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ABSTRACT

A multispectral system based on a monochrome camera and an adaptive illumination source is presented in this paper. Its
preliminary application is focused on material discrimination for food and beverage industries, where monochrome,
color and infrared imaging have been successfully applied for this task. This work proposes a different approach, in
which the relevant wavelengths for the required discrimination task are selected in advance using a Sequential Forward
Floating Selection (SFFS) Algorithm. A light source, based on Light Emitting Diodes (LEDs) at these wavelengths is
then used to sequentially illuminate the material under analysis, and the resulting images are captured by a CCD camera
with spectral response in the entire range of the selected wavelengths. Finally, the several multispectral planes obtained
are processed using a Spectral Angle Mapping (SAM) algorithm, whose output is the desired material classification.
Among other advantages, this approach of controlled and specific illumination produces multispectral imaging with a
simple monochrome camera, and cold illumination restricted to specific relevant wavelengths, which is desirable for the
food and beverage industry. The proposed system has been tested with success for the automatic detection of foreign
object in the tobacco processing industry.

Keywords: Multispectral system, high-bright LEDs, imaging spectroscopy, automatic discrimination, material
characterization.

1. INTRODUCTION

Automated machine vision has developed over the years in many areas, one of them being the range of wavelengths used
for inspection and also the number of spectral ranges that are individually processed to obtain the desired information.
The change from a single monochrome wide spectral band to color imaging (three bands, RGB, in the visible range) has
result in better performance in typical discrimination tasks. Ultimately, this concept has been extended to more spectral
bands and to wavelengths outside the visible range, resulting in more capable imaging systems, commonly known as
multispectral imaging systems [1][2]. A typical multispectral system comprises a white light source to illuminate the
material under study, and an imaging device which produce 2D images planes at different wavelengths. The wavelength
resolution is usually provided by optical filters or diffraction elements [3], and it can be very high, with hundred or
thousand of resolved spectral bands. This result in complex and expensive instruments with a large amount of data to be
processed. One interesting option is to restrict the spatial resolution to one-dimension, a line, so a single 2D plane
contains both spatial and spectral resolution. This approach allows a simpler instrument based on a conventional imaging
camera and the proper diffractive optics [4].

For all of those systems based on spectroscopic analysis, data processing required to perform the discrimination task
involved two steps: dimensional reduction and the discrimination itself. The first step is important when the spectral
resolution is higher than needed, as several works have demonstrated that in most applications, only a few discrete
spectral bands contain enough information to perform the discrimination with acceptable error, thus reducing the
computational cost of the subsequent steps and of the entire process [5]. To perform adequate dimensional reduction
actions, samples of the different materials to be discriminated should be available in order to identify their relevant
features. One approach to perform the dimensional reduction is the Principal Components Analysis (PCA) [6] which
performs data compression maintaining the relevant information contained in second-order statistics of the data. The
spectrum of each spatial point is projected over a vector basis different from the spectral wavelengths, and related with
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the directions where their variance deviate the most. This projection is widely known and employed but does not provide
a physical insight of the problem. However, this objective can be achieved in a different way that consists in identifying
and discarding those spectral bands, or features, not contributing to the classification task. After that, the selected and
maintained spectral bands are employed by the subsequent classification algorithm in the same way as principal
components. These redundancy removal algorithms are called feature selection methods, and they come to solve on
disadvantages of feature extraction techniques, such as PCA, where the results cannot be associated to spectral bands
with physical meaning [7]. One of these feature selection algorithms is the Sequential Floating Forward Selection
algorithm (SFFS), that has been successfully applied to reduce the dimensionality, or the features, of hyperspectral data
prior to the discrimination step [3], [7]-[9].

For the discrimination or classification task, several approaches have been proposed. Among others, Artificial Neural
Networks (ANN) [10] are becoming more popular for pattern recognition due to their advantages for facing with non-
linearity and are also beginning to play an increasingly significant place in the food industry [11][12]. Another simple
classification approach is the Spectral Angle Mapping (SAM) [13][14]. This algorithm determines the similarity between
two spectra by calculating the “spectral angle” between them. Spectra are considered as vectors in a space with
dimensionality equal to the number of preserved bands. Small angles between the two spectrums indicate high similarity
and high angles indicate low similarity. Since SAM uses only the direction of the spectra and not their length, the method
is insensitive to the variations of gain factor of the measurement, the diffuse reflectance of the material in this case.

One possible optimization of the above mentioned multispectral imaging systems and algorithms is to perform the
dimensional reduction inversely or in advance, thus avoiding the capturing and elimination of redundant or non-
significant wavelengths. As most of the discrimination tasks can be performed with only a few discrete spectral bands,
this can improve the efficiency and reduce the complexity of the system. Additionally, most of the energy emitted by the
white light source is therefore not useful for the discrimination task, as only a few of the all emitted wavelengths are
analyzed. If the light source emission were restricted to the significant wavelengths, also the excess heat produced by
conventional white light sources, that is a major concern in some applications for the food and beverage industries, could
be reduced.

In this paper, we propose a light source with discrete wavelengths, whose values are selected in advance using the SFFS
algorithm for a particular discrimination problem. The light source is based on multiple high-bright LEDs, a set of them
for every wavelength, that are sequentially activated by a computer. For each wavelength, an image is captured and
stored by a conventional monochrome Silicon-based CCD camera, to obtain multiple spectral planes of the material. A
discrimination algorithm (SAM) is then applied to the images to obtain a classification of the different materials
appearing in the image, based on their spectral features.

This system has been applied with success to one particular problem: the detection and classification of foreign objects
that can be mixed with chopped tobacco leaves in the tobacco processing industry. The next section is focused in the
wavelength selection for this particular application, section 3 give details of the adaptive light source, the experimental
setup and results are described in detail in section 4, while section 5 deals with the main conclusions from the results and
future works, some of them ongoing at the moment, to improve the proposed system.

2. WAVELENGTHS SELECTION

A key parameter of the proposed system is the definition of the set of discrete wavelengths selected to sequentially
illuminate the surface under inspection. This set of wavelengths is specific for each discrimination problem, as it depends
strongly in the diffuse reflectance characteristics of the surface of the different materials that need to be classified. The
proposed algorithm to obtain these significant wavelengths is the Sequential Floating Forward Selection (SFFS) [3][7].
The aim of SFFS is to select M out of the N initial spectral bands, where M<N. Obviously, this reduction would increase
the classification error, unless those M spectral bands that best discriminate among the classes were selected. Then, SFFS
assumes that there are several classes, or statistical distributions, to be discriminated therefore it is based on class
separability. Classification performance is an alternative selection criterion. While an algorithm based on classification
performance selects those features that provide higher classification accuracy, an algorithm based on class separability
chooses those spectral bands maximizing the distance among the classes. On the other hand, the major drawback of the
selection based on classification performance resides on its computational performance. It is necessary to train and test
the classifier for every selected feature subset. In addition, the obtained results cannot be extended to other classifiers.
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Feature selection algorithms based on class separability are less time-consuming and independent of the classifier.
Separability measurement can be calculated in three different ways [7]:

- By measuring the probabilistic distance between the probability density functions. Typical probabilistic
distances are Chernoff, Bhattacharyya and Patrick-Fisher.

- Computation of between-class and within-class scatter matrixes.
- Theoretical measurements of information and correlation.

As in [7], the Bhattacharya distance is here selected as the criterion to measure class separability, it is given by:

g = i(ﬂz S _ﬂl)%ln EeE 0
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where £4 and Z; are the mean and the covariance matrix for class i, where Gaussian distribution of the classes is assumed.

Apart from the selection criterion, an optimal search strategy of the feature bands must be followed because, even if the
number of final selected features is known, the evaluation of the performance of each selected subset is unapproachable
due to time consumption. SFFS is named “forward” because it begins with one feature and continues adding features. It
is also named “floating” because after each forward step (addition of a new spectral band x;,.) a number of backward
steps (removal of several spectral bands x,,.) are applied as long as the resulting subsets are better than the previously
evaluated ones according to the selection criterion. This procedure continues until some termination criterion, which is
fixed by the user, is met. In this case, it is the maximum number of features x;,. (wavelengths in this case) to be used.

A graphical scheme of this procedure, where X is the initial feature subset and Y is the feature subset selected by means
of SFFS, is presented in Figure 1.
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Fig. 1. Representation of the SFFS algorithm for wavelength selection, from X initial spectral bands, to Y wavelengths.
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For the particular application of foreign objects detection in the tobacco industry, several images of chopped tobacco
leaves mixed with other materials have captured with a multispectral set-up under white light illumination [9]. The
characterization set-up employs an Imspector® diffractive optics with spectral range from 400nm to 100nm, and a
Pixelink® PL-A741 CCD camera with similar spectral range. This setup produces 640 spectral bands along an
inspection line of several centimeters long where the material under study is placed. Different materials, considered from
the industrial point of view as foreign objects, have been characterized: candy wrappers, lengths of cord, leather and
other vegetal dry leaves.

The proposed SFFS algorithm has been applied and the result is shown in Table 1. The selected wavelengths are detailed
as a function of the number of light sources to be used. The fewer the number of wavelengths, the larger is the expected
discrimination error, but it has been demonstrated in a previous work that with only 6 wavelengths, the error is contained
and not much larger than with the original 640 spectral bands [9].

Table 1. Output of the SFFS algorithm: selected wavelengths for several cases of required output band. The expected
discrimination error is expected to increase with the decrease of the number of selected wavelengths.

NUMBERB%SSLECTED SELECTED WAVELENGTHS (nm)
4075 430 44781 46656  493.75  577.19
12 50069 67469  730.94 81718 89125 91563
o 4075 430 44781 46656 49375  577.19
50069 67460 89125 91563
4075 430 46656 57719  599.69  674.69
8 89125 91563
6 4075 430 466.56 57719 59960  674.69

3. DESCRIPTION OF THE ADAPTATIVE ILUMINATION SOURCE

We propose in this paper a light source capable of emitting, sequentially, different discrete wavelengths as a means to
obtain different spectral planes of the same image. One key aspect is that the set of wavelengths is obtained in advance
by a SFFS algorithm, as described in the previous section. For the problem of foreign material detection and
discrimination in the tobacco processing industry, six discrete wavelengths have been selected from a set of 640 initial
spectral bands captured by an imaging spectrograph. It is expected that these six wavelengths are the most significant to
perform the discrimination task.

For each selected wavelength, a high bright Light Emitting Diode (LED) has been selected, with its central wavelength
as close as possible to the required one. The central wavelength, spectral width and optical power are shown in Table 2.
The (normalized) experimental spectra of the six LEDs are shown in Figure 2.

Table 2. Parameters of the selected LEDs.

# Required A Central A Spectral Width | Optical Power
(nm) (nm) FWHM(nm) (mW)

1 407.50 405 25 150

2 430.00 430 50 0,3

3 674.69 670 25 110

4 466.56 465 20 45

5 577.19 572 25 3

6 599.69 600 15 1
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Fig. 2. Experimental spectra of the six LEDs selected for the adaptive light source.

A photograph of a prototype of the light source is shown in Figure 3. The light source includes a microcontroller which
is able to switch on and off the different LEDs with controlled current excitation. The operation of this device is
controlled by a PC computer by means of a USB interface.

The LEDs has been placed over a Printed Circuit Board (PCB) plane, in a 4x4 array. The placement of each LED source
and the number of LEDs for each wavelength depends on the emitted optical power and directivity of the radiation
diagram of each one. The objective is to get a uniform illumination over the analysis area, and to balance the emitted
power among different wavelengths. The later goal is difficult to reach due to the differences in the emitted power of
different LEDs sources, as it is difficult to obtain high bright diodes outside the typical wavelengths (i.e., R, G &B) used
for common illumination purposes. This problem has been resolved by means of a calibration procedure using a
reflectance standard, as described in the next lines.

Matrix of LEDs

Fig. 3. Photograph of a prototype of the adaptive light source.
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3.1 Calibration of the light source

The calibration procedure tries to correct the large differences in optical power of each LEDs source, and the non-
uniform spectral response of the optics and the CCD camera. The proposed procedure uses a calibration standard for
reflectance measurements, which is based on the Polytetrafluoroethylene (PTFE) material, with flat diffuse reflectance
response of 98% in the range from 250 to 1500nm.

In the proposed procedure, the camera is aimed at the PTFE surface, and each LED source is switched on in sequence.
For each light source, the captured image is analyzed in search of the pixel of highest intensity. Then, the internal gain
and the integration time of the CCD camera are modified until the intensity of this pixel is close but lower than the
maximum (saturation) value. This step is repeated for each LED source, and the values of gain and integration time are
stored. These values are used later during the discrimination task to optimize the capturing parameters for each
wavelength.

As an example of the behavior of the proposed light source, it has been used to compose a color image using a
monochrome CCD camera. This color image is created by mixing the three monochrome images arising from the
selective illumination at the wavelengths of 430, 540 and 650nm, which corresponds to the red, green and blue spectral
bands used for color imaging. In Figure 4, the images obtained from a colorful ribbon cable for each wavelength are
shown in the upper part, while the image at the bottom of the figure shows the composition of the three planes (color
photograph in the original).

430nm 540nm 650nm

Fig. 4. Top: Imaging of a colorful ribbon cable at three different wavelengths (430, 540 and 650nm). Composition of the
three RGB planes (color photograph in the original).

4. EXPERIMENTAL RESULTS

The proposed adaptive illumination system has been applied to the automatic discrimination of foreign objects in a
continuous belt carrying chopped tobacco leaves. The early detection of these foreign objects (lengths of cords, candy
wrappers, papers, chunks of wood, ...) is an important quality assurance problem in the tobacco processing industry. The
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proposed system has been test in the laboratory for this particular application. The experimental setup is shown in Figure
S.

Fig. 5. Experimental setup.

This setup includes the proposed light source (aimed at an angle of about 45° with respect to the material under test), and
a Pixelink PL-A741 CCD monochrome camera equipped with Zoom Lenses (Navitar 7000). The material under study is
shown in Figure 6: chopped tobacco leaves of different sizes, a piece of wrapping paper, a piece of leather, a bunch of
cotton threads, and two pieces of plastic wrapper.

Fig. 6. Material under test: several foreign materials over chopped tobacco leaves.

Six planes at the wavelengths indicated in section 3 have been captured. Each spectral plane has a spatial resolution of
1280x1024 pixels, corresponding to an area of approximately 12x10cm, that is, about 0.1mm per pixel. The Spectral
Angle Mapping (SAM) algorithm [14] described in section 1 has been applied to the multispectral images, with the aim
to discriminate between tobacco and non-tobacco materials. The result can be seen in Figure 7. The white areas
correspond to pixels classified as tobacco, while the black areas correspond to pixels classified as foreign materials.
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Fig. 7. Result of the discrimination phase using the SAM algorithm. White areas correspond with pixels detected as tobacco;
black areas are identified as foreign objects.

Figure 7 shows two of the problems encounter during the experiments. First, the presence of shadows, resulting in zones
for which no discrimination is possible. However, this can be easily solved with a better implementation of the light
source, using more LEDs and a different spatial distribution of the diodes.

The second problem is related to the occurrence of false positives (detection of a non-existent foreign object), that should
be minimized. With high resolution images, many single pixels can be incorrectly detected as foreign object mainly due
to shadows, discrimination errors or dead pixels of the camera. In a real application, this will trigger a mechanical system
that will throw away a large quantity of tobacco leaves around the (incorrectly detected) foreign object. To reduce this
problem, a post-processing algorithm known as k-NN (k-Nearest Neighbours) [15] has been implemented. This
algorithm is able to modify the classification of a pixel based on the number of similar pixels in the neighborhood. This
approach has a spatial low-pass effect on the result, and foreign objects smaller than a number of pixels are not detected.
This minimum size can however be adjusted by means of the size of the processing windows of the k-NN algorithm.
Figure 8 shows the classification result after a k-NN post-processing with a 41x41 pixels window (corresponding to
object sizes of about 4x4mm).
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Figure 8. Result of the discrimination phase after a post-processing with a k-NN algorithm with 41x41 pixels window. Most
of the false positives have been removed.

The same experimental setup and processing scheme has been applied to the image shown in Figure 9. This is a set of
foreign objects (threads of rope, leather, plastic wrapping and a dry leave of a non-tobacco tree) over chopped tobacco
leaves (tobacco is only seen in the upper part and the bottom-left corner of the image). This particular arrangement is
more difficult to classify because the color of the objects is quite the same of the tobacco leaves, in particular, the tree

leave (Platanus hispanica. ex Munchh.).

Figure 9. Another arrangement of foreign objects and tobacco leaves.

The result of the classification is shown in Figure 10, without (left) and with (right) k-NN processing. It can be seen that
after k-NN processing, the classification is mostly correct, with the exception of part of the tree leave. Even with the
misclassification of this fragment of the tree leave, this result is considered relevant because conventional color imaging
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would not be able to discriminate both kinds of vegetal materials due to the almost equal color of tobacco and non-
tobacco dry leaves.

—

Figure 10. Result of the discrimination without (left) and with (right) k-NN post-processing.

5. DISCUSSION

A multispectral discrimination system based on an adaptive light source has been presented in this paper. The light
source is based on a set of LEDs which are used to illuminate the material under study in a sequential way. The
wavelengths of the LEDs, which are the most relevant for the discrimination process, are chosen in advance, through the
SFFS dimensionality reduction algorithm. The spectral planes captured at each wavelength are processed with SAM
algorithm, which offers a classification for every pixel in the images based on its spectral features.

A prototype of the system has been implemented and tested for a particular application: the automatic on-line detection
of foreign objects among chopped tobacco leaves, a current problem in the tobacco industry. The results show the ability
of this approach to discriminate between tobacco leaves and typical foreign objects, like candy wrappers, threads of
cotton, wrapping paper, etc.

However, some aspects need to be improved. First, the occurrence of shadows in the image should be minimized, as they
produce wrong classification of the materials in the image. A better implementation of the light source, with more LEDs
and a larger emitting area should solve this problem. The discrimination of materials with almost equal spectral features
(for example, tobacco and non-tobacco dry leaves) should also be improved. More research effort is being focused at the
moment in these two particular aspects: a better implementation of the light source, and over an improved processing
algorithm to reduce the classification error.
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