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Abstract

In the present work, we perform a global analysis of a dark matter simplified model (DMSM) with
a leptophilic spin-1 vector mediator that interacts with the Standard Model (SM) particles and
connects them to the dark matter (DM) particles. The five parameters that characterise our model
are the mass of the mediator (mY ), the mass of the DM particle (mDM) and the mediator couplings
to the DM particles (gDM), to leptons (gl) and quarks (gq). In addition, we include some of the
most recent experimental results as constraints on our model. In particular, we implement the most
relevant results from the LHC experiments (from monojet, dijet and dilepton searches) and direct
detection constraints (LUX, PandaX and XENON experiments). We also require our model to give
the correct value for the DM relic density, in agreement with the cosmological observations from
the Planck experiments on measuring the cosmic microwave background (CMB) anisotropies. The
main tool used for this work is MasterCode, which is a framework that performs global analyses on
multidimensional parameter spaces. Given our model, MasterCode computes the physics observables
in all the parameter space and determines how well the model fits the experimental observations.
We analyse the results on various planes of the parameter space, outlying which regions are excluded
by the previous experiments and which ones are still a physical option.

Keywords: dark matter, dark matter simplified models, MasterCode, dark matter relic density, LHC.

Resumen

En este trabajo realizamos un análisis global de un modelo simplificado de materia oscura (DMSM)
con un mediador vectorial leptofílico de spin-1 que interactúa con las partículas del Modelo Estándar
(SM) y las conecta con las partículas de materia oscura (DM). Los cinco parámetros que caracterizan
nuestro modelo son la masa del mediador (mY ), la masa de la partícula de materia oscura (mDM)
y los acoplamientos del mediador a las partículas de materia oscura (gDM), a los leptones (gl) y a
los quarks (gq). Además, incluimos algunos de los resultados experimentales más recientes como
restricciones de nuestro modelo. En particular, implementamos los resultados más relevantes de
los experimentos del LHC (de las búsquedas de monojets, dijets y dileptones) y de experimentos de
detección directa (experimentos LUX, PandaX y XENON). También requerimos que nuestro modelo
dé el valor correcto para la densidad reliquia de materia oscura, de acuerdo con las observaciones
cosmológicas del experimento Planck que mide las anisotropías del fondo cósmico de microondas
(CMB). La principal herramienta utilizada para este trabajo es el programa MasterCode, que realiza
el análisis global en un espacio de parámetros multidimensional y determina lo bien que nuestro
modelo se ajusta a las observaciones experimentales. Analizamos los resultados en varios planos del
espacio de parámetros, destacando qué regiones están excluidas por los experimentos anteriores y
cuáles siguen siendo una opción física.

Palabras clave: materia oscura, modelos simplificados de búsqueda de materia oscura, MasterCode,
densidad reliquia de materia oscura, LHC.



Chapter 1

Introduction

Everything we can see in the Universe is made of ordinary matter: the Earth, the Sun, the stars,
etc. The Standard Model (SM) of particle physics describes the fundamental structure of such
matter: the elementary particles and their interactions. Up to date, most of the SM theoretical
predictions have been tested successfully. However, there are still some questions in particle physics
left unanswered by the SM.

According to cosmological and astrophysical observations, ordinary matter only accounts for 5% of
the composition of the Universe. Then, what is the rest of the Universe made of? Over the past
decades, several experiments have tried to throw light on this topic and have found several pieces of
evidence for the existence of a new type of matter that does not absorb or emit electromagnetic waves.
Therefore, it is not visible to us, and this is why it is called dark matter (DM). But whether DM is
made of elementary particles or compact objects, such as black holes, remains unknown. Finding an
explanation about the nature of DM and its interactions with ordinary matter are undoubtedly two
of the most crucial issues in modern physics. If we came up with the theory and the experimental
results that entirely explain the physical nature of DM, it would help us better understand the
composition of the Universe and how it holds together.

One of the many strategies we can take to study DM is to produce it in particle colliders such
as the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN).
Following this approach, we can build a simplified model for DM production at the LHC as our
theoretical framework. The goal of this work is to perform a global fit of the free parameters of
this model and include the most recent experimental results as constraints. These results come from
different DM search experiments, such as LHC experiments (A Toroidal LHC ApparatuS [ATLAS] [1]
and the Compact Muon Solenoid [CMS] [2]), direct detection experiments (the Large Underground
Xenon DM experiment [LUX] [3], the Particle and Astrophysical Xenon Detector [PandaX] [4] and
the XENON experiment [XENO1T]) [5]) and cosmological observations (Planck measurements of the
cosmic microwave background (CMB) anisotropies [6]). The results of this global fit will help identify
which regions of our model’s parameter space are compatible with the observations and which ones
are excluded. They will also allow us to determine which parameter space is still accessible at the
LHC and define a search strategy for future LHC data acquisition. Finally, they could help develop
future experiments that could focus on the still allowed regions of the parameter space.

This work is organised as follows. In this chapter, we first present a brief review of the experimental
evidence for the existence of DM and of the most promising candidate to explain it: the Weakly
Interacting Massive Particles. We then describe the WIMP model focusing on the concept of DM
relic density. We finish chapter 1 with the three DM detection approaches: direct detection, indirect
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detection and production at colliders. In chapter 2, we briefly review the Standard Model of particle
physics. Then, we discuss the simplified model used in this work as the theoretical framework for
studying DM production at the LHC and its interactions with SM particles. We also give all the
details about the five parameters that characterise such model. The experimental constraints are
described in chapter 3: the DM relic density constraint, direct DM searches constraints and LHC
constraints. In chapter 4, we review all the computational tools used throughout this work, with
particular attention on MasterCode, which is the framework on which it is based. We also give a
more statistical perspective on the sampling process, and we finish this chapter with some comments
about the profiling process. The analysis of the results is discussed in chapter 5, and the conclusions
and future work perspectives in chapter 6.

1.1 Experimental evidences for dark matter
As said before, we cannot see DM, but we know it exists due to its gravitational interaction with
visible objects that we can detect. One of the most clarifying hints that indicates the existence of DM
are the results from the study of anisotropies in the CMB. The CMB, which is the leftover radiation
produced in the early stages of the Universe, gives an estimation of the total DM mass density
and other constituents of the Universe. Indeed, the latest results from the Planck experiments on
measuring the CMB anisotropies have shown that 27% of the Universe is made of DM and 68% of
dark energy1 [6]. The remaining 5% is the already known ordinary matter. Another hint for the
existence of DM is the galaxies’ rotation velocity. The incompatibility between the measurements
of these velocities and Newton’s law of universal gravitation led to the conclusion that galaxies are
surrounded by a DM halo far more massive than the galaxy itself [7]. Additionally, results from
the observation of gravitational lensing show that the path of light is bent due to the DM mass.
This phenomenon is observed from Earth through space telescopes like the Hubble Space Telescope
(HST).

There is no experimental evidence that DM interacts with either the electromagnetic or the strong
force, so the most widespread theory is that DM interacts with ordinary matter only through the
weak force. The possibility that DM is made of elementary particles described by the SM has been
rejected. In particular, neutrinos have been the most studied SM particles since they are neutral
and interact weakly, which has led to the idea that they could be good candidates for DM particles.
They are rejected because the structures formed by DM depend on its velocity, and the experimental
results conclude that DM in the cosmos is cold2. Since neutrinos are highly relativistic, they would
form hot DM, which contradicts such observations. Therefore, if we assume that DM particles exist,
we need to develop a theory beyond the SM that accounts for these new particles. Focusing on
the belief that DM particles interact through the weak force, the leading candidates are the so-
called Weakly Interacting Massive Particles (WIMPs). WIMPs are supposed to be charge-neutral,
colourless and have masses in the GeV-TeV range, which is around the weak scale.

The particles we observe today are relics from the early Universe, including possible DM particles.
Indeed, the current DM abundance in the Universe remains constant and is called DM relic density.
Various theoretical models based on WIMPs yield the correct value for this DM abundance. A
very general model that describes how the relic density evolves over time and temperature is the
freeze-out scenario shown in figure 1.1. According to this model, when the Universe was dense and
hot, all the particles were in thermal equilibrium. During this time, the temperature was such that

1Dark energy is a form of energy which we know that exists and how much there is in the Universe. Nevertheless,
everything else about dark energy remains unknown.

2DM is composed of hot DM, cold DM and warm DM. Hot DM particles are relativistic, so their kinetic energy
is of the order of their rest mass or even higher. In contrast, cold DM particles are not relativistic, and warm DM
particles are in a mid-point.
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the annihilation of SM particle-antiparticle pairs had enough energy to produce pairs of WIMPs.
Conversely, WIMPs could also annihilate and produce SM particle-antiparticle pairs so that the
rates of production and annihilation of WIMPs were the same. Whilst the Universe expanded,
the freeze-out happened: the decrease in temperature caused the SM particles not to have enough
thermal energy to create heavier particles, and the production of WIMPs dropped. Then, the decay
into lighter particles (DM DM −→ SM SM) dominated over the decay into heavier particles (SM
SM −→ DM DM), resulting in an imbalance between the DM and SM particles density. Since there
were fewer DM particles and more separation between them, the frequency of such processes also
decreased. At some point, the density of DM particles reached a constant value as it was no longer
affected by the interactions [8, 9]. The Boltzmann equation describes this process, and its solution
is shown in figure 1.1. This quantity, ΩDMh

2, is what we call the DM thermal relic density, and it
is measurable experimentally. From the latest results of the Planck experiment, we know with high
accuracy the current value of the total DM relic density:

ΩDMh
2 = 0.118± 0.001 (1.1)

with h = H0/(100km/(sMpc)), where H0 is the Hubble constant (H0 = 2.176 · 10−18s−1) and
represents the current rate of expansion of the Universe [6].

According to this model, the following equation shows the relationship between the relic density and
the WIMP annihilation cross-section σann (i.e. the probability that such interaction takes place):

ΩDMh
2 =

mDM

ρc

H0

〈σannv〉
h2 (1.2)

where ρc denotes the density of matter that the Universe needs to be flat, and v is the relative
velocity of the WIMP [10]. Therefore, if we take the observed value of ΩDMh

2 (eq. 1.1) and mDM

in the GeV-TeV range and compute the annihilation cross-section σann according to equation 1.2,
we get a value which is in the range of the weak interaction cross-section. Thus, the fact that DM
particles in the WIMP model (mass in the weak range and weak scale cross-sections with visible
matter) reproduce the observed DM relic density is the so-called "WIMP Miracle" and is the reason
for the widespread acceptance of this model. Furthermore, if DM particles have masses in such
range, they could be produced at the LHC given its available centre-of-mass energy.

Note that in figure 1.1, we use χ to refer to the DM particle. More details on this are given in
the following chapter. Throughout this work, we mainly use Ωχh

2 to refer to the DM relic density,
which is equivalent to ΩDMh

2.

1.2 Searches for dark matter
We could take three approaches on the search for DM: direct detection, indirect detection, and
production at colliders. Figure 1.2 shows a schematic representation of these three DM detection
channels. First, assuming that the galaxy’s halo is full of WIMPs, direct detection experiments
pretend to observe the scattering between WIMPs coming from our galaxy and atomic nuclei in
Earth-based detectors (upward direction in the figure). When the interaction occurs, the WIMP
transfers a certain amount of momentum to the nuclei, which experiences a recoil that can be
detected. To minimise background signals coming from cosmic rays or radioactivity that could
interfere when measuring the recoil, the detectors in these experiments are placed underground.
For example, this is what the Dark Matter in CCDs (DAMIC) experiment does at the SNOLAB
underground laboratory in Canada [12]. Other direct detection experiments based on DM particles
scattering of xenon atoms in underground detectors are the LUX experiment in the USA, the XENON
experiment in Italy, and the PandaX experiment in China [3–5]. On the other hand, indirect
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Figure 1.1: Evolution of the relic density Ωχh
2 as a function of mχ/T for a WIMP of mass mχ in

the early Universe, where χ denotes the WIMP particle and T the temperature. The horizontal
line represents the observed value of the relic density. The black line represents the case where the
production would drop to zero if the Universe were not expanding. The red and blue lines correspond
to the uncertainty bands of the annihilation cross-sections [11].

detection experiments analyse the products of the DM annihilation in the galaxies’ halo. Whereas
for direct detection the DM particles scatter with SM particles, for indirect detection pairs of DM
particles collide and annihilate into SM particles (rightward direction). The aim is to infer the
features of the DM annihilation from the study of the interaction products, such as neutrinos coming
from the Sun or photons from the halos. Finally, according to the WIMP model and given the range
of masses that it predicts, particle accelerators like the Large Hadron Collider (LHC) seem to be
a potential place to produce such DM particles. The production of DM particles at a particle
accelerator consists of two SM particles interacting at high energies and producing pairs of DM
particles (leftward direction). For the time being, no signal of DM particles has been detected by
any experiment.
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Figure 1.2: Scheme of the three DM detection approaches: annihilation (indirect detection), scat-
tering (direct detection) and production at colliders [13].
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Chapter 2

Dark matter simplified models and
parameters

On the theoretical framework, the key point in the search for DM is to understand the mechanisms
and processes that bring DM into thermal and kinetic equilibrium. To do so, we could build different
models to interpret the experimental results. In this work, we are interested in describing the
production of DM at the LHC, for which we take a very general approach: the simplified models
for DM searches. Involving a few free parameters, Dark Matter Simplified Models (DMSM) give
an accurate kinematic description of the DM production and its interactions with the SM particles
at the LHC. We require these models to be complete enough in order to account for the physical
processes of DM production at the LHC, but without the complexity of a full theory. In particular,
the model used in this work is characterised by five parameters: the mass of the mediator (mY ), the
mass of the DM particle (mDM) and the mediator couplings to the DM particles (gDM), to leptons
(gl) and quarks (gq). The discussion of these concepts is given later in this chapter, but for now, the
parametrisation is schematised in figure 2.13.

SM

SM

DM

DM

Y
gSM gDM

SM

SM

SM

SM

Y
gSM gSM

Figure 2.1: Feynman diagrams for the interaction of two SM particles in the initial state, the
mediator Y , and the production of a pair of DM (left) or SM particles (right) in the final state. The
parameters of our model are the mass of the mediator (mY ), the mass of the DM particle (mDM), the
mediator couplings to the DM particles (gDM) and to the SM particles (gSM) which can be leptons
(gl) or quarks (gq). The time direction is from left to right. The initial state particles are on the
left, and the final state ones are on the right.

3All the Feynman diagrams shown in this work have been produced with the LATEX package TikZ-Feynman [14].
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2.1 Underlying concepts
Taking a step back to the SM, we recall that the two basic constituents of ordinary matter are
fermions and bosons, as summarized in figure 2.2. On the one hand, fermions are half-integer
spin particles, can be either leptons (e, µ, τ , νe, νµ, ντ ) or quarks (u, d, c, s, t, b), and they are
classified into three generations depending on their masses. Bosons, on the other hand, are integer
spin particles. This group includes the Higgs boson, responsible for the mass of the fundamental
particles, and the four gauge bosons, which are the carriers of the fundamental forces between
particles (gravity, electromagnetism, weak force and strong force). Gauge bosons are also called
mediator particles because they act like the propagators of the interactions, as shown in figure 2.1,
where the initial state particles (SM) annihilate and form an intermediate mediator particle (Y ) that
subsequently decays to the final state particles (DM or SM). Regarding DM, we assume that it is
composed of a single particle: a neutral Dirac fermion χ, which is a spin-1/2 particle that is different
from its antiparticle4. This assumption and the parameters used throughout this work follow the
recommendations of the LHC Dark Matter Working Group (LHCDMWG) [15–17]. Indeed, two of
the parameters of our model are the mass of the mediator (mY ) and the mass of the DM particle
(we can write mχ or mDM, indistinctly).

Figure 2.2: Particles of the Standard Model of particle physics. [18]

In chapter 1, we discussed the study of DM from its interactions with SM particles at the LHC. For
this purpose, we define a simplified model which includes a spin-1 mediator particle that interacts
with the SM particles and connects them to the DM particles. The LHC is a proton-proton collider,
so the initial particles in figure 2.1 are always quarks. Regarding the final states, the mediator can

4With this assumption, we are avoiding the imposition of supersymmetry (SUSY models). For future works, we
could consider the opposite: a Majorana fermion, which is a fermion that is its own antiparticle.
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couple to another pair of quarks or to a pair of DM particles. However, we go further in this work by
assuming a leptophilic model, which means that we allow the mediator to couple to leptons, so we
can also find a pair of leptons in the final state. The strength of the interaction is what we denote
coupling, g, and it is a dimensionless constant at each vertex. The couplings of the mediator to the
DM particles (gχ or gDM ), quarks (gq) and leptons (gl) are the other three parameters of our model.

Given a quantum state denoted ψ(~x, t), the parity transformation implies a change in the sign of the
spatial coordinates. Depending on whether the interaction changes under this parity transformation,
it is classified into scalar, pseudoscalar, vector or axial-vector. The operator associated with parity
is the gamma matrix5 γ0, so that P̂ψ(~x, t) = γ0ψ(~x, t) = ψ(−~x, t). For instance, the temperature T
is invariant under the action of the parity operator, and it is what we call a scalar. Other quantities
like the momentum ~p are not invariant because the spatial coordinates are reversed under parity,
thus they are called vector quantities. Axial-vectors or pseudovectors arise from the cross product
of two vector quantities, therefore the spatial coordinates’ sign is unchanged. For example, the
angular momentum L = ~x× ~p is an axial-vector. Finally, pseudoscalars are taken from the product
of a vector and an axial-vector, hence they change sign under parity transformations. For instance,
the magnetic flux Φ = ~B · ~S [19]. According to this classification, in such a simplified model, we
can choose the type of interaction that takes place. We mainly talk about vector and axial-vector
interactions throughout this work, so we use the superscripts V and A, respectively.

Lagrangians describe the interactions between particles in a mathematical sense. Considering the
exchange of a spin-1 boson mediator, there are two types of interactions at each vertex: vector
(φ̄1γµgV φ2) and axial-vector (φ̄1γµγ5gAφ2) 6. Experimentally, it is observed that the weak interac-
tion does not conserve parity. To account for this, the form of the weak interaction must be a linear
combination of vector and axial-vector (V-A structure): (φ̄1γµ(gV − gAγ5)φ2). Furthermore, we can
describe the interaction by separating the vector and axial-vector components of the Lagrangian.
For instance, considering the model of the vector coupling, gV , between a general mediator Y and
the DM particle as a Dirac fermion χ, the Lagrangian is as follows:

L ⊃ −χ̄gVχ γµχY. (2.1)

that for the interaction with quarks q is:

L ⊃ −
∑

i=u,d,b,t,c,s

q̄ig
V
qiγ

µqiY. (2.2)

and for the interaction with leptons l:

L ⊃ −
∑

i=e,µ,τ,νe,νµ,ντ

l̄ig
V
li
γµliY. (2.3)

with q and l denoting the spinors associated with quarks and leptons, Y is the mediator and gV

the vector coupling between the mediator and the DM particles, quarks or leptons, respectively. It
should be noted that the sum extends over all quarks and leptons.

Another important concept we need to take into consideration is the decay width of the mediator,
ΓY , which is proportional to the inverse of its lifetime, ΓY = 1

τ . It can be thought of as a parameter
5The gamma matrices or Dirac matrices (γi) are related to the Pauli matrices (σi):

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
; γ0 =

(
I 0
0 −I

)
, γi =

(
0 σi

−σi 0

)
, γ5 = iγ0γ1γ2γ3.

6φ1 and φ2 denote two general spinors (i.e. four-component wavefunctions) and γ is the gamma matrix. gV and gA

are the couplings in a vector or axial-vector interaction, respectively.
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representing the mediator’s decay strength to the various decay modes. The following expressions
give the total width of our vector mediator Y :

ΓY = Γχχ̄
Y +

∑
q

Γqq̄
Y +

∑
l

Γll
Y . (2.4)

Γχχ̄
Y =

g2χmY

12π

(
1 +

2m2
χ

m2
Y

)√
1−

4m2
χ

m2
Y

. (2.5)

Γqq̄
Y =

3g2qmY

12π

(
1 +

2m2
q

m2
Y

)√
1−

4m2
q

m2
Y

. (2.6)

Γll̄
Y =

g2lmY

12π

(
1 +

2m2
l

m2
Y

)√
1−

4m2
l

m2
Y

. (2.7)

with Γχχ̄
Y , Γqq̄

Y and Γll
Y denoting the partial widths of the mediator decaying to a pair of DM particles,

a pair of quarks, and a pair of leptons respectively, mq is the quark’s mass and ml the lepton’s mass
[16, 20]. Note that the sum extends over all quarks and leptons. It is important to remark that the
three contributions are zero when 2mi > mY such that i = χ, l, q.

2.2 Dark matter simplified model with a leptophilic spin-1 vector
mediator

To recap, taking the WIMP-like phenomenology as our basis, we require the DM production to be
mediated by a neutral spin-1 mediator, Y , with a mass in the GeV - TeV range, so it is potentially
possible to be produced at the LHC. A spin-1 mediator could be a vector or axial-vector particle,
but we have chosen a vector mediator for this model, so all the couplings are vector couplings.
Furthermore, this model is leptophilic, which means that it allows the interaction between the
mediator and leptons. On the contrary, leptophobic models forbid such interactions (i.e. the coupling
to leptons is always 0).

This work describes the simplified model defined by the following set of parameters:{
mY ,mχ, g

V
χ , g

V
q , g

V
l

}
with mY denoting the mediator mass, mχ the DM particle mass, and gVχ , gVq , gVl the vector couplings
to DM, quarks and leptons, respectively. Note we are setting the axial part (gAχ , gAq , gAl ) to zero,
so we only consider a pure vector interaction. Besides, we assume that the interaction between the
mediator and the SM particles is flavour-independent so that the mediator couples to all quarks
and all leptons with the same strength. What is more, we take from the SM the lepton flavour
universality, which means that we do not mix flavours. For example, the only way to annihilate
an electron (e−) is through its interaction with a positron (e+). Hence, for this model, we could
consider the coupling to (e−, e+), but not to (e−, µ+), and the same is considered for quarks.

The same study has been previously done considering the cases of both vector and axial-vector
interactions with a spin-1 leptophobic mediator [21]. We take this work as our starting point to
analyse the case for the vector interaction adding the coupling to leptons as a fifth parameter. For
future studies, we could investigate our model for an axial-vector mediator.
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Chapter 3

Experimental constraints

We have included some of the most relevant recent experimental results as constraints on our model.
The aim is to use these results to see which regions of our parameter space are compatible with the
observations and which ones are already excluded. In particular, we include the results from direct
detection experiments, LHC searches and the value of the relic density shown in equation 1.1. All
the details about the experiments and the constraints are detailed below. We have not considered
any indirect detection experiments because they are insensitive for simplified models when mχ > 50
GeV, according to [22].

3.1 Dark matter relic density constraint
As explained in chapter 1, we know the current amount of DM density in the Universe with high
precision (eq. 1.1). Therefore, we are interested in those combinations of the five parameters of our
model for which the computed DM relic density reproduces the experimental value. The numerical
computation of ΩDMh

2 is done by micrOMEGAs [23]. More details on this program are given in
chapter 4.

When using the relic abundance to set constraints on the parameters, we could take two different
approaches. On the one hand, with the hypothesis of the WIMP model, we could assume that the DM
particle χ is the only constituent responsible for generating this relic density, so that Ωχh

2 ≈ ΩDMh
2.

On the other hand, we could impose the previous value as just an upper bound. In this way, we
assume that if the relic density coming from the DM particles is less than the observed value, we
still allow it because there could be something else contributing to the missing relic density.

Figure 3.1 shows the diagrams for the two processes in which DM annihilation can occur: annihilation
through a mediator (left) and annihilation to pairs of mediators (right). The first one is called s-
channel annihilation and was shown in the previous chapter: the process where the DM particles
annihilate and form a mediator that decays to a pair of SM particles. The second one is the t-channel
scattering, where the DM particles annihilate to a pair of mediators that subsequently decay to a
pair of SM particles. It is important to remark that the s-channel (left) is kinematically accessible
when 2mχ ≥ mY . The requirement for the t-channel annihilation (right) is mχ ≥ mY . Since this
model allows the mediator coupling to leptons, we also consider the corresponding diagrams with
leptons (l) in the final states instead of quarks (q).
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Figure 3.1: Feynman diagrams for the two processes contributing to DM annihilation: the anni-
hilation through a single mediator in the s-channel (left) and the t-channel annihilation to a pair
of mediators that subsequently decay to quarks or leptons (right). Y denotes a general mediator
particle and χ (χ̄) the DM particles (antiparticles), while q and q′ (l− and l′−) represent two general
quarks (leptons), with q̄ and q̄′ (l+ and l′+) denoting their respective antiparticles.

As an introductory example, figure 3.2 compares the results for the relic density in the (mY ,mχ)
plane for a spin-1 axial-vector mediator and different choices for the couplings. Figure 3.2a shows a
leptophobic scenario with couplings gAq = 0.25, gAχ = 1.00 and gAl = 0.00 and figure 3.2b a leptophilic
scenario with couplings gAq = 0.10, gAχ = 1.00 and gAl = 0.10. Both figures are coloured according to
the values of Ωχh

2. We conclude that, for the previous values of the couplings and according to the
colour bar, the DM relic density constraint excludes the dark blue regions because they give a higher
value of Ωχh

2 than the observed one. Moreover, the shape of these areas depends on the choice
of the couplings. For instance, we appreciate that the contour extends to slightly lower mY in the
leptophilic scenario. The solid orange contours represent the points for which the computation of
relic density gives exactly the right value: Ωχh

2 = 0.118, and the white regions where Ωχh
2 < 0.118.

Additionally, figure 3.3 displays the same figures, but they are coloured according to the values of
the likelihood ∆χ2 = χ2 − χ2

min, where χ2
min is the global minimum. Further comments on the

likelihood of the model and its interpretation are given in the next chapter. For now, it is important
to remark that each constraint defines a likelihood function, so we take the joint likelihood of all the
experimental constraints that are taken into account. Such function is written as a χ2 and depends
on all the model parameters, in the sense that the lower the ∆χ2, the better the point fits our model.
Hence, the allowed regions (in white) are where the combination of the fixed couplings and masses
satisfies all the constraints. In particular, they would give a value for the relic density that comes
the closest to the measured one. In contrast, the dark regions do not satisfy one or more of the
constraints. If we compare both figures, we observe that the points that have the lowest ∆χ2 in
figure 3.3 are those that reproduce the contours in 3.2, as we would expect. Comparing the results
for the leptophobic and leptophilic scenarios, we observe that the diagonal mY = 2mχ gives very
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small values of ∆χ2 in both cases, and the orange contour above the diagonal extends towards lower
values of mY in the leptophilic scenario. Since gχ = 1 in both scenarios, we can conclude that the
distinct features in the results are a consequence of gq and gl.

(a) Leptophobic: gq = 0.25, gl = 0.00 and gχ = 1.00. (b) Leptophilic : gq = gl = 0.10 and gχ = 1.00.

Figure 3.2: Representation of the relic density Ωh2 in the (mY ,mχ) plane for a spin-1 axial-vector
mediator. The figure compares two scenarios: leptophobic with couplings gq = 0.25, gl = 0.00 and
gχ = 1.00 (left) and leptophilic with couplings gq = gl = 0.10 and gχ = 1.00 (right). The contour
lines represent the regions of the parameter space where the combination of the masses and couplings
give the exact observed value for the relic density: Ωh2 = 0.118. Both figures are coloured according
to the values of Ωh2.

(a) Leptophobic: gq = 0.25, gl = 0.00 and gχ = 1.00. (b) Leptophilic : gq = gl = 0.10 and gχ = 1.00.

Figure 3.3: Representation of the likelihood function in the (mY ,mχ) plane for a spin-1 axial-vector
mediator. The figure compares two scenarios: leptophobic with couplings gq = 0.25, gl = 0.00 and
gχ = 1.00 (left) and leptophilic with couplings gq = gl = 0.10 and gχ = 1.00 (right). The contour
lines represent the 1-σ (orange) and 2-σ (green) contours, which are the boundaries of the regions
with ∆χ2 < 2.30 and ∆χ2 < 5.99, respectively. Both figures are coloured according to the values of
∆χ2 = χ2 − χ2

min.
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3.2 Direct DM searches constraints
As said before, direct detection experiments intend to discover DM particles from the products of
their interaction with atomic nuclei. We make use of the most recent results from direct detection
experiments such as LUX, PandaX and XENON1T to derive limits on the DM-nuclei scattering rate
[24–26]. The three of them study the scattering between WIMPs and liquid xenon atoms through
the nuclear recoils experienced by the latter. The numerical computation of the direct detection
scattering cross-sections is done by micrOMEGAs [23]. More details on this program are given in
chapter 4.

3.3 LHC constraints
The LHC, at CERN in Geneva, is the world’s most powerful particle accelerator. It is located in a
27 km underground tunnel, and it accelerates particles up to a maximum energy of 14 TeV, with a
speed close to the one of light. We have included several results from the two general-purpose LHC
experiments: ATLAS and CMS. Both are designed to study very different particle physics processes,
such as the Higgs boson, predictions on the SM, and even searches for new physics beyond the SM.
In particular, we have taken the latest results from these experiments using data at a centre of mass
energy of 13 TeV, collected during the Run 2 period (2015-2018) [27–34].

In this simplified model, the main production diagram at the LHC is the annihilation of two quarks.
As seen in figure 3.4, we consider the processes in which the DM particles couple to quarks through
a mediator that subsequently decays to a pair of WIMPs (top left) or to a pair of SM particles
that can be either neutrinos (top right), quarks (bottom left) or leptons (bottom right). We now
discuss two classes of signatures, which are the most important for the phenomenology of our model:
mono-X searches (undetectable final states) and mediator searches (visible final states) [35].

• Mono-X searches. The final states are undetectable, so we try to infer their production from the
other products of the interaction. WIMPs are only weakly interacting, and they are considered
stable particles at least over the age of the Universe because, otherwise, there would be no
relic density. Hence, if the mediator decays into two WIMPs, they escape the LHC detectors
without leaving any visible track, but generating a momentum imbalance as a sign of their
passage. If we analysed the interaction products and imposed momentum conservation, the
momentum imbalance (called missing transverse energy) would be associated with the DM
particles that have escaped. To detect this kind of process, we need to detect a signal that
indicates that such an interaction has occurred. For this reason, we require the initial state
to radiate particles that we can detect, such as photons, quarks or gluons. In this work, we
focus on monojet signatures. For instance, in figure 3.4 top left, a pair of DM particles couple
to quarks through a mediator that subsequently decays to a pair of DM particles. The initial
quarks radiate a gluon and, since a free gluon cannot exist, it hadronizes generating a jet7. In
the detector, we would find missing transverse energy recoiling against these visible energetic
particles. As seen in figure 3.4 top right, we also include in the monojet search the same
process with the mediator decaying to a pair of neutrinos that are also undetectable.

• Mediator searches. We consider the processes in which the mediator decays back to a pair of SM
particles (quarks or leptons) that are visible in the detector, as seen in figure 3.4 bottom. The
mediator decays immediately, so we cannot detect it, but we can trace back its properties from
the final states, which leave visible tracks in the detectors. We consider experimental results

7A jet is a collimated bunch of particles produced after the hadronisation process of the radiated gluon. The
hadronisation process forms hadrons (subatomic particles made of quarks) out of quarks and gluons (boson particle
carrier of the strong nuclear force).
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from the dijet (bottom left) and the dilepton (bottom right) final states analysis, in which the
mediator decays to a pair of quarks or leptons, respectively. For the dilepton diagrams, we only
consider charged leptons, as the experiments we take into account are not performed searching
for neutrinos. What is more, they only take into account electrons and muons because ditau
signatures are more difficult to identify cleanly [34].

gq

q̄

χ

χ̄

Y

gq

q̄

νl

ν̄l

Y

q

q̄

q′

q̄′

Y

q

q̄

l

l̄

Y

Figure 3.4: Feynman diagrams for a monojet (top), dijet (bottom left) and dilepton (bottom right)
signatures. In these interactions, DM particles couple to quarks through a mediator that subse-
quently decays to either a pair of DM particles or neutrinos (monojet), to a pair of quarks (dijet) or
a pair of leptons (dilepton). Y is the mediator particle, g the radiated gluon, χ (χ̄) the DM particles
(antiparticles) and νl (ν̄l) the neutrinos (antineutrinos) while q and q′ (l−) represent two general
quarks (lepton), with q̄ and q̄′ (l+) denoting their respective antiparticles. Note that the initial state
quarks in the monojet diagrams radiate a gluon.

It is important to note that the decay of the mediator into a pair of DM particles is kinematically
allowed only if mY ≥ 2mχ. Otherwise, DM production is forbidden, and we can only consider the
dijet and dilepton diagrams.
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Chapter 4

Framework

As already mentioned, the main aim of this work is to perform a global study of our model, using
constraints coming from different types of experiments, in order to find the still allowed parameter
space regions. The main tool used for this purpose is the MasterCode program, which is a framework
that performs multidimensional global analyses of Beyond the Standard Model Theories (BSM),
focusing on SUSY and DMSM [21, 36, 37]. Given a specific model, MasterCode computes the
physics observables in all the parameter space points and determines how well the model fits the
experimental results.

MasterCode is a software framework that allows the user to run all the necessary softwares to study
a given model, interfacing them in a consistent way. Some of the most important ones are the
following. Fastlim implements the collider constraints [38]. The final state observables and the
mediator properties are computed using the Madgraph program [39], while the micrOMEGAs program
does the numerical computation of the direct detection cross-sections, and the DM observables, such
as the DM relic density [23]. To sample the parameter space and find the regions with the best χ2,
MasterCode uses the MultiNest algorithm [40]. Details on this algorithm are given in the following
section.

MasterCode is a multi-language framework. The calculation of the likelihood and the implementation
of the constraints is written in C++. This language was chosen to have a high-performance code
since we must compute the likelihood for every sampled point. The interface, which makes the code
accessible for the users, and the computation of the physics observables are written in Python since
it allows more flexibility and is more user-friendly than other languages. Cython is used to connect
the Python codes to the C++ codes. Additionally, as we sample the parameter space, we want to
store and manage all the data for each point, for which we use sql databases8 [41]. In this way,
each point (i.e. each combination of the five parameters) is associated with a row, and each column
is an observable. I have worked with Python, the bash shell script, and the VIM editor in Linux
for the scripting [42]. The VIM editor has different features from other script editors I have worked
with before, so I learnt how to use its functionalities. For instance, it does not allow the use of the
computer mouse, and it requires to master some key combinations, without which it is not possible
to work efficiently. Regarding the visualisations, most of the plots shown in this work have been
generated with existing scripts inside MasterCode. However, I have needed to change them to add
some new features, such as the axes, colours or the display of new variables that were not defined.
For this reason, I learnt how to use the Matplotlib library, which is a Python library helpful to
produce all kinds of visualisations [43].

8SQL (Structured Query Language) is a database language for storing, accessing and managing data sets.
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Other tools that have been necessary to use the MasterCode framework are listed below. First, to use
the MasterCode environment, it would have been ideal to install it locally on my computer, but due
to its large size and to avoid running out of space, I used a virtual machine (VM). The VM includes
everything needed to run different operating systems regardless of which one runs on the computer.
In particular, I have used a VM image, through the Oracle VM VirtualBox software, that contains
the MasterCode environment running in the Linux system, while my laptop’s operating system is
Windows [44]. Inside the VM, a docker container is used to run the MasterCode environment [45].
A container is a unit of software that allows the user to run an application, such as codes, libraries
and other system tools. In this way, we have everything required to compile and run MasterCode
without performing the installation. Second, the CERN organisation allows users to connect to their
cluster of computers remotely via ssh connections9. Since some of the processes that MasterCode
runs require large computational resources that my laptop could not handle, I used this service to
launch some of them. Inside the cluster, since docker is not available, we have used a singularity
container that works in the same way [46]. Finally, to run some instances of the sampling, we have
used HTCondor.The sampling process requires high CPU usage, so we decided to use this batch
system available for CERN users [47]. This system splits the code into multiple jobs running in
parallel so that the time required to minimise the χ2 over the entire parameter space is considerably
reduced.

4.1 Sampling and fitting
Likelihood functions are used to measure how well a statistical model fits a sample of data for
given values of its parameters. In particular, since we want to find those values of the parameters
that maximise the likelihood of our model, we use the chi-square statistic, χ2. Thus, minimising
the χ2 is equivalent to maximising the likelihood since a low χ2 means that the experimental data
fit our model very well. Each constraint defines an individual likelihood function, so we need to
compute the joint likelihood of all the experimental constraints that are taken into account. Inside
MasterCode one can easily define a joint likelihood in terms of single constraints using a Python
dictionary. The implementation of the constraints is done as follows. First, the likelihood functions
are obtained from the parametrisation of the results of each experiment, formulated as a χ2. Then,
the joint likelihood function is computed as the sum of all the log-likelihood functions. Finally, this
joint likelihood, written in terms of the model’s parameters, is used to calculate the χ2 value of each
parameter space point. In the analysis of the results, we mainly use ∆χ2 = χ2−χ2

min as a measure of
the likelihood, where χ2 represents the likelihood at a certain point and χ2

min is the global minimum.

Parameter Range
mχ (0, 2.5) TeV
mY (0.1, 6) TeV
gl (0,

√
4π)

gq (0,
√
4π)

gχ (0,
√
4π)

Table 4.1: Parameters of our model and regions where they are considered. Note that all the
couplings are vector couplings.

9The ssh (or secure shell) connections allow remote access to a server via a secure channel in which all information
is encrypted.
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Next, we need to define the ranges in which each parameter is studied (table 4.1). Recall that we
only consider a pure vector interaction for this work, which means that the three couplings are vector
couplings. From now on, we drop the superscript V , and we refer to them as simply g. These limits
are chosen to ensure that our parameter space is valid for the WIMPs’ model and accessible at the
LHC energy scale. A brief explanation of each range is given below. First, the weak interaction
is mediated by the W and Z bosons, with masses mW = 80, 4 GeV/c2 and mZ = 91, 2 GeV/c2.
Therefore, we take the lower limit of the mediator mass to be 100 GeV because these mass ranges
are well studied, and there have been no signs of interaction with DM so far, so we can avoid this
to focus on regions that are not extensively analysed. In addition, if the masses of Y and the Z
are similar, we would enter the region where the Y and Z are mixed, and we should take additional
constraints into account. On the other hand, nothing prevents us from going down to very low
values of mχ, so we take 0 Gev as the lower limit. We take 6 TeV and 2.5 TeV as the upper limits
for mY and mχ, respectively, so we avoid the regions where we would not have enough energy to
produce the particles at the LHC, as the maximum reachable energy is 14 TeV. Second, all the
couplings take 0 as the minimum value, as this would mean that these particles are not involved in
the interaction, which is perfectly possible. The upper limit

√
4π is imposed to ensure perturbativity

in our calculations. Perturbation theory is often used in particle physics, and for our purpose, we
have to ensure that the model remains perturbative so that all the calculations are adequate. If the
strength of the interaction (i.e. the coupling) is small enough, we can effectively approximate it to a
series expansion. If this value were over

√
4π, the series would not converge.

Now that the five parameters and the constraints that characterise the model are implemented, we
can proceed to the sampling of the parameter space. In order to do so, we need to compute the
observables and evaluate the χ2 for a large number of points. Then, we find which regions are allowed
and preferred by the data. This process needs many sample points to find the minimum values
accurately, so it takes a huge amount of time. In order to work efficiently, we used the MultiNest
algorithm as a minimisation procedure in computing the χ2 in a multidimensional parameter space
[37, 40]. The algorithm simulates some of the points in the parameter space with a nested sampling
method. Since the parameter space is large, we segment it, so all the space is divided into a
certain number of hypercubes to achieve more efficiency. Such hypercubes or boxes can be set to be
logarithmic or linear. A logarithmic box means that the sample points are distributed uniformly on
a logarithmic scale, i.e. small values of the parameters are sampled more frequently. As mentioned
in the previous section, this process runs in HTCondor, launching multiple jobs running in parallel.
MultiNest minimises the likelihood similarly to the gradient descent. Taking the slope that the
likelihood function defines in the space, the idea is to follow the direction of the slope where the
function decreases. When it cannot decrease anymore, the algorithm converges, and the minimum
is reached. The last step is to merge all the databases. To make the process faster, only the points
that satisfy χ2 < 20 are stored for performance.

For the analysis of the results, we generate the plots to see how the likelihood behaves if we project
it onto the different planes of the parameter space. For every point in the 2-dimensional plane, we
fix two of the parameters and minimise the χ2 with respect to the remaining three. We call this
procedure profiling, and it is done as follows. All the databases with the outcome from the samplings
are stored in the EOS directory10 of the project. From the points in the databases, I run the profile
likelihood functions for a given set of planes. These planes are taken from the different combinations
of pairs of the five parameters and other observables that are sometimes of interest, for instance, the
relic density or the mediator widths. Then, the points with the lowest χ2 are stored in a ROOT file11.
In MasterCode the likelihood is recomputed every time a profiling is performed. Since computing

10EOS is the CERN’s storage service
11ROOT is a data analysis framework used in high energy physics that allows the user to store, access and process

vast amounts of data in a very fast way.
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the χ2 for each point is not particularly time-consuming, it is worthwhile to recalculate it to gain
more flexibility in modifying the constraints. We do it this way because sometimes it is useful to
change the values of a constraint, implement new ones, or see how the results vary if we remove one
or the other. If we had to run the entire sampling every time such a modification is made, this work
would take many months. Moreover, we only have to recompute the likelihood for those points that
have been stored in the database during the sampling (i.e. those with χ2 < 20), so we do not really
process that many points at this step. Afterwards, we profile the likelihood function taking as an
input the previous database, the definition of the constraints sets (i.e. the total likelihood function)
and the subspaces we want to display. The profilings are then transferred to the virtual machine,
where MasterCode and the Matplotlib library have been used to generate the plots.

Sometimes it has been necessary to run more accurate samplings in smaller subspaces. As will
be discussed in detail in the results, when the space is too large, we might have problems with
the convergence of MultiNest in certain regions. To solve this, we run a sampling in a reduced
parameter range. Then, we have to rerun the profiling with these new results. Inside MasterCode,
we can join the outputs of several profilings. In this way, we can run the profiling on each sampling
database and then merge them. This allows us to save a considerable amount of time compared
to what we would need if we first merged the databases and then ran the profiling on this huge
database.
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Chapter 5

Results

This chapter presents the main results of this work. We recall our goal is to perform a global
likelihood analysis on the search for DM particles at the LHC using the MasterCode framework. The
theoretical model is a DM simplified model with a leptophilic spin-1 vector mediator, characterised
by the following parameters:

{mY ,mχ, gχ, gq, gl} .

The most recent results from DM searches (direct detection and LHC experiments) are included as
constraints on the model, together with the imposition of the observed value for the relic density:
ΩDMh

2 = 0.118 ± 0.001. After studying and interpreting the results, we conclude which regions of
the parameter space are still allowed by the already published experimental results and which ones
are forbidden.

5.1 General comments
Before proceeding with the analysis of the results, some considerations about the plots are given
below. As an example, consider the (mY , mχ) plane in figure 5.1. This plot displays ∆χ2 coloured
as a function of mY (x-axis) and mχ (y-axis), which is obtained from the global fit results, where
∆χ2 = χ2−χ2

min, and χ2
min is the global minimum of the likelihood. First, it is important to emphasise

that the points shown in the planes have two fixed parameters, which are the figure axes, and the
remaining three are free parameters. Hence, for each fixed pair (mY ,mχ) in figure 5.1, we have
different combinations for the values of the couplings, and each of them might give a different ∆χ2.
At each bin in the plot, we only show the point whose combination of the three free parameters gives
the lowest ∆χ2. Moreover, the displayed points are coloured according to the computed ∆χ2, except
for the grey and white points. The grey colour means that the points lie inside the consideration
ranges (table 4.1), but their χ2 is larger than the maximum value of the colour bar, so they are
excluded. The white points lie outside the parameter ranges of consideration, and therefore they
have not been computed. For instance, we see a white band for small mY because their values lie
below the lower bound 0.1 TeV. Other important features displayed in all the plots are the solid
red and blue lines representing the 1-σ and 2-σ contours. These lines define the boundaries of the
regions where ∆χ2 ≤ 2.30 and ∆χ2 ≤ 5.99, respectively. In other words, all the points within the red
contour are allowed at 68% confidence level (1-σ), while those within the blue contour correspond
to the 95% confidence level (2-σ) .

Another thing to bear in mind is that the calculations might not be adequate if the width of the
mediator is too large. Dijet and dilepton searches are resonance searches, and they study the invariant
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Figure 5.1: Likelihood function in the (mY , mχ) plane with the additional constraints on the total
mediator width ΓY /mY < 0.1 and on the lepton coupling gl < 0.001. The figure is coloured according
to the values of ∆χ2 = χ2 − χ2

min, and the points for which ∆χ2 > 9 are displayed in grey. The
white band for small values of mY shows the points that have not been computed because they lay
outside the consideration range for mY : (0.1, 6) TeV. The 1-σ and 2-σ regions are delineated by red
and blue contours, respectively. The top dashed line corresponds to the points where mY = mχ,
and the bottom dashed line shows the condition mY = 2mχ.

mass spectrums of the events12. Experimentally, we observe the mediator resonance, but if the width
of such resonance were too large, it would be indistinguishable from the background. Consequently,
the searches would not be sensitive enough, and we could not use them to impose bounds. We
avoid this limitation by enforcing a cut on the ratio ΓY /mY . For instance, in previous works with
MasterCode, the cut imposed was ΓY /mY < 0.3. However, in this work, we are adding a new decay
channel by allowing gl to be greater than zero, and we have also included the latest dilepton searches
as experimental constraints. Hence, as these dilepton results are available from ATLAS only up to
a ratio ΓY /mY = 0.1, we must use this bound to be consistent with the experimental analyses
[34]. Figure 5.2 shows an example to understand how ΓY /mY is involved in the calculations. It
displays the (mY , mχ) plane coloured according to the values of ∆χ2 for four different upper limits
on ΓY /mY . In particular, the dark blue points are allowed as they lay inside the contours and
satisfy all the model constraints. The top dashed line in the plots corresponds to the condition
mY = mχ, and the bottom dashed line shows the condition mY = 2mχ. These lines are not of major
importance at the moment, as we will discuss them later, but for now, they are useful to guide us
in comparing the plots. We observe that the higher ΓY /mY is accepted, the more the allowed area
is extended downwards. In other words, the points where mY > mχ tend to have a relatively large
ΓY /mY , as the more we restrict the cut, the more the region is suppressed. Still, the points where
2mχ > mY are always allowed, no matter how low the cutoff value for ΓY /mY is. Note that in
figures 5.2a and 5.2b, we observe some white points mixed with the grey ones. In this case, unlike
what was discussed above, they are not outside the ranges of consideration but appear due to low

12The invariant mass characterises the energy and momentum of a system, and it is the same in every reference
frame. The distribution of this quantity for a certain number of events is what we call the invariant mass spectrum of
the system.
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sampling statistics. We only observe such white regions for the upper bounds ΓY /mY < 0.01 and
ΓY /mY < 0.05, which are very restrictive, thus significantly reducing the number of sampled points.
Therefore, when we run the fit on these points, convergence problems arise, and, as a result, they are
not computed. As we allow higher values for ΓY /mY , we observe that the whole region is covered.
Running a dedicated sampling for low ΓY /mY values would be advisable if we wanted to recover all
these points. In all the following plots, we use the constraint ΓY /mY < 0.1. Hence, whenever the
(mY , mχ) plane is displayed, we will observe the same contours as in figure 5.2c.
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(a) ΓY /mY < 0.01
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(b) ΓY /mY < 0.05
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(c) ΓY /mY < 0.1
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(d) ΓY /mY < 0.3

Figure 5.2: Comparison of the likelihood functions in the (mY , mχ) plane for different upper bounds
on the total mediator width ΓY /mY . Top left: ΓY /mY < 0.01. Top right: ΓY /mY < 0.05. Bottom
left: ΓY /mY < 0.1. Bottom right: ΓY /mY < 0.3. All the figures are coloured according to the
values of ∆χ2 = χ2−χ2

min, and the points for which ∆χ2 > 9 are displayed in grey. The white band
for small values of mY shows the points that have not been computed because they lay outside the
consideration range for mY : (0.1, 6) TeV. The 1-σ and 2-σ regions are delineated by red and blue
contours, respectively. The top dashed line corresponds to the points where mY = mχ, and the
bottom dashed line shows the condition mY = 2mχ.

Furthermore, it is interesting to remark how the cut on ΓY /mY implicitly restricts gl. In figure 5.3,
we represent ΓY /mY versus gl to observe how larger values of gl are excluded as ΓY /mY decreases.
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Mathematically, we see this in equation 2.1:

Γll̄
Y =

g2lmY

12π

(
1 +

2m2
l

m2
Y

)√
1−

4m2
l

m2
Y

.

The most important conclusion we draw from this figure is the following. Since the cutoff applied
throughout this work is ΓY /mY < 0.1, we implicitly limit gl to the range (0, 2.8), as seen from the
green dashed line in the plot.
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Figure 5.3: Likelihood function in the (ΓY /mY , gl) plane. The figure is coloured according to the
values of ∆χ2 = χ2 − χ2

min. The 1-σ and 2-σ regions are delineated by red and blue contours,
respectively. The dashed vertical line corresponds to the points where ΓY /mY = 0.1, which is the
cut applied throughout this work.

5.2 Discussion of results
The database generated after the first sampling has ∼ 192 million points. From this database, I
have run the profilings of the likelihood functions with the ranges shown in table 4.1 and the set of
constraints in chapter 3. It is also important to remark that all the results have been computed with
MasterCode considering the theoretical model with the parameters described above and a spin-1
vector mediator that couples to leptons. After the profiling, the number of points with ∆χ2 < 9 is
∼ 34 million.

The first consideration arises when observing an unexpected behaviour for low gl values in some
figures. For instance, figure 5.4a shows the results of the global fit coloured according to the values
of ∆χ2 as a function of gl (y-axis) and mχ (x-axis). We have also considered the additional restriction
ΓY /mY < 0.1. First, note that gl is displayed on a logarithmic scale because it helps analyse its
behaviour at low values. For gl < 10−2, we observe some non-physical vertical structures that seem
to be artificially produced due to a lack of statistics of the samples. In particular, we noticed that gl
was sampled linearly, while the scale shown in the plot is logarithmic, so there is a significant lack
of points. We addressed this problem in the following way. First, I have checked that the points
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inside the columns are good points, which means that the fit has converged correctly and they have
a low ∆χ2. Then, the idea is to explicitly deform the points between the vertical regions, which
means slightly varying the three free parameters and computing the remaining observables to see
what results they yield. In this way, we want to check whether it is possible to get an acceptable
∆χ2 between the columns. For this purpose, I used a script inside MasterCode, which allows the
user to compute all the observables for a fixed point in the parameter space. Indeed, we found that
such good points exist between the vertical structures, thus confirming that the issue was just a
sampling artefact caused by the lack of statistics rather than a model feature. To fix this, we needed
to run a dedicated sampling in the subspace of low gl to recover the missing points. The ranges for
gl chosen for the new boxes are (10−2 - 10−6) on a logarithmic scale and (10−6 - 0) on a linear scale.
With this new sampling, which has ∼ 8 million new points, we expected to compute the empty bins
and get a correct fit in all the parameter space. Indeed, in figure 5.4b, we observe that the entire
space is covered.
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Figure 5.4: Comparison of the likelihood function in the (mχ, gl) plane with the additional constraint
ΓY /mY < 0.1. Left: first sampling (∼ 192 million points). Right: first sampling merged with the
dedicated one in the subspace of low gl (∼ 8 million points). Note that the y-axis, gl, is shown on
a logarithmic scale. Both plots are coloured according to the values of ∆χ2 = χ2 − χ2

min, and the
points for which ∆χ2 > 9 are displayed in grey. The 1-σ and 2-σ regions are delineated by red and
blue contours, respectively.

5.2.1 (mY , mχ)

First, we want to verify if the results obtained are consistent with the published ones in [21]. The
difference between the two studies lies in allowing the mediator coupling to leptons or not. Hence,
our first approach is to perform a new profiling with the condition gl < 0.001 and compare it with
the published results, for which gl is zero. Figure 5.5 shows the (mY , mχ) plane for the leptophobic
scenario (left) and the leptophilic scenario with the upper bound gl < 0.001 (right). The white
band for small values of mY shows the points that have not been computed because they lay outside
the consideration range for mY : (0.1,6) TeV. The remaining white regions are excluded because
their χ2 is too large. In fact, they correspond to the grey points in 5.2c. The top dashed line
in the right figure corresponds to the points where mY = mχ, and the bottom dashed line shows
the condition mY = 2mχ. Both figures are coloured according to the dominant DM annihilation
mechanism that minimizes χ2: t-channel annihilation in green and s-channel annihilation in yellow.
At the moment, we only look at the regions that are allowed, regardless of the colour, as we will give
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more information on the mechanisms below. Comparing both plots, we conclude that we reproduce
the published results for this plane when imposing the upper bound gl < 0.001.
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Figure 5.5: Comparison of the likelihood functions in the (mY , mχ) plane. Left: leptophobic scenario
(gl = 0) from [21]. Right: leptophilic scenario with gl < 0.001. Both figures are coloured according
to the dominant mechanism for the DM annihilation at each allowed region: t-channel annihilation
in green and s-channel annihilation in yellow. The white band for small values of mY shows the
points that have not been computed because they lay outside the consideration range for mY : (0.1,
6) TeV. The remaining white regions are excluded regions because their χ2 is too large. In fact,
they correspond to the grey points in 5.2c. The 1-σ and 2-σ regions are delineated by red and blue
contours, respectively. The top dashed line corresponds to the boundary of the t-channel region,
mY = mχ, and the bottom dashed line shows the condition mY = 2mχ.

In figure 5.6, we analyse how the parameter space varies as gl is increasingly allowed. For this
purpose, we display the results for two profilings with fixed upper bounds gl < 0.01 and gl < 0.1,
and a third profiling with no cut on gl. It is important to remark that the cut ΓY /mY < 0.1 is
imposed in the three plots, which means that, as we saw in figure 5.3, gl is implicitly restricted to
gl . 2.8. The figures are coloured according to the mechanism that dominates in each region of the
space: yellow for the s-channel and green for the t-channel. In figures 5.6b and 5.6c, the 1-σ and 2-σ
contours are mostly overlapped, meaning there is no significant region with points lying outside the
68% region and inside the 95%. Comparing the three plots, the most remarkable feature we observe
is that the allowed region is extended as we allow larger values for gl. On the one hand, the white
triangle between the two regions in figure 5.5a, mχ < mY < 2mχ (i.e. the region between the two
dashed lines) is allowed in figures 5.6b and 5.6c. On the other hand, we appreciate that the contours
move progressively downwards as we allow larger values of gl. In particular, in figure 5.6c, the whole
range of mY is allowed for mχ > 1500 GeV. However, the larger mY , the more mχ is constrained
to higher values. For instance, when mY ∼ 1000 GeV, the minimum value that is allowed for mχ is
∼ 50 GeV and when mY ∼ 5000 GeV, we need to go up to mχ > 1200 GeV to be inside the contours.
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Figure 5.6: Comparison of the likelihood functions in the (mY , mχ) plane for different upper bounds
on the lepton coupling gl and the additional constraint ΓY /mY < 0.1. Top left: gl < 0.01. Top
right: gl < 0.1. Bottom: ΓY /mY < 0.1. All the figures are coloured according to the dominant
mechanism for the DM annihilation at each allowed region: t-channel annihilation in green and s-
channel annihilation in yellow. The intensity of the colour depends on how dominant the mechanism
is. The white band for small values of mY shows the points that have not been computed because
they lay outside the consideration range for mY : (0.1, 6) TeV. The remaining white regions are
excluded regions because their χ2 is too large. The 1-σ and 2-σ regions are delineated by red and
blue contours, respectively. The top dashed line corresponds to the boundary of the t-channel region,
mY = mχ, and the bottom dashed line shows the condition mY = 2mχ.

At this point, we are interested in understanding why as gl increases, we obtain new allowed areas.
For this purpose, the previous figures are coloured according to the mechanism that dominates at
each region of the space. The four possible DM annihilation mechanisms are shown below in figure
5.7. Note that since our study is flavour-independent, we write l−, l+ for general leptons and their
antiparticles, and q, q̄ for general quarks and antiquarks. However, we only distinguish whether the
decay is through the t-channel (right) or s-channel (left), regardless of whether it decays to quarks or
leptons. The process to determine such dominant mechanisms is the following. micrOMEGAs stores
the percentages of how much each channel contributes to the total DM annihilation at each point in
the plane. Hence, from this information, the points where the s-channel is the dominant mechanism
are shown in yellow, and those where the dominant mechanism is the t-channel are coloured in green.
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Moreover, the intensity of the colour depends on how dominant the mechanism is, as we can observe
in figure 5.6c. It is also important to clarify that the fact that one region is coloured in green does
not mean that the t-channel is the only possible mechanism, but that, for the points that minimise
χ2, it dominates over the s-channel. The same is true for the yellow region.
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Figure 5.7: Feynman diagrams for the two processes contributing to DM annihilation: the anni-
hilation through a single mediator in the s-channel (left) and the t-channel annihilation to a pair
of mediators that subsequently decay to quarks (right). Y denotes a general mediator particle and
χ (χ̄) the DM particles (antiparticles), while q and q′ (l− and l′−) represent two general quarks
(leptons), with q̄ and q̄′ (l+ and l′+) denoting their respective antiparticles.

Consider again figures 5.5 and 5.6. As mentioned before, the allowed regions in these plots are
coloured according to the dominant mechanism for the DM decay that gives the smallest χ2: s-
channel in yellow and t-channel in green. In figures 5.5b and 5.6a, we observe that above the
condition mχ > mY , the region is green, while the other allowed region is coloured in yellow. There
are no significant differences between these two figures, except that in the second one, there are
more allowed points at low values for the masses. When we restrict our parameter space too much,
as in 5.5b, we cannot find allowed points in such region. However, for gl < 0.01, the MultiNest
algorithm finds more points, and it is covered. Concerning the green region, it remains unchanged
in 5.6b, but it slightly disappears in 5.6c as gl is increasingly allowed, and we observe a mix of the
two mechanisms being dominant. The reason is that, as we mentioned earlier, we take for each bin
a single point that corresponds to the lowest χ2. Hence, in this region, we have a slightly lower
χ2 with one mechanism than the other, but it is simply numeric. The result is an overlap of the
mechanisms as both are equally probable. Regarding the new allowed region in figures 5.6b and
5.6c, where mχ < mY < 2mχ (i.e. the region between the two dashed lines), the mechanism that
dominates is the s-channel. The same is true for the extended area below the bottom dashed line.
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For more information on the mechanisms that dominate in each region of the (mY ,mχ) plane, figure
5.8 represents the values of the couplings on colour scale: gχ (top left), gq (top right) and gl (bottom).
Observe that the colour bar has a different range for each coupling. In particular, note that the gl
colour bar has its maximum value at 0.5. It is shown this way in order to better visualise how gl
changes in the different regions of the plane, but we should keep in mind that gl is allowed up to ∼ 2.8,
as we saw in figure 5.3. Starting with the region mχ > mY , we observe that we have extremely small
values of gq (< 10−5), while gl is allowed in the range (0 - 0.7) and gχ in (0.3 - 1.1). Recall that in this
model we are using dijet and dilepton constraints from the LHC. The results from dijet searches are
translated into upper bounds on gq and on the production cross-section. Indeed, such constraints
are very effective in suppressing gq, in particular for low values of mY [21]. Therefore, it seems
that in order to have a relevant annihilation cross-section for the decay to leptons, we must reduce
the annihilation cross-section for the decay to quarks, which means suppressing gq. Concerning the
adjacent region, mχ < mY < 2mχ (forbidden in the leptophobic scenario), we observe that gq is still
very small and gl has decreased (<0.15), while gχ, on the contrary, has increased (>1.8). Checking
the stored values in the database, we see that we need gl > 0.05 for this region to be allowed, but
the values that give the lowest χ2 are not particularly large: gl ∈ (0.05, 0.15). Therefore, we can
conclude that allowing gl to be non-zero makes this region accessible, even if gl is not too high, as
seen in figure 5.6b. As a consequence, gq and gχ are modified, reducing the decay to quarks and
enlarging the coupling to DM. Such low values of gq and gl restrict the corresponding annihilation
cross section to very small values. In equation 1.2 we observed that the annihilation cross-section
σann is inversely proportional to Ωχh

2:

Ωχh
2 =

mχ

ρc

H0

〈σannv〉
h2

hence the suppression of such cross-sections results in an enhancement of the relic density. To
compensate for this, it seems that gχ must be increased so that the annihilation cross section is high
enough to lower the computed value for the relic density and effectively reproduce the observed one.
Finally, at mY > 2mχ, the values for the couplings remain approximately the same as in the previous
region and, as they approach the contour lines, both gl and gq increase. As a result, following the
same reasoning as before, gχ decreases to give the correct value for the relic density.

27



0 1000 2000 3000 4000 5000 6000
mY [GeV]

0

500

1000

1500

2000

2500

m
 [G

eV
]

0.5

1.0

1.5

2.0

2.5

3.0

3.5

g
(a)

0 1000 2000 3000 4000 5000 6000
mY [GeV]

0

500

1000

1500

2000

2500

m
 [G

eV
]

0.00002

0.00004

0.00006

0.00008

0.00010

g q

(b)

0 1000 2000 3000 4000 5000 6000
mY [GeV]

0

500

1000

1500

2000

2500

m
 [G

eV
]

0.1

0.2

0.3

0.4

0.5

g

(c)

Figure 5.8: Comparison of the likelihood functions in the (mY , mχ) plane with the additional
constraint ΓY /mY < 0.1. Top left: coloured according to the values of gχ. Top right: coloured
according to the values of gq. Bottom: coloured according to the values of gl. Note that the colour
scale has a different range for each coupling. The white bands for small values of mY show the
points that have not been computed because they lay outside the consideration range for mY : (0.1,
6) TeV. The white regions below the contours correspond to the grey region in figure 5.2c, where the
χ2 is too large, so it is excluded. The 1-σ and 2-σ regions are delineated by red and blue contours,
respectively. The top dashed line corresponds to the boundary of the t-channel region, mY = mχ,
and the bottom dashed line shows the condition mY = 2mχ.

In figure 5.9, we continue the analysis of the same plane in terms of the total and partial decay
widths. The figures are coloured according to the values of the total width, ΓY /mY (bottom), the
partial width to SM particles ΓSM

Y /mY = (
∑

q Γ
qq̄
Y +

∑
l Γ

ll
Y )/mY (top right) and the partial width

to DM particles ΓDM
Y /mY (top left), with the additional restriction ΓY /mY < 0.1. Consider the

equation 2.1 shown in chapter 2 for the mediator decay width:

ΓY = ΓDM
Y + ΓSM

Y = Γχχ̄
Y +

∑
q

Γqq̄
Y +

∑
l

Γll
Y

and recall that it depends on all the parameters of our model. Therefore, allowing gl > 0 means that
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the total width for the leptophilic scenario is larger than for the leptophobic one, as Γll
Y =0 when

gl=0. Now, if we impose a cutoff on ΓY /mY , the three decay modes are constrained to satisfy the
condition. Let us start with figure 5.9a and the region 2mχ > mY . Checking explicitly such values
in the database, it turns out that the values for ΓDM

Y /mY are of the order of 10−11, which means
that the mediator decay to DM is mostly suppressed in this region. This is what we would expect
if we take into account that in this region the decay of the mediator to a pair of DM particles is
forbidden by the kinematic constraint mY < 2mχ. For this reason, the contribution to the total
width in this area comes exclusively from the decay to SM particles: ΓSM

Y /mY ∈ (10−15, 0.1). Below
the bottom dashed line, the decay to DM particles predominates over the decay to SM.
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Figure 5.9: Comparison of the likelihood functions in the (mY , mχ) plane with the additional
constraint ΓY /mY < 0.1. Top left: coloured according to the values of the partial width ΓDM

Y /mY .
Top right: coloured according to the values of the partial width ΓSM

Y /mY = (
∑

q Γ
qq̄
Y +

∑
l Γ

ll
Y )/mY .

Bottom: coloured according to the values of the total width ΓY /mY . The white bands for small
values of mY show the points that have not been computed because they lay outside the consideration
range for mY : (0.1, 6) TeV. The white regions below the contours correspond to the grey region in
figure 5.2c, where the χ2 is too large, so it is excluded. The 1-σ and 2-σ regions are delineated by red
and blue contours, respectively. The top dashed line corresponds to the boundary of the t-channel
region, mY = mχ, and the bottom dashed line shows the condition mY = 2mχ.
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To understand how the relic density constraint affects the parameter space, we are interested in
reproducing the previous plots in terms of Ωχh

2. Recall the correct value for the relic density given
in equation 1.1: Ωχh

2 = 0.118 ± 0.001. Figure 5.10 displays the (mY , mχ) plane coloured as a
function of the values of Ωχh

2. As mentioned before, each point in the plane has fixed values for
mY and mχ, whereas the three mediator couplings are the free parameters. Hence, the various
combinations of the couplings give different values of χ2 and Ωχh

2. The colour coding shows the
relic density values for the points that yield the smallest χ2 at each pair (mY , mχ). It is important
to remark that χ2 and Ωχh

2 are not independent. Since the relic density is one of the constraints of
our model, every point that is allowed (i.e. gives a low χ2) must have a value of Ωχh

2 close to the
measured one. Otherwise, χ2 would be large, and it would be excluded. However, we could have
points that predict the correct value yet are excluded by other constraints. Therefore, for all the
green points in the allowed region of the plane, there is at least one combination of gq, gl and gχ that
gives a low χ2 and, in particular, predicts the correct value of Ωχh

2. Indeed, we remark that for all
the points inside the contours in figure 5.10, including the new allowed areas, we perfectly reproduce
the observed value within the margin of error. Outside these contours, the regions are not allowed
anymore. Some excluded points are displayed in dark red to observe that as soon as Ωχh

2 is larger
than the measured value, the points give a large ∆χ2 and the region falls below the contours. This
leads us to conclude that what drives the exclusion in this region is not the collider constraints but
the relic density. In fact, below the bottom dashed line, we enter the region where mY > 2mχ and
the DM annihilation via the mediator is increasingly suppressed as we move far from the dashed
line. Hence the suppression of such cross-section results in an enhancement of the relic density, and
the region becomes excluded.
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Figure 5.10: Likelihood function in the (mY , mχ) plane coloured according to the values of the relic
density Ωχh

2, with the additional constraint ΓY /mY < 0.1. The white band for small values of mY

shows the points that have not been computed because they lay outside the consideration range for
mY : (0.1, 6) TeV. The white regions below the contours correspond to the grey region in figure 5.2c,
where the χ2 is too large, so it is excluded. The 1-σ and 2-σ regions, are delineated by red and blue
contours, respectively. The top dashed line in the plot corresponds to the boundary of the t-channel
region, mY = mχ, and the bottom dashed line shows the condition mY = 2mχ.
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With the analysis in this plane, we reach to some conclusions. First, that we effectively reproduce
the published results in [21] when we impose gl < 0.001. Second, that increasing gl to be non-zero
results in an enlargement of the allowed region that predicts the correct value for the relic density and
is dominated by the s-channel mechanism. Moreover, in the region mχ > mY , where the t-channel
dominated for gl = 0, the s-channel becomes equally probable for gl > 0.1, and we see a mix of the
two mechanisms being dominant. Regarding the couplings, the fact that gl is non-zero causes gq to
be suppressed in the whole plane, which means that the decay to quarks is reduced as the decay to
leptons is increasingly enhanced. Another feature of interest in this plane is that the the contours
are very close to each other. This means that there is a large allowed region with ∆χ2 � 1 (in dark
blue) and a very steep rise of ∆χ2 where the points are not allowed anymore as they become rapidly
excluded by any of the constraints. Finally, we have observed that the DM relic density is a strongly
constraining observable since we find overabundance as soon as we move outside the observed value
and the χ2 becomes very large. The next step is to analyse other regions of the parameter space.

5.2.2 (gq, gχ), (mχ, gq), (mY , gq), (mχ, gχ) and (mY , gχ)

Figure 5.11 displays the (gq, gχ) plane coloured according to ∆χ2 for different upper bound values
on gl. The axes are shown on a logarithmic scale. For the limits gl < 0.01 and gl < 0.1, the plots
are mainly the same. However, comparing figures 5.11c and 5.11d, it should be noted the allowed
region is significantly extended to lower values of gχ (0.05 < gχ < 0.5) as gl increases, mainly for low
values of gq (gq < 10−3). This leads us to think that such area is only allowed when gl is sufficiently
large. Regarding the subspace where gχ is large, it is allowed regardless of gl, and the same applies
in the subspace of gq > 0.1. Concerning the four figures, there are some missing points in the region
where gχ < 0.5 and gq < 10−3. A priori, this area falls within the consideration ranges of gq and
gχ, so it should be covered. The number of sampled points is insufficient to draw conclusions in this
parameter region, so we need a dedicated one focusing on such subspace. Nevertheless, the area of
most interest in these plots lies between the diagonal lines, which is acceptably covered. The central
dotted one shows the region where gχ = gq, and the dashed lines at both sides frame the region
where 1/3 < gq/gχ < 3. This choice is because we expect gauge bosons to have similar couplings to
the various types of particles based on universality assumptions. This means that we could expect
the couplings in our model to be rough of the same order. Taking a look at the central dashed line,
such interval is gq, gχ ∈ (9 ·10−3, 0.9). The conclusion here is that in order to satisfy the relic density
constraint, the couplings cannot be arbitrarily small.
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Figure 5.11: Comparison of the likelihood functions in the (gq, gχ) plane for different upper bounds
on the lepton coupling gl and the additional constraint ΓY /mY < 0.1. Top left: gl < 0.0001. Top
right: gl < 0.01. Bottom left: gl < 0.1. Bottom right: ΓY /mY < 0.1. Note that the axes are shown
on a logarithmic scale. All the plots are coloured according to the values of ∆χ2 = χ2 − χ2

min, and
the points for which ∆χ2 > 9 are displayed in grey. The 1-σ and 2-σ regions are delineated by red
and blue contours, respectively. The central dotted line shows the region where gχ = gq and the
dashed lines at both sides frame the region where 1/3 < gq/gχ < 3.

Figure 5.12 displays the (mχ, gq) plane, coloured according to ∆χ2 for different upper bound values
on gl. The y-axis, gq, is shown on a logarithmic scale. When we compare the plots, the main feature
we observe is that as gl is enlarged, the region of very low gq and mχ is increasingly allowed. In
particular, in figure 5.11d, we reach very low values of mχ, which means that they are only allowed
for relatively large values of gl. Moreover, we appreciate that such low values of mχ are only allowed
when gq is very small. The reason for this has already been observed before: large values of gl are
allowed when gq is suppressed. In particular, when mχ < 500 GeV, there is a steep drop towards
very low values of gq. In the previous figure, we mentioned a problem in the sampling for low values
of gq that showed up as white points in an area that should have been covered. Even if the whole
plane is covered in figure 5.12d, it is possible that the number of sampled points is too small, and
the program does not converge. Hence, we are missing some points in the region of low values of mχ

and gq < 10−2, which might give a sufficiently low χ2 that the region is allowed. For this reason, we
cannot be sure that the grey area is completely excluded, so a more refined analysis will be needed

32



to conclude this issue. Finally, we observe that for mχ > 800 GeV, the contours of the allowed region
barely change. This means that such an area is allowed as soon as gl is non-zero, and it remains
allowed even if gl goes up.
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(d) ΓY /mY < 0.1

Figure 5.12: Comparison of the likelihood functions in the (mχ, gq) plane for different upper bounds
on the lepton coupling gl and the additional constraint ΓY /mY < 0.1. Top left: gl < 0.001. Top
right: gl < 0.01. Bottom left: gl < 0.1. Bottom right: ΓY /mY < 0.1. Note that the y-axis is shown
on a logarithmic scale. All the plots are coloured according to the values of ∆χ2 = χ2 − χ2

min, and
the points for which ∆χ2 > 9 are displayed in grey. The 1-σ and 2-σ regions are delineated by red
and blue contours, respectively.

Figure 5.13 displays the (mY , gq) plane, coloured according to ∆χ2 for different upper bound values
on gl. The y-axis, gq, is shown on a logarithmic scale. The main feature that stands out is the
large excluded region at low values of gq and mY > 2800 GeV in figure 5.13a. Indeed, such region is
covered as gl goes up, so we could say that it is accessible when gl is at least larger than 0.01. Again,
from the lack of statistics observed before, we cannot say that the region is completely excluded,
as there might be missing allowed points. Hence, it could be possible that it is allowed for very
low values of gl and that we need a dedicated sampling in the lower range of gq and gl to observe
it. On the contrary, we see that for gq > 10−3, the contours of the allowed region barely change.
This means that this region is allowed as soon as gl is non-zero and it remains allowed even if gl
increases. This figure shows the action of dijet constraints: as mY decreases, we need to lower gq to
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be allowed. In particular, when gl is non-zero and mY < 1000 GeV, there is a steep drop towards
very low values of gq.
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(c) gl < 0.1
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(d) ΓY /mY < 0.1

Figure 5.13: Comparison of the likelihood functions in the (mY , gq) plane for different upper bounds
on the lepton coupling gl and the additional constraint ΓY /mY < 0.1. Top left: gl < 0.001. Top
right: gl < 0.01. Bottom left: gl < 0.1. Bottom right: ΓY /mY < 0.1. Note that the y-axis is shown
on a logarithmic scale. All the plots are coloured according to the values of ∆χ2 = χ2 − χ2

min, and
the points for which ∆χ2 > 9 are displayed in grey. The 1-σ and 2-σ regions are delineated by red
and blue contours, respectively.

Figure 5.14 and 5.15 displays the (mχ, gχ) and (mY , gχ) planes, respectively, coloured according to
∆χ2 for different upper bound values on gl. The y-axis, gχ is shown on a logarithmic scale. The
same lack of statistics shown in previous figures is noted here for low values of gl and especially when
mχ < 500 GeV and mY < 1000 GeV, respectively. In both figures, we have recovered many points
for larger values of gl (figures 5.14d and 5.15d), but the region of very low gχ is still missing. Again,
the conclusion here is that for low values of mY and mχ, the area is allowed when gl is at least higher
than 0.1. Nevertheless, it is still possible that the upper bounds on gl restrict the set of sample points
too much, so the region is not excluded, but we have not found any allowed points. We would need
a dedicated sampling to draw conclusions on this issue. Conversely, the regions where mχ > 500
GeV, 1000 < mY < 5000 GeV and gχ > 10−3 are always allowed, regardless of gl. They are allowed
for large values of gχ because, when gχ decreases, the χ2 becomes too large, as a consequence of the
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annihilation cross-section suppression which results in a relic density overabundance.
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(c) gl < 0.1
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(d) ΓY /mY < 0.1

Figure 5.14: Comparison of the likelihood functions in the (mχ, gχ) plane for different upper bounds
on the lepton coupling gl and the additional constraint ΓY /mY < 0.1. Top left: gl < 0.001. Top
right: gl < 0.01. Bottom left: gl < 0.1. Bottom right: ΓY /mY < 0.1. Note that the y-axis is shown
on a logarithmic scale. All the plots are coloured according to the values of ∆χ2 = χ2 − χ2

min, and
the points for which ∆χ2 > 9 are displayed in grey. The 1-σ and 2-σ regions are delineated by red
and blue contours, respectively.

35



0 1000 2000 3000 4000 5000 6000
mY [GeV]

10 5

10 4

10 3

10 2

10 1

100

g

0

1

2

3

4

5

6

7

8

9

2
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(c) gl < 0.1
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(d) ΓY /mY < 0.1

Figure 5.15: Comparison of the likelihood functions in the (mY , gχ) plane for different upper bounds
on the lepton coupling gl and the additional constraint ΓY /mY < 0.1. Top left: gl < 0.001. Top
right: gl < 0.01. Bottom left: gl < 0.1. Bottom right: ΓY /mY < 0.1. Note that the y-axis is shown
on a logarithmic scale. All the plots are coloured according to the values of ∆χ2 = χ2 − χ2

min, and
the points for which ∆χ2 > 9 are displayed in grey. The 1-σ and 2-σ regions are delineated by red
and blue contours, respectively.

36



Chapter 6

Conclusions and future work

Throughout this work, we have analysed a very general theoretical framework on the search for DM
particles. In particular, we have performed a global analysis on a DMSM with a leptophilic spin-1
vector mediator, and we have included the latest experimental results as constraints on the model.
Specifically, we have included the DM relic density constraint, the latest results from direct detection
experiments and the three most accessible signatures at the LHC: monojet, dijet and dilepton. This
work aims to understand which regions of our model’s parameter space are compatible with the
observations and which ones are excluded.

From the results obtained, we have analysed and tried to understand the new allowed regions that
appear when gl is non-zero, with respect to the ones seen in [21] for the leptophobic scenario.
Moreover, we have compared the results obtained for different upper bounds on gl to study the
variations in the regions of the plane as we allow higher values of this coupling. The results have
been projected onto various planes of parameter space:

(mY ,mχ), (gq, gχ), (mχ, gq), (mY , gq), (mχ, gχ) and (mY , gχ).

Starting with the (mY ,mχ) plane, we have first verified that when gl tends to zero, we recover the
results from the leptophobic scenario. Moreover, we have found new allowed regions that predict
the correct value for the relic density when we allow the mediator coupling to leptons. We have
also noted that the DM relic density is a strongly constraining observable since it is responsible for
shaping the contours. In addition, the two possible dark matter annihilation mechanisms have been
shown: annihilation via the t-channel and s-channel.

Considering figures 5.11, 5.12, 5.13, 5.14 and 5.15, we draw the following conclusions from a more
general point of view. First, the significant lack of statistics when the cutoff on gl is very restrictive,
and the increase in the number of points as gl is more allowed. This is probably because we are
imposing such a restrictive cut on gl that the number of sampled points is very low, so the program
cannot find the minimum values of χ2. As we increase the cutoff, more points are computed since
it is easier to find such minimal values. Even though, for low values of gχ, there is still a lack of
statistics even if we fully allow gl. The way to fix this issue is to perform a new dedicated sampling
focusing on the subspace of low values of the couplings to recover all the missing points. This process
has not been carried out in this work due to the lack of time, as the sampling might take several
months. Therefore, we have been careful not to draw conclusions on the regions presented in this
paper as excluded because they might not represent the full picture of the sampled parameter space.
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In general terms, the DM relic density constraint seems to be the one that restricts the allowed
regions and defines both lower and upper limits in the couplings, together with the effect of dijet
constraints on gq and mY .

We now give a perspective on the future work that remains to be done in this direction. In previous
chapters, we have made some assumptions recommended by the LHCDMWG. However, these are
only recommendations, which means that the counter-scenarios are not excluded, and it would be
interesting to develop other simplified models to study them. Some examples are the following:

• Leptophilic axial-vector. The results for the vector and axial-vector interactions in a leptopho-
bic scenario are published in [21]. In this work, we present the results for a spin-1 leptophilic
mediator and a pure vector interaction. Therefore, the first possibility that comes to mind is
to repeat our analysis in a leptophilic scenario for the axial-vector case. For example, in figures
3.2 and 3.3, we observed different results for the axial-vector interaction in both leptophilic
and leptophobic scenarios with fixed couplings.

• Mixed vector and axial-vector couplings. For instance, we could consider axial-vector couplings
to quarks and vector couplings to DM.

• Majorana fermion. Recall that we have assumed that our DM particle is a Dirac fermion (i.e.
a fermion which is different from its antiparticle). All fermions in the SM are Dirac particles,
except neutrinos, which we still do not know whether they belong to one group or the other.
Hence, we could consider the opposite: a Majorana fermion, which is a fermion that is its own
antiparticle.

• Spin-0 mediator. We could also choose a spin-0 mediator particle, like the Higgs boson. In
this situation, the mediator would be a scalar or pseudoscalar particle, and it would probably
add other interesting signatures to the model.

• Quark flavour violation. In section 2.2, we mentioned that we do not mix flavours at the inter-
actions between the mediator and the SM particles (for both leptons and quarks). However,
according to the SM, quarks are allowed to swap their flavours through the weak force. For
instance, an up quark can turn into a down quark when it interacts with the W− boson [48].
Therefore, we could implement new interactions where the flavours of the quarks change when
interacting with the mediator.

These are some ideas that may arise from what has been described in this work, and MasterCode
seems to be a suitable tool for performing these analyses. Undoubtedly, there are many more options,
and it is important to study them further to cover more possible scenarios. The more information
we can obtain from them, the better our understanding of these simplified models, which are key
for analysing more complex models involving new parameters.

We should keep in mind that DMSM are not thought to be a final theory but an effective way to
represent new physics and understand how DM connects to the SM. In fact, the interactions we have
described in this work are an interpretation of more complex processes. Moreover, the constraints
we have implemented also come from various directions, so it is complicated to understand which
one(s) is responsible for which feature. Since so much is still unknown about DM, from these results,
we could better understand what is still a physical option and use this knowledge for guidance on
where to concentrate future searches. We started this work by asking: "If ordinary matter only
accounts for 5% of the composition of the Universe, then what is the rest made of?" Hopefully, one
day, we are able to give an answer to this question.
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