+k1+k2−valued random vector of ex-

planatory variablesW = (Z,Xt
1,X

t
2)
t are related according to the SVC model

Y = Xt
1β0 (Z) +Xt

2δ0 + U, (1)

where “t”means transpose, U is an unobserved error term such that E (U |W ) = 0

a.s., Xj =
(
Xj1, ...., Xjkj

)t
is a kj × 1 random vector, j = 1, 2, with either X11 = 1

or X21 = 1 to allow for a varying or constant intercept term. The varying coeffi cient

vector β0 =
(
β01, ..., β0k1

)t
: R→Rk1 consists of possibly non-smooth functions, and

δ0 = (δ01, ..., δ0k2)
t is a k2 × 1 vector of unknown parameters. The null hypothesis is

H0 : β0 (Z) = β̄0 a.s.,

where β̄0 := E (β0 (Z)) =
(
β̄01, ..., β̄0k1

)t
a.s., which can be equivalently expressed as

H0 : V ar
(
β0j(Z)

)
= E

(
β0j(Z)− β̄0j

)2
= 0 for all j = 1, ..., k1.

This hypothesis nests the case k2 = 0, k1 = 1 with X11 = 1, i.e. when Y = β0 (Z) +U,

a pure non-parametric model. In this case, Y and Z are independent in mean under H0,

which can be tested using the Bhattacharya’s (1974) CUSUM of residual concomitants

test, related to our proposal.

Model (1) also nests the model with

X2 =
(
X11g

t
1 (Z), ..., X1k1g

t
k1

(Z)
)t
, δ0 =

(
δt01, ..., δ

t
0k1

)t
and k2 =

k1∑
j=1

mj,

where δ0j ∈ Rmj are unknown parameter vectors, and gj : R→Rmj is a known vector of

functions, j = 1, ..., k1. In this case, (1) can be expressed as

E (Y |Z,X1) = Xt
1 [β0(Z) + rδ0(Z)] a.s. (2)

with non-parametric β0 and parametric rδ0(·) =
(
gt1 (·)δ01, ..., gtk1(·)δ0k1

)t
, for some δ0 =(

δt01, ..., δ
t
0k1

)t ∈ Rk1 . Therefore, assuming (2), H0 is equivalent to checking that

E (Y |Z,X1) = Xt
1

[
β̄0 + rδ0(Z)

]
a.s. for some

(
β̄
t
0, δ

t
0

)t
∈ R2k1 , in the direction (2)

for non-parametric β0, where Z can be some component of X1. When Z is not a com-

ponent of X1, H0 specifies a parametric model for the partial effects of X1, β̄0 + rδ0(Z).
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Define S(u) =
(
St1 (u), [S1(1)− S1(u)]t , St2 (1)

)t

M (u) =


M11(u) 0 M12(u)

0 M11(1)−M11(u) M12(1)−M12(u)

M21(u) M21(1)−M21(u) M22(1)

 ,
where Sj(u) = E

(
XjY 1{FZ(Z)≤u}

)
, M`j(u) = E

(
X`X

t
j 1{FZ(Z)≤u}

)
, j, ` = 1, 2, and FZ is

the cumulative distribution function (CDF) of Z. Henceforth, 0 is a matrix of zeroes of

a dimension given by the context. Assume,

A1: FZ is continuous.

A2: Rank (M (u)) = 2k1 + k2 for each u ∈ (0, 1).

Our test is based on comparing the vector of functions b+0 and b
−
0 , where θ0(u) =(

b−t0 (u), b+t0 (u),dt0(u)
)t
, and

θ0(u) = arg min
b−,b+,d

E [(Y −Xt
1b
− −Xt

2d
)2

1{FZ(Z)≤u}

]
(3)

+ E
[(
Y −Xt

1b
+ −Xt

2d
)2

1{FZ(Z)>u}

]
= M−1(u)S(u), u ∈ (0, 1) .

The test statistic is a functional of the sample version of

η0(u) =
(
b−0 − b+0

)
(u) = RM−1(u)S(u),

with R =

[
Ik1

...− Ik1
... 0

]
, and Im is the m × m identity matrix, which detects any

alternative to H0 of the form,

H1η : η0(u) 6= 0 for some u ∈ (0, 1) .

We can express b±0 in terms of β0, as

θ0(u) = M−1(u) · E
(
m (u) (βt0(Z),βt0(Z), δt0)

t)
, (4)

5



withM (u) = E (m (u)) . Under H0,

E
[(
Y −Xt

1b
− −Xt

2d
)2

1{FZ(Z)≤u}

]
+ E

[(
Y −Xt

1b
+ −Xt

2d
)2

1{FZ(Z)>u}

]
(5)

= E
(
U2
)

+ E
([(
Xt

1

(
β̄0 − b−

)
+Xt

2 (δ0−d)
)

1{FZ(Z)≤u}
]2)

+E
([(
Xt

1

(
β̄0 − b+

)
+Xt

2 (δ0−d)
)

1{FZ(Z)>u}
]2)

≥ E
(
U2
)
for all

(
b−t, b+t,dt

)
∈ R2k1+k2 and all u ∈ (0, 1) ,

i.e. under H0, b
±
0 (u) = β̄0 for all u ∈ (0, 1) . Hence, from either (4) or (5),

H0η : η0(u) = 0 for all u ∈ (0, 1) ,

is a necessary condition for H0. But H0η is also suffi cient in many situations, as we show

in the remarks below.

Remark 1 Suppose M1j(u) = uM1j(1) for all u ∈ (0, 1) , j = 1, 2. This is equivalent to

assume that E
(
X1X

t
j

∣∣Z) = M11 (1) a.s., j = 1, 2. Therefore,

S1 (u) = uM11 (1)E
(
β0 (Z) 1{FZ(Z)≤u}

)
+ uM12(1)δ0.

Reasoning as in Andrews (1993) Lemma A.5, define υ = (υt1, υ
t
2, υ

t
3)
t = M−1 (u)S (u) .

Then, M (u)υ = S (u) , and uM11(1) 0

0 (1− u)M11(1)

 υ1

υ2

 =

 S1 (u)

S1 (1)− S1 (u)

−
 uM12(1)υ3

(1− u)M12(1)υ3

 .
Therefore, υ1

υ2

 =

 M−1
11 (1)S1 (u)

/
u

M−1
11 (1) [S1 (1)− S1 (u)]

/
(1− u)

−
 M−1

11 (1)M12(1)υ3

M−1
11 (1)M12(1)υ3

 ,
and

η0(u) = RM−1 (u)S (u)

= υ1 − υ2

= M−1
11 (1)

S1 (u)− uS1 (1)

u(1− u)

=
1

u(1− u)

∫ F−1Z (u)

−∞

(
β0 (z)− β̄0

)
Fz(dz).

Hence, η0(u) = 0 for all u ∈ (0, 1) iff β0 (Z) = β̄0 a.s.
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Remark 2 Suppose δ0 = 0, i.e., (1) is a pure varying coeffi cient model. Then, for all

u ∈ (0, 1) ,

η0(u) = M−1
11 (u)S1(u)− [M11(1)−M11(u)]−1 [S1(1)− S1(u)]

= [M11(1)−M11(u)]−1M11(1)M−1
11 (u)

[
S1(u)−M11(u)M−1

11 (1)S1(1)
]
.

Therefore, for all u ∈ (0, 1)

η0(u) = 0 ⇔ S1(u)−M11(u)M−1
11 (1)S1(1) = 0

⇔
∫
{Z≤u}

{
J (Z) β0(Z)− E [J(Z)]−1 E [J(Z)β0(Z)]

}
dP = 0.

with J (Z) = E (X1X
t
1|Z) . Hence, if J (Z) is non-singular a.s.,

η0(u) = 0 all u ∈ (0, 1) ⇔ β0(Z) = E [J(Z)]−1 E [J(Z)β0(Z)] a.s.

⇔ β0(Z) = β̄0 a.s.

Therefore, when either X1X
t
` , ` = 1, 2, and Z are independent in mean, or when

all parameters are varying (k2 = 0), H0 and H0η are equivalent. That is, under these

conditions our test is omnibus for H0, i.e. able to detect any alternative of the form

H1 : V ar
(
β0j(Z)

)
> 0 for some j = 1, ..., k1.

3. TESTING METHOD

Given {Yi,W i}ni=1 i.i.d. as (Y,W ),W i = (Zi,X
t
1i,X

t
2i)

t , denote by
{
W 1[i:n]

}n
i=1

the

Z−concomitants of {W i}ni=1 , i.e. for a generic data set {ζ i}ni=1, ζ [i:n] = ζj iff Zn:i = Zj,

where Zn:1 ≤ Zn:2 ≤ ... ≤ Zn:n are order statistics of {Zi}ni=1.

The sample analogue of (3) is θ̂n(u) =
(
b̂
−t
n (u), b̂

+t
n (u), d̂

t
n(u)

)t
, u ∈ [K/n, 1−K/n) ,

where K = k1 + k2, and

θ̂n(u) = arg min
b−,b+,d


bnuc∑
i=1

(
Y[i:n] −Xt

1[i:n]b
− −Xt

2[i:n]d
)2

(6)

+
n∑

i=1+bnuc

(
Y[i:n] −Xt

1[i:n]b
+ −Xt

2[i:n]d
)2

= M̂
−1
n (u) Ŝn(u), u ∈ [K/n, 1−K/n) ,

where b·c means smallest nearest integer, Ŝn(u) =
(
Ŝtn1(u), Ŝtn1(1)− Ŝtn1(u), Ŝtn2(1)

)t
,

where Ŝnj(u) = n−1
∑bnuc

i=1 Xj[i:n]Y[i:n], estimates Sj(u), j = 1, 2, and M̂n (u) estimates
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M (u) , with components M̂n`j(u) = n−1
∑bnuc

i=1 X`[i:n]X
t
j[i:n] estimating M`j(u) inM (u),

`, j = 1, 2. This suggests test statistics for H0 based on some functional of

η̂n(u) =
(
b̂
−
n − b̂

+

n

)
(u) (7)

= RM̂
−1
n (u) Ŝn(u),

= η0(u) +RM̂
−1
n (u) N̂n(u), u ∈ [K/n, 1−K/n) .

with N̂n(u) =
(
N̂t
n1(u), N̂t

n1(1)−N̂t
n1(u), N̂t

n2(1)
)t
, N̂nj(u) =n−1

∑bnuc
i=1 Xj[i:n]U[i:n], j=1, 2.

The asymptotic distribution of
√
nN̂n is obtained applying results for partial sums of

concomitants in Bhattacharya (1974, 1976), extended by Sen (1976), Stute (1993, 1997)

and Davydov and Egorov (2000), among others.

Henceforth, for any matrix A, ‖A‖2 = ḡ
(
A
t
A
)
is the spectral norm, where ḡ (C) is the

maximum eigenvalue of the matrix C, and "→d ” means convergence in distribution of

random variables, random vectors or random elements in a Skorohov space D [a, b] , 0 ≤

a < b ≤ 1. DefineN∞(u) = (Nt
∞1(u), Nt

∞1(1)−Nt
∞1(u), Nt

∞2(1))t , where N∞j is a kj×1

vector of a centered Gaussian process with E
(
N∞`(u)Nt

∞j(v)
)

= E
(
X`X

t
jU

21{FZ(Z)≤u∧v}
)
,

`, j = 1, 2, and u, v ∈ (0, 1) . Assume,

A3: E ‖XjU‖2 <∞, j = 1, 2.

Theorem 1: Assuming A1, A2,

sup
u∈(0,1)

∥∥∥(M̂n −M
)

(u)
∥∥∥ = o(1) a.s. (8)

and if A3 is also assumed,

√
nN̂n →d N∞ in D [0, 1] . (9)

Therefore, using (7) under H0, and conditions in Theorem 1,

√
nη̂n →d η∞ in D [ε, 1− ε] , for ε ∈ (0, 1) ,

where η∞(u) =d RM
−1(u)N∞ (u), "=d ” means equality in distribution. Weak conver-

gence of
√
nη̂n in D [0, 1] is not possible, as shown by Chibisov (1964) for the standard

empirical process (see subsection 2.5 in Gaenssler and Stute, 1979 for discussion). Thus,

E (η∞(u)ηt∞(v)) = Σ0 (u, v) = RM−1(u)Ω0(u, v)M−1(v)Rt, u, v ∈ (0, 1) ,

8



with Ω0(u, v) = E (N∞ (u)Nt
∞ (v)) . In order to apply the UI testing principle, we must

standardize η̂n. Therefore, we need to estimate,

Ω(u, u) =


Ω11(u) 0 Ω12(u)

0 Ω11(1)− Ω11(u) Ω12(1)− Ω12(u)

Ω21(u) Ω21(1)− Ω21(u) Ω22(1)

 ,
where Ω`j(u) = E

(
X`X

t
jV

21{FZ(Z)≤u}
)
, j = 1, 2, and V = Y −Xt

1b
+
0 (1)− Xt

2d (1) are

the errors of the best linear predictor. Under H0, Ω = Ω0. Asssume

A4: Rank (Ω(u, u)) = 2k1 + k2 for all u ∈ (0, 1).

The natural estimator of Ω`j(u) is Ω̂n`j(u) = n−1
∑bnuc

i=1 X`[i:n]X
t
j[i:n]V̂

2
[i:n], `, j = 1, 2,,

where V̂i = Yi −Xt
1ib̂

+

n (1)− Xt
2id̂n (1) are the OLS residuals using all the data set.

Tests are based on functionals of the empirical process,

α̂n(u) = η̂tn (u) Σ̂
−1
n (u, u) η̂n (u) , u ∈ [K/n, 1−K/n) .

where Σ̂n (u, u) = RtM̂
−1
n (u)Ω̂n(u, u)M̂

−1
n (u)R, and Ω̂n(u, u) is the estimator ofΩ(u, u)

with components Ω̂n`j(u). A suffi cient condition for consistency of Ω̂n is

A5: E ‖Xj‖4 <∞, j = 1, 2, and E ‖V ‖4 <∞.

This condition can be relaxed assuming that E
(
X`X

t
jV

21{FZ(Z)≤u}
)

=E (V 2)M`j(u),

`, j = 1, 2. The test rejects H0 for large values of

ϕ̂nε = n max
K+bnεc≤j<n−K−bn(1−ε)c

α̂n

(
j

n

)
, for ε ∈ (0, 1) .

The trimming parameter ε is introduced to rid of data points corresponding to the extreme

Z ′s quantiles. When the alternative is non-parametric, ε should be chosen as close to zero

as possible in order to detect any possible alternative. However, too small ε can produce

serious size distortions (see Section 4). The asymptotic distribution of ϕ̂nε is derived as

an immediate consequence of Theorem 1. Define

ϕ∞ε =d sup
u∈[ε,1−ε]

α∞(u),

where,

{α∞(u)}u∈(0,1)
d
=
{
ηt∞(u)Σ−10 (u, u)η∞(u)

}
u∈(0,1) .
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Theorem 2: Assume A1− A5. Under H0, for ε ∈ (0, 1) ,

ϕ̂nε →d ϕ∞ε.

Therefore, a test with significance level α is given by the binary random variable

Φ̂nε (α) = 1{ϕ̂nε>cε(α)}, where cε (α) is the (1− α)− th quantile of ϕ∞ε.

Next, we study the power of the test in the direction of fix and local alternatives,

Hn1 : β(Z) = β̄0 +
τ (Z)√
n
a.s., (10)

for a vector of constants β̄0 and an unknown function τ : R→ Rk1 such that, for all

u ∈ (0, 1) , Tj(u) = E
[
XjX

t
1τ (Z)1{FZ(Z)≤u}

]
is bounded, j = 1, 2. Then, define T (u) =

[T t1 (u), T t1 (1)− T t1 (u), T t2 (1)]t and the random processes,

{
α1∞(u)

}
u∈(0,1)

d
=
{
η1t∞(u)(u)Σ−10 (u, u)η1∞(u)

}
u∈(0,1) ,

with {η1∞ (u)}u∈(0,1) =d

{
RM−1(u) (N∞ + T ) (u)

}
u∈(0,1) . To study the power of the test

under Hn1, we need to assume,

A6: E ‖XjX
t
1τ (Z)‖ <∞, for j = 1, 2.

Theorem 3: Assume A1− A6, for ε ∈ (0, 1) . Under Hη1,

ϕ̂nε →p ∞, (11)

and under Hn1,

ϕ̂nε →d sup
u∈[ε,1−ε]

α1∞(u). (12)

Therefore, the test does not have trivial power in the direction of Hn1 when

supu∈[ε,1−ε] γ(u) > 0 with

γ(u) = T t(u)M−1(u)RtΣ−10 (u, u)RM−1(u)T (u).

This suggests choosing ε as small as possible in order to detect alternatives with coeffi -

cients only varying at Z ′s extreme values.

Remark 3 Other functionals of α̂n can be used to perform the test. In particular, An-

drews and Ploberger (1994), Example 1, page 1404, discuss an optimal significance test,
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in Wald’s (1943) sense, of the parameter vector φ0 =
(
φ01, ..., φ0k1

)t
in a discontinuos re-

gression design (RDD) model with β0 (z) =
(
β01(z), ..., β0k1(z)

)t
and β0j(z) = φ0j1{z≤π0},

j = 1, ..., k1, where π0 is a nuisance parameter. They use this example to illustrate suf-

ficient conditions for asymptotic optimal tests when some nuisance parameter is only

prensent under the alternative. The hypothesis of interest is H0 in the direction Hnφ :

φ0 = κ0 /
√
n for some κ0 ∈ Rk1 , assuming that U is independent of (X1,X2, Z). This

approach suggests using as test statistic

ρ̂nGε(c) =
n

(1 + c)
1+k1
2

∫ 1

0

exp

(
c

2 (1 + c)
α̂n (u)

)
dGε (u) ,

for optimal testing in Wald’s sense, where Gε : [ε, 1− ε]→ R+ is a given weight function

and c > 0 is a scalar constant that depends on the weights, such that the weighted average

power is maximum. The statistic

lim
c→0

ρ̂nGε(c)− 1

c
= n

∫ 1

0

ᾱn (u) dGε (u)

is suitable for alternatives Hnφ close to the null, while ϕ̂nε is designed to detect distant

alternatives.

The distribution of ϕ∞ε depends on unknown features of the underlying data gen-

erating process under general conditions, but can be implemented with the assistance

of a bootstrap technique. We use a wild bootstrap resample {Y ∗i ,W i}ni=1, with Y ∗i =

Xt
1iβ̂0 (1) +Xt

1iδ̂0 (1) + V̂ ∗i where, V̂ ∗i = V̂iξi, and {ξi}
n
i=1 are i.i.d. as ξ, which satisfies,

A7: E (ξ) = 0, E
(
ξ2
)

= 1 and |ξ| ≤ C <∞ a.s.

The bootstrap test statistic is,

ϕ̂∗nε = n sup
K+bnεc≤j<n−K−bn(1−ε)c

α̂∗n

(
j

n

)
for small ε ∈ (0, 1) ,

where α̂∗n(u) = η̂∗tn (u) Σ̂
−1
n (u, u)η̂∗n(u), η̂∗n(u) = RM̂

−1
n (u)N̂

∗
n (u) , N̂

∗
n(u) =

(
N̂∗tn1(u),

N̂∗tn1(1)− N̂∗tn1(u), N̂∗tn2(1)
)t
, and N̂∗nj(u) = n−1

∑bnuc
i=1 Xj[i:n]V̂

∗
[i:n], j = 1, 2. The bootstrap

critical value at the α − level of significance is ĉ∗nε(α) = inf {c : Pξ (ϕ̂∗nε ≤ c) ≥ 1− α} ,

where Pξ is the induced probability function of ξ. So, the bootstrap test is given by the

binary variable Φ̂∗nε (α) = 1{ϕ̂nε>ĉ∗nε(α)}. The next theorem justifies the bootstrap test.

11



Theorem 4: Assume A1− A5, and A7. Under H0, for any ε > 0,

lim
n→∞

Pξ (ϕ̂∗nε ≤ c) = P (ϕ∞ε ≤ c) a.s.,

and there exists a C > 0 such that, under H1,

lim
n→∞

Pξ (ϕ̂∗nε ≤ C) = 1 a.s.

This implies that limn→∞ E
[
Φ̂∗nε (α)

]
= α underH0, and limn→∞ E

[
Φ̂∗nε (α)

]
= 1 under

H1. The test can also be based on the bootstrap p− values, p̂∗nε = Pξ (ϕ̂∗nε ≥ ϕ̂nε) .

Since ĉ∗εn(α) and p̂∗nε are diffi cult to calculate in practice, they can be approximated by

Monte Carlo, as accurately as desired, using the following algorithm.

Algorithm 1

i. Generate b sets of random numbers
{
ξ
(j)
i

}n
i=1

i.i.d. as ξ, and the corresponding resam-

ples {Y ∗(j)i ,W i}ni=1, j = 1, ..., b , with b large.

ii. Compute b test statistics ϕ̂(b)∗nεj , j = 1, ..., b, as ϕ̂∗nε, using the resamples in i.

iii. Approximate the bootstrap critical values ĉ∗nε(α) by

ĉ(b)∗nε (α) = inf

{
c :

1

b

b∑
j=1

1{
ϕ̂
(B)∗
nεj <c

} ≥ 1− α
}
,

and the corresponding p− values, p̂∗nε, by

p̂(b)∗nε =
1

b

b∑
j=1

1{
ϕ̂
(b)∗
nεj ≥ϕ̂nε

}.

iv. Use the test Φ̂
∗(b)
nε (α) = 1{

ϕ̂nε>ĉ
∗(b)
nε (α)

} = 1{
p̂
∗(b)
nε <α

}.
The greater the b, the better the bootstrap approximations.

When the alternative hypothesis is nonparametric, one should choose the smaller pos-

sible ε in order to detect as many alternatives as possible, but a too small ε may produce

serious size distorsions. In order to keep the type I error under control, given a nominal

level α, we can choose the smallest ε that minimizes the actual level error. To this end,

we propose a data-driven calibration method, inspired by Politis et. al. (1999) Section

9.4.1. We think of the actual level of the test, ω, as a function of ε, i.e. h : ε → ω. If h

were known, we could calculate the actual error level e(ε) = |h(ε)− α| . If the underlying

12



joint distribution of (Y,W ) , F , were known, we could simulate samples according to F,

and estimate h(ε) as the fraction of times that the corresponding test rejects H0 for the

given ε. Since F is unknown, we can use some estimator F̂n that is consistent for F at

least under H0. A natural choice is the empirical distribution of {Yi,W i}ni=1 , but we

could use wild bootstrap resamples that impose H0 instead, as in Algorithm 1 step i.

In order to save computing time and choosing ε as small as possible, we fix the maximum

error level that we are prepared to bear, e0, e.g. e0 = 10−3. The following algorithm

provides the data-driven calibrated smallest ε, ε̂n, that ensures an error level less or equal

to e0 into a given inteval [1/n, `0/n] for suitably chosen small `0, e.g. `0 = bn/3c . Such

ε̂n may not exist, in which case we choose the ε minimizing the error level in the interval.

Algorithm 2

i. Fix e0 and `0.

ii. Fix b0 and generate i.i.d. resamples
{
Y
†(j)
i ,W i

}n
i=1

from F̂n, j = 1, ..., b0.

iii. Set ` := 1.

iv. If ` = `0 + 1, compute ε̂n := n−1 arg min`∈[1,`0] |ên (`/n)| and stop.

v. For each resample
{
Y
†(j)
i ,W i

}n
i=1
, compute the corresponding test Φ̂

∗(b)
n(`/n)j (α) using

Algorithm 1, j = 1, ..., b0.

vi. Compute ĥn (`/n) := b−10
∑b0

j=1 Φ̂
∗(b)
n(`/n)j (α) and record the corresponding estimated

error level ên (`/n) :=
∣∣∣ĥn (`/n)− α

∣∣∣ .
vii. If ên (`/n) ≤ e0, ε̂n := `/n and stop. Otherwise, ` := `+ 1 and go to iv.

Then, we use the test Φ̂
∗(b)
nε̂n

(α) in Algorithm 1. This data-driven trimming choice is

computationally expensive. Of course, we could choose ε̂n minimizing ên (ε) over the

interval, but it will be even more costly, and the resulting ε̂n will probably be larger.

In this respect, the bigger e0 (`0), the smaller (bigger) computational cost. A formal

justification of the test Φ̂
∗(b)
nε̂n

(α) is beyond the scope of this paper, but we show in next

section (Table 8) that it works very well in practice.

Under strong regularity conditions below, we can avoid trimming, and critical values of

the test can be tabulated. Suppose for simplicity that k2 = 0, i.e. there are no constant

coeffi cients in the model. Assume,
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A8: Z is independent of (U,X1), E (U2|X1) = σ2, and M11(1) is non-singular.

This assumption is not acceptable in practice, but allows to discuss the relation of

our proposal to related ones for time series parameter instability tests, as well as the

behaviour of our test statistic when ε is too small. UnderA8,M11(u) = uM11(1), Ω11(u) =

σ2 · u ·M11(1), and applying the same arguments as in Remark 1,

η∞(u) = RM−1(u)N∞(u) = M−1
11 (1)

N1∞(u)− uN1∞(1)

u(1− u)
a.s., (13)

and {N1∞(u)}u∈(0,1) =d

{
σ ·M1/2

11 (1)B0(u)
}
u∈(0,1)

, where B0 is a vector of independent

Brownian bridges, i.e. B0 is a Gaussian process with mean zero and E (B0(u)Bt
0(u)) =

(u ∧ v − uv) · Ik1 , for all u, v ∈ (0, 1). Henceforth,

ϕε∞
d
= sup

u∈[ε,1−ε]

Bt
0(u)B0(u)

u(1− u)
,

which has been tabulated by James et al. (1987) for B0 scalar and different values of ε,

and by Andrews (1993) in the multivariate case.

Under A8, one can exploit the information in (13) and, after estimating σ2 by σ̂2n =

n−1
∑n

i=1 V̂
2
ni, use as test statistic,

ϕ̃(0)n = n · max
K≤j<n−K

α̃n

(
j

n

)
,

with

α̃n(u) = η̂tn (u)
M̂11n(1)u(1− u)

σ̂2n
η̂n (u) , u ∈ (0, 1) ,

which resembles the classical UI tests, but without trimming. This statistic, suitably

standardized, converges to a extremum value distribution applying Darling and Erdős

(1956) type results. To this end, we need an alternative condition replacing A3 by,

A9: E ‖X1‖2+δ <∞ and E |U |2+δ <∞ for some δ > 0.

This is stronger than A3. These types of moment conditions were proposed by Shorak

(1979), relaxing those in Darling and Erdős (1956). Henceforth, Γ(x) =
∫∞
0
yx−1e−ydy,

and E is a random variable such that P (E ≤ x) = exp(−2 exp(−x)), a(x) =
√

2 log x

and bm(x) = 2 log x+(m/2) log log x− log Γ(m/2). The convergence of ϕ̃(0)n is slow, which

results in a poor level accuracy. We also consider,

ϕ̃(1)n =

n−K−1∑
j=K

α̃n

(
j

n

)
,

ϕ̃(2)n = max
K≤j<n−K

j(n− j)
n

α̃n

(
j

n

)
.
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The next theorem, provides the limiting distribution of ϕ̃(j)n , j = 0, 1, 2 under H0.

Theorem 5: Assume A1, A2, A8 and A9, under H0,

a(log n)

√
ϕ̃(0)n − b1+k1(log n)

d→ E, (14)

ϕ̃(1)n
d→
∫ 1

0

Bt
0(u)B0(u)

u(1− u)
du, (15)

ϕ̃(2)n
d→ sup

u∈(0,1)
Bt
0(u)B0(u). (16)

This suggests that the asymptotic distribution of ϕ̂nε changes at ε = 0. Tests based on

critical values of the asymptotic approximation (14) are expected to exhibit poor level

accuracy. See simulations in Section 5. The critical values of the random variables on

the right hand side of (15) and (16) have been tabulated by Scholz and Stephens (1987)

and Kiefer (1959), respectively.

Remark 4 Under A8 we can construct Neyman smooth and optimal functional LR tests,

in the direction of local alternatives (10), based on the principal components of the η̂′ns

transformation,

η̃n(u) =
u(1− u)

σ̂
M̂

1/2
n11(1)η̂n(u), u ∈ [K/n, 1−K/n) .

Thus, by (12), (25) and (26), under Hn1,
√
nη̃n →d η̃∞ =d B0 + ω0 with ω0(u) =

E
[
τ (Z)1{u<Z<1−u}

]
. The principal components random vectors of B0 are

ζj =
1√
ϑj

∫ 1

0

B0(u)µj(u)du,

where ϑj = (jπ)−2 and µj(u) =
√

2 sin(jπu), j ∈ N, are the eigenvalues and (ortho-

normal) eigenfunctions of the Brownian Bridge covariance kernel Υ(u, v) = u ∧ v − uv.

Therefore,
{
ζj
}
j∈N are i.i.d. Nk1(0, Ik1). The sample version of ζj is

ζ̂nj =

√
n

ϑj

∫ 1

0

η̃n(u)µj(u)du.

The distribution of the infinite dimensional random vectors ζ =
(
ζj
)
j>0

and ζ̂n =(
ζ̂nj

)
j>0

are uniquely determined by their finite dimensional distributions. Thus, by the

continuous mapping theorem, ζ̂n →d ζ under H0, and ζ̂n →d ζ + ρ0 under Hn1, where

ρ0 =
(
ρ0j
)
j>0

with ρ0j = ϑ
−1/2
j

∫ 1
0
ω0(u)µj(u)du. This suggests a Neyman-type test that

rejects H0 for large values of

Q̂nm =
m∑
j=1

ζ̂
t
nj ζ̂nj,
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for a fixedm. Thus, underH0, Q̂nm →d χ
2
mk1

and underHn1, Q̂nm →d χ
2
mk1

(∑m
j=1 ρ

t
0jρ0j

)
,

where χ2` (Λ) denotes a non-centered chi-square with `−degrees of freedom and non-

centrality parameter Λ. Tests based on a single principal component were proposed by

Durbin and Knott (1972) in the classical goodness-of-fit (GOF) tests, which was extended

by Schoenfeld (1977) to linear combinations of principal components. Stute (1997) applied

this test to specification testing of regression models, which in turns has been extended in

different directions. The functional Neyman-Pearson LR test, introduced by Grenander

(1950) for the classical GOF problem can also be applied in our context. This has been

applied by Sowell (1996) for optimal parameter instability testing in time series using

the CUSUM of residuals, and by Stute (1997) for optimal regression specification testing

using the CUSUM of residuals concomitants. This approach has been further extended to

other contexts by Delgado et al. (2005), and Delgado and Stute (2008), among others.

Suppose, for notational convenience, that k1 = 1. The optimal functional LR test, in the

direction (10), consists of rejecting H0 in favour of H1n at the α significance level, when

G =
1√∑∞

j=1 ϑ
−1
j ρ

2
0j

∞∑
j=1

ϑ−1j ρ0j

∫ 1

0

η̃∞(u)µj(u)du ≥ z1−α,

with z1−α the (1− α)− th quantile of the standard normal. The feasible test statistic is,

for large m,

Ĝnm =
1√∑m

j=1 ϑ
−1
j ρ

2
0j

m∑
j=1

ϑ−1j ρ0j

∫ 1

0

η̃n (u)µj (u) du.

4. FINITE SAMPLE PROPERTIES

We generate samples {Yi, Zi, 1, X12i, ..., X1k1i, X21i, ..., X2k2i}
n
i=1 with

Yi = β01(Zi) +

k1∑
j=2

β0j(Zi)X1ji +

k2∑
j=1

δ0jX2ji + Ui, i = 1, ..., n,

with {Zi}ni=1 i.i.d. uniform in [0, 1], X`ji = Zi + e`ji, with e′`jis i.i.d. uniformly in [0, 1] ,

j = 1, 2, and

Ui =
εi exp(κZi/ 2)√

V ar(εi exp(κZi/ 2))
,

with εi i.i.d. N(0, 1); that is, V ar(Ui) = 1, and κ governs how severe the conditional

heteroskedasticity is. We generate random coeffi cients

β0j(z) = 1 + λ
f(z)√

V ar(f(z))
,
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for all j = 1, ..., k1, i.e. V ar(β0j(Z)) = λ2, with the following models,

a) f(z) = z, b) f(z) = [1 + exp(−ρz)]−1 ,

c) f(z) = sin(2πz), d) f(z) = 1 + 2 · 1{z≤0.4}.

Model a) is a simple linear model, and b) is a nonlinear alternative, almost indistinguish-

able for ρ = 1 when z ∈ (0, 1) . The lower the ρ, the smaller the departure from linearity

is. Model c) is harder to fit than a) or b) using smooth methods with moderate sample

sizes, and d) is a RDD model that cannot be estimated using smoothing methods. We set

π0 = 0.4, but we have also tried other values and the results do not change substantially

except when the jump is placed in extreme low quantiles (π0 ≤ 0.1). Figure 1 represents

η0 for the different models and different λ values.

FIGURE 1 ABOUT HERE

The simulation study is implemented to provide evidence on the ε’s choice effect, the

accuracy of the bootstrap test, and the relative performance of our test with respect to

existing alternatives. Monte Carlo and bootstrap replications are set to 1.000.

Figure 2 provides the rejection rate for different ε′s with α = 0.05 under H0, and under

the "smooth" alternatives a) and c) with λ = 0.25, 0.5. The type I error is out of control

when ε is close to zero, but the level accuracy is excellent for ε around 0.1. The power

does not change much for n = 100, and is almost 1 for n = 200, in models a) and c) for

different ε′s values. Figure 3 illustrates the behavior of the test in the RDD model d).

When π0 is very small (π0 = 0.1), the test is powerful for ε ≤ 0.1. Similar comments

apply for fairly small ε′s (π0 = 0.25), the test is powerful for ε ≤ 0.25. In both cases

the power decreases as ε increases for ε ≥ π0. When π0 = 0.4, the power of the test is

unaffected by ε′s choice. Of course, the power always increases with λ.

FIGURE 2 AND 3 ABOUT HERE

In order to check the level accuracy of the bootstrap test, Table 1 compares the rejection

rate using asymptotic critical values (Theorem 5) and their bootstrap approximations in

a model holding A8, using statistics ϕ̃(j)n in a pure varying coeffi cient model, i.e., with

k2 = 0. The bootstrap test exhibits very good level accuracy for the three test statistics.

As expected, the asymptotic test based on ϕ̃(0)n shows poor size properties compared with

the others, particularly for small n. However, the level accuracy of the asymptotic tests
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based on ϕ̃(1)n and ϕ̃(2)n is fairly good, but worse than the corresponding bootstrap tests,

as expected.

TABLE 1 ABOUT HERE

Next, we perform the comparison with existing tests in the context of the PLR model.

We consider the omnibus specification test proposed by Stute (1997), which is based on

the CUSUM of residuals type process,

ψ̂n(x) =
1

n

n∑
i=1

Ûi

k1∏
j=2

1{X1j≤xj}

k2∏
m=1

1{X2m≤xk1+m}, x = (x1, ..., xk1+k2)
t .

We use the Kolmogorov-Smirnov type statistic,

φ̂n = sup
x∈Rk1+k2

√
n
∣∣∣ψ̂n(x)

∣∣∣ .
While the CUSUM test is able to detect any alternative to the linear regression speci-

fication hypothesis, with fairly modest power, our test is directional, designed to detect

varying coeffi cients alternatives. We also consider the LR type bootstrap test of Cai et

al. (2000), based on the test statistic T̂n = (RSS0/RSS1) − 1 that compares the re-

stricted and unrestricted sums of squared residuals, RSS0 and RSS1, respectively. The

bandwidth is chosen using the modified multifold cross-validation criterion suggested in

Cai et. al. (2000) paper. Smooth LR type tests are asymptotically distribution free

by assuming that the bandwidth converges to zero at a suitable rate as the sample size

diverges (see Fan and Huang, 2005; or Cai et al., 2017). Cai et al. (2017) points out that

the asymptotic approximation of T̂n is poor and bandwidth dependent. Thus, they rec-

ommend using bootstrapped critical values. We report the bootstrap test they suggest,

with the same bandwidth choice they propose.

Table 2 reports results for k1 = 1, k2 = 1, 2, 3, λ = 0.25 and κ = 1. It shows that,

under H1, our test works better than the omnibus CUSUM as k2 increases because of the

curse of dimensionality. For instance, when k2 = 3 and under model d), our test rejects

more than twice that of the CUSUM test. The bootstrap smoothing based test has power

similar to ours in all models, except for the RDD model, due to the poor performance of

the Nadaraya-Watson estimator in this case.

TABLE 2 ABOUT HERE

Table 3 reports results for k1 = 2, 3, 4, k2 = 1, λ = 0.25 and κ = 1. Note that,

again, our directional test works better than the omnibus CUSUM as k1 increases. For
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instance, when k1 = 4 and under model d), the power of our test is almost twice that of

the CUSUM test. The test using T̂n also suffers from the curse of dimensionality, and

performs worse than the others that only need to estimate the model under H0.

Under the RDD specification d), our test also works much better than the LR smooth-

ing based test because of the curse of dimensionality of the Nadaraya-Watson estimator,

needed to compute T̂n.

TABLE 3 ABOUT HERE

In the next set of simulations we apply the test to check the linearity hypothesis when

k1 = 1, k2 = 1 and X2 = Z. That is, H0 is equivalent to omnibus specification testing

of the simple regression model E (Y |Z) = β̄01 + Zδ01 a.s. Our test is omnibus for the

linear regression specification hypothesis, and competes with the CUSUM test. Since β01

is not identifiable, tests based on comparing fits under the null and the alternative, like

T̂n, cannot be implemented. We consider model b) with different ρ values. Table 4 shows

that our test rejects almost double than the CUSUM for ρ large.

TABLE 4 ABOUT HERE

We also consider the test for model checking of non-linear regression models. We con-

sider omnibus specification testing of E (Y |Z) = β̄01 +
∑L

`=1 Z
`δ0` a.s. This corresponds

to applying our test to model (2) with k1 = 1, and gj(z) = zj, j = 1, ..., L. Table 5

reports the rejection rate for model b) with ρ = 15, which produces a sensitive departure

from linearity for L = 1, 2, 3, 4. Our tests performs much better than the CUSUM test

for L = 1, 2, and both have little power for L = 4.

TABLE 5 ABOUT HERE

Next, we consider the performance of the test as a specification test of interactive

effects in model (2) with k1 ≥ 1, L = 1, g1(z) = 1 and g2(z) = z. That is, our test is

implemented for testing that the partial effect of Z and X1 have a particular functional

form. In particular, that β0j (Z) = β̄0j +δ0jZ a.s., for j ≥ 1. Table 6 reports the rejection

rate for CUSUM and our test in model b) with λ = 0.5, different ρ values k2 = 0 and

k1 = 2, 3, 4. Our test performs better than CUSUM, particularly for ρ large.

TABLE 6 ABOUT HERE
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Now, examine testing the specification of interactive effects in the context of model

(2) with k1 ≥ 2, L = 1, 2, 3, g0(z) = 1 and gj(z) = zj, j = 1, ..., L. We consider testing

β0j (Z) = β̄0j +

L∑
`=1

Z`δ0(j+`−1) a.s., j ≥ 1. Table 7 reports the rejection rate for both ours

and the CUSUM tests under model b) with λ = 0.5, ρ = 15, k1 = 3 and k2 = 0. Our test

also performs better in general.

TABLE 7 ABOUT HERE

Finally, we show the performance of the data-driven calibration method for the optimal

choice of ε described in Algorithm 2. We set `0 = bn/3c and e0 = 10−3. We have used

resamples
{
Y
∗(j)
i ,W i

}n
i=1

, j = 1, .., b0 in the step i of Algorithm 2 with b0 = b = 1.000,

which imposes H0, as in step i of Algorithm 1. The data-driven calibrated ε is compared

with different prespecified values of ε. Table 8 provides the rejection rate under H0 with

k1 = 2, k1 = 1 and κ = 1. This shows that using the calibration method we are able to

almost reach the 5% significance level, which is not the case for the prespecified ε′s.

TABLE 8 ABOUT HERE

5. AN APPLICATION FOR MODELING EDUCATION RETURNS

We complement the previous Monte Carlo study with a real data application to model

education returns using intelligence quotient (IQ) as a proxy variable of "ability". This is

based on the work of Blackburn and Neumark (1995), which is replicated in Wooldridge’s

(2009a) textbook (example 9.3). The data consists of 663 observations from the Young

Men’s Cohort National Longitudinal Survey. The main objective consists of estimating

the marginal effect of education on wages, controlling for relevant covariates. The simplest

parametric model, using IQ as proxy of "ability", is

logWAGE = β̄01 + β̄02EDUC + β̄03IQ+Xt
2δ0 + U, (17)

where WAGE are USD monthly earnings, EDUC is years of education, and Xt
2 =

(EXPER, TENURE, MARRIED, SOUTH, URBAN, BLACK)t , EXPER are

years of work experience, TENURE years with current employer,MARRIED a dummy

(1 if married), BLACK dummy (1 if black), SOUTH dummy (1 if live in south),
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URBAN dummy (1 if live in urban area SMSA), and δ0 = (δ01, ..., δ06)
t. The "abil-

ity" is in the error term U, which is correlated with EDUC for obvious reasons. The

variable IQ in model (17) is a proxy of ability, which is valid if E (U |EDUC, IQ,X2) =

E (U | IQ,X2) = γ01 + γ02 · IQ +Xt
2γ0, where γ01, γ02 and γ0 = (γ03, ..., γ08)

t are un-

known parameters. In this case, the partial effect of EDUC on WAGE, β̄02, can be

consistently estimated using OLS in (17), though estimators of β̄03 and δ0 are typically

inconsistent. The OLS estimators of β̄02 and β̄03 in model (17), heteroskedasticity robust

SE in parenthesis, are 0.054 (0.006) and 0.0036 (0.001), respectively.

The OLS estimator of the partial effect of EDUC on WAGE in (17) is inconsistent

when either there are interactive effects or IQ enters nonlinearly into the model. A rea-

sonable alternative to (17) is the SVC model, where

log (WAGE) = β01(IQ) + β02(IQ) · EDUC +Xt
2δ0 + U. (18)

Figure 4 provides estimates of β01 in (18) and β02 using the Cai et al. (2000) procedure,

with the same cross-validation bandwidth choice they suggest. We also provide OLS

estimates of the parametric specification β0j(IQ) = β̄
(1)
0j + β̄

(2)
0j IQ+ β̄

(3)
0j IQ

2, j = 1, 2.

FIGURE 4 ABOUT HERE

The p− values for testing H0 : V ar(β0j(IQ)) = 0, j = 1, 2 versus H1 : V ar(β0j(IQ) > 0

for some j = 1, 2, or H2 : V ar(β01(IQ)) = 0 and V ar(β02(IQ)) > 0, in model (18), are

reported in Table 9.

TABLE 9 ABOUT HERE

We also report the smoothing LR test of Cai et al. (2000). Here, the CUSUM test

is unable to reject the null hypothesis, but our tests reject H0 in the two directions

considered. The p − value of our test is the smallest when testing in the direction H1,

but the corresponding p − value for the smooth LR test based on T̂n is the smallest in

the direction H2.

Next, we apply our test as a model check of the EDUC partial effect, by testing H0 in

the model

log (WAGE) = (β01(IQ) + δ07IQ) + (β02(IQ) + δ08IQ)EDUC +Xt
2δ0 + U.

TABLE 10 ABOUT HERE
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In this case, see Table 10, we are unable to reject the specification of the interactive effect

either with the CUSUM or with our test. We conclude that the specification including

IQ, EDUC and a simple interactive effect of EDUC with IQ, cannot be rejected.

6. CONCLUSIONS AND FINAL REMARKS

We have proposed a test for coeffi cients constancy in SVC models based on a UI type

statistic that compares the OLS coeffi cient estimates using subsamples of concomitants,

after trimming out some observations. The test is implemented with the assistance of

a wild bootstrap method, and is justified under fairly general regularity conditions. We

proposed a data-driven method for calibrating the amount of trimming that minimizes

the error level of the test. Under restrictive conditions, the trimming can be avoided, and

the critical values can be tabulated. Under these assumptions, we proposed a Neyman-

type smooth tests, and an optimal functional LR test in the direction of local alternatives,

based on the principal components of the UI test statistic’s empirical process.

Simulation results provided evidence of the good performance of our test in finite sam-

ples compared to a smooth LR test, and a CUSUM-type test designed for omnibus model

specification testing. Simulations also showed that, unlike our test, the two competitors

suffer from the curse of dimensionality, and that the LR smooth test exhibits a lack of

power under alternatives with discontinuous varying coeffi cients. We have also included

a real data application to model education partial effects controlling by IQ in a returns

of education model.

Ordering the varying coeffi cient variable is essential for implementing our test. When

the coeffi cients depend on a q × 1 random vector Z = (Z1, ..., Zq)
t, i.e.

Y = Xt
1β0 (Z) +Xt

2δ0 + U,

with β0 : Rq → Rk1 , the test requires ordering the data according to Z somehow. In this

scenario, single-index models have proven to be an effi cient way of coping with the data

ordering issue, i.e. Z = gψ0 (Z) a.s. in (1) , for some unknown parameter ψ0 ∈ Ψ ⊂ Rq.

Xia and Li (1999) proposed a
√
n−consistent estimator ofψ0, ψ̂n, using kernel smoothing.

The test can be implemented by ordering the data according to Ẑni = gψ̂n (Zi) , i =

1, ..., n, and using the corresponding concomitants in (6). However, the corresponding

test statistic will converge to a random variable with a different distribution than ϕ∞ε
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under H0, because of the ψ0’s estimation effect. The test can still be implemented using

wild bootstrap. Of couse, the resulting test depends on the amount of smoothing chosen

for estimating ψ0. A formal justification of the test in this situation is beyond the scope

of this article.

A fairly straightforward extension consists of allowing endogenous explanatory variables

using the instrumental variables approach, see e.g. Cai et al. (2017). Extensions to

nonlinear and multiple equations structural systems are also directly applicable.

APPENDIX

Since FZ (Z) is distributed U(0, 1) for all continuous FZ , we assume w.l.o.g. that Z is

distributed as an U [0, 1] .

Proof of Theorem 1. A typical uniformity argument shows that

sup
u∈(0,1)

∥∥∥(M̃`jn −M`j

)
(u)
∥∥∥ = o(1) a.s.

with

M̃`jn(u) =
1

n

n∑
i=1

X`iX
t
ji1{Zi≤u}, j = 1, 2.

Then, (8) follows by noticing that M̂`jn(u) = M̃`jn(Zn:bnuc) and that, since Z is bounded

on [0, 1], supu∈[0,1]
∣∣Zn:bnuc − u∣∣ = o (1) a.s. applying the Glivenko-Cantelli theorem for

the uniform quantile function (e.g. Csörgő, 1983, Remark 1). (9) follows from Davydov

and Egorov (2000) Theorem 1.

Henceforth, θ̄0 =
(
β̄
t
0, β̄

t
0, δ

t
0

)t
.

Proof of Theorem 2. Define Ω̂0
n`j = n−1

∑bnuc
i=1 X`iX

t
jiV

2
i , `, j = 1, 2. First, notice

that θ̂n(1) = θ̄0 + o(1) a.s., by (8) and n−1
∑bnuc

i=1 X ijVi = o(1) a.s. under A5. Then,

applying the same arguments to prove (8)

sup
u∈(0,1)

∥∥∥(Ω̂nj` − Ω̂0
nj`

)
(u)
∥∥∥ = sup

u∈(0,1)

∥∥∥∥∥∥ 1

n

bnuc∑
i=1

X ijX
t

i`

(
V̂ 2
i − V 2

i

)∥∥∥∥∥∥ = o(1) a.s.,

and supu∈(0,1)

∥∥∥(Ω̂0
n`j − Ω`j

)
(u)
∥∥∥ = o(1) a.s. `, j = 1, 2. Therefore,

sup
u∈(0,1)

∥∥∥(Ω̂0 −Ω
)

(u)
∥∥∥ = o(1) a.s., (19)

and theorem follows applying (9) and the CMT.

Henceforth,X i(u) = [Xt
1i(u),Xt

1i(1)−Xt
1i(u),Xt

2i]
t , withX1i(u) = X1i1{Zi≤Zbnuc:n}.
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Proof of Theorem 3. Under H1η, by Theorem 1,

ϕ̃nε
n

p→ sup
ε≤u≤1−ε

ηt0(u)
[
RM−1(u)Ω(u, v)M−1(v)

]−1
Rtη0(u) > 0,

which proves (11). In order to prove, (12), notice that under Hn1,

√
n
(
θ̂n − θ̄0

)
(u) = M̂

−1
n (u)

[
1

n

n∑
i=1

X i(u)Xt
i (u) · (τ t(Zi), τ t(Zi),0)t +

√
nN̂n(u)

]
,

and, under A6,

sup
u∈(0,1)

∥∥∥∥∥n−1
n∑
i=1

X i(u)Xt
i (u) · (τ t(Zi), τ t(Zi),0)t − T (u)

∥∥∥∥∥ = o(1) a.s.

using the same arguments to prove (8) in Theorem 1. Then, apply (8), (9) and the

continuous mapping theorem (CMT) to complete the proof.

Proof of Theorem 4. It suffi ces to show that for any c > 0,

Pξ (ϕ̂∗nε ≤ c)→ P (ϕ∞ε ≤ c) a.s., (20)

Notice that uniformly in u ∈ (0, 1),

η̂∗n(u) = R [M (u) + o(1)]−1 N̂
∗
n(u) a.s.,

Following the strategy of proof in Stute et al. (1998) (SGQ), (20) follows by showing that,

conditional to the sample,
√
nN̂

∗
n converges in distribution toN∞ a.s., i.e. for almost all

sample {Yi,W i}ni=1 , by showing the convergence of the finite dimensional distributions

(fidis) and tightness. Henceforth, Eξ is the expectation operator corresponding to Pξ.

For fidis convergence, first notice that for u1, u2 ∈ (0, 1) ,

Eξ
[
N̂
∗
n (u1) N̂

∗t
n (u2)

]
=

1

n

n∑
i=1

X i(u1)X
t
i (u2)V̂

2
i = Ω (u1, u2) + o(1) a.s.

using (19). Then, fixing u1, ..., uq, by the Cramér-Wold device, it suffi ces to show that,

Pξ

{
√
n

q∑
j=1

ctj N̂
∗
n (uj) ≤ ε

}
→ P

{
q∑
j=1

ctjN∞ (uj) ≤ ε

}
a.s., (21)

for any ε <∞, cj ∈ R2k1+k2 , j = 1, .., q. Write ϑi =
∑q

j=1 ajc
tX i(uj); then,

√
n

q∑
j=1

ajc
tN̂

∗
n (uj) =

1√
n

n∑
i=1

ϑiV̂iξi.
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Then (21) follows by checking the Linderberg condition

Ln (δ) =
1

n

n∑
i=1

∫
{|ϑiV̂iξi|≥δ√n}

ϑ2i V̂
2
i ξ

2
i dPξ → 0 a.s. for all δ > 0.

Since |ξ| ≤ C,

Ln (δ) ≤ κ2

n

n∑
i=1

1{|ϑiV̂i|≥ δ√nC }ϑ2i V̂ 2
i

=
κ2

n

n∑
i=1

1{|ϑiVi|≥ δ√nC }ϑ2iV 2
i + o(1) a.s.

= o(1) a.s.

In order to show tightness, it suffi ces to check Billingsley (1968) Theorem 15.7 as in SGQ

Lemma A3. Define, for c ∈ R2k1+k2 ,

ω̂∗nbi(u) =
√
nctN̂

∗
n (u) =

1√
n

n∑
i=1

ctX i(u)V̂iξi.

In order to prove tightness, we must show, as in SGQ Lemma 3, that for any c =

(ct1,c
t
2, c

t
3)
t , c1,c2 ∈ Rk1 , c3 ∈ Rk2 and K/n ≤ u0 ≤ u1 ≤ u2 < 1−K/n,

Eξ
(
[ω̂∗nbi(u1)− ω̂∗nbi(u0)]

2 [ω̂∗nbi(u2)− ω̂∗nbi(u1)]
2) ≤ C

[
Ĝn(u2)− Ĝn(u0)

]2
, (22)

where C <∞ is a generic constant, Ĝn is monotone, and Ĝn → G a.s. First notice that

for any u` ≥ uj, u`, uj ∈ [K/n, 1−K/n) ,

ω̂∗nbi(u`)− ω̂∗nbi(uj) = (c1 − c2)tX1iV̂iξi1
{
Zbnujc:n≤Zi≤Zbnu`c:n

}.
Then, applying Lemma 5.1 of Stute (1997),

LHS(22) ≤ 3 ‖c1 − c2‖2

n2

∑∑
i 6=j

Eξλ2iEξγ2j ,

λi = ‖X1i‖ V̂iξi1{Zbnu0c:n≤Zi≤Zbnu1c:n}, γi = ‖X1i‖ V̂iξi1{Zbnu1c:n≤Zi≤Zbnu2c:n}. Then,

LHS(22) ≤ C

n2

∑∑
i 6=j

‖X1i‖2 ‖X1j‖2 V̂ 2
i V̂

2
j 1{Zbnu1c:n≤Zi≤Zbnu2c:n}1{Zbnu0c:n≤Zi≤Zbnu1c:n}

≤ C

[
1

n

n∑
i=1

‖X1i‖2 V̂ 2
i 1{Zbnu0c:n≤Zi≤Zbnu2c:n}

]2
= C

[
Ĝn(u2)− Ĝn(u0)

]2
,

where C is a generic constant, and

Ĝn(u) =
1

n

n∑
i=1

‖X1i‖2 V̂ 2
i 1{Zi≤Zbnuc:n}
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is monotone and supu∈(0,1)

∥∥∥(Ĝn −G
)

(u)
∥∥∥ = o(1) a.s., with G(u) = E

(
‖X1‖2 U21{Z≤u}

)
a.s., using a Glivenko-Cantelli argument as in the proof of Theorem 1.

Proof of theorem 5. Define

η̂†n (u) = M−1
11 (1)

N̂1n(u)− uN̂1n(1)

u(1− u)
,

α̃†n(u) = η̂†tn (u)
M11 (1)u(1− u)

σ2
η̂†n (u)

Now notice that

u(1− u)M11(1)
(
η̂n − η̂†n

)
(u) = (1− u)

(
uM11(1)M̂−1

11 (u)− Ik1
)
N̂1n (u) (23)

+ u

(
(1− u)M11(1)

[
M̂11(1)− M̂11(u)

]−1
− Ik1

)(
N̂1n (1)− N̂1n(u)

)
.

Let {cn}n≥1 be a sequence such that cn + (ncn)→ 0 as n→∞. Applying Theorem 0 in

Wellner (1978) to this context,

sup
k1/n+cn≤u<(n−k1)/n

∥∥∥M11(1)uM̃−1
11 (u)− Ik1

∥∥∥ = op(1) (24)

sup
k1/n≤u<(n−k1)/n−cn

∥∥∥∥(1− u)M11(1)
[
M̃11(1)− M̃11 (u)

]−1
− Ik1

∥∥∥∥ = op(1).

Since M̂11 (u) = M̃11

(
Zn:bnuc

)
and supu∈[0,1]

∣∣Zn:bnuc − u∣∣ = o(1) a.s., by (23) and (24),

and supu∈[0,1]

∣∣∣N̂1n (u)
∣∣∣ = Op(n

−1/2) by (9),

sup
k1+cn≤u<n−k1−cn

∥∥u(1− u)M11(1)
(
η̂†n − η̂n

)
(u)
∥∥ = op

(
1√
n

)
. (25)

This implies that

max
k1+ncn≤j<n−k1−ncn

∣∣∣∣j(n− j)n

[(
α̃†n − α̃n

)( j
n

)]∣∣∣∣ = op(1)

proves (16), applying the CMT, after noticing that

ϕ̃(2)ncn = max
k1+ncn≤j<n−k1−ncn

j(n− j)
n

α̃n

(
j

n

)
,

and ϕ̃(2)n are asymptotically equivalent, and that

√
nM

1/2
11 (1)

u(1− u)

σ
η̂†n

d→ B0 in D [0, 1] . (26)

Now, in view of (26) applying an extension of the Anderson-Darling result to the mul-

tivariate case, e.g. Scholz and Stephens (1987) or Csörgő and Horváth (1997) Corollary

1.1.1 for general weight functions,

ϕ̃(1)†n
d→
∫ 1

0

Bt
0(u)B0(u)

u(1− u)
du,
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which proves (15). And applying the extension of the Darling-Erdős theorem in Shorack

(1979) to the vector case, as in Horváth (1993),

a(log n)

√
ϕ̃†n − bk1(log n)→d E,

which proves (14).
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Figure 1: Representation of η0 for different models when λ = 0 (blue curve), λ = 0.25

(purple curve), and λ = 0.5 (red curve).
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Figure 2: Representation of Φ̂nε(α) for the null and different alternatives.
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Figure 3: Representation of Φ̂nε(α) under alternative d) for different π0 values.
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Figure 4: Representation of β00(IQ) and β01(IQ) for the estimates of the varying

coeffi cients using kernels (red curve), and OLS estimates of the parametric specification

(purple curve).
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α 1% 5% 10%

k1 1 2 3 4 1 2 3 4 1 2 3 4

ϕ̃
(0)
n (bootstrap)

50 0.2 0.3 0.2 0.5 2.5 2.5 2.8 2.4 5.7 6.1 6.4 5.9

100 0.5 0.5 0.7 0.6 3.5 3.2 3.1 2.4 8.5 6.6 6.0 5.8

200 1.2 1.1 0.5 0.4 4.4 4.2 3.6 2.1 8.4 7.9 6.3 4.4

500 0.7 0.7 0.7 1.1 4.1 3.8 3.6 4.5 9.1 7.7 8.4 8.4

ϕ̃
(1)
n (bootstrap)

50 0.6 0.7 0.1 0.1 4.1 4.1 3.2 3.4 8.7 9.6 8.0 8.3

100 1.2 1.0 0.7 0.5 4.6 4.5 3.9 3.6 9.5 9.4 9.1 8.5

200 1.2 1.2 0.7 0.7 5.3 4.3 5.2 3.9 9.7 10.5 9.2 7.8

500 1.0 0.9 0.6 1.2 4.7 4.1 4.5 5.1 11.1 9.0 8.7 9.5

ϕ̃
(2)
n (bootstrap)

50 0.7 1.0 0.3 1.3 4.5 5.1 5.2 4.6 9.2 11.6 9.9 11.3

100 1.0 1.0 0.7 0.6 5.1 4.5 4.5 4.4 11.0 9.4 9.2 9.6

200 1.2 1.0 0.7 0.7 5.2 5.1 4.9 2.6 10.3 10.8 9.2 8.4

500 1.2 1.0 1.2 1.5 4.7 5.4 5.7 5.9 9.7 10.0 9.4 10.2

ϕ̃
(0)
n (asymptotic)

50 0.0 0.1 0.5 3.6 1.7 2.4 6.7 23.3 5.9 8.2 18.1 43.9

100 0.0 0.0 0.1 1.0 1.3 1.1 3.9 9.1 5.3 5.9 10.3 21.8

200 0.0 0.0 0.0 0.4 1.5 1.4 2.5 4.6 4.4 4.6 5.9 13.4

500 0.0 0.0 0.0 0.0 1.5 1.0 2.4 3.3 4.3 3.9 6.2 10.3

ϕ̃
(1)
n (asymptotic)

50 0.5 0.1 0.0 0.0 2.9 2.7 1.9 1.0 6.8 6.4 5.1 3.3

100 1.0 0.7 0.6 0.1 4.9 3.8 3.7 2.4 10.8 8.5 7.9 6.7

200 1.3 1.2 0.5 0.6 4.6 5.3 4.0 4.1 8.5 10.3 8.8 7.4

500 0.8 1.1 0.8 0.4 4.9 4.5 4.9 4.3 9.5 9.4 9.5 8.7

ϕ̃
(2)
n (asymptotic)

50 0.2 0.1 0.1 0.0 2.0 1.5 1.2 1.4 4.9 4.0 4.1 3.7

100 0.3 0.2 0.4 0.1 3.3 2.5 2.6 4.6 7.8 5.5 5.0 4.6

200 0.7 0.7 0.4 0.3 4.1 3.5 3.2 1.6 8.2 7.2 6.4 4.1

500 0.7 0.7 0.7 0.8 4.4 3.9 4.0 4.7 8.1 8.3 7.8 8.1

Table 1. Percentage of times H0 was rejected ( k2 = 0 and κ = 0)
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Model H0 H1 : a H1 : c H1 : d

k2 1 2 3 1 2 3 1 2 3 1 2 3

ϕ̂n0.02

50 3.3 4.4 4.6 11.5 9.5 7.1 13.3 12.5 11.4 15.0 11.2 10.3

100 4.0 5.0 4.6 26.6 15.9 12.4 25.9 23.0 21.2 30.0 20.5 19.8

200 4.5 4.3 3.6 49.1 31.4 22.4 56.0 45.6 40.6 60.9 45.4 38.4

φ̂n

50 4.5 4.4 4.6 12.7 9.4 4.8 14.0 8.1 6.4 14.4 7.9 6.3

100 4.6 5.0 5.4 26.8 10.9 7.8 27.8 16.5 9.9 28.4 14.4 8.5

200 4.4 4.7 4.1 48.1 20.9 11.7 57.0 34.6 18.2 56.9 30.5 15.0

T̂n

50 4.7 4.9 6.6 15.8 9.0 7.6 15.0 13.7 7.4 13.2 10.3 9.3

100 3.8 4.0 6.2 32.1 21.6 12.1 31.9 29.0 18.7 29.5 21.4 18.8

200 4.9 5.1 4.2 57.7 40.4 28.3 62.4 55.3 45.5 56.8 41.5 33.6

Table 2. Percentage of times H0 was rejected, 5% of significance ( k1 = 1, λ = 0.25 and

κ = 1)
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Model H0 H1 : a H1 : c H1 : d

k1 2 3 4 2 3 4 2 3 4 2 3 4

ϕ̂n0.02

50 2.7 3.4 2.3 18.3 20.5 20.5 26.8 41.6 54.1 25.2 30.6 34.1

100 3.8 4.1 3.1 47.2 59.2 69.7 66.9 92.7 98.5 63.6 85.9 94.6

200 3.9 3.2 4.0 84.1 96.3 98.9 97.2 100 100 97.1 100 100

φ̂n

50 4.4 4.6 5.2 21.3 17.7 16.4 22.9 23.4 22.9 18.8 18.4 16.1

100 5.0 5.4 4.3 41.6 40.5 39.6 55.4 61.6 56.7 45.8 42.3 35.8

200 4.7 4.1 5.9 76.3 83.2 81.4 93.8 96.2 94.7 86.2 84.2 76.7

T̂n

50 4.5 4.8 5.7 18.2 20.2 22.7 22.0 48.4 27.2 15.8 42.7 19.8

100 4.2 4.9 4.7 44.8 55.3 36.5 67.0 61.5 42.8 48.8 54.8 39.6

200 4.9 4.8 4.5 71.1 94.0 53.5 97.2 97.7 53.6 89.0 89.8 52.2

Table 3. Percentage of times H0 was rejected, 5% of significance ( k2 = 1, λ = 0.25 and

κ = 1)

λ 0.25 0.5

ρ 1 2 3 4 5 15 1 2 3 4 5 15

ϕ̂n0.02

50 3.8 4.4 5.3 6.6 7.5 11.8 4.1 5.4 8.3 11.6 16.6 35.5

100 4.0 4.7 6.1 7.8 10.6 25.2 3.9 6.2 11.7 21.5 33.6 76.2

200 3.9 4.3 6.4 11.2 18.3 56.3 4.1 6.5 19.0 39.7 61.5 98.7

φ̂n

50 5.6 5.4 5.8 6.0 6.5 7.7 5.6 5.7 6.6 8.6 10.9 19.2

100 4.9 5.6 6.7 7.7 9.0 13.7 5.2 7.2 10.0 14.4 20.8 49.7

200 4.3 4.7 6.7 8.6 12.0 24.8 4.6 6.8 13.9 25.4 40.0 87.1

Table 4. Percentage of times H0 was rejected, 5% of significance (k1 = 1, k2 = 1 and

κ = 1)
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λ 0.25 0.5

L 1 2 3 4 1 2 3 4

ϕ̂n0.02

50 11.8 7.2 4.4 2.9 35.5 16.4 6.1 2.9

100 25.2 11.8 6.3 4.7 76.2 38.4 11.7 4.9

200 56.3 24.9 7.3 3.9 98.7 77.9 19.6 6.2

φ̂n

50 7.7 5.3 6.2 6.1 19.2 8.2 6.0 5.9

100 13.7 6.0 5.6 6.2 49.7 10.5 5.7 6.1

200 24.8 6.3 4.3 4.2 87.1 18.7 5.4 4.6

Table 5. Percentage of times H0 was rejected, 5% of significance (k1 = 1, k2 = 1, ρ = 15

and κ = 1)

ρ 1 2 3 15

k1 2 3 4 2 3 4 2 3 4 2 3 4

ϕ̂n0.02

50 3.6 3.3 2.8 4.2 3.7 3.8 4.8 4.4 5.4 8.5 13.8 16.7

100 3.7 5.4 3.0 4.8 5.8 5.4 6.1 8.8 11.6 19.8 38.8 51.6

200 3.8 3.8 4.9 4.9 6.7 10.4 8.1 16.6 26.7 48.3 84.1 94.0

φ̂n

50 4.5 6.1 7.0 4.6 6.5 6.6 4.9 7.0 7.8 7.8 9.4 10.3

100 5.3 7.1 4.8 6.4 6.9 5.6 7.1 8.7 7.3 12.1 15.5 11.2

200 4.5 5.9 5.1 4.9 7.1 6.8 8.6 9.0 10.6 21.2 34.1 27.5

Table 6. Percentage of times H0 was rejected, 5% of significance ( k2 = 0, λ = 0.5 and

κ = 1)
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L 1 2 3

ϕ̂n0.02

50 13.8 7.0 4.6

100 38.8 17.3 6.9

200 84.1 47.4 10.4

φ̂n

50 9.4 7.7 8.7

100 15.5 8.5 6.3

200 34.1 14.5 7.5

Table 7. Percentage of times H0 was rejected, 5% of significance (k1 = 3, k2 = 0, λ = 0.5

ρ = 15 and κ = 1)

ε Data-driven 0.02 0.06 0.07 0.13 0.15 0.18 0.20 0.24 0.26 0.28 0.35

50 5.9 3.95 3.95 3.95 3.95 3.95 3.95 5.26 3.95 3.95 3.95 5.26

100 5.2 1.32 2.63 1.32 1.32 2.63 3.95 5.26 5.26 3.95 5.26 3.95

Table 8. Percentage of times H0 was rejected, 5% of significance (k1 = 2, k2 = 1, and

κ = 1)

H1 : V ar(β00(IQ)) > 0 H2 : V ar(β00(IQ)) = 0 H2 : V ar(β00(IQ)) > 0

Test or and and

V ar(β01(IQ)) > 0 V ar(β01(IQ)) > 0 V ar(β01(IQ)) = 0

ϕ̂n0.003 0.012 0.017 0.08

φ̂n 0.734

T̂n 0.041 0.009 0.009

Table 9. p-value of testing H0 versus H1 and H2

H1 : V ar(β00(IQ)) > 0 H2 : V ar(β00(IQ)) = 0 H2 : V ar(β00(IQ)) > 0

Test or and and

V ar(β01(IQ)) > 0 V ar(β01(IQ)) > 0 V ar(β01(IQ)) = 0

ϕ̂n0.003 0.6489 0.405 0.484

φ̂n 0.491 0.653 0.543

Table 10. p-value of testing H0 versus H1 and H2
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