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Summary In this paper, we consider efficiency improvement in a nonparamet-
ric panel data model with cross-sectional dependence. A Generalized Least Squares
(GLS)-type estimator is proposed by taking into account this dependence structure.
Parameterizing the cross-sectional dependence, a local linear estimator is shown to be
dominated by this type of GLS estimator. Also, possible gains in terms of rate of con-
vergence are studied. Asymptotically optimal bandwidth choice is justified. To assess
the finite sample performance of the proposed estimators, a Monte Carlo study is car-
ried out. Further, some empirical applications are conducted with the aim of analyzing
the implications of the European Monetary Union for its member countries.
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1. INTRODUCTION

Traditionally, panel data models assume independence across individuals. However, eco-
nomic agents (regions, states or countries, among others) are typically interdependent
due to externalities, spill-overs, or the presence of common shocks, among other reasons.
Therefore, ignoring this type of dependence may be inappropriate since standard esti-
mation procedures can lead to inefficient estimators as it was shown in Phillips and Sul
(2003), Hsiao and Tahmiscioglu (2008), and the references therein. Further, the question
of efficiency improvements using the correlation structure emerges naturally in this set-
ting, independently whether the dependence is allowed in either time or cross-sectional
dimension (or both).

For all these reasons, the question of how to characterize cross-sectional dependence
has received considerable attention in recent years, emerging two prominent strands in
the literature. On the one hand, the spatial econometric approach assumes that the
correlation structure can be modeled through a pre-specified spatial weight matrix that
may depend on either the geographic locations of the cross-sectional units or more general
economic variables. Thus, spatial processes such as the well-known spatial autoregressive
(SAR) or spatial moving average (SMA) models are very popular in this approach. See
Cliff and Ord (1972) or Arbia (2006), among others. On the other hand, the residual
multifactor approach states that the correlation structure can be characterized by the
presence of a finite number of unobserved common factors that affect all individuals with
different intensities. See Kelejian and Prucha (1999), Andrews (2005), Pesaran (2006),
or Bai (2009), for example.

However, parametric panel data models are usually subject to strong assumptions
about the functional forms that are hardly justified by Economic Theory. In this situation,
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the risk of misspecification of the functional form is high and the resulting estimators
are often inconsistent, invalidating the subsequent statistical inference. To overcome it,
nonparametric and semiparametric panel data models are increasingly popular in last
decades given their powerful capability of handling complex empirical problems. See Su
and Ullah (2011) and Rodriguez-Poo and Soberon (2017), among others, for an intensive
review in this regard.

Nevertheless, despite the relevance of the dependency issue among individuals, new
proposals to take into account this type of correlation in this nonparametric framework
are scarce both theoretically and empirically. Assuming a factorial approach for the cross-
sectional dependence, Su and Jin (2012) and Huang (2013), among others, propose to
estimate first the unknown function using standard nonparametric techniques and im-
proving the efficiency of the resulting estimator by extending the common correlated
effect estimator (CCE) in Pesaran (2006) to the nonparametric setting. However, this
pre-specified dependence structure may be inappropriate in several empirical studies. Al-
ternatively, Robinson (2012) and Lee and Robinson (2015) assume an unknown structure
of the cross-sectional dependence and show that a simple Nadaraya-Watson estimate is
dominated by a Generalized Least Squares (GLS)-type one in efficiency terms under some
conditions on the rate at which the cross-sectional dimension, N, is allowed to growth
with the time series length, T (see Theorems 6 and 7 in Lee and Robinson (2015), for
example).

In this paper we consider efficiency improvements in nonparametric panel data models
with cross-sectional dependence. Firstly, we propose to estimate the unknown function
through a local linear nonparametric method. Secondly, we improve the efficiency of the
previous estimator by parameterizing the cross-sectional dependence structure. Assuming
that both N and T are large, we are able to show that the proposed GLS-type estimator
dominates the standard local linear estimator. In particular, we obtain similar efficiency
results to those obtained in Robinson (2012) or Lee and Robinson (2015) without having
to impose any restriction about the growing rates among N and T as they need, but at
the price of assuming a pre-specified parametric form for the cross-sectional dependence.
Note that through this paper we consider the local linear fitting (see Fan and Gijbels
(1995) and Ruppert and Wand (1994) for a detailed discussion about their main features).
However, the proposed technique can be easily extended to other nonparametric estimates
such as the Nadaraya-Watson.

To assess the finite sample performance of the proposed estimators, a Monte Carlo
study is carried out. Further, some empirical applications are conducted with the aim
of analyzing the implications of the European Monetary Union (EMU) for its member
countries. Specifically, we conduct two empirical semiparametric applications that extend
our estimation technique to the partially linear setting. In the first one, the impact of
the ECB’s monetary policy on the house price index of Eurozone countries is analyzed.
In the second one, the role of the wage flexibility of a particular country is studied as an
instrument of adjustment against asymmetric shocks.

The paper is structured as follows. Section 2 describes the basic model and the list of
assumptions required to establish the asymptotic normality of the local linear estimator.
In Section 3, a more efficient nonparametric estimator is defined under cross-sectional
dependence. In Section 4, an optimal asymptotical bandwidth is reported. Section 5
reports the empirical applications for some partially linear models. All proofs of the
theorems and the Monte Carlo study can be found in the Online Supplementary material.
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2. MODEL SPECIFICATION AND ESTIMATION TECHNIQUE

We consider the nonparametric panel data model

yit = m(zt) + µi + vit, i = 1, . . . , N ; t = 1, . . . , T, (2.1)

where yit and the q-dimensional vector of explanatory variables zt are observed, m(·) is
a nonparametric function that needs to be estimated, µi is the unknown nonstochastic
individual heterogeneity, and vit are unobservable zero-mean random variables, uncorre-
lated across time but possibly correlated over the cross section. Also, vit is independent
of zs for any t and s, when s 6= t.

While model (2.1) is of practical interest in itself, it can be more broadly motivated
from a semiparametric model which involves also explanatory variables that vary along
individuals and time. For example, if yit denotes the deflacted house price index, zt the
interest rate set by the European Central Bank, and xit is a set of explanatory variables
(such as GDP per capita, population and unemployment rate), the semiparametric model
to consider is such as

yit = x′itβ +m(zt) + µi + vit, i = 1, . . . , N ; t = 1, . . . , T. (2.2)

Therefore, we firstly consider the estimation of (2.1). Later, we show how the proposed
methodology is straightforward extended to model (2.2) and several empirical applica-
tions are considered.

As already pointed out in previous works, direct estimation of m(·) through the use
of standard nonparametric regression leads to biased estimation of m(·), due to the
presence of µi. In order to overcome this situation, we follow Robinson (2012) and Lee
and Robinson (2015) and impose the following restriction

N∑
i=1

µi = 0, (2.3)

where the model (2.1) can be rewritten as

yAt = m(zt) + vAt, (2.4)

the A subscript denotes averaging and the cross-sectional means are defined as

yAt =
1

N

N∑
i=1

yit, vAt =
1

N

N∑
i=1

vit.

Following Fan and Gijbels (1995), Ruppert and Wand (1994), and Zhan-Qian (1996),
among others, and defining Zz as a T × (q + 1) matrix of the form

Zz =

 1 (z1 − z)′
...

...
1 (zT − z)′


and Wz = diag(h−qK((z1 − z)/h), . . . , h−qK((zT − z)/h)) as a T × T matrix for which

K(u) =

q∏
`=1

k(u`), u = (u1, u2, . . . , uq)
′,

where k(·) a univariate kernel function and h a positive bandwidth. Assuming that
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Z ′zWzZz is nonsingular, the corresponding local weighted linear least-squares estimator
for m(z) is defined as

m̃(z;h) = e′1
(
Z ′zWzZz

)−1
Z ′zWzyA, (2.5)

where e1 is the (q + 1) × 1 vector having 1 in the first entry and all other entries 0,

yA =
(
yA1, . . . , yAT

)′
is a T -dimensional vector. Of course, a general diagonal or non-

diagonal bandwidth matrix could be employed, but for the sake of simplicity, a single
scalar bandwidth is used.

In order to establish the asymptotic properties of m̃(z;h) and other estimators pro-
posed in the following sections, some notations are needed. Let Hm(z) = ∂m(z)/∂z∂z′

be the Hessian matrix of m(·), we define Φ(z) = tr(Hm(z)) as the bias measure of the
estimator. We let Z ∈ IRq be the support of zt. Furthermore, the following assumptions
are necessary.

Assumption 2.1. The idiosyncratic errors vit are such that:

• For all i, t, E(vit) = 0.
• For all i, j, t, there exist finite constants ωij such that E(vitvjt) = ωij, and for all
i, j, t, s, E(vitvjs) = 0 when t 6= s.

Assumption 2.2. Let {zt}t=1,...,T be a set of i.i.d. IRq-random variables, where zt has
continuous probability density function (pdf), f(z), that is twice continuously differen-
tiable with bounded second order derivatives in a neighborhood of z ∈ int(Z). Also, zt is
independent of vis for any t and s, when s 6= t.

Assumption 2.3. In a neighborhood of z ∈ int(Z), all second-order derivatives of m(·)
are bounded and uniformly continuous.

Assumption 2.4. K is a product kernel such that K(u) =
∏q
`=1 k(u`), where k(·) is a

compactly supported bounded kernel such that
∫
k(u)du = 1,

∫
uu′k(u)du = µ2(K)Iq, and∫

k2(u)du = R(K), where µ2(K) 6= 0 and R(K) 6= 0 are scalars and Iq is the q×q identity
matrix. In addition, all odd-order moments of k vanish, that is,

∫
uι11 . . . u

ιq
q k(u)du = 0

for all nonnegative integers ι1, . . . , ιq such that their sum is odd.

Assumption 2.5. h is a positive bandwidth that, as T →∞, h+ (Thq)−1 → 0.

Assumption 2.2 characterizes the idiosyncratic component. Assumption 2.1 is a rather
strong assumption in a context of time series variables. However, our interest in this
paper is to analyze the impact of cross-sectional dependence in terms of the efficiency of
the local linear estimator, so we opt to impose this condition. In this way, we are able
to isolate the impact of this dependence. Under suitable weak dependence conditions
in the time dimension we expected to get similar results. Assumptions 2.3-2.5 are basi-
cally smoothness and boundedness conditions. Assumptions 2.4-2.5 are standard in the
local linear literature, where Assumption 2.5 is related to the bandwidth condition for
smoothing techniques.

The difficulty of obtaining an exact expression of the MSE is well known. Then, to
assess the speed at which m̃(z;h) converges, we study the following conditional MSE

MSE(m̃(z;h)|Z) = E[
(
m̃(z;h)−m(z)

)2|Z],
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where Z = (z1, . . . , zT ) is the observed covariate vector. The following two theorems are
essentially restatements of earlier results, so no proofs are given.

Theorem 2.1. Assume conditions 2.1-2.5 hold. For z in the interior of Z and f(z) > 0,
as T →∞,

MSE(m̃(z;h)|Z) ∼
(
h2µq2(K)

2

)2

Φ2(z) +
Rq(K)

Thqf(z)
νN ,

where νN = N−2ı′NE(v·tv
′
·t)ıN , v·t = (v1t, . . . , vNt)

′ is a N -dimensional vector, and ıN
is a N -dimensional vector of ones.

Theorem 2.1 contains rather standard results in this literature (see Theorem 2.2 in
Ruppert and Wand (1994)) about the conditional mean and variance of m̃(z;h). Nev-
ertheless, the variance term exhibits a new element which reflects the strength of the
cross-sectional dependence, that is, νN . Further, the results of Theorem 2.1 are valid for
both N fixed and large.

With the aim of obtaining the asymptotic distribution of m̃(z;h), the following addi-
tional assumption is needed.

Assumption 2.6. For some ε > 0, E[|vit|(2+ε)] exists and is bounded.

Using the above condition, we obtain the following asymptotic distribution for the
local linear estimator, for which a similar proof scheme as in Cai and Li (2008) has been
followed in order to check the Lyapounov condition.

Theorem 2.2. Assume conditions 2.1-2.6 hold. For z in the interior of Z and f(z) > 0,
as T →∞,

√
Thqν

−1/2
N

(
m̃(z;h)−m(z)− b(z;h)

) d→ N
(
0, v(z)

)
where

b(z;h) =
h2

2
µq2(K)Φ(z) + op(h

2),

v(z) = Rq(K)/f(z).

This theorem shows that m̃(z;h) is consistent and asymptotically normal with a rate
of convergence which depends on the rate of increase, if any, of νN . Furthermore, as it
is expected from the nonparametric literature, the local linear estimator exhibits a bias
reduction with respect to the Nadaraya-Watson estimator, but the variance term is of the
same order as the obtained in Lee and Robinson (2015). Therefore, as it is usual when
cross-sectional dependence is allowed, an alternative estimator with better asymptotic
properties in terms of variance-reduction can be obtained by taking into account the
information of the correlation matrix, i.e., νN . In the following section, an alternative
technique is developed in this sense.
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3. EFFICIENT NONPARAMETRIC ESTIMATION

In this section, we propose an alternative nonparametric estimator that is more efficient
than the local linear estimator (2.5) taking into account the potential cross-sectional
dependence. With this aim, the following assumption about the random error is imposed.

Assumption 3.1. Let v·t be i.i.d. with zero mean vector and covariance matrix σ2
0Ω,

where σ2
0 is a positive scalar and Ω is a N ×N positive definite matrix.

Hence, under Assumption 3.1 it can be shown that νN = N−2σ2
0ı
′
NΩıN . Then, as N

increases, we get νN = O(N−1) and the rate of convergence of m̃(z;h) will be
√
NThq,

which is analogous to the common weak dependence assumption in time series. On its
part, boundedness ωij implies νN = O(1) and the rate of convergence of m̃(z;h) will

be
√
Thq, allowing “long-range cross-sectional dependence”. (See Robinson (2012) for a

deeper discussion).
In this situation, developing more efficient estimators requires m(·) to be identified in

a different way from that in Section 2. Then, following the spirit in Robinson (2012) we
rewrite (2.1) as

y·t = ıNm
($)(zt) + µ($) + v·t, t = 1, . . . , T, (3.6)

where y·t = (y1t, . . . , yNt)
′, µ$ = (µ$1 , . . . , µ

$
N )′, and v·t = (v1t, . . . , vNt)

′ areN -dimensional
vectors, and $ represents a vector of weights such as $ = ($1, . . . , $N )′.

To identify the parameters of interest in (3.6) and given that condition (2.3) was
arbitrary, it is imposed

$′ıN = 1, (3.7)

$′µ($) = 0. (3.8)

Premultiplying by $ both sides of (3.6) and imposing conditions (3.7)-(3.8), it is
obtained

$′y·t = m($)(zt) +$′v·t. (3.9)

Comparing (2.4) and (3.9) it can be noted that there is a vertical shift between m($)(·)
identified by (3.7)-(3.8) and m(·) identified by (2.3) such as m($)(z)−m(z) = $′µ for all
z. See Robinson (2012) for further details. Further, we choose $ to minimize variance. In
place of νN , under Assumption 3.1 we have νN$ = V ar($′v·t) = σ2

0$
′Ω$, and deduce

the optimal $ = $∗ subject to (3.7) obtaining

$∗ = arg min
$

νN$ =
(
ı′NΩ−1ıN

)−1
Ω−1ıN . (3.10)

Replacing (3.10) in (3.9) and following a similar procedure as above, an optimal GLS
local linear estimator for the unknown function can be proposed such as

m̃($)(z;h) = e′1(Z ′zWzZz)
−1Z ′zWzY

′$∗, (3.11)

where Y = (y1·, . . . , yN ·)
′ is a (N × T ) matrix and yi· = (yi1, . . . , yiT )′.

However, this estimator is infeasible given that $∗ depends on Ω which is generally
unknown. To overcome this problem, we propose to parameterize the cross-sectional
dependence defining Ω = Ω(θ0), where θ0 is a r-dimensional parameter vector known
only to lie in a given compact subset Θ of IRr. Note that investing in a correct parametric
model for Ω(θ0) can be very appealing for several reasons. On the one hand, it can lead
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to better finite sample properties of the resulting estimates. On the other hand, this
approach allows to avoid restrictive assumptions about the growing rates among N and
T , as it was required in Robinson (2012) or Lee and Robinson (2015). Finally, it enables to
cover several situations of interest. More precisely, when the cross-sectional dependence
is described by SAR(1) models we get

Ω(θ0) = (IN − θ0WN )−1(IN − θ0WN )−1′
, (3.12)

where θ0 ∈ (−1, 1), IN is a N ×N identity matrix, and WN is a N ×N row- and column-
normalized weight matrix. Alternatively, if the dependence is represented by means of
SMA(1) models we get

Ω(θ0) = (IN + θ0WN )(IN + θ0WN )′. (3.13)

Note that if Ω(θ0) is a known function of θ0, and θ0 is known, Ω(θ0) is just a case
of the known Ω in the infeasible estimates of Robinson (2012) and Lee and Robinson
(2015). Nevertheless, the difficulty of this procedure stems from the fact that Ω(·) is a
known function, but θ0 and σ2

0 are unknown. To overcome it, we propose to replace these
terms by suitable estimators that can be obtained by the Pseudo-Maximum Likelihood
Estimation (PMLE).

Denote by θ and σ2 any admissible values of θ0 and σ2
0 , respectively, and let Ω(θ) be

the N ×N matrix with (i, j)th element ωij(θ). For any θ ∈ Θ, we define the approximate
Gaussian pseudo log-likelihood as

lnLNT (θ, σ2) = −NT
2
ln(2π)− NT

2
lnσ2 − T ln|Ω(θ)|1/2 − 1

2σ2

T∑
t=1

ṽ′·tΩ
−1(θ)ṽ·t, (3.14)

where ṽ·t = (ṽ1t, . . . , ṽNt)
′ is a N -dimensional vector of transformed error terms whose

it-th element is of the form ṽit = yit − yiA + yAA − m̃(zt;h), where yiA = 1
T

∑T
t=1 yit

and yAA = 1
NT

∑N
i=1

∑T
t=1 yit. Note that this transformation was already proposed in

Robinson (2012) and it is very appealing since it provides a solution for the error term
that is valid when T →∞ and N is either small or large.

Hence, our estimates of θ0 and σ2
0 minimize lnLNT (θ, σ2). For given θ, (3.14) is min-

imised with respect to σ2 obtaining

σ2(θ) =
1

NT

T∑
t=1

ṽ′·tΩ
−1(θ)ṽ·t, (3.15)

and the concentrated function is such as

Q(θ) =
NT

2
(ln(2π) + 1) +

NT

2
lnσ2(θ) +

T

2
ln|Ω(θ)|. (3.16)

In this situation, we define the Gaussian pseudo-maximum-likelihood estimators of θ0

and σ2
0 as

θ̂ = arg min
θ∈Θ

Q(θ), (3.17)

σ̂2 = σ2(θ̂). (3.18)

Then, replacing (3.17) in (3.10), the corresponding optimal feasible GLS (FGLS) local
linear estimator of m($)(·) is of the form

m̂($)(z;h; θ̂) = e′1(Z ′zWzZz)
−1Z ′zWzY

′$∗(θ̂), (3.19)
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where $∗(θ̂) =
(
ı′NΩ−1(θ̂)ıN

)−1
Ω−1(θ̂)ıN .

For a real matrix A, we denote by ‖A‖ the spectral norm of A, i.e., the square root of the
largest eigenvalue of A′A. To analyze the main asymptotic properties of this estimator,
the following additional assumptions are necessary.

Assumption 3.2. For a neighbourhood N of θ0, lim
N→∞

supN (‖Ω(θ)‖+ ‖Ω−1(θ)‖) <∞.

Assumption 3.3. Let (r) be the r-th derivative with respect to θr and assuming that
Ω(θ) is differentiable for a neighbourhood N of θ0, lim

N→∞
supN ‖Ω(r)(θ)‖ <∞.

Given the several specifications of the Ω(·) and the relative simplicity of Assumptions
3.2 and 3.3, it is interest in checking these conditions under more primitive conditions.
With this aim, we take as benchmark the SMA model defined previously, where θ ∈ Θ =
{θ : |θ| ≤ 1− ε} is assumed for ε > 0 sufficiently small and ‖WN‖ ≤ 1. In order to check
the weak dependence and invertibility condition in Assumption 3.2, we can write

‖Ω(θ)‖ ≤ ‖(IN − θWN )−1‖2 ≤
(

1−
∞∑
r=0

|θ|r‖WN‖r
)−2

≤ (1− |θ|)−2 ≤ 1/ε2 <∞,

given that, for normalization, ‖WN‖ ≤ 1 implies ‖WN‖ = 1, if WN ıN = ıN . Under
similar reasoning,

‖Ω(θ)‖−1 ≤ ‖(IN − θWN‖2 ≤ (1− |θ|)2 ≤ ε2 <∞,

so it is proved that Assumption 3.2 holds. Similar results can be obtained whether Ω(θ)
is parameterized as a SMA(1) or naturally factored as Ω(θ) = BB′, where B is a known
matrix function of θ. Therefore, Assumption 3.2 effectively upper- and lower-bounds
variances and mildly limits the extend of cross-sectional dependence, independently of the
type of dependence specification. Under cross-sectional uncorrelatedness, this condition
reduces to lim

N→∞
sup(ωii + ω−1

ii ) <∞.

We focus now on the validity of Assumption 3.3. Remember that Ω(θ) is differentiable
over the compact support Θ. Then, we can write

‖Ω(j)(θ)‖ ≤ ‖(IN − θWN )−1WNΩ(θ)‖+ ‖Ω(θ)W ′N (IN − θWN )′‖

≤ 2‖(IN − θWN )−1‖‖Ω(θ)‖ ≤ 2

(
1−

∞∑
r=0

|θ|r‖WN‖r
)−1

= 2/ε <∞,

so Assumption 3.3 is guaranteed.
In order to analyze the consistency of λ̂ = (θ̂, σ̂2)′, we denote G(θ) = Ω(θ)−1Ω(1)(θ),

where Ω(1)(θ) is the first-order derivative with respect to θ, and πNT (θ) = T
2 tr{G(θ)G(θ)′}.

Also, the following assumption is required.

Assumption 3.4. Either (a) the limit of πNT is nonsingular for each possible θ in Θ;
or (b)

lim
N→∞

( 1

N
|σ2

0Ω−1′
Ω−1| − 1

N
ln|σ2(θ)Ω−1(θ)′Ω−1(θ)|

)
6= 0 for θ 6= θ0.

Assumption 3.4 is a condition for the nonsingularity of the limiting information matrix

ΣNT (λ0), where ΣNT (λ0) = −E
[

1
NT

∂2lnLNT (λ0)
∂λ∂λ′

]
. For local identification, a sufficient
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condition (but not necessary) is that the information matrix ΣNT (λ0) is nonsingular and

−E
(

1
NT

∂2lnLNT (λ0)
∂λ∂λ′

)
has full rank for any λ in some neighborhood N (λ0) of λ0 (see

Rothenberg (1971)). However, when lim
T→∞

E[πNT (θ)] is singular, global identification can

still be obtained from Assumption 3.4(b) imposing a condition on the variance structure
of the model.

Theorem 3.1. Assume conditions 2.2-2.6 and 3.1-3.4 hold, λ0 = (θ′0, σ
2
0)′ is identified

and

λ̂− λ0
p→ 0.

Considering now the asymptotic distribution of the PMLE estimators, we obtain the

following result. We denote ΩNT (λ0) = E
[

1
NT

∂lnLNT (λ0)
∂λ × ∂lnLNT (λ0)

∂λ

]
− ΣNT (λ0).

Theorem 3.2. Assume conditions 2.2-2.6 and 3.1-3.4 hold, as N and T tends to infinity,
√
NT (λ̂− λ0)

d→ N
(
0,Σ(λ0)−1 + Σ(λ0)−1Ω(λ0)Σ(λ0)−1

)
,

where Σ(λ0) = − lim
N→∞

E
(

1
NT

∂2lnLNT (λ0)
∂λ∂λ′

)
and Ω(λ0) = lim

N→∞
ΩNT (λ0).

Unlike what happens in other studies as Lee (2004) or Yu et al. (2008) among others,
this asymptotic result is valid regardless of the distribution of the error term since it does
not depend on any term related to the third order moment of the error.

Considering now the asymptotic distribution of the optimal GLS local linear estimator,
the following result is obtained.

Theorem 3.3. Assume conditions 2.2-2.6 and 3.1-3.3 hold. For z in the interior of Z
and f(z) > 0, as N and T tend to infinity,

√
Thqν($)−1/2(θ0)

(
m̃($)(z;h; θ0)−m($)(z)− h2

2
µq2(K)Φ($)(z) + op(h

2)
)

d→ N

(
0,
σ2
ηR

q(K)

f(z)

)
,

where m($)(z) = m(z)+$′µ, ν($)(θ0) =
(
ı′NΩ−1(θ0)ıN

)−1
, and Φ($)(z) = tr(H($)

m (z)),

for H($)
m (z) being the Hessian matrix of m($)(·).

Finally, in order to show the efficiency gains of the FGLS procedure proposed in this
paper, it is necessary to prove the asymptotic equivalence between m̂($)(z;h; θ̂) and

m̃($)(z;h; θ0) under the consistency of θ̂.

Theorem 3.4. Assume conditions 2.2-2.6 and 3.1-3.4 hold for z ∈ IRq. As N and T
tends to infinity,

m̂($)(z;h; θ̂)− m̃($)(z;h; θ0) = op

(
1√

NThq

)
,

provided that |µi| is bounded by a constant.

Looking at the results in Theorem 3.3, we could be noted that the optimal GLS estima-
tor is consistent an asymptotically normal, with a rate of convergence of

√
Thqν($)−1/2(θ0).
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Therefore, the convergence of m($)(·) depends on the rate of increase, if any, of ν
($)
N (θ0).

In addition, from Theorem 3.4 it can be highlighted that the optimal FGLS and GLS
estimators are asymptotically equivalent when both N and T are large. Comparing the
results in Theorems 2.2 and 3.3-3.4, the efficiency improvement of this new procedure is
corroborated since ν($)(θ0) < νN (θ0), unless Ω(θ0) has an eigenvector ıN . Note that this
phenomena was already pointed out in Robinson (2012), where this particular situation
is analyzed in factor and spatial autoregressive models. Further, the rate of convergence
of m($)(z) is faster than m(z) if νN (θ0)/ν($)(θ0)→ 0.

To sum up, all these results are in line with those obtained in Robinson (2012) and
Lee and Robinson (2015). Therefore, it is shown that the methodology developed in this
paper enables us to overcome the usual restriction in this literature about the growth
rate among N and T , but at the price of assuming a fully parametric structure of the
covariance matrix.

4. OPTIMAL BANDWIDTH CHOICE

As it is clear from previous sections, the bandwidth term, h, plays a crucial role in the
estimation ofm(·). Choosing a large h, the variance of our estimator will be reduced but at
the cost of enlarging bias. In order to solve this trade-off, h should be chosen to minimize
a certain distance measure. One such measure is the conditional mean integrated square
error (MISE) defined as

MISE(m̂($)(z;h; θ̂)|Z) = E

∫ 1

0

E[
(
m̂(u;h; θ̂)−m(u)

)2|Z]ψ(u)du,

where ψ(u) is a weight function chosen to ensure that the integral converges.
More precisely, it is easy to show that the bandwidth that minimizes the asymptotic

conditional MISE of m̂($)(z;h; θ̂) is

hopt =

(
qRq(K)σ2

0ν
($)(θ0)

Tµ2q
2 (K)f(z){Φ($)(z)}2

)1/(q+4)

. (4.20)

However, the optimal bandwidth (4.20) cannot be computed directly in practice. Al-
though R(K) and µ2(K) can be trivially calculated, Φ($)(·), f(·), θ0, and σ2

0 are un-
known. In order to consistently estimate both Φ($)(·) and f(·), standard nonparametric
techniques can be used. (See Gasser et al. (1991), for example). Meanwhile, to provide a
consistent estimator for θ0 and σ2

0 , we propose to use the Gaussian pseudo log-likelihood
estimates obtained in (3.18) and (3.19).

Therefore, the feasible optimal bandwidth is

ĥopt =

(
qRq(K)ν($)(θ̂)σ̂2

Tµ2q
2 (K)f̂(z){Φ̂($)(z)}2

)1/(q+4)

, (4.21)

where ν($)(θ̂) =
(
ı′NΩ−1(θ̂)ıN

)−1
.

In order to show that the optimal bandwidth and the feasible one are asymptotically
equivalent, the following additional assumption is needed.

Assumption 4.1. As T tends to infinity,

f̂(z)− f(z) = Op
(
‖Ω(θ0)‖−1‖Ω(θ̂)− Ω(θ0)‖

)
,

{Φ̂($)(z)}2 − {Φ($)(z)}2 = Op
(
‖Ω(θ0)‖−1‖Ω(θ̂)− Ω(θ0)‖

)
.
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Assumption 4.1 is written in an nonprimitive way but it is needed to guarantee that
the effect of estimating bias is negligible. However, we believe that it is not going to be
a problem since our main interest is to analyze the impact of cross-sectional dependence
and Φ($)(z) is not affected by that.

Theorem 4.1. Assume conditions 2.2-2.5, 3.1-3.4, and 4.1 hold, as T tends to infinity,

ĥopt
hopt

p→ 1.

Therefore, in Theorem 4.1 it is shown that despite what is obtained in Lee and Robinson
(2015) and Robinson (2012), in this particular case any requirement on the relative rates
of N and T is necessary to show the asymptotically equivalence of the optimal bandwidth.

5. EMPIRICAL APPLICATIONS

In this section we apply our estimation methodology in two real data sets with the aim of
showing the empirical viability of this methodology. In both cases we consider partially
linear regression models with the aim of showing that the estimating procedure proposed
in this paper can be easily extended to that particular setting. In the first one, we analyze
the impact of the low interest rate policy carried out by the ECB on the house price index
of Eurozone countries since the outbreak of the financial crisis in 2007-2008. In the second
one, the wage flexibility of a particular country is studied as an instrument of adjustment
against asymmetric shocks using the Spanish case as a relevant example.

The Europe’s unification in the Economic and Monetary Union (EMU) has radically
changed the economic scenario of the Eurozone countries and nowadays there is still an
ongoing debate about the cost and benefits of joining it. See Mélitz (1997) and Tavlas
(1993, 1994), among others, for a detailed discussion. On the one hand, the theory of
Optimum Currency Areas (OCA) states that the single currency eliminates the risk of
the exchange rate and reduces transaction costs among member countries by favoring
intra-community trade. On the other hand, detractors of EMU argue that the loss of the
exchange and monetary policy in favor of the ECB reduces the scope of the governments
to deal against adverse asymmetric shocks. Thus, the Eurozone countries have to resort
to another type of adjustment instrument to cope with these difficulties.

The growing importance of the euro in international trades and the increasing trade
activities which result from adopting the currency clearly shows that benefits will out-
weigh costs. However, the global financial crisis in 2007-2008 has acted as an asymmetric
shock which has exacerbated a structural problem of competitiveness between the Euro-
zone countries and the long and medium term stability of the EMU has been called into
question. In this situation, analyzing the impact of the loss of the monetary policy among
the EMU’s member countries is a crucial issue. With this aim, we are going to consider
two empirical application: i) to analyze the impact of the ECB’s monetary policy on the
house price index of the Eurozone countries; ii) to study the role of the wage flexibility
in Spain as an adjustment instrument against asymmetric shocks. In both situations, the
regression model to estimate is a partially linear regression model of the following form

yit = x′itβ +m(zt) + µi + vit, i = 1, . . . , N, t = 1, . . . , T, (5.22)

where xit and zt are p×1 and q×1 vectors of explanatory variables, β is a p-dimensional
vector of unknown parameters and m(·) is the unknown smooth function. This model
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is particularly suitable when xit contains categorical variables, and is often used when
the overall number of explanatory variables are large in order to avoid the curse of
dimensionality of the fully nonparametric specification. The estimation of this model has
received much attention. See Robinson (1988) or Fan and Li (1999).

In order to control for the fixed effects, we impose restriction (2.3) obtaining

yAt = x′Atβ +m(zt) + vAt, (5.23)

where xAt = N−1
∑N
i=1 xit. Following the Robinson (1988)’s approach to consistently

estimate the unknown parameters and unknown function in the above expression, we
take the conditional expectations on zt of (5.23). Subtracting the resulting expression
from (5.23), we premultiply each term by the density function in order to avoid the
random denominator problem. Then, the resulting expression is such as

yAtf(zt)− E(yAt|zt)f(zt) = [xAtf(zt)− E(xAt|zt)f(zt)]
′β + vAtf(zt), (5.24)

where f(zt) is the density function described previously in Assumption 2.2.
In order to obtain a feasible estimator for β, we propose to estimate the above condi-

tional expectations using some nonparametric methods. Hence, the consistent estimators
of f(zt), E(xAt|zt)f(zt), and E(yAt|zt)f(zt) are f̂(zt) = (1/Taq)

∑T
t=1K((zt − z)/a),

Ê(xAt|zt)f̂(zt) = (1/Taq)
∑T
t=1 xAtK((zt−z)/a), and Ê(yAt|zt)f̂(zt) = (1/Taq)

∑T
t=1 yAt

×K((zt−z)/a), respectively, where a is the bandwidth term and K(·) is a kernel function
defined as in (2.5).

Let ̂̈xAt = xAtf̂(zt) − Ê(xAt|zt)f̂(zt) and ̂̈yAt = yAtf̂(zt) − Ê(yAt|zt)f̂(zt). Suppose

that
(∑T

t=1
̂̈xAt̂̈x′

At

)
is nonsingular, the resulting estimator for β is of the form

β̃ =

( T∑
t=1

̂̈xAt̂̈x′

At

)−1 T∑
t=1

̂̈xAt̂̈yAt. (5.25)

Considering now the estimation of m(·), we replace β̃ in (5.23) and propose the fol-
lowing local weighted linear least-squares estimator following a similar procedure as in
(2.5),

m̃(z;h) = e′1(Z ′zWzZz)
−1Z ′zWz(yA − xAβ̃), (5.26)

where xA = (xA1, . . . , xAT )′ is a T × p matrix.
Let Kυ be the class of kernels and Gας the function class defined as Definitions 1 and

2 in Robinson (1988), respectively. Kernels in Kυ are of order υ, and the functions in
Gας are ς-times partially differentiable with a Lipschitz-continuous remainder, α controls
the moment properties of the remainder. In particular, the functions in Gας are bounded.
To prove the main asymptotic properties of the estimator of β, we adapt the following
assumptions from Li and Stengos (1996) and Qian and Wang (2012).

Assumption 5.1. f ∈ Gςα for some constant ς ≥ 1, m ∈ G4+ε
υ , E(xit|zt) ∈ G(4+ε)

υ for
some ε > 0 and positive integer υ with ς < υ ≤ ς + 1.

Assumption 5.2. k ∈ Kυ, and as N and T tends to infinity, NTa2q−4 → ∞ and
NTa4υ.

These assumptions are fairly standard in the semiparametric literature, but some re-
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marks are necessary. On the one hand, Assumption 5.1 is stronger than that is made in Li
and Stengos (1996). In particular, we assume that the density function is bounded and
at least first-order partially differentiable with a Lipschitz-continuous remainder since
this is required for estimating the nonlinear part. However, this stronger condition is not
necessary for the asymptotic properties of β̃, only for m̃(·). On the other hand, Assump-
tion 5.2 is slightly weaker than that is assumed in Li and Stengos (1996), which requires
NTa2q →∞. From Assumption 5.2, 4υ > 2q − 4 or υ > q/2− 2. Hence, a second order
kernel (υ = 2) can be used if q < 6. See Qian and Wang (2012) for a deeper discussion.

Theorem 5.1. Under Assumptions 2.1-2.2 and 5.1-5.2, as N and T goes to infinity,

√
Tν
−1/2
N

(
β̃ − β

) d→ N(0,Γ−1ΨΓ−1),

where Γ = T−1
∑T
t=1E

[
ẍAtẍ

′
Atf

2(zt)
]
, Ψ = T−2

∑T
t=1

∑T
s=1E

[
ẍAtẍ

′
Asf

2(zt)f
2(zs)

]
,

and νN = N−2σ2
0ı
′
NΩ(θ0)ıN . Further, we can consistently estimate Γ and Ψ by plugging

in the estimates for each term.

Let νx = ẍAtẍ
′
As and assuming that νN = Op(N

−1) for both t = s and t 6= s, Theorem
5.1 contains two possible situations. If there is no cross-sectional dependence in Xit,
νx = O(1) and the convergence in distribution of β̃ is

√
NT . On the contrary, if the

explanatory variables exhibit some kind of cross-sectional dependence, νx = O(N−1)
and the rate of convergence is

√
T . Note that whether we are interested in the main

asymptotic properties of the nonparametric estimator m̃(z;h), we obtain exactly the

same results as in Theorem 2.2 using the consistency results of β̃ and following a similar
proof scheme as in that theorem.

Note that in the semiparametric framework the bandwidth selection issue requires
extra attention, given that the estimation procedure requires bandwidths specified in
each step. For the fully parametric part, (1 + p)-sets of bandwidth are required, each of
dimension q, that can be calculated via cross-validation functions. Later, the bandwidth
selection procedure proposed in Section 4 can be used for the nonparametric part. See
Henderson and Parmeter (2015) for a more deeper discussion.

Considering the more efficient estimation, we can rewrite (5.22) in vectorial form and
given the conditions (3.7)-(3.8) it is obtained

$′y·t = $′x·tβ +m($)(zt) +$′v·t, (5.27)

where x·t = (x1t, . . . , xNt)
′ is a N × p matrix. Following a similar procedure as in (3.10)

to obtain the optimal $∗ = $, we use the PMLE procedure to obtain the consistent
estimators for θ0 and σ2

0 by replacing the transformed errors by ṽit = yit − yiA + yAA −
m̃(zt)− (xit − xiA + xAA)′β̃.

Let ̂̈x($)
= $∗(θ̂)′x·tf̂(zt)−Ê($∗(θ̂)′x·t|zt)f̂(zt) and ̂̈y($)

= $∗(θ̂)′y·tf̂(zt)−Ê($∗(θ̂)′y·t|zt)f̂(zt).

Assuming that
(∑T

t=1
̂̈x($)′

At
̂̈x($)

At

)
is nonsingular, the feasible estimator proposed for β

is of the form

β̂ =

( T∑
t=1

̂̈x($)′

At
̂̈x($)

At

)−1 T∑
t=1

̂̈x($)′

At
̂̈y($)

At . (5.28)
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Similarly, the resulting feasible local weighted linear least-squares estimator is such as

m̂($)(z;h) = e′1(Z ′zWzZz)
−1Z ′zWz

(
Y ′$∗(θ̂)−

p∑
d=1

X ′d$
∗(θ̂)β̂d

)
, (5.29)

where Xd is a N × T matrix, for d = 1, . . . , p.

Theorem 5.2. Under Assumptions 2.2, 3.1-3.4, and 5.1-5.2 as N and T tends to infin-
ity,

√
Tν($)−1/2(θ0)

(
β̂ − β

) d→ N(0,Γ−1
$ Ψ$Γ−1

$ ),

where Γ$ = T−1
∑T
t=1E[ẍ′·t$$

′ẍ·tf
2(zt)], Ψ$ = T−2

∑T
t=1

∑T
s=1E[ẍ′·t$$

′ẍ·sf
2(zt)f

2(zs)],
and ν($)(θ0) = (ı′NΩ−1(θ0)ıN )−1. Further, we can consistently estimate Γ$ and Ψ$ by
plugging in the estimates for each term.

Again this theorem contains two possible situations. If Xit exhibits some kind of cross-
sectional dependence, the rate of convergence of this estimator is

√
T and if there is no

cross-sectional dependence on Xit this rate is
√
NT . Furthermore, the efficiency improve-

ment of β̂ depends again on the behavior of νN and ν($)(θ0) and it is corroborated if
ν($)(θ0) < νN . Finally, considering the main asymptotic properties of the nonparametric

estimator m̂(z;h) and using the consistency results of β̂, similar results as in Theorems
3.3-3.4 are obtained.

5.1. House price index for Eurozone countries

The financial crisis originated after the sub-prime crisis in the United States (US) in the
early 2007 as well as the role played within it by the fluctuations in the housing price
has refreshed the debate about the suitable policy response. The EMU’s case is specially
interesting given that the global crisis has impacted heterogeneously on the property
markets of the Eurozone countries.

In countries with their own national currency and monetary policy (such as the US,
the United Kingdom or New Zealand, for example) the central bank can increase interest
rates to slow down the growth rate of housing prices. However, in the EMU the ECB
sets interest rates with the primary interest of maintaining price stability in all member
countries. That means that monetary policy cannot longer be used as an instrument of
adjustment by these countries to deal with asymmetric negative sector and/or country
shocks.

In this framework, the aim of this study is to analyze the determinants of housing prices
in the Eurozone countries. Note that predicting changes in housing prices is not an easy
task. Apart from microeconomic factors (such as the set of characteristics of the house
or the environment in which it is located), certain macroeconomic factors such as GDP
or interest rate, among others, play a critical role since they determine the structure of
aggregate demand. Thus, we are interested in the following issues: First, to identify the
effect of the more relevant macroeconomic factors over that price level; Second, to analyze
whether the low interest rate policy carried out by the ECB since the outbreak of the
financial crisis in 2007 has a non-linear effect over the housing price; Third, to improve
the precision of these estimators taking into account the cross-sectional dependence, as it
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was established previously. To the best of our knowledge, that is a totally new approach
in the analysis of the housing price determinants.

Following what it is established in Muellbauer and Murphy (1997) and trying to in-
corporate flexibility in the regression model, we propose the following semi-parametric
model

hpiit = β1gdppcit + β2popit + β3unemit +m(ratet) + µi + vit, (5.30)

where i ∈ {1, . . . , N} denotes the country, t ∈ {1, . . . , T} is the number of observations
per country, β = (β1, . . . , β3) is the unknown parameters vector of interest, and m(·) is an
unknown function to estimate. Further, it is assumed that the cross-sectional dependence
is described by SMA(1) models. Not every country of the EMU has data on real house
prices over a long time period. Then, the data used in this study includes information on
quarterly terms for N = 12 countries (i.e., Austria, Belgium, Finland, France, Germany,
Greece, Ireland, Italy, Netherlands, Portugal, and Spain) from 1999(I) to 2019(IV ), so
T = 84.

The data used in this study come from two main sources. The interest rate over main
refinancing operations (rate) is obtained from ECB. The data for deflacted house price
index (hpi), total population (pop), GDP per capita (gdppc), and total unemployment
rate (unem) are obtained from the OECD Statistics database. The variables gdppc and
pop are taken in logarithms.

With the aim of consistently estimate the semi-parametric regression model (5.30),
we follow a similar estimation procedure as in (5.22). For the sake of simplicity, the
bandwidths (a and h) have been chosen following the Silverman rule-of-thumb. Of course,
the feasible optimal bandwidth justified in Theorem 4.1 could be used instead.

The estimated results are collected in Table 1, where SP denotes the semi-parametric
results when cross-sectional dependence is ignored and SP.FGLS is the semi-parametric
results when this dependence is taken into account. Further, for the sake of comparison
we include the OLS estimates for the fully parametric specification of equation (5.30)
with a quadratic term for rate.

Analyzing the OLS results of Table 1, it can be noted that GDP per capita is highly
significant and has the expected positive sign indicating that changes in income are
strongly positively related to changes in house prices. However, the coefficient estimates
for population and unemployment rate are the opposite as it was expected. If we compare
the OLS results with the corresponding for SP it can be observed that the signs and the
significance of the linear variables change considerably. All these results corroborate that
these OLS estimators may be subjected to some misspecification problems.

If we analyze the semiparametric results increases in the unemployment rate has the
expected negative sign in house prices, whereas population has a strong positive rela-
tionship to house prices. Interestingly, in this semiparametric specification it is obtained
a highly significant and negative sign for the GDP per capita. Furthermore, as it was
expected, greater differences are not detected when we compare that results with the
corresponding for SP.FGLS.

In Figure 1, the estimated curves for the interest rate set by the ECB are plotted.
Specifically, in Figure 1a it is detected a positive relationship between the interest rate
an the HPI up to certain point after which there seems to be a slightly negative trend.
Meanwhile, Figure 1b provides more precise results corroborating that result. Hence,
we can conclude that when we control for both nonlinear effect of interest rate and
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Table 1. Results for the HPI determinants.

OLS SP SP.FGLS
gdppc 1.3829∗∗∗ -0.9749∗∗∗ -0.9347∗∗∗

(0.0524) (0.1700) (0.1677)
pop -1.4024∗∗∗ 14.9025 14.6009∗∗∗

(0.0589) (1.2799) (1.2624)
unem 0.1908∗∗∗ -4.3925∗∗∗ -4.3533∗∗∗

(0.3623) (0.4186) (0.4129)
rate 23.6902∗∗∗ . .

(1.6493) . .
rate2 -396.5664∗∗∗ . .

(29.2446) . .

θ̂ . . 0.1034
σ̂2 . . 0.1109

Note: Standard errors are in parenthesis. ∗∗∗ indicates
statistical significance at the 1% level.

Figure 1. Nonparametric estimates for the ECB’s interest rate.

Note: Thick line denotes the estimates curve while dotted line is the 95% pointwise confidence

interval.

cross-sectional dependence among the EMU’s countries we get a nonlinear negative re-
lationship, as it was expected from the literature.

To sum up, all these results corroborate that the interest rate set by the ECB has a
nonlinear effect over the HPI. Further, the policy of low interest rates applied by the
ECB with the aim of reactivating the economies of the EMU’s member countries seems
to have the desired effect when we control for the dependence among these countries.
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5.2. Regional adjustment and wage flexibility

As it has been pointed out previously, one of the main disadvantages of belonging to
a monetary union is the loss of both the monetary policy and the exchange rates as
adjustment instruments. Furthermore, despite the efforts made in recent years towards
convergence among the EMU’s member countries, the EMU is still characterized by the
existence of structural regional differences in income per capita and unemployment rate
as well as the limited interregional labor mobility. In this framework, wage flexibility
becomes one of the main adjustment mechanisms of the Eurozone countries to deal with
negative asymmetric shocks through lower labour cost, see Abraham (1996) for further
details.

With the aim of analyzing the regional wage flexibility as an instrument of adjustment
against the global crisis that took place in 2007−2008, we carry out an empirical analysis
of wage flexibility analyzing the particular case of the Spanish labour market. Taking as
benchmark the model of wage bargaining between unions and employees as in Abraham
(1996) and trying to incorporate some flexibility in the regression model, we propose the
following estimated equation

˙wageit = β1 ˙unemit + β2 ˙waget +m( ˙prodt) + µi + vit, (5.31)

where ˙wageit denotes the real wage growth in region i and period t, ˙unemit is the regional
unemployment growth rate, ˙waget is the average national real wage growth, and ˙prodt is
the evolution of the growth in national labour productivity measured with a proxy defined
as the growth of the national GDP per capita. All variables except unemployment are in
logs. Also, β1 and β2 are the structural parameters to estimate, ˙prodt has an influence
on ˙wageit of unknown form, and vit are the random errors generated following SAR(1)
models as in (3.12). For this study, we consider quarterly data about the Spanish regions
from 2000(II) to 2020(II), so N = 17 and T = 81. All variables are taken from the
regional accounts recorded in the Spanish National Bureau of Statistics (INE).

Thus, the novelty of the approach that we propose here is two-fold. First, the use
of semi-parametric techniques to incorporate flexibility in the wage regression model to
analyze. Most of the research on wage flexibility resort to fully parametric techniques,
but they can be subjected to some misspecification problems as it was noted previously.
See Abraham (1996) and Guisan and Aguayo (2007), among others. Second, to improve
the precision of these estimators we apply the methodology proposed in the previous
sections to take into account the cross-sectional dependence for estimates. To the best
of our knowledge, this approach is totally new but very necessary. The likelihood that
regional wage flexibility can be influenced by some unobserved common features among
these regions is very high, and ignoring this fact can lead to misleading inference.

Further, as in the previous application, we resort to the partially linear approach
proposed for (5.22) to estimate (5.31) and use the Silverman rule-of-thumb to choose the
bandwidth. The estimated results are collected in Table 2.

Analyzing the results of Table 2, it can be highlighted that the coefficient related
to the national wage growth is not statistically different from 1 in the three estimated
equations. Hence, there seems to be evidence that the regional wage growth in Spain is
fairly homogeneous with respect to the average wage growth. In this context, the Spanish
labor market is characterized by a low degree of salary flexibility, where salaries show a
low capacity to respond to the employment situation of each individual. Regarding the
regional unemployment growth rate, in the three estimations it is obtained a negative
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Table 2. Results for the regional wage flexibility.

OLS SP SP.FGLS
˙wage 1.0899∗∗∗ 1.0872∗∗∗ 1.0874∗∗∗

(0.0108) (0.0103) (0.0103)
˙unem -0.0058∗∗∗ -0.0062∗∗∗ -0.0062

(0.0009) (0.0009) (0.0009)
˙prod -0.1706∗∗∗ . .

(0.0695) . .
˙prod

2
-0.5395∗∗∗ . .
(0.3850) . .

θ̂ . . 0.0060
σ̂2 . . 0.1100

Note: Standard errors are in parenthesis. ∗∗∗ indi-
cates statistical significance at the 1% level.

and highly significant relationship with regional wages, as it was expected. Furthermore,
the OLS results seem to corroborate a nonlinear relationship between the regional wages
growth and the evolution of the national productivity. As it can be seen from the first
column of Table 2, increases in the national productivity seems to have a positive and
significatively effect on regional wages up to certain threshold from which the effect
becomes negative.

With the aim of identifying more precisely the nonlinear relationship between the
national productivity and the regional wages, the estimated curves are plotted in Figure
2. Analyzing Figure 2a, it can be seen that there seems to be a negative relationship
between national productivity and regional wages until certain point after which there is
a U-shaped relationship. Note that this result is very far from the quadratic relationship
that was assumed for the OLS. Similar results are obtained when the cross-sectional
dependence is incorporated in Figure 2b, where more precise estimates and confidence
band can be observed.

Therefore, these results corroborates that imposing a pre-specified nonlinear function
for the national productivity in this type of studies can lead to misleading results about
regional labour markets in the EMU, but ignoring the cross-sectional dependence is not
a great issue. This is not a surprising result since we are analyzing different Spanish
regions. Completely different results are expected if we extend this study to different
European regions.
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