Science of the Total Environment 810 (2022) 152233

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Contents lists available at ScienceDirect

Science o e
Total Environment

Review

Global diagnosis of nitrate pollution in groundwater and review of ()

removal technologies

Check for
updates

E. Abascal, L. Gémez-Coma, I. Ortiz, A. Ortiz *

Department of Chemical and Biomolecular Engineering, University of Cantabria, Av. Los Castros 46, 39005 Santander, Spain

HIGHLIGHTS

272 regions worldwide are analyzed to a
rigorous diagnosis of nitrate pollution.
Groundwater bodies can be contaminated
by NO3 (>50 ppm) along with other
pollutants.

Agriculture, industry, sewage, septic tanks
& landfills are the main pollution sources.
The catalytic reduction has high nitrate
conversion (98-100%) and no waste
generation.

Nowadays, the number of groundwater
treatment plants is still very limited.

ARTICLE INFO

Article history:

Received 23 September 2021

Received in revised form 3 December 2021
Accepted 3 December 2021

Available online 9 December 2021

Editor: José Virgilio Cruz

Keywords:
Groundwater
Nitrates (NO3 )
Pollutants

Diagnosis

Water treatments
Removal technologies

GRAPHICAL ABSTRACT

\ Mean [NO3] < 50 ppm Mean [NO3] < 50 ppm o

<50 ppm

9 Mesn (o] More than 25% of Less than 25% of
samples >50 ppm samples > 50 ppm

>50ppm No data

ABSTRACT

Clean water and sanitation for the world population is one of the most important challenges established by the Sustain-
able Development Goals of the United Nations since worldwide, one in three people do not have access to safe drinking
water. Groundwater, one of the main sources of fresh water, has been considerably damaged by human activities. Nev-
ertheless, while numerous plants are globally aimed at removing pollutants from surface waters, a much scarcer num-
ber of facilities have focused on groundwater remediation. Nowadays, there is increasing concern about the presence
of nitrates (NO3 ) in groundwaters as a consequence of the intensive use of fertilizers and other anthropogenic sources,
such as sewage or industrial wastewater discharge. In this context, the selection and development of highly effective
and low-cost solutions for the sustainable management of groundwater resources need to be addressed. Thus, this
work collects data from the literature regarding the presence of nitrates in groundwater, and, simultaneously, it re-
views the main alternatives available to remove NO3 from groundwater sources. A total of 292 sites have been ana-
lyzed categorized by continents, carefully discussing the possible origins of nitrate pollution. In addition, a
discussion is carried out of the different technologies currently employed to treat groundwater, highlighting the prog-
ress made and the main challenges to be overcome. Finally, the review gathers the data available in the literature for
nitrate treatment plants at full-scale.
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1. Introduction

The supply of high-quality drinking water constitutes the Sustain-
able Development Goal (SDG) 6 by 2030 established by United Nations
General Assembly in 2015 (United Nations, 2016). However, water
bodies are continuously facing a reduction in terms of quality and quan-
tity. Besides, despite three-quarters of our planet is made up of water,
only 2.5% is freshwater, distributed as follows: 68.7% in glaciers,
30.1% groundwater, and just 1.2% is surface water (USGS Water
Science School, 2013). Recent estimations indicate that almost 50%
of drinking water and approximately 40% of irrigation water come
from aquifers. Thus, urgent actions are required to slow down the dete-
rioration of water bodies (Diaz-Alcaide and Martinez-Santos, 2019;
Majkié¢-Dursun et al., 2019) since, at present, around 66% of the world's
population already suffers from severe water shortages at least one
month a year (Mekonnen and Hoekstra, 2016). This is mainly due to
the following factors:

i) An increase in the population growth from 5.3 to 7.7 billion between
1990 and 2020, and an expected growth to 9.7 billion by 2050
(United Nations, 2019)

Pollution and degradation of available water resources due to in-

creased industrial activity since the mid-18th century. In fact, this

factor is responsible for human health issues, ecosystem damage
and impacts on food production, economic activity and develop-
ment (Bond et al., 2018), along with the discharge of untreated

wastewater (80% of the total wastewater) (Bond et al., 2018;

Daesslé et al., 2020)

iii) Climate change (Bond et al., 2018; Lorite et al., 2018) contributes to
low rainfall and hence provokes water stress worldwide, especially
in regions with desertic climates (Lorite et al., 2018; World Health
Organization, 2012). Moreover, in recent years many countries
have suffered chronic droughts, as well as irregular and violent rain-
fall leading to disastrous floods and drylands (Bouderbala, 2019;
World Health Organization, 2012). In this respect, the World Health
Organization (WHO) points out that the effects will be particularly
acute in arid areas and areas with growing populations (World
Health Organization, 2012). Also, and due to the lack of rainfall,
crops require constant intensive irrigation and an increase in exter-
nal agents, which in turn rise water extraction, with a consequent
increase in the Water Stress Index (Lorite et al., 2018).

(=

ii

As summarized in Table 1, the WHO and the Food and Agriculture
Organization of the United Nations (FAO) have established quality stan-
dards for drinking water and for irrigation. Accordingly, different
thresholds are considered for nitrates (NO3 ), calcium (Ca®™"), magne-
sium (Mg?*), sodium (Na*), potassium (K*), sulphate (SOZ ™), chlo-
ride (Cl™), bicarbonate (HCO3;) and fluoride (F~), as well as
conductivity, pH and total dissolved solids. It is important to note that
FAOQ's values are stricter than WHO's recommendations in all the com-
mon parameters quantified.

In contrast, the inordinate use of fertilizers and pesticides in agriculture
produces high number of pollutants and water degradation. Thus, fertilizers
abuse as a source of nutrients and the excessive use of chemicals, such as
insecticides and antibiotics, increase the pressure exerted on aquatic
systems altering their autochthonous fauna and facilitating species in-
vasions. In general, fertilizers are composed primarily of nitrogen, phos-
phorus, and potassium compounds, among others, to provide nutrients
to plants and crops. As a result of the agriculture activities, such com-
pounds end up in surface water and groundwater bodies, raising the
concentration of nitrates in water, which are then returned to the soil
through irrigation (Andreo-Martinez et al., 2020). In this sense and ac-
cording to recent studies (Ayers and Westcot, 1985) nitrate concentra-
tions above 22 mg/L (ppm) may affect sensitive crops (i.e. sugar beets
or grapes), while other crops, such as maize, remain unaffected by con-
centrations below 132 mg/L. The risk of nitrate leaching is closely re-
lated to the excessive use of fertilizers, occurring after or during harvest
and within the crop cycle. An elevated concentration may affect the pro-
duction of several crops, which can lead to over-stimulation of growth,
delayed maturity or poor quality. Nitrates can affect human health by in-
ducing methemoglobinaemia, thyroid effects or cancer, and irreparable
damage in the aquatic system, to the point of provoking fish die-offs
(Martinez et al., 2017; Tokazhanov et al.,, 2020; World Health
Organization, 2012).

Cost-effective and energy-efficient treatments are necessary for remov-
ing nitrates, and therefore, to contribute to achieve the SDG and the quality
standards established by WHO and FAO organizations. This review aims to
collect data relevant to discriminate the quality of groundwater bodies
worldwide. In addition, the different technologies available so far to re-
move nitrates are analyzed, emphasizing their advantages and drawbacks.
The work is also complemented with the most representative both pilot
and full-scale plants installed with these technologies, with details on
their location and their capacity and efficiency. Thus, this review brings

Table 1
Drinking water and irrigation water standards established by WHO and FAO,
respectively.

Parameter WHO FAO
(World Health Organization, 2012) (Misstear et al., 2017)

Nitrates (mg/L) 50 22

Calcium (mg/L) 300

Magnesium (mg/L) 300

Sodium (mg/L) 200 69

Potassium (mg/L) 12

Sulphates (mg/L) 250

Chloride (mg/L) 200 107

Bicarbonates (mg/L) 91.5

Fluorides (mg/L) 1.5

Conductivity (uS/cm) 2500

pH 6.5-8.5

Total dissolved solids 600 450
(mg/L)
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together an updated diagnosis of nitrate pollution in groundwater bodies
together with the analysis of the different alternative solutions for their
removal.

2. Nitrate sources

Nitrate is considered the most widespread pollutant in groundwater
induced by its high solubility in water and the difficulty to be fixed in
the soil (Bhatnagar and Sillanpaéd, 2011). Although nitrogen compounds
are present in the environment from natural sources e.g., coming from
igneous rocks, atmospheric deposition and symbioses of some plants,
along with cyanobacteria and some heterotrophs (Gutiérrez et al.,
2018); the main problem of nitrates is the dramatic increase in recent
years due to anthropogenic actions. On the other hand, the main anthro-
pogenic sources of nitrate pollution are nitrogen-rich fertilizers used for
agricultural purposes, discharge of poorly treated domestic, and indus-
trial wastewaters, livestock manure, and leachate from landfill sites
(Gutiérrez et al., 2018; Tokazhanov et al., 2020). In this sense, in the
Mediterranean area, where agriculture is the predominant economic ac-
tivity, nitrate pollution is mainly caused by the use of nitrogen-rich fer-
tilizers. This issue affects shallow wells, due to their location close to the
surface, where nitrate pollution occurs (Heaton et al., 2012; Re et al.,
2017). In contrast, in developing countries the main source of nitrates
in groundwater is the lack of adequate sanitation (Kapembo et al.,
2016).

The nitrate cycle explains the generation of nitrate by natural pathways
or by anthropogenic actions as shown in Fig. 1. Firstly, N, is leached and
fixed in the soil by bacteria. Consequently, in a second step, the fixed nitro-
gen suffers ammonification, and the ammonia reacts and converts to ni-
trites or nitrates. These compounds, in turn, may leach to groundwater or
suffer denitrification by some bacteria or plants and return to the atmo-
sphere in the form of nitrogen gas (Gutiérrez et al., 2018).

Contrarily, many works highlighted a close relation between nitrates
and chloride (Cl ) concentration, caused by sewage infiltration (Rezaei
etal., 2017; Vystavna et al., 2017). In this context, Vystavna et al., 2017
and Rezaei et al., 2017, have determined that denitrification processes
occur when the ratio NO3 /Cl~ decreases. Su et al., 2020 reported that
a high NO3 /Cl™ ratio may suggest pollution from fertilizers and rain-
water, while low ratios correspond to manure pollution (Su et al.,
2020). Moreover, when high NO3 /Cl~ molar ratios and high C1~

N,

Nitrogen Fixation

(.L.)

ammonification

NH,

~a
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concentrations are observed in groundwater, they are attributed to
domestic sewage pollution (Su et al., 2020). Thus, areas of sewage in-
puts could be differentiated from the other farming inputs by C1~ and
NOj; concentrations.

Besides, the presence of nitrates due to the use of chemical fertilizers
implies the co-existence of other ions in groundwater, suchas F~, SOZ ™,
and K* (Roy et al., 2020). In this regard, Varol and Sekerci (2018) re-
ported that the use of certain chemical fertilizers may be the source of
some heavy metals (i.e. arsenic) in groundwater (Varol and Sekerci,
2018). Mazhar and Ahmad (2020) concluded that the presence of cad-
mium (Cd?™) and zinc (Zn?") is also due to the use of fertilizers
(Mazhar and Ahmad, 2020). Moreover, Escherichia coli, Enterococci,
and Total Coliforms are also present in groundwater when nitrate pollu-
tion is associated with domestic leaks, mainly latrines and septic tanks
(Kapembo et al., 2016).

Regarding the strong seasonal fluctuations, two opposite effects could
occur depending on the characteristics of the terrain: i) an increase in ni-
trate concentration during the rain period due to rainwater infiltration
(Varol and Sekerci, 2018) and, ii) a decrease in NO3 concentration in the
wet season because ions are diluted in the rainfall (Abu-alnaeem et al.,
2018; Roy et al., 2020).

In terms of the interest aroused from the literature through studies,
regarding groundwater and nitrates pollution, Fig. 2 shows the biblio-
metric graph of articles published on groundwater pollution and nitrate
presence from the late 1960s to the present. As depicted in Fig. 2, the in-
terest in the study of the health of groundwater has experienced an ex-
ponential growth since the early 80s. While in the 70-80 decade, the
scientific community published an average of 100 articles per year,
this number has steadily increased with 2742 articles published in
2020 in this field. In the case of the publications focused on the presence
of nitrates in groundwater, the number of published articles has
increased from 20 manuscripts published in 1990 to 280 articles pub-
lished in 2021 highlighting the growing interest and concern regarding
this topic.

Thus, groundwater health and specifically the presence of nitrates in
groundwater is nowadays of great concern and is necessary to be thor-
oughly considered. In this framework, two different aspects need to be ad-
dressed: i) collecting the data reported so far, and ii) making a comparison
of technological alternatives for nitrates removal to help in the decision-
making process of future nitrate mitigation strategies.

4

Denitrification Bacteria
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Fig. 1. Nitrogen cycle.
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Fig. 2. Bibliometric analysis of articles published in the field of groundwater pollution and nitrate presence.

(Scopus source, updated at 16th November 2021).

3. Nitrates in groundwater bodies

Groundwater hydrochemistry has been largely considered in several
works, especially in the last few years (Ahmed et al., 2019; Awomeso
et al., 2020; Bojarczuk et al., 2019; da Silva Peixoto et al., 2020; Devaraj
et al., 2020; Erdogan et al., 2020; Gil-Marquez et al., 2019; Hepburn
et al., 2020; Rodriguez-Espinosa et al., 2020). This discipline studies the
main ions present in groundwater; which presence is mainly determined
by the geology and mineralogical composition of the environment, the
water residence time, and the rock-water interactions, among others
(Islam et al., 2019). Numerous works have been reported worldwide, tak-
ing groundwater samples from wells, boreholes, and springs, that are
mostly used for irrigation or domestic purposes.

Fig. 3 shows the extended concentration of nitrate differentiated with
colours. Blue pushpins indicate that the mean value is under 50 ppm, the
threshold established by WHO to guarantee good quality of groundwater.
In contrast, yellow pushpins show the locations where, despite the average
is accordance to WHO standards, some measurements are above 50 ppm.
Orange colour reflects the groundwater bodies with more than 25% of
the samples with nitrate concentration higher than 50 ppm, and finally,
red colour pushpins indicate the locations where groundwater is highly pol-
luted, and therefore the quality of this water is prohibited for utilization
without previous treatment according to the standards established by the
WHO. For a clearer visualization of the data, Table 2, summarizes the 292
points studied as a function of nitrate pollution. In this context, 94 samples
were studied in Africa, 93 in Asia, 71 in Europe, and 34 in America. Al-
though Oceania continent has reported an article in the field of groundwa-
ter health, it does not provide data about nitrates (Hepburn et al., 2020).

Regarding contaminated areas, 30 regions in Africa, 20 in Asia, and 9 in
Europe are in a critical situation. Besides, Europe presents the highest
percentage of regions polluted with more than 25% of samples above
50 ppm of nitrates. On the other hand, despite the data corresponding to
Asia showing 45 regions without nitrate pollution, 19 areas present con-
tamination in at least 25% of the samples. In this regard, despite the num-
ber of polluted regions in Asia is higher than in Europe, 19 and 16
respectively, in terms of percentage of polluted regions, Europe counts
with more areas with concentrations of nitrates above 50 ppm. For its
part, America only reports 5 regions with more than 25% of samples with
NO;3 concentration above WHO recommended value. Finally, the manu-
scripts addressing the African continent highlight 34 regions with average
values below 50 ppm.

In the next sections, a discussion of the results will be held continent by
continent, emphasizing the most striking values as well as the main source
of nitrate contamination in that region. In addition, the location of nitrate
pollution regions has been numbered in each figure from the lowest to
the highest average value to facilitate the discussion. When the information
was available, in addition to the average value, the minimum and maxi-
mum values reported in the literature have been included. The detailed ref-
erences of each pushpin are included as supporting information (SI) which
contains a complete characterization in terms of NO3 , Ca*>*, Mg®*, Na*,
K*,S037, Cl~, HCO3 of each point analyzed along the manuscript. For
a clearer visualization of the data assessed among the continents, both the
manuscript and the SI contain the maps and the graphics including average,
maximum, and minimum values reported by the authors.

3.1. Asia

The Asian continent is the one that shows the greatest variability in the
data, as can be seen in Fig. 4, which is divided in two parts. The first part in-
cludes all the regions studied (Fig. 4a), and the second one reports the mean,
maximum and minimum values of each point (Fig. 4b). In the aforemen-
tioned figure, the data of 93 regions are collected. For the vast majority of
the areas, the maximum value exceeds the WHO standard (50 ppm) despite
the average value being within the standards. Specifically, in 19 regions, de-
spite the mean value is in concordance to the standards recommended by
WHO, more than 25% of the samples have values above 50 ppm.

A total of 20 regions located in India, Palestine, and Saudi Arabia, and
other areas of China and Pakistan show a mean value above 50 ppm
(Abu-alnaeem et al., 2018; Alslaibi et al., 2017; Devaraj et al., 2020; Feng
et al., 2020; Jehan et al., 2019; Kumari and Rai, 2020; Musaed et al.,
2020; Pant et al., 2020; Roy et al., 2020). In particular, as shown in
Fig. 4, it is also possible to verify that 11 samples have maximum values
above 300 ppm and 5 of them (points 81, 84, 86, 89, and 92, Fig. 4) have
maximum values greater than 600 ppm. (Feng et al., 2020; Kumari and
Rai, 2020; Musaed et al., 2020; Pant et al., 2020).

In India, there are numerous available samples, and the variability of
the data is striking since while some of the areas studied have mean values
below 50 ppm, other regions have averaged values between 59 and
215 mg/L (points 75, 76, 77, 79, 82, 84, 88 and 92, Fig. 4) (Devaraj
et al., 2020; Pant et al., 2020; Roy et al., 2020). It is important to note
that this last value is more than fourfold higher than the standard recom-
mended by WHO. Birbhum (points 44 and 45, Fig. 4), Solapur (points 66
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Fig. 3. Locations and nitrate concentration [NO3 ] in groundwater bodies (Abboud, 2018; Abderamane et al., 2013; Abou Zakhem et al., 2017; Abou Zakhem and Hafez,
2015; Abu-alnaeem et al., 2018; Ahmed et al., 2019; Aladejana et al., 2020; Ali et al., 2019; Alslaibi et al., 2017; Anim-Gyampo et al., 2018; Ruiz-Garcia et al., 2019;
Ashun and Bansah, 2017; Asmael et al., 2015; Atikul Islam et al., 2017; Awomeso et al., 2020; Barbieri et al., 2019; Batsaikhan et al., 2018; Bello et al., 2019;
Benkaddour et al., 2020; Benmarce and Khanchoul, 2019; Beyene et al., 2019; Bicalho et al., 2019; Blazquez-Palli et al., 2019; Bojarczuk et al., 2019; Bon et al., 2020;
Boudjana et al., 2019; Bouteraa et al., 2019; Bretzler et al., 2017; Bucci et al., 2017; Canora et al., 2019; Carasek et al., 2020; Carvalho et al., 2019; Celestino et al., 2019;
Chandrajith et al., 2014; Charizopoulos et al., 2018; Costa et al., 2015; Cuk et al., 2020; Daesslé et al., 2020; Danni et al., 2019; da Silva Peixoto et al., 2020; de Oca
et al., 2019; Devaraj et al., 2020; di Lorenzo et al., 2012; Dippong et al., 2019; Egbi et al., 2019; el Gammal and Ibrahim, 2017; el Ghali et al., 2020; Elumalai et al., 2019;
Erdogan et al., 2020; Erostate et al., 2018; Esteller et al., 2017; Fan et al., 2020; Feng et al., 2020; Ferchichi et al., 2018; Ferrante et al., 2018; Gamazo et al., 2018;
Gamboa et al., 2019; Gevera and Mouri, 2018; Gil-Marquez et al., 2019; Giménez-Forcada et al., 2017; Gomez et al., 2019; Gorgij et al., 2019; Gromadzka et al., 2015;
Heaton et al., 2012; Hossain and Patra, 2020; Islam et al., 2018, 2019; Ismail et al., 2019; Jehan et al., 2019; Kapembo et al., 2016; Karakus, 2019; Karroum et al., 2017;
Kattan, 2018; Kawo and Karuppannan, 2018; Khanoranga and Khalid, 2019; Kshetrimayum and Thokchom, 2017; Kumari and Rai, 2020; F. Liu et al., 2020; J. Liu et al.,
2020; T. Liu et al., 2020; Loh et al., 2020; Loomer et al., 2019; Lorette et al., 2018; Majki¢-Dursun et al., 2018; Masocha et al., 2019; Mazhar and Ahmad, 2020; Melki
et al., 2019; Mendes et al., 2019; Mircovski et al., 2018; Moni et al., 2019; Moratalla et al., 2009; Mostaza-Colado et al., 2018; Mouassa et al., 2020; Mudzielwana et al.,
2020; Mukanga et al., 2016; Mukate et al., 2019; Musaed et al., 2020; Mushtaq et al., 2018; Muzenda et al., 2019; Ncibi et al., 2020; Nguyen et al., 2015; Nikolenko
et al., 2019; Nyilitya et al., 2020; Ogrinc et al., 2019; Opoku et al., 2020; Ossa-Valencia and Betancur-Vargas, 2018; Owamah, 2020; Panno et al., 2019; Pant et al., 2020;
Papazotos et al., 2019; Pedretti et al., 2019; Quenet et al., 2019; Quino-Lima et al., 2020; Rashid et al., 2020; Re et al., 2017; Rezaei et al., 2017; Rodriguez et al., 2020;
Roy et al., 2020; Rufino et al., 2019; Sanchez-Gutiérrez et al., 2020; Sarker et al., 2018; Sedlazeck et al., 2017; Sefie et al., 2018; Silva et al., 2017; Slavinskiené and
Jurevifius, 2016; Smedley et al., 2018; Snousy et al., 2020; Strauhal et al., 2016; Sunkari et al., 2019; Swift Bird et al., 2020; Talib et al., 2019; Taucare et al., 2020;
Thakur et al., 2015; Tolera et al., 2020, 2017; Torres-Martinez et al., 2020; Tran et al., 2020; Tzoraki et al., 2018; Ujevi¢ Bo$njak et al., 2012; Varol and Sekerci, 2018;
Vystavna et al., 2015; Yetis et al., 2019; Zaki et al., 2019; Zango et al., 2019; Zhang et al., 2020).

and 71, Fig. 4), and Bareilly (points 31 and 51, Fig. 4), all of them located in
India, they report mean values in the range between 7 and 47 mg/L. Never-
theless, these regions have also more than 25% of samples of nitrate con-
centration above 50 mg/L (Hossain and Patra, 2020; Mazhar and Ahmad,
2020; Mukate et al., 2019). Regarding the possible causes of contamination
in this country, some authors highlight the poor maintenance of septic
tanks and boreholes, sewage discharge, and fertilizers (Barbieri et al.,
2019; Devaraj et al., 2020; Roy et al., 2020).

Contrarily, the mean values are between 50 and 220 mg/L in Palestine
(points 80, 83, 85, 87, 90, 91, and 93, Fig. 4) and Saudi Arabia (point 86,

Fig. 4), where in most cases, the authors attributed this fact to sewage dis-
posal and farming inputs (Abu-alnaeem et al., 2018; Barbieri et al., 2019;
Musaed et al., 2020). Palestine also shows mean values below 50 ppm in
some regions (points 7, 8, 60, 73, and 74, Fig. 4) (Alslaibi et al., 2017).

In the Asian continent, the NO3 pollution is primarily due to septic
tanks and agriculture inputs leakage. Moreover, many authors emphasize
the high variability due to the strong influence that the rainy season has
on the groundwater quality of this continent (Amanambu et al., 2020;
Nguyen et al., 2015). In this continent, water scarcity is recognized as one
of the most important concerns in many countries especially in the Middle

Table 2

Sources of nitrates categorized by continents.
Continent Asia America Europe Africa Total
Number of regions with [NO3 ] average > 50 ppm 20 1 9 30 60
Number of regions with [NO3 ] average < 50 ppm and more than 25% of samples with NO3™ concentration > 50 ppm 19 4 16 10 49
Number of regions with [NO3 ] average < 50 ppm and less than 25% of samples with NO3™ concentration > 50 ppm 9 2 6 7 24
Number regions with [NO3 ] average < 50 ppm 45 27 39 34 145
Total number of regions 93 34 71 94 292
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Fig. 4. a) Studied regions in Asia. b) Mean value and range of nitrate concentration in Asian groundwater bodies (Ahmed et al., 2019; Alslaibi et al., 2017; Asmael et al., 2015;
Atikul Islam et al., 2017; Batsaikhan et al., 2018; Chandrajith et al., 2014; Costa et al., 2015; Fan et al., 2020; Islam et al., 2018, 2019; Ismail et al., 2019; Khanoranga and
Khalid, 2019; Kshetrimayum and Thokchom, 2017; J. Liu et al., 2020; T. Liu et al., 2020; Mazhar and Ahmad, 2020; Moni et al., 2019; Mushtaq et al., 2018; Nguyen et al.,
2015; Sarker et al., 2018; Sefie et al., 2018; Talib et al., 2019; Thakur et al., 2015). Detailed references are included in Table S1 of the Supplementary Information.
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East, and consequently, the use of fertilizers is continuously growing,
encouraging the presence of nitrates in groundwater (Alaei Shahmirzadi
etal., 2018).

The different information collected is summarized in Table 3, which
shows the source of nitrate pollution classified into five categories: septic
tanks, sewage, agriculture, landfills, and industrial activities. Besides,
three levels of risk have been determined and associated to the categories,
low (4), medium (=), or high (e) along the different countries considered in
the study. Green colour has been established when the category is of “no
concern” in the country, meaning there is no risk evidence so far. Medium
risk has been considered when some regions in a country present concern-
ing values of nitrate, and the category is considered as a “potential influ-
ence”. Finally, the highest level of risk has been set up when any region
in the country reports nitrate pollution, and the evidence indicates that
this category has a “significant contribution”.

Agriculture is the main activity that causes the high nitrate values in
Saudi Arabia, Myanmar and Jordan (Abboud, 2018; Kshetrimayum and
Thokchom, 2017; Musaed et al., 2020; Pincetti-Ztiniga et al., 2020). Con-
cerning nitrates and phosphates in groundwater in Sri Lanka, Bangladesh,
Vietnam, and Nepal, recent works pointed to the agriculture inputs and la-
trines that penetrate the sandy aquifers as potential contamination activi-
ties (Chandrajith et al., 2014; Islam et al., 2018; Lee et al., 2018;
McArthur et al., 2012; Nguyen et al., 2015; Thakur et al., 2015). In the
case of Iraq and the Gaza coastal (Palestine) recent works reported a clear
concern for agricultural fertilizers, industrial waste, and municipal sewage
(Abu-alnaeem et al., 2018; Ismail et al., 2019; Mostaza-Colado et al., 2018).
In contrast, the information available for Iran explains that in this country,
the nitrate concentration is regularly low (Rezaei et al., 2017). Still, it can
achieve abnormal values subsequently of draining or overflow from the

Table 3
Main causes of nitrate pollution in Asia.
¥ @ —
% 172} on .| =
1%7) < =
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China ° ° ° °
India ° ° °
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Jordan [ [ [
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Mongolia [ [
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South Korea [ =
Sri Lanka ] ]

Syria ° [ [

Vietnam [ ] [

Risk of contamination: (4) low, (=) medium, (e) high.
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farming areas together with human or livestock wastes. On the other
hand, poor living conditions and unsuitable sanitary and sewage disposal
practices constitute an additional source of NO3 pollution in developing
countries such as Mongolia (Batsaikhan et al., 2018). Finally, despite
Malaysia has NO3 values within the WHO recommended standards, the
impact of intensive human activities and deforestation in certain areas
has provoked an increase in nitrate contamination (Sefie et al., 2018).

In a different way, the high values of nitrates in different regions
(e.g., Pakistan) are attributed to the solubility of minerals, such as feldspar,
biotite, muscovite, calcite, and dolomite (Jehan et al., 2019; Khanoranga
and Khalid, 2019). In this line, Khanoranga and Khalid (2019) highlighted
that the composition of Balochistan province area groundwater is greatly
influenced by the geological composition and anthropogenic activities
like agricultural occupations and brick kiln factories carried out in the vi-
cinity of the study area (Khanoranga and Khalid, 2019).

China, for its part, has different hypotheses to justify the increment of
nitrates in groundwater. For example, in a recent article, high values are de-
fined as non-point sources of contamination (Feng et al., 2020). In particu-
lar, Feng et al. (2020) emphasized the risk associated with irrigation of
farmland employing sewage, and excessive nitrogen fertilizer usage. In
this regard, Tolera et al. (2017) and Kim and Park (2016) reported ground-
water contamination by nitrate from non-point sources (application of fer-
tilizers and animal wastes) as a serious concern in South Korea (Kim and
Park, 2016; Tolera et al., 2017).

3.2. America

In this section, the different regions of the American continent are dis-
cussed, where 34 areas are collected. Fig. 5 illustrates all the regions studied
in this continent (Fig. 5a) and the mean values sorted by size, including the
minimum and maximum data (Fig. 5b). Although up to 11 countries have
been studied in this continent, only one of the references reported an aver-
age value of nitrates higher than 50 ppm (point 33, Fig. 5). This region is
Fortaleza (Brazil) which informed a concentration above WHO's limits,
with a mean value of 51.3 mg/L (da Silva Peixoto et al., 2020). In this
way, the high values of nitrates in Brazil are referred mainly to septic
tanks and sewage discharge and to a lesser extent to agriculture inputs
and industrial wastes (da Silva Bellettini et al., 2019; da Silva Peixoto
et al., 2020; Rezende et al., 2019; Suhogusoff et al., 2019). Besides, da
Silva Peixoto et al. (2020) attributed this contamination to two different
sources: (i) sewage discharge and (ii) low natural recharge from precipita-
tion (da Silva Peixoto et al., 2020). In contrast, da Silva Bellettini et al.
(2019) reported that the coal mining industry without proper wastewater
treatment contributed to high nitrates concentration in the Carboniferous
region (Brazil) (da Silva Bellettini et al., 2019).

Most of the sources are represented in blue colour, indicating no pollu-
tion in terms of nitrates, highlighting several areas of Mexico, Chile, Costa
Rica, the USA, Colombia, and Argentina which have the maximum values
within the WHO limits (points 1-16, Fig. 5). Nevertheless, in other regions
located in Mexico, such as Mezquital and Toluca Valley, the mean values
are in the range 2-36 mg/L; but more than 25% of the samples analyzed re-
port values above 50 mg/L of NO3 (points 14, 16, 18 and 31, Fig. 5) (de
Oca et al., 2019; Esteller et al., 2017).

Besides, in two regions located in Illinois (United States of America)
(point 24, Fig. 5) and Bolivia (point 29, Fig. 5), although some measure-
ments reflect a certain degree of contamination, less than 25% of the values
exceed 50 ppm (Panno et al., 2019; Quino-Lima et al., 2020). Specifically,
in the case of Bolivia, as illustrated in Fig. 5, although the average value ful-
fills the standard, some samples are above 200 mg/L, provoking a cause of
great concern in this region (point 29, Fig. 5) (Quino-Lima et al., 2020). The
authors attribute the contamination to human activities, such as insufficient
treatment of urban wastes and intensive agriculture (Quino-Lima et al.,
2020).

Regarding the main causes of nitrate pollution, Table 4 summarizes the
different risks associated with the different activities analyzed. For exam-
ple, in Argentina, human activities have affected some areas since some
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Fig. 5. a) Regions studied in America. b) Mean value and range of nitrate concentration in American groundwater bodies (Bucci et al., 2017; Carasek et al., 2020; Celestino
etal., 2019; Daesslé et al., 2020; da Silva Peixoto et al., 2020; de Oca et al., 2019; Esteller et al., 2017; Gamazo et al., 2018; Gamboa et al., 2019; Gomez et al., 2019; Juliana
et al., 2018; Loomer et al., 2019; Mendes et al., 2019; Ossa-Valencia and Betancur-Vargas, 2018; Panno et al., 2019; Quino-Lima et al., 2020; Sanchez-Gutiérrez et al., 2020;
Swift Bird et al., 2020; Taucare et al., 2020; Torres-Martinez et al., 2020). Detailed references are incorporated in Table S3 of the Supplementary Information.
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Table 4
Nitrate pollution in America.
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aquifers are increasing the groundwater abstraction rates and the return ve-
locity of the sewage or the industrial discharge with poor treatment (Isla
etal., 2018; Lupi et al., 2019). On the other hand, while in Chile, nowadays,
agricultural practices are the major cause of concern for nitrates pollution
(Sanchez-Gutiérrez et al., 2020), in Colombia, groundwater at the shallow
levels present anthropogenic contamination from agricultural activities,
livestock, poor management of solid waste, and the lack of a sewer system
in certain regions (Ossa-Valencia and Betancur-Vargas, 2018). Finally, in
Guatemala, the risk is associated with fertilizers and urban wastewater
(Bucci et al., 2017).
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In the specific case of the USA, Ward et al. (2018) point out that there
are many private wells in the United States of America that are not regu-
lated by the Environmental Protection Agency (EPA) (Ward et al., 2018)
and consequently no pollutant areas are reported. In fact, these authors es-
timated that 2% of public-supply wells and 6% of private wells exceeded
the maximum contaminant level (MCL) for nitrate in public drinking
water supplies in the United States. MCL is situated as 10 mg-L~ ! as
nitrate-nitrogen, which is approximately equivalent to the WHO guideline
of 50 mg'L. " *. Moreover, an assessment carried out in the United States be-
tween 1991 and 2003 demonstrated that nitrate concentrations were
highest in shallow groundwater beneath agricultural land use or areas
with well-drained soils and oxic geochemical conditions. In contrast,
lower values were found in deep groundwater when these water bodies
were older since the anthropogenic sources had not already caused a signif-
icant impact. In this context, The United States Geological Survey (USGS), a
scientific agency of the government, developed a robust model, based on
nationwide data, to estimate the risk of nitrate contamination in shallow
groundwater across the United States. This model integrates nitrogen in-
puts and aquifer vulnerability using Geographic Information System (GIS)
technology (“Groundwater Quality”, 2019). Nitrogen inputs include com-
mercial fertilizer and manure application rates, atmospheric contributions,
and population densities.

Aquifer vulnerability is represented by soil-drainage characteristics and
the extent to which woodlands are interspersed with cropland. Fig. 6, ex-
tracted from the USGS, represents the areas with the highest risk of contam-
ination from both natural and human-induced sources (“Groundwater
Quality”, 2019).

3.3. Europe

In the European continent, a total of 71 regions have been collected and
discussed. Despite the mean value being under the WHO limit in many
areas, 22 regions have maximum values above 50 ppm. In more detail, 16
of the studied regions have more than 25% of samples with NO5 values
above 50 mg-L.~ . Fig. 7 depicts the different areas studied (Fig. 7a) and

400 MILES
0 400 KILOMETERS

Fig. 6. Risk of nitrate pollution in groundwater aquifers in USA.
Adapted from (“Groundwater Quality”, 2019).
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Fig. 7. a) Distribution of nitrate polluted zones in Europe. b) Nitrate concentration in European groundwater bodies (Ruiz-Garcia et al., 2019; Barbieri et al., 2019; Bicalho
et al., 2019; Blazquez-Palli et al., 2019; Bojarczuk et al., 2019; Boudjana et al., 2019; Canora et al., 2019; Carvalho et al., 2019; Charizopoulos et al., 2018; Cuk et al., 2020; di
Lorenzo et al., 2012; Dippong et al., 2019; Erostate et al., 2018; Gil-Méarquez et al., 2019; Giménez-Forcada et al., 2017; Gromadzka et al., 2015; Heaton et al., 2012; Karakus,
2019; Lorette et al., 2018; Majkié¢-Dursun et al., 2018; Mircovski et al., 2018; Moratalla et al., 2009; Mostaza-Colado et al., 2018; Nikolenko et al., 2019; Ogrinc et al., 2019;
Papazotos et al., 2019; Pedretti et al., 2019; Quenet et al., 2019; Rodriguez et al., 2020; Rufino et al., 2019; Sedlazeck et al., 2017; Slavinskiené and Jurevicius, 2016; Smedley

et al., 2018; Strauhal et al., 2016; Tran et al., 2020; Tzoraki et al., 2018; Ujevi¢ Bosnjak et al., 2012; Varol and Sekerci, 2018; Vystavna et al., 2015; Yetis et al., 2019).
References are detailed in Table S5 of the Supplementary Information.
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the mean, maximum and minimum values of each point (Fig. 7b). As it is
drawn in the mentioned figure, the values of Italy (points 65-67, Fig. 7),
Malta (points 60, 64 and 70, Fig. 7), Lithuania (point 69, Fig. 7),
Belgium (points 7 and 62, Fig. 7) and Spain (point 68, Fig. 7), contain
high concentration of nitrates, with a mean value between 72 =+
6 mg/L, 104 + 41 mg/L, 120 mg/L, 62 = 3 mg/L, and 80 mg/L, respec-
tively (Boudjana et al., 2019; di Lorenzo et al., 2012; Heaton et al.,
2012; Nikolenko et al., 2019; Rodriguez et al., 2020; Slavinskiené and
Jurevicius, 2016). In addition, two additional regions in Duero (Spain)
(point 61, Fig. 7) and Malta (point 70, Fig. 7) also have maximum con-
centration values of nitrates of high concern since they exceed
200 ppm. In the case of Italy, the major concerns in terms of activities
that cause higher nitrate concentration are synthetic fertilizers, mainly
ammonium salts, and runoff processes. Nevertheless, groundwater in
Italy is often locally affected by denitrification processes that reduce
the nitrate content, offering values consistent with legal standards.
Regarding the high values reported, Malta mineral fertilizers, animal
and human sewage waste, and soil cultivation are the main sources of
contamination (Heaton et al., 2012). Contrarily, Lithuania has reported
the maximum worldwide value of nitrate concentration, 2753 mg/L
(point 69, Fig. 7) (Slavinskiené and Jurevicius, 2016). This high concentra-
tion was measured in a groundwater body close to open hydrogeological
systems, where some landfills are located (Slavinskiené and Jurevicius,
2016).

In Belgium, the concerning values of nitrates are attributed to poor
treatment of household sewage and manure (Nikolenko et al., 2019). In
this line, a recent report from the European Commission to the council
and the European parliament claimed that a high percentage of groundwa-
ter monitored currently shows high NO3 concentration, above the maxi-
mum 50 ppm, in Malta, Germany, Luxemburg, Spain, Portugal, and
Belgium (Flanders region).

In contrast, points from 1 to 61 present mean values below 50 ppm. In
this sense, some countries, such as Finland (point 9, Fig. 7), Croatia (point
11, Fig. 7), Serbia (points 17 and 39, Fig. 7), Spain (point 29, Fig. 7),
Macedonia (point 41, Fig. 7), Poland (point 53, Fig. 7), Greece (points 55,
57 and 58, Fig. 7), and Romania (point 56, Fig. 7) have mean values
below 50 mg/L (Bojarczuk et al., 2019; Charizopoulos et al., 2018; Cuk
et al., 2020; Dippong et al., 2019; Mircovski et al., 2018; Ogrinc et al.,
2019; Papazotos et al., 2019; Pedretti et al., 2019; Ujevi¢ Bosnjak et al.,
2012). Nevertheless, there are areas of special concern where more than a
quarter of the collected samples are polluted. Additionally, Turkey (point
49, Fig. 7), Ukraine (point 37, Fig. 7), United Kingdom (point 24, Fig. 7),
Slovenia (point 34, Fig. 7) and Albania (point 52, Fig. 7) report samples
with nitrate concentration above 50 mg/L (Barbieri et al., 2015; Ogrinc
et al., 2019; Smedley et al., 2018; Varol and Sekerci, 2018; Vystavna
etal., 2015).

As in previous continents, Table 5 shows the risk of nitrate pollution
due to the five different activities analyzed in this work. In Europe, the
primary source of nitrates is leaching of fertilizers, the excess of live-
stock, and municipal human wastes (Heaton et al., 2012; Rodriguez
et al., 2020). For example, in Spain, France, and Macedonia, intensive
agriculture using NPK fertilizers and the manure used as fertilizer are
the main sources of high nitrate levels (Giménez-Forcada et al., 2017;
Mircovski et al., 2018; Nofal et al., 2019; Rodriguez et al., 2020). A sim-
ilar situation is found in Greece, where the upper values of nitrates are
related to intensive agriculture and nitrogen fertilizers (Vasileiou
et al., 2019). Regarding Romania, high concentrations have been
found in areas with pig farms and grapevine cultures (Dippong et al.,
2019). In this way, many authors pointed to agricultural activity, poor
sewage treatment, and manure as the main anthropogenic sources of
pollution in Turkey, Ukraine, the United Kingdom, Slovenia, and
Albania (Barbieri et al., 2015; Ogrinc et al., 2019; Smedley et al.,
2018; Varol and Sekerci, 2018; Vystavna et al., 2015).

While the discharge of municipal sewage and organic-mineral fertiliza-
tion of agricultural land are the main contributors to the changes in the
quality of shallow groundwater in Poland (Bojarczuk et al., 2019), in
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Table 5
Pollution sources in Europe.
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Risk of contamination: (A) low, (=) medium, (e) high.

Croatia and Cyprus the contamination of groundwater excluded any
urban or industrial source but underlined the risk of agriculture inputs
(Nikolaou et al., 2020; Tzoraki et al., 2018; Ujevi¢ Bosnjak et al., 2012).
Finally, previous works focused on Serbia, remarked some anthropogenic
activities of special concern, nitrogen-based fertilizers and manure, and to
a larger extent, mixing of sewage and septic tank effluents (Majki¢-
Dursun et al., 2019, 2018).

In the line with the conclusions reported in previous works and col-
lected through this work, the European Environment Agency (EEA) has
developed a map highlighting the percentage of groundwater body
areas that present bad chemical status due to nitrate and total nitrogen
input from organic and inorganic fertilizers (EEA, 2012). Fig. 8 shows
the areas and the risk associated. Northern Europe countries
(Norway, Sweden, Estonia, Latvia, and Lithuania) present good quality
of groundwater in terms of nitrates presence. However, in general, re-
gions of central Europe (France, Germany, Poland among others)
have a remarkable percentage of areas with a risk of up to 10% of
groundwater with poor chemical status due to nitrates. Moreover,
some areas in the Czech Republic, Slovenia, Netherlands, and Spain
present a percentage between 70% and 90% classified as bad quality,
which is considered a concerning problem to be solved in the near fu-
ture (EEA, 2012).
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Fig. 8. Map developed by EEA classifying the quality of groundwater (EEA, 2012).

3.4. Africa

Finally, this section debates the African continent, which presents the
most concerning situation since one-third of the data reported mean values
of nitrate concentration in groundwater above the WHO threshold. In this
continent, 94 points were collected and analyzed, as illustrated in Fig. 9a;
the data reported so far in 15 sites did not allow to obtain average values
(Fig. 9b). In this regard, Africa has several countries in which groundwater
has been contaminated by nitrate, with mean values ranging from 52 to
776 mg/L (see Fig. 9). For example, in some regions in the Democratic Re-
public of the Congo, Mozambique, and Zimbabwe, mean values are between
189 and 775 mg/L (points 68-81, Fig. 9), 89-172 mg/L (points 64 and 67,
Fig. 9), and 72 mg/L (point 59, Fig. 9) respectively (Barbieri et al., 2019;
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Kapembo et al., 2016; Muzenda et al., 2019). Previous works focused on
Mozambique and Zimbabwe mainly attributed the high mean values to filtra-
tion and leaks from septic tanks and latrines (Arsénio et al., 2018; Barbieri
et al., 2019; Muzenda et al., 2019). In this sense, but in a more dramatic
way, the Democratic Republic of the Congo reports the most concerning sit-
uation worldwide, since there is poor sanitation and people make use of con-
taminated water for irrigation, domestic and drinking purposes. For example,
in the commune of Bumbu (Democratic Republic of the Congo), above 75%
of people have no access to safe water, and the water sources are shallow
wells that are located near latrines (Kapembo et al., 2016).

Moreover, Angola (point 63, Fig. 9) and Grand Yaéré, Cameroon (point 51,
Fig. 9) reported average values of 83 and 50 ppm achieving maximum values
of 132 and 646 mg/L respectively (Bello et al., 2019; Silva et al., 2017). In
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Fig. 9. a) Regions studied in Africa. b) Nitrate concentration in African groundwater bodies (Abderamane et al., 2013; Aladejana et al., 2020; Anim-Gyampo et al., 2018;
Ashun and Bansah, 2017; Awomeso et al., 2020; Bello et al., 2019; Benkaddour et al., 2020; Benmarce and Khanchoul, 2019; Beyene et al., 2019; Bon et al., 2020; Bouteraa
etal., 2019; Bretzler et al., 2017; Danni et al., 2019; Egbi et al., 2019; el Gammal and Ibrahim, 2017; el Ghali et al., 2020; Elumalai et al., 2019; Erdogan et al., 2020; Ferchichi
etal., 2018; Ferrante et al., 2018; Gevera and Mouri, 2018; Kapembo et al., 2016; Karroum et al., 2017; Kawo and Karuppannan, 2018; Loh et al., 2020; Masocha et al., 2019;
Melki et al., 2019; Mouassa et al., 2020; Mudzielwana et al., 2020; Mukanga et al., 2016; Muzenda et al., 2019; Ncibi et al., 2020; Nyilitya et al., 2020; Opoku et al., 2020;
Owamah, 2020; Re et al., 2017; Silva et al., 2017; Snousy et al., 2020; Sunkari et al., 2019; Tolera et al., 2020; Zaki et al., 2019; Zango et al., 2019). Detailed references appear
in Table S7 of the Supplementary Information.
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these two countries, the NO3 pollution is attributed to latrines and live-
stock waste (Bello et al., 2019; Silva et al., 2017). Firstly, Silva et al.
(2017) reported the presence of nitrate probably due to the direct dis-
charge of nitrogen-rich and untreated domestic effluents in the high-
porosity soil in Angola. Supporting this argument, in Cameroon, Bello
etal. (2019) found NO3 evolution independently of K*, thus, excluding
the use of agricultural fertilizers as potential source and therefore, at-
tributing the presence of nitrates in this region to oxidation-reduction
reactions of organic matter associated with septic-tank effluents, animal
or plant production.

Morocco presents nitrate concentrations between 33 and 74 mg/L
(points 48 and 61, Fig. 9) (Benkaddour et al., 2020) and the main source
of nitrate pollution, is similar to the different areas studied in Europe; the
overuse of fertilizers, pesticides, manure, and intensive agriculture and irri-
gation (Benkaddour et al., 2020).

In the case of Ghana, South Tongu and Ada East region (point 63, Fig. 9)
and Tunisia (points 52, 53, 55, 60 and 66, Fig. 9) the mean values are
89 mg/L and 100 *= 38 mg/L, respectively (Egbi et al., 2019; Ferchichi
et al., 2018; Melki et al., 2019; Ncibi et al., 2020; Re et al., 2017) because
of the intensive agricultural activities and discharge of domestic and indus-
trial sewage (Egbi et al., 2019; Ferchichi et al., 2018; Re et al., 2017).

Other countries with contaminated sites in the African continent are
South Africa (point 23, Fig. 9), Kenya (points 25, 39 and 47, Fig. 9),
Ethiopia (point 28, Fig. 9), Nigeria (points 36, 44 and 46, Fig. 9) and
Chad (point 43, Fig. 9) (Abderamane et al., 2013; Aladejana et al., 2020;
Ashun and Bansah, 2017; Awomeso et al., 2020; Elumalai et al., 2019;
Kawo and Karuppannan, 2018; Nyilitya et al., 2020).

In the specific case of Algeria, there are two areas with a mean value
under 50 ppm, but some samples contain nitrate concentrations higher
than this value (points 42 and 45, Fig. 9) (Bouteraa et al., 2019; Mouassa
et al., 2020). Nevertheless, several points only reported mean values,
which are in most cases above 50 mg/L (points 82-91, Fig. 9) (Benmarce
and Khanchoul, 2019). The presence of nitrates was attributed as in
Kenya to the intensive agriculture and to livestock activity in this area
(Benmarce and Khanchoul, 2019; Mouassa et al., 2020; Nyilitya et al.,

Table 6
Nitrate risk pollution in Africa.

Septic tanks
Sewage
Agriculture
Landfills
Industrial

Africa
Algeria
Angola
Cameroon ° °
Chad
Democratic
Republic of the ° ° °
Congo
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Morocco ° ° °
Mozambique °
Nigeria
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Zimbabwe (]

Risk of contamination: (4) low, (=) medium, (e) high.
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2020). In the same line, Kawo and Karuppannan (2018) pointed out the
presence on nitrates in central Ethiopia due to agricultural inputs, waste
disposal site and several industries (Kawo and Karuppannan, 2018).

Finally, in the case of Nigeria, NO3 comes from weathering of bedrocks,
leachate from septic tanks and dumpsites, runoff of materials, hardness, nu-
trients from agricultural lands, and chlorine pollution (Awomeso et al.,
2020). In summary, Table 6 collects the different activities studied in this
work as a function of the risk in each country.

3.5. Summarize of nitrate pollution worldwide

In view of the analysis of nitrate pollution, continent-by-continent, it
can be concluded that nitrate pollution is a global problem. In this con-
text, if we pay attention to Fig. 10, and according to the analysis made
country-by-country, most of the regions studied in the Mediterranean
area have worried values and therefore is one of the most polluted
areas worldwide in terms of nitrate presence in groundwaters. To have
a global vision and to appreciate this fact, Fig. 10 represents the regions
studied in Europe and North Africa, and as can be seen, regarding NO3
concentration, most of the areas collected show orange or red colour im-
plying that more than 25% of the samples report values above 50 ppm
(orange) or mean values higher than 50 mgL~' (red), which is the
value established by WHO to determine the polluted areas.

Besides, apart from the five categories of contamination studied
through this manuscript, different catastrophic events that occurred during
the past decades have changed the presence of nitrates in groundwater in
the affected areas. For example, the groundwater around the Union Carbide
factory in Bhopal has been contaminated with excessive levels of nitrate,
chloride, and heavy metals (“Water Contamination Crisis - Bhopal's
Second Disaster - The Bhopal medical appeal”, 2021). In the case of Beirut,
in 2020, 2750 tons of ammonium nitrate inadequate storage caused an ex-
plosion creating an important number of pollutants being released to the
environment. Compared with a similar incident in Tianjin (China), coffer-
dams and cement encasements should be built to prevent nitrates leakage
to soil and groundwater, or nitrate contamination is likely to be distributed
in groundwater in five years (ur Rehman et al., 2021). Regarding the Cher-
nobyl accident, two regions of Belarus assessed the hazard of nitrates since
two regions reported similar radiation values but, the incidence of pediatric
thyroid cancer was different, being the main difference the nitrate contam-
ination in drinking water, 40 vs. 185 ppm (Drozd et al., 2018).

Regarding the existing regulation of nitrates worldwide, the world
health organization developed a report in 2015 using data from members
of the WHO International Network of Drinking-water Regulators, WHO re-
gional and country office contacts, through internet searches or purchased
from the relevant standards organizations considering 104 countries and
territories. Nitrates was one of only three inorganic parameters with a
value set by all countries and territories. For example, at the European
level, there exists a Directive (2006/18/EC) based on the protection of
groundwater against pollution and deterioration, fixing as quality standards
amaximum of 50 mg-L ™! of nitrates concentration. Besides, in 1991, the EU
introduced the Nitrates Directive (91/676/EEC), which aimed to reduce
water pollution caused or induced by nitrate from agricultural sources.
This Directive also defines Vulnerable Nitrate Zones where it is necessary
to establish and implement action programs to reduce water pollution
from nitrogen compounds. In the case of the United States of America, the
Environmental Protection Agency (EPA) has established a limit for nitrates
and nitrites in drinking water (10 parts per million (ppm) for nitrates and
1 ppm for nitrites), and the Food and Drug Administration (FDA) has recom-
mended limits for nitrates and nitrites in bottled water (same thresholds as
the EPA) and foodstuffs (sodium nitrate lower than 500 ppm in the finished
meat product, sodium nitrite below 200 ppm in the finished meat product
and potassium nitrate as curing agent in the processing of cod roe in an
amount less than 200 ppm in the finished roe).

This manuscript contains in-depth analysis developed using more than
272 regions worldwide, despite the focus on specific areas, which could not
necessarily apply to more extensive zones, allows us to conclude: i) the
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Fig. 10. Location and nitrate concentration in groundwater bodies in the Mediterranean area. (Abboud, 2018; Abou Zakhem et al., 2017; Abou Zakhem and Hafez, 2015; Abu-
alnaeem et al., 2018; Alslaibi et al., 2017; Ruiz-Garcia et al., 2019; Asmael et al., 2015; Benmarce and Khanchoul, 2019; Bicalho et al., 2019; Bldzquez-Palli et al., 2019; Bojarczuk
etal., 2019; Boudjana et al., 2019; Bouteraa et al., 2019; Canora et al., 2019; Carvalho et al., 2019; Charizopoulos et al., 2018; Cuk et al., 2020; Danni et al., 2019; di Lorenzo et al.,
2012; Dippong et al., 2019; el Gammal and Ibrahim, 2017; el Ghali et al., 2020; Erostate et al., 2018; Ferchichi et al., 2018; Gil-Méarquez et al., 2019; Giménez-Forcada et al., 2017;
Gorgij et al., 2019; Heaton et al., 2012; Karakus, 2019; Karroum et al., 2017; Kattan, 2018; Lorette et al., 2018; Majki¢-Dursun et al., 2018; Melki et al., 2019; Mircovski et al., 2018;

Moratalla et al., 2009; Mostaza-Colado et al., 2018; Mouassa et al., 2020; Ncibi et al.,
Rezaei et al., 2017; Rodriguez et al., 2020; Rufino et al., 2019; Sedlazeck et al., 2017;

2020; Nikolenko et al., 2019; Papazotos et al., 2019; Quenet et al., 2019; Re et al., 2017;
Smedley et al., 2018; Snousy et al., 2020; Strauhal et al., 2016; Tran et al., 2020; Tzoraki

et al., 2018; Ujevi¢ Bosnjak et al., 2012; Varol and Sekerci, 2018; Vystavna et al., 2015; Yetis et al., 2019; Zaki et al., 2019).

primary anthropogenic sources of nitrate are the use of fertilizers and the dis-
charge of non-treated domestic and industrial wastes, ii) at many points, the
nitrate contamination is associated with other contamination by fluorine, sul-
phates, potash, phosphates and some heavy metals such as zinc, cadmium or
arsenic, and iii) nitrate pollution is mainly concentrated in the Mediterranean
area and some regions of South Asia, where agriculture is an essential source
of income but also the presence of NO;3 is a big concern in some developing
African countries, due to the lack of adequate sanitation.

Table 7
Different technologies available to remove pollutants present in water bodies.

Also, this pollution, far from being solved, shows an increasing trend
that demands drastic and urgent solutions to prevent this problem.
Thus, immediate actions are required before natural water bodies are
entirely spoiled, especially in developing countries with water short-
ages. Although there are different sources of nitrates pollution in
groundwater bodies, the challenge of water remediation can be facili-
tated by using similar technologies that enable the transfer of knowl-
edge and inter-site adaptation.

Technology

Substances to be removed

Ref

Precipitation and coagulation
Softening

Distillation

Adsorption

Ion exchange
Reverse osmosis
Electrodialysis
Catalytic processes

Bioremediation

Magnetic separation

Disinfection (UV or chlorine)

Active carbon filtration

Filtration (UF, NF, gravel, sand...)
Oxidation (mechanical, thermal, with ozone)
Clarification

Aeration/air stripping

Phosphorous, fluoride, arsenic, ferrocyanide, and heavy metals.
Hardness ions

Toxic chemicals, heavy metals, bacteria, viruses or parasites.
Eliminate compounds that add either colour, taste, or odor to water, such
as VOCs, chlorine, heavy metals, organics.

Anions or cations based on resin type.

Salts, pesticides, microbes.

Dissolved ionic particles.

Organic compounds, formic acid or nitrates.

Heavy metals, sediments, pathogens, or dissolved organic chemicals.
0Oil, suspended solids and some ions with difficulties to coagulate.
Bacteria and viruses.

Dissolved organic carbon

Suspended solids, dyes or organic matter

Colour, odor, organic compounds, and inorganic compounds

Total suspended solids (TSS)

Transferring of volatile components of a liquid into an air flow

(Ballinas et al., 2004; Sharma and Bhattacharya, 2017)
(Sharma and Bhattacharya, 2017)
(Sharma and Bhattacharya, 2017)
(Sharma and Bhattacharya, 2017)

(Sharma and Bhattacharya, 2017)

(Sharma and Bhattacharya, 2017; Yang et al., 2019)
(Akhter et al., 2018; Sharma and Bhattacharya, 2017)
(Guate et al., 2019; Rezvani et al., 2019; Sharma and
Bhattacharya, 2017; Tokazhanov et al., 2020)
(Kozyatnyk and Klymenko, 2016; Sharma and Bhattacharya, 2017)
(Sharma and Bhattacharya, 2017)

(Sharma and Bhattacharya, 2017)

(Sharma and Bhattacharya, 2017)

(Rashid et al., 2021)

(Radu and Racoviteanu, 2021)

(Ortiz et al., 2015)

(Radu and Racoviteanu, 2021)
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4. Alternatives to nitrate removal

As mentioned above, apart from nitrates, groundwater could contain
different ions which must be removed before use. In this sense, nowa-
days, numerous water treatment technologies have been developed, ac-
cording to the pollutants, infrastructure, affordability, and acceptability
(Hosseini et al., 2016; Sharma and Bhattacharya, 2017). In fact, the
most common technologies to remove pollutants are summarized in
Table 7.

Currently, there are numerous technologies implemented at the indus-
trial scale to remove different pollutants from water, and particularly, to
treat surface waters. But, there is a scarce number of demonstration plants
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in the world dedicated to groundwater treatment. On this basis, Table 8
summarizes the facilities dedicated to this purpose as well as their daily ca-
pacity and the pollutants removed by these techniques. If we take as a basis,
a daily treatment flow greater than 1000 m>, we find that there are only 13
plants implemented in the world: five in the USA, five in Italy, and one in
Australia, India and Poland, respectively. Regarding the processes carried
out in these plants, reverse osmosis (RO), filtration, and ultrafiltration
(UF) are the most popular technologies employed in the United States of
America. Besides, Italy has numerous plants located all over the country,
able to remove a wide variety of pollutants. On the other hand, iron, man-
ganese, and inorganic compounds stand out among the contaminants that
are also removed. Also, the pilot situated in Australia has installed thermal

Table 8
Characteristics of groundwater treatment plants.
Region Process Capacity Pollutants removed Opening Ref
(m®/day) year
Asia India biofilm reactor, flocculation, precipitation, 528 BTEX, MIBK, chlorinated 2011 (“Ziiblin Umwelttechnik GmbH -
deferrization, lamella separator, gravel compounds, phenols, Groundwater Treatment Plant”, 2021)
filter, filtration activated carbon, sludge nitroaromatics, anilines,
treatment, thickener, chamber filter press pesticides, hydrocarbons
New Delhi Aeration, lime softening, coagulation, 4536 bicarbonate hardness n. a. (Pillai et al., 2019)
flocculation, clarification, pH adjust, UF, removal, suspended
disinfection (UV or chlorine) particles, colloids and
harmful microorganisms
Saudi Buraydah, Coagulation, UF, Sand filtration, RO TDS, Fe, Mn n. a. (Haider, 2017)
Arabia Qassim region
America Canada  White Rock Pre-oxidation with ozone, filtration, Mn, As 2019 (“Water Treatment Plant | White Rock,
adsorption BC”, 2021)
Ecuador RO 336 2013 (“Industrial Reverse Osmosis Equipment
87,000 GPD - Ecuador - Pure Aqua, Inc.”,
2020)
Haiti RO, activated carbon 216 Salts n. a. (“Groundwater Treatment Plant 57000 GPD
- Haiti - Pure Aqua, Inc.”, 2021)
USA Jordan, Utah RO, UV 26,496 TDS and Chemical 2011 (“Southwest Groundwater Treatment Plant
impurities - Flatiron”, 2021)
Lary Lane, Filtration, chemical compounds for 5904 Fe, Mn, As 2015 (“Lary Lane Ground Water Treatment Plant
Exeter NH co-precipitation, pH adjustment and | Town of Exeter New Hampshire Official
disinfection Website”, 2020)
Jacksonville NF, bio scrubbing system, disinfection, pH 15,142 2011 (“City Water Plant | Jacksonville, NC -
(North Carolina) adjust Official Website”, 2021)
Scottsdale RO, airstripping technology Trichloroethylene In (“City of Scottsdale - City Construction
(Arizona) construction Projects - Thomas Groundwater Treatment
Facility and Improvements to the Central
Groundwater Treatment Facility”, 2021)
Santa Moénica Pretreatment, RO, aeration 32,160 Mehtyl tert-butyl ether 2010 (“Santa Monica Public Works - Santa
(California) Monica Water Treatment Plant”, 2021)
Davie (Florida)  Ion exchange 37,848 n. a. (“Water Treatment | Davie, FL”, 2020)
RO, aeration, disinfection n. a.
Orrington UF, granular activated carbon 312 Hg 2012 (“Groundwater Treatment Plant |
(Maine) beyondholtrachem”, 2021)
Europe Italy Porto Marghera  Filtration, activated carbon 1320 Heavy metals, organic n. a.
chlorinated compounds
and aromatic compounds
Porto Torres Physico-chemical treatment, filtration, 1200 Heavy metals, organic n. a.
activated carbon chlorinated compounds
and aromatic compounds
Assemini Ion exchange 1320 Heavy metals, organic n. a.
chlorinated compounds
and aromatic compounds (“Trattamento Acque di Falda”, 2021)
Portovesme Physico-chemical treatment, activated 9600 Heavy metals, inorganic  n. a.
carbon compounds and aromatic
compounds
San Gavino Physico-chemical treatment, activated 864 Heavy metals, organic n. a.
Monreale carbon compounds and
inorganic compounds
(sulphates)
Porto Torres Mechanical oxidation, UF 4800 n. a.
Poland Drzenin Aeration, filtration 1080 Fe, Mn 1977 (Jakubaszek, 2019)
Oceania Australia Botany Air stripping, thermal oxidizer, filtration, =~ 6000 chlorinated 2006 (Orica, 2020)
biological aerated filters, granular hydrocarbons

activated carbon, filtration, RO
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oxidizers within other processes and the Botany plant removes chlorinated
hydrocarbons (Orica, 2020). The Orrington plant (Maine, United States of
America), although it has a small daily treatment capacity, is worth to men-
tion because the main element that is removed is mercury (“Groundwater
Treatment Plant | beyondholtrachem”, 2021).

Among the different technologies available to remove nitrates, no one is
fully implemented or stands out clearly from the others. Table 9 summa-
rizes the main advantages and drawbacks of the technologies existing in
each type of approach. In this way, despite the scarcity of data regarding ni-
trate removal values, great efforts are being made at the laboratory level to
find out the optimal figures of merit for each technology with associated
strengths and weaknesses.

There are two foremost approaches, i) the separation of nitrates from
the water (reverse osmosis, ion exchange, and electrodialysis) and ii) the
transformation of nitrates into harmless nitrogen gas (biological denitrifica-
tion, and catalytic methods). Regarding the first alternative, the separation
requires a second step to remove, concentrate or neutralize the target com-
pounds.

In the case of reverse osmosis, the membranes that are commonly
employed are polyamide and cellulose triacetate (Hosseini et al.,
2016). Schoeman and Steyn (2003) achieved, approximately, 98% ni-
trate removal using this membrane technology (Schoeman and Steyn,
2003). Contrarily, Richards et al. (2010), studied the influence of pH
to remove nitrates concluding that this parameter does not affect the re-
tention of nitrates but suffers a decrease in the presence of Na* due to
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the screening effects (Richards et al., 2010). Regarding the materials
employed in ion exchange, Purolite A 520E has been considered the
most effective ion exchange resin to remove nitrates (Samatya et al.,
2006).

Membrane technology, along with ion exchange, has less efficiency than
the catalytic process in the degradation of pollutants but has lower costs, au-
tomatization is more accessible, and has fewer control needs. For its part, ad-
sorption has been analyzed by several authors and the different adsorbents
studied are carbon-based sorbents, natural sorbents (i.e. zeolite or clays), ag-
ricultural wastes (i.e. sugar bagasse), industrial wastes (i.e. red mud),
biosorbents (i.e. bamboo power) or miscellaneous sorbents (i.e. double lay-
ered hydroxides, silica or alumina). In this sense, double layered hydroxides
or modified chitosan report higher uptake of nitrate than conventional ad-
sorbents such as carbon-based sorbents (carbon nanotubes, activated car-
bon) or natural sorbents (clay, zeolite) (Bhatnagar and Sillanpaa, 2011).
Soifas-Viciana et al. (2008) removed nitrates from water using calcinated
hydrotalcite-type compounds. On the other hand, Chatterjee et al. (2009)
studied chitosan as adsorbent to remove nitrates. They achieved an adsorp-
tion capacity of 104 mg/g using crosslinked chitosan beans while the re-
ported adsorption capacity of normal chitosan beans is of 90.7 mg/g
(Chatterjee et al., 2009). In the case of electrodialysis, Aliaskari and
Schéfer (2020) studied this process to remove salinity, nitrates, fluoride
and arsenic. They concluded that the removal of contaminants followed
the order, nitrate = salinity > fluoride > arsenic. These authors, ob-
tained a high nitrate removal with low electrical potential while arsenic

Table 9
Advantages and drawbacks of the main technologies for nitrates removal.
Technology Advantages Drawbacks Ref
Separation Reverse - Compact equipment - Fouling (to reduce it, sulfuric acid and sodium (Archna et al., 2012; Hayrynen et al., 2009; Schoeman and
osmosis - Continuous hexametaphosphate) Steyn, 2003; Sharma and Bhattacharya, 2017; Tokazhanov
operation is possible et al., 2020)
- Not necessary
post-treatments
ITon exchange - Simplicity - Lower affinity of resins to nitrates with respect to sulphates (Kabay et al., 2007a, 2007b; Primo et al., 2009; Samatya
- Effectiveness et al., 2007, 2006; Sharma and Bhattacharya, 2017;
- Selectivity Tokazhanov et al., 2020)
- Recovery
- Relatively low cost
Adsorption - Ease of operation - Necessity of take into account some factors: i) initial (Bhatnagar and Sillanp&d, 2011; Sharma and Bhattacharya,
- Simplicity of design nitrate concentrations, ii) other ions present in water, iii) 2017)
- Remove different adsorbent quantity, iv) water pH, v) operation and
types of maintenance and vi) temperature
contaminants,
organics and
inorganics
Electrodialysis - Higher taxes of - Necessary to consider time, temperature, flow rate, and (Aliaskari and Schéfer, 2020; el Midaoui et al., 2002; Sharma
recovery voltage to optimize and Bhattacharya, 2017)
- May remove - Process
contaminants and - Efficiency loss due to the fouling and scaling
desalinate - The need for a pretreatment remineralization requirements
simultaneously
- Environmentally
friendly technology
Transformation Biological - Economical - High levels of nitrate concentration may be difficult to (Chu and Wang, 2013; Ghafari et al., 2008; Martinez et al.,
denitrification - Environmentally reduce 2017; Sharma and Bhattacharya, 2017; Tokazhanov et al.,
friendly technology - Long time 2020; Xu et al., 2018; Yang et al., 2019)
- Bacteria sludge
- High pH requirements
- Low selectivity
- Higher energy requirements
Catalytic - Nitrate conversion - Formation of ammonia (Ghosh et al., 2017; Guate et al., 2019; Liu et al., 2012;
reduction of 98-100% - High operational costs Marchesini et al., 2019; Martinez et al., 2017; Pizarro et al.,
- No waste 2018; Sharma and Bhattacharya, 2017; Tokazhanov et al.,
2020; Zhou et al., 2017)
Electrocatalytic - Versatile - Requirement of certain conductivity (Akbari et al., 2020; Garcia-Segura et al., 2018; Martinez
reduction - Scalable et al., 2017; Sanjuén et al., 2020; Tokazhanov et al., 2020;
Weber et al., 2019)
Photocatalytic - High selectivity - Formation of nitrite and ammonium (Kozyatnyk and Klymenko, 2016; Sharma and Bhattacharya,
method 2017; Zhang et al., 2005)
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elimination increases with high electrical potential (Aliaskari and
Schifer, 2020).

However, the use of techniques to transform nitrates to N5, has
the advantage of no waste production. Biological denitrification
can be heterotrophic or autotrophic. On the one hand, heterotrophic
bacteria need the presence of organic compounds or hydrocarbons as
energy and carbon source. On the other hand, autotrophic bacteria
use inorganic compounds, usually carbon dioxide as carbon source,
and electron donors like hydrogen or reduced sulfur compounds as
energy source. In this context, autotrophic denitrification using hy-
drogen as electron donor is called hydrogenotrophic denitrification
(Ghafari et al., 2008). Lee and Rittmann (2000) developed a hollow
fiber membrane biofilm reactor capable of removing nitrate using
hydrogen as electron donor (Lee and Rittmann, 2000). Zhou et al.
(2017) developed a hollow fiber membrane reactor combining bio-
film with a palladium catalyst achieving a reduction of nitrates faster
than using only biofilm or only the palladium catalyst and they re-
ported a selectivity toward nitrogen gas (Zhou et al., 2017). In con-
trast, catalytic reduction employs a bimetallic catalyst consisting of
a noble metal and a transition metal. These catalysts are usually
composed of palladium or platinum and copper, tin or indium. The
reaction occurs with hydrogen as reducing agent and carbon dioxide
is commonly used as buffer to control pH (Martinez et al., 2017). Al-
though this method achieves high nitrate degradation yields, the
chemical catalytic process is not implemented yet at full-scale. Cur-
rently, Marchesini et al. (2019) compared PdIn/SiO, and PdIn/
Al,O3 catalysts to reduce nitrates from real water, that is, in the pres-
ence of other anions such as sulphate, carbonate or chloride. They
concluded that for PdIn/SiO, the presence of other anions decreases
the nitrate reduction yield and the selectivity toward nitrogen gas
while for PdIn/Al,0s3, the presence of other anions only diminishes
the selectivity toward nitrogen gas (Marchesini et al., 2019). Control
of pH has been studied by Pizarro et al. (2018) using CO, as buffer
gas. They achieved 100% of conversion using PdIn/Al,O3 catalyst
with and without CO, buffer but the selectivity toward ammonia
was 34% and 92% respectively (Pizarro et al., 2018). Additionally,
zero-valent iron (ZVI) has been used as catalyst too. ZVI, in presence
of nitrates, is oxidized to form Fe?* /Fe®™ and nitrates are reduced
to form nitrites, nitrogen or ammonia (Dominguez et al., 2018;
Martinez et al., 2017). Ghosh et al. (2017) achieved 72-100% of ni-
trate reduction with a selectivity higher than 99% toward ammonia
(Ghosh et al., 2017), while Liu et al. (2012) reached 90% nitrate re-
duction with nitrogen gas as the main product, together with 20%
selectivity toward ammonia and a small number of nitrites (Liu
et al., 2012).

The electrocatalytic reduction of nitrates to nitrogen or ammonia
is another alternative. The reaction occurs in the cathodic surface
which acts as a catalyst too. The main configurations to remove ni-
trates using this technology are single chamber cell, where cathode
and anode are in the same compartment and in contact with the elec-
trolyte, and dual-chamber cell, where a membrane separates the elec-
trodes (Martinez et al., 2017). Several authors have researched this
process to eliminate nitrates. Weber et al. (2019) achieved 99% and
90% of nitrate conversion with 81% and 78% of selectivity toward ni-
trogen gas using CuSn and CuPd as cathode, respectively (Weber
et al., 2019). Akbari et al. (2020) secured 90% of nitrate conversion
with a nitrogen selectivity of 88.8% employing Fe®/Fe;0, over nickel
foam as cathode (Akbari et al., 2020). However, the photocatalytic
method to remove nitrates is still in its infancy due to the formation
of nitrite and ammonium as byproducts; promising results have been
published by Zhang et al. (2005) who reported 100% selectivity to-
ward nitrogen gas with Ag/TiO, with fine Ag cluster catalyst (Zhang
et al., 2005).

Regarding transformation techniques, catalytic reduction pre-
sents more advantages than biological denitrification such as high ni-
trates removal rates. However, biological denitrification has full-
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scale installations in contrast to catalytic reduction and this technol-
ogy does not produce ammonia (Rezvani et al., 2019). Only a pilot
plant located in Borrasa (Spain) has been currently reported in the
literature (“Breakthrough in Nitrate-polluted Water Treatment”,
2021).

Regarding pilot plants for nitrates removal based on separation or
transformation technologies, there are several plants developed
throughout the world. Nevertheless, these plants, in many cases, are
only dedicated to the treatment of surface waters. Table 10, shows
the main pilot or full-scale plants installed to treat nitrates. This
table collects the data reported in the bibliography for nitrate treat-
ment plants; in many cases, other compounds are removed at the
same time. In view of the results, it is important to highlight, i) the
treatment capacity of the plants offers high variability, from 18 m?
per day in Spain using the electrodialysis reversal technology to
38,400 m® in Germany employing biological denitrification, ii) the
lack of data regarding the nitrate removal yield, iii) the high number
of plants installed in the USA based on the ion exchange technology
and, iv) Asia and Africa, with large regions contaminated by nitrates,
only have two plants dedicated to nitrates removal. On the other
hand, it is worth to mention the high differences in terms of capacity
per day of reverse osmosis plants.

5. Conclusions

This review collects the quality of different groundwater bodies
throughout the world in terms of nitrates concentration and reports the
treatment options both for this compound and for other critical pollutants,
identifying the pilot plants that are currently in operation.

After analyzing a total of up to 292 points from 146 works reported
in the literature, some general conclusions can be drawn: i) The pres-
ence of nitrates in groundwater is continuously growing, and in conse-
quence, urgent measures are required to avoid the degradation of these
water bodies. ii) Different areas worldwide present values higher than
the WHO standards (50 ppm). iii) Nitrate pollution coming from agri-
culture and, specifically, from the use of fertilizers and pesticides is a
common denominator on all continents. iv) In Asia, there is significant
variability in the concentration of NO3 because of the strong influence
of the rainy season and the poor treatment of septic tanks. v) In addition
to contamination by fertilizers, aquifers in America suffer from waste-
water discharged without adequate treatment. vi) In Europe, landfills,
industrial activities, and sewage have an outstanding contribution to
nitrate presence in groundwater. vii) In Africa, apart from the different
reasons previously summarized, pollution is mostly due to the poor
health conditions in many countries (e.g., the presence of septic tanks
without treatment).

Nowadays, there is a high number of plants dedicated to surface
water treatment, nevertheless, the number of plants for groundwater
treatment is still very limited. Regarding the different treatments to re-
move nitrates, continue research is necessary since, although there are
many technologies available, scarce applications have reached the
pilot plant scale. Also, between all the technologies that are currently
under development, there is not a clear line because all present clear
advantages and disadvantages. In the case of reverse osmosis, com-
monly used to remove pollutants from surface water, the degradation
of the membranes by fouling and the fact that nitrate is not converted
to nitrogen prevents it from being the most promising technology. On
the other hand, apart from reverse osmosis, biological denitrification
and ion exchange are the main treatments implemented at full-scale
to nitrate removal. However, these technologies have the drawback
of the difficult nitrate removal at high concentration. Catalytic nitrate
reduction, which still needs further research, is a promising technol-
ogy for the destruction of nitrates due to the high conversion close to
98-100%, and no waste generation. Thus, despite there is still a long
way to achieve full groundwater remediation, the efforts which are
currently being performed will promote short-term responses.
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Table 10
Nitrate treatment plants at full-scale.
Location Capacity ~ Nitrates removed Opening Ref.
(m®/day) (mg/L) year
Reverse osmosis Bakersfield (California) 654 75-84 n. a. (Jensen et al., 2014)
Brighton (Colorado) 25,075 49-89 n. a.
Arlington Desalter, Riverside (California) 24,982 44-89 n. a.
Yemen 169 n. a. (Shams, 2010)
France 120 n. a.
Zava-Giyani (South Africa) 54.5 n. a.
Milan (Italy) (13 sites) 169-1352 n. a.
Pomaire (Chile) 518 2015 (“Reverse osmosis dwtp for nitrate removal, pomaire,
chile — wes chile — water & energy solutions”, 2021)
Ion exchange Ellsworth (Minnesota) 178 1994
Clear Lake (Minnesota) 178 1995
Edgerton (Minnesota) 519 2002
Adrian (Minnesota) 488 1998
McCook (Nebraska) 25,741 > 125 2006
McFarland (California) 3785 60 1983
McFarland (California) 3785 64 1987 (Jensen et al,, 2014)
La Crescenta (California) 10,221 70-100 1987
Grover City (California) 8706 80-130 n. a.
Des Moines (Iowa) 37,854 >55 1992
Glendale (Arizona) 37,854 177 2010
Indian Hills (Colorado) 272.5 53-71 2009
Avondale (Arizona) 10,357 2003
Salinas (California) 16,353 2002
East Valley, San Bernardino Highland (California) 5451 2003
Yucca Valley (California) 13,627 2002 (Shams, 2010)
Pomona (California) 5451 Late 1990s
- (California) 10,902 n. a.
Colina (Chile) 630 n. a. (“Nitrate removal dwtp, colina, chile — wes chile —
water & energy solutions”, 2020)
Electrodialysis Spain 18 80 n. a. (Jensen et al., 2014)
Selective reversal Israel 1690 84-89 n. a. (Jensen et al., 2014)
Biological denitrification  Rialto (California) 10,901 17-19 n. a.
Riverside (California) 9102 44-89 n. a.
Obersiebenbrunn (Austria) 4320 n.a.
Chateau Landon (France) 1248 n. a.
Champfleur (France) 1680 n. a.
Issoudun (France) 14,000 n. a.
Bourg les valences (France) 10,800 n. a.
Nord Sarthe (France) 7200 n.a.
Dreux-Vernouillet (France) 16,800 n. a.
Niort (France) 48,000 n. a.
Thouard (France) 20,400 n. a. (Jensen et al., 2014)
Vernoy (France) 4800 n. a.
Hanau (Germany) 1200 n. a.
Neuss (Germany) 3600 n. a.
Frankfurt Airport (Germany) 7680 n. a.
Aschaffenburg (Germany) 38,400 n. a.
Fohr Island (Germany) 2160 n. a.
Albanacci (Italy) 9120 n. a.
Czestochowa (Poland) 12,000 n. a.
Rancho Cucamonga (California) 3600 n. a.
Coyle (Oklahoma) 300 n. a.
Falset (Spain) 120 2018 (Alvarez and Murria, 2020)
Republic (Washington) 272 2006
Republic (Washington) 32,7 2005
Cajamarca (Pert) 1199 2003 (Reinsel, 2014)
Lead (Dakota del Sur) 2180 1997
Nye (Montana) 13,082 1995
Langenfeld and Monheim (Germany) n.a
Monchengladback (Germany) n.a
Vsetaty (Czech Republic) n. a.
Drosir?é (Austria) ’ n. a. (Shams, 2010)
Montferland (the Netherlands) n. a.
Blankaart (Belgium) n. a.
Electrocatalytic reduction Borrassa (Spain) 100 2017 (“Breakthrough in Nitrate-polluted Water

Treatment”, 2021)
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