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Abstract— The recently introduced Zero-IF self-oscillating
mixers (SOMs) enable a direct frequency conversion, of interest
for the implementation of compact and low consumption radio
frequency identification (RFID) tags, among other applications.
In previous works, the Zero-IF SOM is placed in only one
of the terminals of the wireless link, the other one being
based on a conventional scheme. In this article, a system made
up of two wirelessly locked Zero-IF SOMs, operating as a
frequency upconverter and downconverter, will be analyzed to
evaluate its potential for low-cost short-range communications.
A complete formulation describing the system under antenna and
propagation effects will be presented, which, as a particular case,
is able to predict the behavior of the previously proposed Zero-IF
SOM, locked by an independent signal. The formulation based
on oscillator models extracted from harmonic balance allows
deriving design criteria for an optimum and robust performance
and can predict the maximum communication range, as well as
the stability properties and phase-noise behavior. The operation
under modulated conditions is analyzed with a novel envelope-
transient formulation, accounting for the time differentiation
caused by the propagation effects. The methods have been applied
to a system of two Zero-IF SOMs operating at 900 MHz.

Index Terms— Envelope transient, injection locking, noise
analysis.

I. INTRODUCTION

ZERO-IF self-oscillating mixers (SOMs), proposed in [1]
and [2], enable a direct frequency conversion that avoids

the need for both an oscillator and a mixer. In comparison
with conventional implementations, they reduce the power
consumption and size, which is of general interest for compact
transmitters and receivers, such as those required for radio
frequency identification (RFID) and sensor systems [3]. In the
RFID system proposed in [1], the Zero-IF SOM, placed in the
tag, is injection locked by the carrier transmitted by the reader.
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The tag can both demodulate and modulate this carrier, the lat-
ter being achieved through the variation of the tag bias voltage.
The reader detects this modulation in a conventional fashion,
with a local oscillator, mixer, and circulator. As a significant
extension of the Zero-IF SOM concept, Burasa et al. [4]
proposed a source-less transmitter–receiver system in which
multiple Zero-IF SOMs receive and demodulate multiple inde-
pendent data streams through a direct frequency conversion
to baseband. More recently, and considering the increasing
demand of multiband wireless systems, the works [5], [6]
proposed a concurrent dual-band Zero-IF SOM that, making
use of a stepped impedance ring-shape resonator [7], enables
a simultaneous compact direct-frequency conversion in two
different frequency bands. In addition, Pontón et al. [5], [6]
presented an investigation of the stability boundaries of the
Zero-IF SOM and its small-signal gain, as well as a strategy
to prevent any instantaneous unlocking through a suitable
selection of the operation point. Further theoretical studies of
the general performance of Zero-IF SOMs have been carried
out in [8], which analyzes their main distortion mechanisms
and noise behavior.

In view of the potentiality of these novel circuits, this
work expands [8] by investigating the possible implementation
of a wireless link based on two Zero-IF SOMs, operating
as a frequency upconverter and downconverter. A complete
formulation describing the system under antenna and prop-
agation effects will be derived, which, as a particular case,
is able to predict the behavior of the previously proposed
Zero-IF SOM [1], [2], locked by an independent signal. In the
most compact implementation, two distinct Zero-IF SOMs are
mutually locked through wireless propagation. The Zero-IF
SOMs acting as a transmitter are modulated through the
variation of a bias voltage. In the Zero-IF SOM acting as a
receiver, the modulation gives rise to a time variation of its
current consumption, so the signal can be demodulated from
the voltage drop in a resistor of the bias circuitry [9]. Here,
we will investigate the potentiality of this concept for low-cost
and low-consumption short-range communications and derive
design criteria for an optimum and robust performance.

The system will be analyzed through a new semianalytical
formulation, which relies on oscillator models extracted from
harmonic balance (HB) simulations [10], combined with a
detailed description of the antenna and propagation effects.
Note that the use of numerical models extracted from HB
enables a very realistic prediction of the circuit behavior.
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The new formulation, which accounts for the delay in the
signal envelope, will allow predicting the maximum commu-
nication range, as well as the stability properties and phase-
noise behavior. With the aid of this formulation, we will
derive the conditions for an optimum operation, considering
that the Zero-IF SOM in the receiver must exhibit a high
sensitivity, while the one in the transmitter must be able to
generate a sufficient oscillation power. Regarding the sen-
sitivity, some previous works demonstrate oscillator designs
able to lock to independent input sources with −100-dBm
available power [11], [12]. As will be shown here, the mutually
injection-locked operation can be maintained up to distances
of several meters with a conventional oscillator design using a
single transistor per SOM and low-gain antennas. Note that for
this initial proof of concept, two transistor-based SOMs will
be considered, though other devices, such as the tunnel diodes
recently proposed in [13] and [14], can be more convenient
to reduce consumption, size, and cost. We should emphasize
that the new formulation is able to predict the behavior of
the Zero-IF SOM under unilateral injection locking by an
independent carrier (considered in previous works [1], [2]),
as a particular case. The operation under modulated conditions
will be analyzed with a novel envelope-transient system that
accounts for the time differentiation resulting from the propa-
gation effects. The methods have been applied to a system of
two Zero-IF SOMs at 900 MHz.

This article is organized as follows. Section II describes the
wireless link based on two Zero-IF SOMS, as well as the
measurement setup that will be used to validate all the new
analysis methodologies. Section III presents the calculation
of the steady-state solutions. Section IV describes the sys-
tem behavior versus distance. Section V presents the stability
analysis considering the impact of the propagation delay on
the signal envelope. Section VI presents the envelope-domain
formulation that enables the system analysis in modulated
conditions. Finally, Section VII describes the noise analysis.

II. WIRELESS LINK BASED ON TWO ZERO-IF SOMS

The wireless link of Fig. 1 is based on two Zero-IF SOMs
that make use of a pseudomorphic high-electron-mobility
transistor (PHEMT) ATF34143 and are designed as shown
in [8]. Though the oscillators are identical, their bias points
are different (Fig. 1). They contain two RF ports, which is
very convenient for the experimental characterization. In the
Zero-IF transmitter, the antenna is connected to the drain port,
where the oscillation signal provides the output power Pout =
12 dBm; in the Zero-IF receiver, the antenna is connected
to the input network where the oscillation signal has a low
amplitude and there is a high sensitivity to the received locking
signal [15], [16]. In the implementations carried out here,
when replacing the matched termination load with the antenna,
there is a shift of less than 1 MHz in the oscillator free-running
frequency. This shift is relatively small and, as will be shown,
poses no problem for the wireless locking of the two oscillators
and their capability to transmit/receive modulation signals.

As in any other locked system, the wireless-locked operation
can only be maintained within certain parameter ranges. The

Fig. 1. Wireless link based on two Zero-IF SOMs. (a) System diagram. The
design of two oscillators is the one presented in [8]. They are both based on the
PHEMT ATF34143. (b) Photograph of one of the oscillators. (c) Experimental
setup for a wireless link at the distance d = 10 m.

system will become unlocked if the free-running frequencies
of the two oscillators are too different and/or if the amplitude
of the locking signal is too small. Thus, there will be limita-
tions in the excursion of the bias voltage Vdc that affects the
free-running frequency of the transmitter oscillator; there will
also be limitations in the distance d between the oscillators
that affect the amplitude of the locking signal at the input of
the receiver oscillator.

Here, for maximum compactness, we will introduce the
modulation signal at the drain-bias voltage VDS of the trans-
mitter oscillator. Besides the frequency modulation inherent to
any autonomous system, this will give rise to an amplitude
modulation of the transmitted signal, in a manner like the
unilateral-locking Zero-IF SOMs in [1]–[4]. Provided that
the instantaneous amplitude and frequency do not exceed
the locking limits, the receiver oscillator will follow them,
so it will also become modulated. Its tracking capability will,
of course, be limited by the time constants of the receiver
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Fig. 2. Experimental setup to characterize the wireless link based on two
Zero-IF SOMs. To verify the locked operation, we use an HP E4408B series
spectrum analyzer and an R&S FSWP8 in the spectrum analyzer mode. The
modulation signal is obtained with a Tabor WW2572A arbitrary waveform
generator. This signal and the demodulated one are displayed in an Agilent
DSO91304A digital storage oscilloscope.

Fig. 3. Complete system description, including the numerical admittance-
type models of the two oscillator circuits and the analytical model of the
wireless channel.

oscillator, as demonstrated in [8]. The modulation of the
receiver oscillator will give rise to a slow time variation of
its operation point, so the baseband signal can be extracted
from the voltage drop in a resistor of the bias circuitry
[1], [2], [9], [1]. The use of a baseband amplifier [4], [17]
is also possible.

The measurement setup is shown in Fig. 2. The oscillators
are biased using the internal dc supply sources of an R&S
FSWP8 phase-noise analyzer and a Keysight B2962B 6.5
Digit low noise power source. The modulation signal is
obtained with a Tabor WW2572A arbitrary waveform gen-
erator. The demodulated signal is extracted using a bias-tee
connected to the receiver oscillator. Both the modulated and
demodulated signals are displayed with an Agilent DSO6034A
oscilloscope.

III. SEMIANALYTICAL DESCRIPTION

In this section, we present the system equations; they
are based on numerical admittance-type models of the two
oscillators, while their wireless interaction is described in an
analytical manner, as shown in Fig. 3.

A. Nonlinear System Equations

In the semianalytical formulation, the oscillators are mod-
eled in terms of their respective admittance functions. It is con-
sidered that in standalone operation, each oscillator exhibits
at the oscillation frequency a current-to-voltage ratio equal
to zero (Y = 0) at any node [18]–[23] and, in particular,
at the antenna node. Thus, in standalone operation, the two
oscillators will fulfill Y1(Vo1, ωo1) = 0 and Y2(Vo2, ωo2) = 0
at their respective antenna nodes, where Voi and ωoi , with
i = 1 and 2, are their free-running voltage amplitudes and
frequencies. As discussed, Vo1 and Vo2 will be significantly
different, due to the different location of the antenna. The
admittance functions are equal to zero in standalone free-
running operation (Y1 = 0 and Y2 = 0), but different from
zero under the wireless locked operation, which is due to
the presence of the equivalent injection currents. Because of
the propagation loss, the wireless injection signals will have
a small amplitude, so the admittance of each oscillator can
be expressed in a first-order Taylor series expansion about
its original free-running solution [19]–[21]. The transmitter
oscillator is also linearized with respect to the bias voltage
Vdc. Note that this voltage will include the modulation signal
at a later stage. The linearization with respect to Vdc is not
too a strong limitation since the transmitter oscillator must
be suitably designed to be as linear as possible versus this
bias voltage. Considering a nonlinear behavior with respect to
the dc voltage is possible [22] but would prevent reaching
insightful analytical expressions. Thus, the oscillators are
modeled with the admittance functions

Y1(V1, ω, Vdc) = Y1V (V1 − Vo1) + Y1ω(ω − ωo1)

+ YDC(Vdc − Vdco)

Y2(V2, ω) = Y2V (V1 − Vo1) + Y2ω(ω − ωo2) (1)

where the subscript indicates the variable with respect to which
the derivative is calculated, i.e.,

YiV ≡ ∂Yi(Voi , ω)/∂Vi

Yiω ≡ ∂Yi(Voi , ω)/∂ωi

YDC ≡ ∂Y1(Vo1, ω)/∂Vdc (2)

and i = 1 and 2. The derivatives are just constant complex
values extracted from an HB analysis of each oscillator in
the standalone operation. They are calculated by introducing
an auxiliary generator (AG) into the circuit and applying
finite differences to Vi , ωi , and Vdc, as described in [10]
and [23]. The derivatives of the oscillators in Fig. 1 at their
corresponding antenna nodes and bias points are shown in
Table I. Although not necessary in this work, the admittance-
type models of the oscillator circuits could be extracted
with these oscillators terminated in the antenna. With this
aim, the desired oscillation frequency ωo is fixed with the
AG [10], [18], [22], [23] and one or two circuit element values,
together with the AG amplitude, are optimized to fulfill the
nonperturbation condition (the ratio between the AG current
and voltage equal to zero) at ωo.
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TABLE I

MODEL PARAMETER VALUES

Assuming a mutually injection-locked operation at the fre-
quency ω, the system is formulated

Y1(V1, ω, Vdc)V1e jφo = C(ω)e− jωτ V2e jφ

Y2(V2, ω)V2e jφ = C(ω)e− jωτ V1e jφo (3)

where τ = d/c is the time delay, φ − φo is the phase
shift (φo can be arbitrarily set to zero due to the system
autonomy [24]), and C(ω) is the admittance-dimension factor
accounting for the propagation effects [19]. This factor is
calculated by combining the expressions of the transmitted
power and available power at the receiver [25]. Assuming the
same radiation resistance (Rrad = 50 �) in the transmitter and
receiver, the factor is

C(ω) = 1

Rrad

√
G1G2

λ

2πd
= 1

Rrad

√
G1G2

c

ωd
= η

ωd
(4)

where G1 and G2 are the antenna gains of the two Zero-IF
SOMs, λ is the wavelength, and d is the distance. Note that no
linearization of C(ω) is carried out since this function exhibits
a strong frequency dependence due to the long delay.

System (1) is nonlinear in V1 and V2 and can only be solved
through a numerical method. In a compact manner, it will be
written as

H(v) = 0 (5)

where the vector H is composed of the nonlinear functions
on the left-hand side of (3), the vector v = (V1, V2, ω, φ)T

contains the independent variables, and Vdc is the analysis
parameter. As in other locked systems [18], [20], [26], under
weak coupling conditions, the solutions curves will exhibit
turning points (local–global bifurcations [24]), delimiting the
locked-operation intervals. Therefore, the resolution of (3)
through a monotonic sweep in the analysis parameter is unsuit-
able. This problem will be overcome here with the arc-length
continuation method [27], [28], which makes the vector v
depend on an additional parameter s ∈ �, so system (3) is
transformed into

H(v(sk+1)) = 0

|v(sk+1) − v(sk)| = ds (6)

where sk = kds and ds is an increment to be customized.
System (6) is solved in steps k = 1, . . . , n following a predic-
tor/corrector procedure, such as the one detailed in [27]. This
nonlinear analysis based on arc-length continuation will be
applied to predict the circuit response in most of the cases con-
sidered in this work. In addition, we will derive an approximate
analytical formulation (described in Section III-B), which
should provide insight into the system’s global behavior.

B. Analytical Study

For a simplified analytical study, we will neglect in sys-
tem (1) the second-order terms in the amplitude increments.
Splitting the simplified system into real and imaginary parts,
one obtains

G1V 
V1 + G1ω
ω + GDC
Vdc = C1(ω) cos(φ − ωτ)

B1V 
V1 + B1ω
ω + BDC
Vdc = C1(ω)sin(φ − ωτ)

G2V 
V2 + G2ω
ω = C2(ω) cos(φ + ωτ)

− G2ω
ωo12

B2V 
V2 + B2ω
ω = −C2(ω)sin(φ + ωτ)

− B2ω
ωo12 (7)

where


Vi = Vi − Voi , 
ωi = ω − ωoi


Vdc = Vdc − Vdco, 
ωo12 = ωo1 − ωo2. (8)

The following quantities, associated with the signal propa-
gation, have also been defined:

C1(ω) = C(ω)
Vo2

Vo1
, C2(ω) = C(ω)

Vo1

Vo2
. (9)

For a proper operation, one should have a high value of
Vo1/Vo2, so the coefficient C1 will be smaller than C2 and the
second oscillator will be more sensitive to the locking signal.
From the inspection of (4), the constant term 
ωo12 reduces
the system sensitivity to the phase shift and thus the locking
capabilities, so for an optimum behavior, one should impose

ωo12 = 0 or, equivalently, ωoi = ωo.

We will initially analyze the sensitivity of the locked
solution to the bias voltage Vdc in the first oscillator for a
fixed distance d between the two Zero-IF SOMs. To address
system (7), one must consider that in locked conditions, the
phase shift φ will vary between 0◦ and 360◦. On the other
hand, the system is nonlinear in the common oscillation
frequency ω, but linear in 
V1,
V2, and 
Vdc. Thus, once ω
is known for each φ, the increments 
V1,
V2, and 
Vdc are
directly obtained from (7). In fact, the crucial relationship that
enables the prediction of the system behavior is ω(φ). To get
this, system (7) will be solved for 
ω in terms of the elements
after the equal sign, which depends on ω and φ. This provides
the following equation:

H (ω) = ω − ωo + C2(ω) sin(α2V + ωτ + φ)

|Y2ω| sin(α2ω − α2V )
= 0 (10)

where α2V is the angle of Y2V and α2ω is the angle of Y2ω. The
real equation (10) depends on the characteristics (Y2V , Y2ω) of
the oscillator that is not tuned, τ and C2(ω), which increases
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with Vo1/Vo2. Equation (10) is easily solved by tracing the
zero-value contour H = 0 in the plane defined by φ and ω.
Next, we will relate ω with Vdc and with the wireless locking
signal. This relationship is easily obtained by solving 
Vdc in
terms of the already known (φ, ω)

ω − ωo = −|YDC| sin(αDC − α1V )

|Y1ω| sin(α1ω − α1V )

Vdc

+ C1(ω)
sin(−ωτ + φ − α1V )

|Y1ω| sin(α1ω − α1V )
(11)

where α1V , α1ω, and αDC are the angles of Y1V , Y1ω, and YDC,
respectively. From the inspection of (11), in the absence of
wireless locking (C1 = 0), the frequency will vary linearly
with Vdc, with a sensitivity solely depending on the character-
istics, YDC, Y1V , and Y1ω, of the transmitter oscillator. In the
case of the system in Fig. 1, this sensitivity is 40.8 MHz/V.
Note that the frequency variation in isolated conditions (C1 �=
0) would be unbounded, limited only by the validity of the
linearization itself. Instead, in (11), the frequency ω and phase
φ are predetermined by the relationship (10). The second term
in (11) also gives rise to the small quasi-sinusoidal variation
of ω versus 
Vdc.

The solution curve ω versus 
Vdc for the bilateral system
in Fig. 1, with Vo1 = 2.52 V and Vo2 = 0.29 V, is shown
in Fig. 4(a). Two different values of the antenna gain have
been assumed: G = 2 dB and G = 6 dB. For the lower gain
(G = 2 dB), we have considered the distances d = 5 m and
d = 10 m. For the higher gain (G = 6 dB), the distance
is d = 20 m. In all cases, the solution curve is closed (see
expanded view) but nearly degenerated into the straight line
that would be obtained with (11) for C1 = 0. Its form of
variation will be seen in more detail in Section III. In fact, for
each pair G and d , the locked operation is maintained between
the two turning points of the closed curve, which corresponds
to local/global bifurcations [24] from which the two oscillators
get unlocked. The antenna gain G and the distance d affect
the excursion of the oscillation frequency, which is larger for
higher G and smaller d . The curves exhibit a hardly noticeable
undulation due to the sinusoidal dependences of (12) and
(13); this will be more evident in the analysis of Section III.
Note that only one section of each closed curve in Fig. 4(a)
(between the two turning points) is stable, as demonstrated in
Section IV.

For each pair of G and d values, results obtained through
the numerical resolution of the nonlinear system (5) are also
over the same axis and their boundaries are indicated with
circles. In comparison, the simplified analysis based on (5)
and (10) tends to overestimate the boundaries. Experimental
points obtained with the R&S FSWP8 in the spectrum analyzer
mode (Fig. 2) for G = 2 dB at the two distances d = 5
and 10 m are superimposed. Note that due to the lab space
limitations, it was not possible to perform measurements for
d = 20 m.

C. Particularization to the Unilateral Case

At this point, it might be interesting to compare the relation-
ship ω(Vdc) provided by (5) and (10) with the much simpler

Fig. 4. Mutually locked solution of the system in Fig. 1 versus the bias
voltage Vdc in the transmitter oscillator under the antenna gain values G =
2 dB and G = 6 dB. For the lower gain (G = 2 dB), the distances d = 5 m
and d = 10 m are considered. For the higher gain (G = 6 dB), the distance is
d = 20 m. The results of the nonlinear formulation and the simplified one are
compared. Measurement points are superimposed for G = 2 dB and the two
distances d = 5 and 10 m. (a) Oscillation frequency. (b) Amplitude variation
in the transmitter oscillator. (c) Amplitude variation in the receiver oscillator.

one that would be obtained in the unilateral case, governed by
the two last equations in (7) only. In that case, ω would agree
with the independent frequency of the transmitter ωin, and the
system equations would be

G2V 
V2 + G2ω(ωin − ωo) = C2(ωin) cos

(
φ + ωind

c

)

B2V 
V2 + B2ω(ωin − ωo) = −C2(ωin) sin

(
φ + ωind

c

)
.

(12)

Initially, the above system should be solved for ωin − ωo

in terms of φ + ωind/c. For simplicity, we will assume that
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the independent frequency is varied as ωin = ωo + Kω
Vdc,
where Kω is the frequency sensitivity. Replacing this expres-
sion into (12), one obtains

Kω
Vdc

= −C2(ωo + Kω
Vdc) sin(α2V + ωoτ + Kω
Vdcτ + φ)

|Y2ω| sin(α2ω − α2V )
.

(13)

Note that there would only be locked solutions in the 
Vdc

interval fulfilling the above relationship, and the correspond-
ing frequencies would be calculated by replacing 
Vdc in
ωin = ωo + Kω
Vdc. In practice, the independent signal
at ωin would be generated through a synthesizer in most cases
and the control parameter would be the frequency-division
order. The complete scheme would be a conventional one,
instead of the compact and low-cost solution proposed here.

D. Oscillation Amplitudes

In the case of the two mutually injection-locked Zero-IF
SOMs, the oscillation amplitudes are obtained by solving 
V1

and 
V2 from (7) in terms of the already known (φ, ω). These
can be composed with 
Vdc(φ, ω) to obtain their variation
versus Vdc. Fig. 4(b) presents the variation of V1. Results of the
nonlinear formulation solved through arc-length continuation
are also shown. For each pair G and d of gain and distance
values, the amplitude V1 describes a closed curve nearly
degenerated into a straight line, as in the case of the oscillation
frequency ω. The simplified formulation overestimates the
boundaries of these closed curves, which agrees with those
of ω. For a small C1, the location and slope of the straight
line (into which the closed curve nearly degenerates) are the
same as those obtained in uncoupled conditions (C1 = 0)


V1 = −|YDC| sin(α1ω − αV dc)

|Y1v | sin(α1ω − α1V )

Vdc. (14)

However, as concluded in Section III-B, in these uncoupled
conditions, the variation of 
V1 would be unbounded.

The amplitude increment in the second oscillator is


V2 = V2 − Vo2 = C2(ω) sin(ωτ + φ + α2ω)

|Y2V | sin(α2ω − α2V )
. (15)

It is relevant to note that the above expression is formally
identical to the one that would be obtained under unilateral
locking using the system (12). However, the frequency ω in
(15) is not independent, but the one resulting from (10). One
obtains the closed curves in Fig. 4(c), each for a different pair
of G and d values. As gathered from Fig. 4(c), the second
oscillator (without a tuning voltage) is more sensitive to the
locking signal than the first one, so the closed solution curves
are wider. The simplified and nonlinear formulations exhibit
stronger discrepancies for a higher G and a smaller d .

In the experimental characterization, the voltages are
obtained using Agilent 1169 differential probes (Fig. 2),
which allows testing differential and single-ended signals up
to 12 GHz, and an Agilent DSO91304A Digital Storage
Oscilloscope. Measurement points for G = 2 dB and the two
distances d = 5 m and 10 m are superimposed in Fig. 4(b)
and (c). In the two cases, the stable section is the lower one,

in agreement with the results of the stability analysis to be
presented in Section III.

To summarize the results obtained so far, system (4)
accounts for bilateral injection locking through wireless propa-
gation. For small C1, the behavior approaches the one obtained
under unilateral locking. Under C1 = 0, the same new formu-
lation can be used to analyze the behavior of a single Zero-IF
SOM injected by a locking signal undergoing propagation
effects.

IV. ANALYSIS VERSUS DISTANCE

In this section, we will perform an analysis of the mutually
locked system versus the distance d between the two Zero-IF
SOMs. This analysis, of paramount importance for the wireless
link, provides the maximum distance up to which the locked
operation can be maintained. As a particular case, we will also
consider the case of a single Zero-IF SOM under unilateral
locking.

A. Frequency and Amplitude Variation

At a constant bias voltage Vdc, the system equations (under
the first-order amplitude approximation) are given by

G1V 
V1 + G1ω
ω = C1(ω) cos(φ − β) − GDC
Vdc

B1V 
V1 + B1ω
ω = C1(ω)sin(φ − β) − BDC
Vdc

}

G2V 
V2 + G2ω
ω = C2(ω) cos(φ + β)
B2V 
V2 + B2ω
ω = −C2(ω)sin(φ + β)

}
(16)

where C1 and C2 depend on d as shown in (4) and (9) and
β = ωd/c. Again, the crucial variable of system (16) is ω.
Once this variable is known, the rest can be obtained in a
simple manner, as shown later in this section. For simplicity,
we will particularize the following derivation to the case

Vdc = 0. To obtain ω(d), we will express the system (16)
in terms of cos(φ) and sin(φ), which together with 
V1

and 
V2 will be the system unknowns. Considering that
cos2 φ + sin2 φ = 1, one obtains (for 
Vdc = 0) the following
single scalar equation:

H (ω)

= [
C2

2 T 2
1 + C2

1 T 2
2 + 2C1T1C2T2 cos(αV 2 − αV 1)

]

ω2

= C2
1 C2

2 sin2(αV 2 + αV 1 + 2β) = 0 (17)

where the following definitions have been introduced:
T1 = |Y1ω| sin(α1ω − α1V )

T2 = |Y2ω| sin(α2ω − α2V ). (18)

Note that C1, C2, and β depend on d . Equation (17) provides
a contour in the plane defined by d and ω, which is composed
of two disconnected curves. These two curves, in the case
of the system in Fig. 1, are shown in Fig. 5(a), where the
distance has been varied in the interval 4.85–5.15 m. Two
values of antenna gain, G = 2 dB and G = 6 dB, have been
considered to better evidence the oscillatory behavior about the
free-running frequency ωo. Note that the frequency variations
versus the distance d at a constant Vdc in the first oscillator,
shown in Fig. 5(a), are very small [compare with Fig. 4(a)],
which favors the system robustness. Note that this analysis is
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Fig. 5. Variation of the locked-system solutions versus the distance d
between the two oscillators for a constant bias voltage 
Vdc = 0 V. There
are two coexistent solution curves. (a) Frequency variation in the interval
4.85−5.15 m. Measurement points (corresponding to the stable solution) are
superimposed. (b) Experimental measurements obtained using the max hold
mode in the spectrum analyzer and continuously varying the distance between
the antennas in a relatively small range about 5 m. (c) Variation of the second
oscillator amplitude V2.

performed under a constant value of Vdc (
Vdc = 0), so the
frequency variations are solely generated by mutual locking
effects and will not exist in the case of unilateral locking
(C1 = 0) treated in Section IV-B. For each d , the two solutions
in Fig. 5(a) would correspond to those obtained through the
analysis in Section II at 
Vdc = 0, that is, they are different

Fig. 6. Variation of the locked-system solutions in a large distance interval.
(a) Envelopes of the maxima and minima of the oscillation frequency curves in
Fig. 5(a) up to d = 60 m. (b) Variation of the second-oscillator amplitude V2.

projections of the same solution surface in the space ω(Vdc, d).
As expected, the frequency excursion is larger for a higher
gain [Fig. 5(a)]. One of the curves is Fig. 5(a) stable (with
measurement points superimposed) and the other unstable,
as will be shown in Section III.

To understand the quasi-sinusoidal variation, one can detect
the distance points at which frequency curves take a value
equal to the free-running one ωo. 
ω = 0 in (17) has on at
these distance points and the following condition is fulfilled:

sin(αV 2 + αV 1 + 2β) = 0. (19)

Because β = ωd/c, the distance values at which 
ω = 0
are spaced in λ/2. Fig. 5(b) shows the experimental measure-
ments obtained using the max hold mode in the spectrum ana-
lyzer (Fig. 2) and continuously varying the distance d between
the antennas in the interval 4.85–5.15 m. This measurement
has been carried out for two values of antenna gain: G = 2 dB
and G = 6 dB, and as predicted in Fig. 5(a), a larger frequency
excursion is obtained for a higher antenna gain.

Next, we will carry out an analysis in a larger distance
interval, up to d = 60 m. To better evidence the frequency
variations, in Fig. 6(a), we have represented the envelopes
of maxima and minima of the frequency curves, which are,
in fact, the extensions of those in Fig. 5(a) when increasing
d . Note that the maximum locking distance under 
Vdc = 0
is theoretically infinite as shown in Section IV-B, and the
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asymptote is ω = ωo. Even at d = 60 m, the locked operation
has a nonnegligible effect on the oscillation frequency, which
is an indication of a quite robust behavior. Measurements up
to d = 10 m have been superimposed.

Once the frequency ω is known, one can directly solve (16)
(expressed as a linear system in terms of 
V1, 
V2, cosφ,
and sinφ) to obtain the two amplitudes V1 and V2. The
voltage V1 in the transmitter oscillator is hardly affected by
the distance d since it mostly obeys the variation of its
bias voltage Vdc. On the other hand, the voltage V2 in the
receiver oscillator varies as shown in Figs. 5(c) and 6(b), which
consider short- and long-distance intervals, respectively. The
two figures show the variation of the two solutions obtained in
Fig. 4(c) for 
Vdc = 0 versus the distance d . Measurements
corresponding to the stable curve are superimposed in the two
cases. As expected, the amplitude excursion is larger for a
higher gain and so is the quasi-sinusoidal variation [Fig. 5(c)].

B. Particularization to the Unilateral Case

We can also particularize the analysis versus the distance d
to the simpler case in which the second oscillator is locked by a
wirelessly transmitted independent signal at the frequency ωin.
Squaring the two real equations in (12), adding the squared
terms on the left-hand side, and solving for 
V2, one obtains
the expression


V2 = −|Y2ω| cos(α2ω − α2V )
ωin

|Y2V |

±

√√√√√ (2|Y2V ||Y2ω| cos(α2ω − α2V )
ωin)
2

− 4|Y2V |2
(

|Y2ω|2
ω2
in −

(
Vo1
Vo2

)2
η2

ω2
ind2

)

2|Y2V |2 . (20)

As can be gathered, there are two solutions for each ωin,
provided that this frequency is inside the locking bandwidth
(as required for a positive radicand). Unlike (20), in the
bilateral case, the locked-oscillation frequency changes with
the distance d , as shown in Figs. 5(a) and 6(a). Despite this,
the explicit equation (20) explains a feature that is common
to the two systems: the existence of a maximum distance dmax

up to which the locking can be maintained. Representing the
input frequency as ωin = ωo + Kω
Vdc and making the
radicand of (18) equal to zero, for each 
Vdc, the distance
dmax is given by

dmax = Vo1

Vo2

× c
√

G1G2

|Y2ω|(ωo + Kω
Vdc)Rrad Kω|
Vdc| sin(α2ω − α2V )
. (21)

The distance dmax ideally tends to infinite for 
Vdc = 0,
which explains the two asymptotic curves in Fig. 6(b) and
(c). For 
Vdc �= 0, it increases with the antenna gain and
decreases, as expected, with |Y2ω| and, thus, with quality factor
of the locked oscillator.

C. Maximum Locking Distance in the Bilateral Case

As already described, the solution curve V2(d) in the more
complex bilateral case is obtained by first calculating ω(d)

Fig. 7. Variation of the second-oscillator amplitude V2 versus the distance
d. (a) Solution curves for two different values of the bias voltage: 
Vdc =
1 V and 
Vdc = 0.8 V. Measurements are superimposed for the second case.
The turning point delimits the locking interval. (b) Spectra measured at d =
14 m, in unlocked conditions, and just after locking (d = 13.5 m).

from (17) and then solving for 
V2 from (16). Fig. 7(a)
presents the variation of V2 versus the distance d in the
mutually coupled system for two values of 
Vdc different
from zero. The curves have been obtained by solving sys-
tem (3) numerically through arc-length continuation. In a
manner similar to the unilateral case described through (20),
the maximum distance, dmax, up to which the system keeps
locked decreases for a larger |
Vdc|. At dmax, the curves
exhibit a turning point, which corresponds to a local/global
bifurcation [24] from which the two oscillators get unlocked.
As in previous analyses, a small quasi-sinusoidal variation
is observed along each solution curve, which is due to the
sinusoidal terms in (18) resulting from the delay τ . For

Vdc considered in the analysis, there were discrepancies
with the measurement results, mostly attributed to inaccuracies
in the model of the transistor device; in standalone operation,
the experimental output power exhibited a higher slope versus
Vdc than the simulation results. Thus, we had to reduce 
Vdc

in the measurements. The experimental points obtained for

Vdc = 0.3 V have been added in Fig. 7(a). The spectra
measured in unlocked conditions and just after locking are
shown in Fig. 7(b). At d = 14 m, the spectrum is quasi-
periodic with a small beat frequency and the typical triangular
shape [15], [16]. At d = 13.5 m, very close to the boundary
of the locking range, the spectrum is periodic.
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Because two distinct solution curves have been detected,
a stability analysis to distinguish the physical solutions will
be mandatory. This will be the object of Section V.

V. STABILITY ANALYSIS

This section presents a stability analysis of the two mutually
locked oscillators that account for the effect of the propagation
delay on the signal envelope. Note that, for higher accuracy,
this stability analysis will be applied to the nonlinear sys-
tem (1), instead of the first-order approximation. To facilitate
the derivations, system (1), providing the steady-state solution
(V1, V2, φ, ω), will be rewritten as

H1(X1, X2, ω) ≡ Y1(V1, ω)X1 + Yc X2 = 0

H2(X1, X2, ω) ≡ Y2(V2, ω)X2 + Yc X1 = 0 (22)

where Xi = Vi e jφi with φ1 = 0, φ2 = φ, and

Yi = YiV (Vi − Voi) + Yiω(ω − ωoi) + δ1
i YDC(Vdc − Vdco)

Yc = −C(ω)e− jωτ (23)

where i = 1 and 2, δ
j
i is the Kronecker delta, the admittance

derivative functions have been defined in (2), and τ = d/c
is the time delay. To analyze the stability of the steady-state
solution (V1, V2, φ, ω), a small perturbation will be introduced
in system (23), which will give rise to increments in the
time-varying phasors Xi(t) = Vi e jφi + δXi (t), where

δXi (t) =
∫ ω/2

−ω/2
δXi (�)e j�td�

= (δVi(t) + j Viδφi (t))e
jφi (24)

and δVi(t) and δφi(t) are the amplitude and phase perturbation
components of the i th oscillator, respectively. In the frequency
domain, the functions Hi in (22) can be approached by
their first-order Taylor series expansions about the steady-state
solution, and removing the steady-state terms, the following
perturbed system is obtained:
H1V (X1, X2, ω + �)δV1(�) + H1φ(X1, X2, ω + �)δφ1(�)

− C(ω + �)e− j (ω+�)τ δX2(�) = 0

H2V (X1, X2, ω + �)δV2(�) + H2φ(X1, X2, ω + �)δφ2(�)

− C(ω + �)e− j (ω+�)τ δX1(�) = 0 (25)

where HiV ≡ ∂ Hi/∂Vi and Hiφ ≡ ∂ Hi/∂φi . Now, system
(25) will be translated to the envelope domain by approaching
Yi (Vi , ω + �) � Yi (Vi , ω) + Yiω� and C(ω + �) �
C(ω) + Cω(ω)� and applying the inverse Fourier transform

Y 0
1 δX1(t) + Y1V X1δV1(t) − jY1ωδ Ẋ1(t)

+ YcδX2(t − τ ) + jCω(ω)e− jωτ δ Ẋ2(t − τ ) = 0

Y 0
2 δX2(t) + Y2V X2δV2(t) − jY2ωδ Ẋ2(t)

+ YcδX1(t − τ ) + jCω(ω)e− jωτ δ Ẋ1(t − τ ) = 0 (26)

where Y 0
i ≡ Yi (Vi , ω) and the time-delayed terms δXi (t − τ )

arise naturally when applying the inverse Fourier transform
	−1{e− j�τ δXi(�)} = δXi (t − τ ). Now, to obtain the poles,

linear system (26) is translated to the Laplace domain, which
yields
(
Y 0

1 + Y1V V1 − jY1ωs
)
δV1 + (

Y 0
1 − jY1ωs

)
j V1δφ1

+ (
Yc + jCω(ω)e− jωτ s

)
e−sτ (δV2 + j V2δφ2)e

jφ = 0(
Y 0

2 + Y2V V2 − jY2ωs
)
e jφδV2 + (

Y 0
2 − jY2ωs

)
j V2e jφδφ2

+ (
Yc + jCω(ω)e− jωτ s

)
e−sτ (δV1 + j V1δφ1) = 0. (27)

Considering also the complex-conjugate equations of sys-
tem (27), one obtains a complex system of the form
A(s)δP(s) = 0 where δP ≡ (δφ1, δφ2, δV1, δV2)

T . Then,
the system poles are the zeroes s = λ of the characteristic
determinant det A(s). Note that, from (27), the matrix A(0) is
given by

A(0) =
⎛
⎝ ∂ H

∂φ
∂ H
∂V(

∂ H
∂φ

)∗ (
∂ H
∂V

)∗
⎞
⎠ (28)

where ∗ means the complex conjugation, H = (H1 H2)
T , φ =

(φ1 φ2)
T , and V = (V1 V2)

T . One can easily prove that the
matrix A(0) is singular since, due to the autonomy of the
coupled system, the equations in (22) must be fulfilled for any
constant phase shift α, leading to φ1 = α and φ2 = φ + α.
Therefore,

0 = ∂ H

∂α
= ∂ H

∂φ

∂φ

∂α
,

∂φ

∂α
=

(
1
1

)
. (29)

Combining (28) and (29), one can easily verify that the
matrix A(0) has the eigenvector (1 1 0 0)T , associated with
the eigenvalue 0, so one of the zeroes of det A(s) is λ = 0.
Because this root exists for all the parameter values, it will be
convenient to remove it from the characteristic determinant,
which can be done by considering the function p(s) =
det A(s)/s. Note that considering the delay effects on the
signal envelopes in system (26) provides a deep insight into the
coupled system stability. Had these delays been approached
by a first-order Taylor expansion in τ , the resulting system
would have been of fourth order, yielding four poles, unlike
the infinite-dimension system (27). The dominant poles of the
delayed system (27) can be obtained by applying a pole-zero
identification technique to the complex function 1/p( j�),
with � ∈ (0, ω/2].

The analysis described has been applied to the closed
solution curves of Fig. 4(b), traced versus Vdc. Fig. 8 shows
the variation of the real part of the dominant poles versus
Vdc and shows that, at each turning point, a real pole passes
through zero. The upper section of the curve corresponds to
unstable solutions (poles in red) and the lower section to stable
solutions (poles in blue). We have also analyzed the stability
of the two solutions in Fig. 5, obtained for G = 2 dB versus
the distance d . The variation of their corresponding dominant
poles is shown in Fig. 9. The lower amplitude curve [Fig. 9(a)]
is stable, whereas the higher amplitude one [Fig. 9(b)] is
unstable. As gathered from the evolution of the dominant poles
of the stable solution in Fig. 9(a), the reduction of the stability
margin as d increases is very slow. In fact, this reduction is
not noticeable in the distance range considered in Fig. 9.
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Fig. 8. Variation of the real part of the dominant poles of the closed curves in
Fig. 4 (traced versus Vdc). Note the large number of detected poles, resulting
from the consideration of delay effects in the signal envelopes. The upper
section of the curve corresponds to unstable solutions (poles in red) and the
lower section the curve corresponds to stable solutions (poles in blue). A real
pole passes through zero at each of the two turning points from which the
system becomes unlocked.

Fig. 9. Stability analysis of the solution curves in Fig. 5. The real part of the
dominant poles has been traced versus the distance d. (a) Lower amplitude
solution, with stable behavior. (b) Higher amplitude solution, with unstable
behavior.

VI. ANALYSIS UNDER MODULATED CONDITIONS

In the presence of a modulation signal Vdc(t) in the bias
voltage of the first oscillator, the phasors X1 and X2 will
become time-varying. Departing from system (22) and con-
sidering that the complex-frequency increment jω acts like a
time differentiator, one obtains the following system, which

Fig. 10. Operation under frequency modulation. A rectangular signal is
introduced in the bias voltage of the first oscillator. This voltage signal has
an excursion Vpp = 0.5 V about the offset Voffset = 2.3 V. (a) Analysis and
measurements for d = 5 m and fm = 500 kHz. (b) Analysis and measurements
for d = 5 m and fm = 5 MHz. (c) Measurements for d = 10 m and
fm = 4 MHz.

governs the dynamics of the complex envelopes X1(t), and
X2(t):

Y1(t)X1(t) − jY1ω Ẋ1(t) + Yc X2(t) − jYcω Ẋ2(t) = 0

Y2(t)X2(t) − jY2ω Ẋ2(t) + Yc X1(t) − jYcω Ẋ1(t) = 0 (30)

where

Yi (t) = YiV (Vi(t) − Voi) + Yiω(ω − ωoi )

+ δ1
i YDC(Vdc(t) − Vdco)

Ycω = −(Cω(ω) − jτC(ω))e− jωτ (31)

and ω is the frequency of the steady-state solution.
System (30) will be used to obtain the system response to

a rectangular signal introduced in the bias voltage of the first
oscillator. This voltage signal has an excursion Vpp = 0.5 V
about the offset Voffset = 2.3 V at the modulation frequency
fm , and the analysis will be carried out for a gain G = 2 dB
and distance d = 5 m between the oscillators. Fig. 10(a),
corresponding to fm = 500 kHz, presents the modulated
frequency predicted with (30) and the measured demodulated
signal in the bias circuitry of the second oscillator. Fig. 10(b)
performs the same comparison for fm = 5 MHz at the limit
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Fig. 11. Demodulation of a rectangular signal at 1 MHz. (a) Spectra of the
transmitter and receiver oscillator. (b) Modulation and demodulated signals.

of the demodulation capabilities. In the analysis through (30),
the rectangular signal is modeled with a piecewise function,
so the derivative discontinuities give rise to the peaks observed
in the instantaneous frequency. Fig. 10(c) shows the measured
demodulated signal at twice the distance d = 10 m when
using fm = 4 MHz. Note that the aim of these tests has been
to determine the system operation limits.

To fully characterize the system operation, we have per-
formed some additional measurements. In Fig. 11(a), we com-
pare the spectra of the transmitter and receiver oscillator under
a rectangular modulation signal of 1 MHz. There is a higher
power at the transmitter oscillator since its spectrum is mea-
sured at the output port, whereas that of the receiver oscillator
is measured at the input port. Except for the different levels,
the spectra are nearly identical even though they have been
obtained in two sequential measurements, after disconnecting
the spectrum analyzer from the first oscillator and connecting
it to the second one. The modulation and demodulated signals
are shown in Fig. 11(b).

Due to the minimum-amplitude limitations of the arbitrary
waveform generator, we have estimated the nonlinearity of
the Tx/Rx system by measuring the variation of the output
dc voltage of the receiver oscillator versus the bias voltage
of the transmitter one. The results are shown in Fig. 12(a).
For Vdc lower than 1.7 V, the system is unlocked. For Vdc

higher than 3 V, there is a saturation effect. We have also
measured the voltage gain from the baseband input of the
modulator oscillator to the baseband output of the receiver
one. This has been done by introducing a sinusoidal tone at
the frequency fm , with the system operating in a linear region.
When sweeping fm , one obtains the results in Fig. 12(b).
The loss is due to the limitations in the simple frequency
demodulation mechanism used, based on the detection of

Fig. 12. Experimental response. (a) Variation of the dc output voltage in
the receiver oscillator versus the bias voltage Vdc of the transmitter oscillator.
(b) Measurement of the voltage gain from the baseband input in the modulator
oscillator to the baseband output in the demodulator one. This measurement
has been carried out by introducing a sinusoidal tone at the frequency fm ,
with the system operating in a linear region.

the voltage drop in a resistor of the bias circuitry. Higher
gain would be obtained with the aid of a baseband amplifier,
as done in [4] and [17], which, for compactness, has not been
introduced here.

VII. PHASE-NOISE ANALYSIS

In the work [8], we addressed the noise analysis of a single
Zero-IF SOM under a modulated injection-locked tone, with
a low phase-noise spectral density. In the system considered
here, the oscillation is self-generated, and its phase noise
may significantly affect the demodulated signal, so the phase-
noise analysis of the mutually locked oscillation is essential.
To get insight into the influence of the phase noise, we will
express the baseband term as 
Vdc → 
Vdc + δVdc(t), so the
modulation signal δVdc(t) is small enough for the coupled
system to behave linearly about the nonmodulated steady state
at 
Vdc. To analyze the system behavior in the presence of
noise perturbations, an equivalent noise current source ii(t) =
2 ReIi (t)e jωt , where i = 1 and 2, will be connected in parallel
at the antenna node of each oscillator. These equivalent current
sources are calculated by fitting the phase-noise spectrum of
each oscillator in standalone operation, as described in [10].
Each phasor Ii (t) = I w

i (t) + I f
i (t) is constituted by the

contributions of the white and upconverted flicker noise. The
phasors Ii (t) are stochastic processes that, in the frequency
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domain, fulfill the following correlation properties:〈
I w
i (�)I w

j (�)∗
〉 = δ

j
i �i〈

I f
i (�)I f

j (�)∗
〉

= δ
j
i

k f,i

�
. (32)

The dynamics of the resulting system can be analyzed by
introducing the modulation component δVdc(t) in (27), which
yields(
Y 0

1 + Y1V V1 − jY1ωs
)
δV1 + (

Y 0
1 − jY1ωs

)
j V1δφ1 + YDCδVdc

+ (
Yc + jCω(ω)e− jωτ s

)
e−sτ (δV2 + j V2δφ2)e

jφ = I1(
Y 0

2 + Y2V V2 − jY2ωs
)
e jφδV2 + (

Y 0
2 − jY2ωs

)
j V2e jφδφ2

+ (
Yc + jCω(ω)e− jωτ s

)
e−sτ (δV1 + j V1δφ1) = I2. (33)

Equation (33) shows that the instantaneous frequency δφ̇2(t)
of the receiver oscillator is modulated both by the equivalent
noise sources and the baseband modulation signal δVdc(t) of
the transmitter oscillator. This perturbation can be expressed
as

δω2(s) = sδφ2(s) = sδφ2,n(s) + a0(s)δVdc(s) (34)

where δφ2,n(s) is the phase noise of the receiver oscillator,
which is given by

δφ2,n(s) = a1(s)I1(s) + a2(s)I2(s) (35)

where the transfer functions ai(s) in (34) and (35) can be
derived from the linear system (33). Then, as described in [8],
the demodulation mechanism will downconvert the spectral
components of the frequency perturbation δω2(t) into the
baseband component of the receiver oscillator. Equation (34)
shows that these components are produced by both the receiver
phase noise and the transmitter modulation signal. In the
following, a mathematical formulation to calculate the phase-
noise spectral density is provided.

In the absence of modulation (δVdc(t) = 0), system (33)
can be expressed in the frequency domain as

A( j�)δP(�) = I (�)

I = (
I1 I ∗

1 I2 I ∗
2

)T
(36)

where the matrix A(s) was introduced in (27). Then, one
should obtain the correlation matrix of the perturbation com-
ponents

〈
δP(�)δP(�)+

〉 = B( j�)C(�)B( j�)+

�2|p( j�)|2

C(�) =

⎛
⎜⎜⎝

R1(�) 0 0 0
0 R1(�) 0 0
0 0 R2(�) 0
0 0 0 R2(�)

⎞
⎟⎟⎠

Ri (�) = �i + k f,i

�
(37)

where B( j�) is the adjugate matrix of A( j�) and C(�) is a
diagonal matrix containing the correlation components Ri (�)
of the noise sources in each i th oscillator. The power spectral
density of the perturbation components is then given by

〈|δPk(�)|2〉 = 1

�2

∑4
p=1

∣∣bkp(�)
∣∣2

Cpp(�)

|p( j�)|2
= ck1(�)R1(�) + ck2(�)R2(�) (38)

Fig. 13. Phase-noise spectral density of the system in Fig. 1 with antenna gain
G = 2 dB and distance d = 10 m. The results provided by (38) are compared
with those obtained in uncoupled operation and with measurements carried
out with the R&S FSWP8—phase-noise analyzer. (a) Transmitter oscillator.
(b) Receiver oscillator.

where k = 1, . . . , 4, bkp(�) (p = 1, . . . , 4) are the compo-
nents of the i th row of the adjugate matrix B( j�) and ck1(�)
and ck2(�) are the noise coefficients of the kth perturbation
variable. Note that the structure of system (27) assures that
both |bkp(0)|2 and |p(0)|2 are bounded. In the case of the
phase-noise perturbations (k = 1 and 2), |bkp(0)|2 is, in gen-
eral, bigger than zero. Then, (37) shows that, provided that
p(0) �= 0, the perturbation system (27) contains only one pole
at zero, so, for small values of �, the phase-noise coefficients
behave as cki (�) ∼ 1/�2 for k = 1 and 2. Then, the near
carrier phase-noise spectrum shows the typical −30 dB/decade
slope followed by a −20-dB/decade slope produced by the
flicker and white noise sources, respectively. In the case of the
amplitude noise components, the inspection of matrix A(0) in
expression (28) provides |bkp(0)|2 = 0 for k = 3 and 4. Then,
the numerator has in general the form |bkp(�)|2 = O(�2),
canceling the 1/�2 behavior.

The analysis based on (38) has been applied to the system
in Fig. 1 with antenna gain G = 2 dB and distance d =
10 m. The phase-noise spectra in the transmitter and receiver
oscillators are shown in Fig. 13. In the two cases, the results
are compared with those obtained in uncoupled operation and
with measurements carried out with the R&S FSWP8 phase-
noise analyzer. The phase noise of each oscillator is measured
at the port that is not connected to the antenna using an
R&S FSWP8 phase-noise analyzer. Note that the timing noise,
which is the most relevant contribution, does not depend on
the observation node [29]. The phase noise is rather small
in the two cases, in consistency with the good demodulation
capabilities of the system, shown in Section VI. The phase
noise in wireless-locked operation is about 3 dB lower than
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that in standalone operation. The reduction obtained is the one
expected in a coupled system of identical oscillators, that is,
10logN , where N is the number of oscillator elements [30].

VIII. CONCLUSION

An in-depth investigation of a wireless communication link
established between two Zero-IF SOMs has been presented
for possible application in systems requiring compact size,
as well as low cost and power consumption. Two types of
formulation based on realistic oscillator models extracted from
HB simulations have been derived: one is nonlinear in the
voltage amplitudes and solved with arc-length continuation
and the other is linear in these amplitudes. The latter is
less accurate but provides insight into the main properties of
the locked-system behavior. Systems based on single Zero-IF
SOM injection locked by a signal undergoing propagation
effects can be analyzed with these formulations as a particular
case. With two identical Zero-IF SOMs, an optimum perfor-
mance is achieved when there is a high ratio between the
amplitudes of the oscillator acting as a transmitter and the one
acting as a receiver at the antenna connection nodes. The study
includes the stability and phase noise analysis of the coupled
system solution. Good performance under modulation by a
rectangular signal of 5 MHz has been achieved up to 10 m,
as has been experimentally validated. In view of these results,
we believe that the inclusion of two antennas in each Zero-IF
SOM could enable bidirectional communications, though the
evaluation of such system is out of the scope of this work.
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