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a b s t r a c t 

This is the second part of a series of two papers concerning fire-spotting generated fires. 

While, in the first part, we focus on the impact of macro-scale factors on the growth 

of the burning area by considering the atmospheric stability conditions, in the present 

study we focus on the impact of meso-scale factors by considering the effects of the flame 

geometry and terrain slope. First, we discuss the phenomenological power law that re- 

lates flame length and fireline intensity by reporting literature data, analysing a formula 

originally proposed by Albini, and deriving an alternative formula based on the energy 

conservation principle. Subsequently, we extend the physical fire-spotting parametrisation 

RandomFront adopted in the first part by including flame geometry and slope. Numeri- 

cal examples show that fire-spotting is affected by flame geometry and, therefore, cannot 

be neglected in simplified fire-spread models used in operational software codes for wild- 

fire propagation. Meanwhile, we observe that terrain slope enhances the spread of a fire 

at a higher rate than the augmentation of fire-spotting generated fires, such that a rapid 

merging occurs among independent fires. 

© 2021 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

 

 

 

 

1. Introduction 

Fire-spotting is a feature of forest fires that, more than others, manifests in the extension in the space of wild burning

events. Fire-spotting, as a part of wildfire systems, is a challenging, multiscale, physical problem in itself, because it includes 

processes that range from chemical to meteorological scales [1] . 

Indeed, fire-spotting starts by generating firebrands at the meso-scopic scale of a flame’s geometry; at the micro-scopic 

scale it involves chemical reactions that enable firebrands to ignite a new fire, while at the macro-scopic scale it is driven

by the boundary-layer meteorology, which is responsible for the rising and transportation of firebrands. 

In this second part of our series of two papers concerning fire-spotting generated fires, we focus on the role of the meso-

scopic characteristics of wildfires. We refer, in particular, to flame geometry, which strongly affects fire spreading [2] , and to
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Nomenclature 

C d Drag coefficient, C d = 0 . 45 

c p Specific heat of fuel, c p = 1121 . 0 kJ kg 
−1 

K 

−1 

D Diffusion coefficient ( m 

2 s −1 ) 

e Internal energy of gas ( J ) 

g Gravitational acceleration, g = 9 . 81 m s −2 

Fr Froude number 

H Mechanical energy ( J ) 

H max Maximum loftable height ( m ) 

h Flame height ( m ) 

I f Fireline intensity ( Wm 

−1 ) 

L f Flame length ( m ) 

� Firebrand landing distance ( m ) 

� max Maximum travel distance ( m ) 

˙ m Mass flow rate of flame fluid ( kg s −1 ) 

P Pressure ( kg m 

−1 s −2 ) 

P f Energy flow rate in convection column above a line of fire ( J s −1 ) 

P w 

Energy flow rate in wind field ( J s −1 ) 

Q Heat transformed into gas ( J ) 

q (� ) Firebrand landing distribution 

R Fuel consumed per unit area in active flaming front ( kg m 

−2 ) 

r Firebrand radius ( m ) 

R a Gas constant per unit mass of air ( J kg 
−1 

K ) 

T Flame temperature ( K ) 

T a Ambient air temperature ( K ) 

U Mean wind velocity ( m s −1 ) 

V Volume ( m 

3 ) 

V ROS (x , t) rate of spread ( m s −1 ) 

W Work done on gas ( J ) 

W sh Shaft work used to move the fluid ( J ) 

w Vertical velocity ( m s −1 ) 

w c Characteristic buoyant velocity ( m s −1 ) 

w f Vertical component of flame velocity ( m s −1 ) 

z Altitude ( m ) 

z p p-th percentile, z p = 0 . 45 

α Entrainment constant 

β Packing ratio, β = (overdry bulk density)/(ovendry particle density) 

βop Optimum packing ratio 

β0 Pre-factor of the flame length – fireline intensity interdependence 

β1 Exponent of the flame length – fireline intensity interdependence, β1 = 2 / 3 

β2 Correction factor in (52) , β2 = 0 . 7 

β3 Correction factor in (56) , β3 = 0 . 945 

� Horizontal cross-sectional sheet of the flame ( m 

2 ) 

ε Kinetic energy dissipation ( m 

2 s −3 ) 

η Fraction of impinging air stream 

θ Flame angle ( rad ) 

ω Slope angle ( rad ) 

κ Byram’s energy criterion, κ = P f /P w 

μ Median of the lognormal distribution q (� ) 

ρ Ambient air mass density, ρ = 1 . 1 kg m 

−3 

ρf Density of the wildland fuels, ρf = 542 kg m 

−3 

ρfm 

Flame mass density ( kg m 

−3 ) 

σ Parameter of lognormal distribution q (� ) 

φslope Slope correction in Rothermel’s ROS model 

φwind Wind correction in Rothermel’s ROS model 

ϕ Net low heat of combustion ( kJ kg 
−1 

) 
2 
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Fig. 1. Flame geometry of real wildland fire in flat terrain. 

 

 

 

 

 

 

 

 

 

 

 

 

terrain slope. Additionally, an accurate estimation of geometrical properties allows a determination of how wildfires can be 

controlled: indeed, flame length is used to determine the size of fire control lines [3] , while flame height is used to predict

the heat flux exposure [4] . 

Establishing indicators for the onset of erratic or unexpected wildfire behaviour is an important endeavour, while flame 

characteristics are fundamental features for the determination of combustion regimes [5] . Moreover, flame geometry is a 

descriptor of the surrounding vegetation; therefore, it is considered in fire-fighting strategies [6] . Another valuable quantity 

for characterising fires is fireline intensity, which is used by practitioners to predict the probability of house survival during 

bush fires [7] ; it is linked with stem-bark char height and crown scorch height, which are important descriptors of surface

fire behaviour and useful for studying post-fire impacts [8] . 

Since the introduction of Byrams formula [9] , several empirical laws have been proposed for the interdependency be- 

tween flame geometry, in terms of flame length, and fireline intensity [8] . Usually, these laws are established empirically,

using statistical methods for quantitatively fixing the value of the involved parameters, which, unfortunately, results in case- 

dependent values. Only a few attempts have been made to develop a physical model. The first was by Albini in 1981 [10] ,

which was improved on by Nelson Jr. and co-authors, in 2012, by including entrainment [5] . A further approach was pro-

posed by Marcelli et al. [11] based on radiative flux, with flame height defined as the height of the equivalent radiant panel.

Another model, based on radiation, considers moisture content and energy losses, and was proposed by Ferragut and col- 

laborators [12] . The relationships between flame geometry and the Froude number, or convection number, have also been 

studied [13–16] , including their experimental approbation [17–19] . 

Therefore, motivated by the lack of this important foundation, we theoretically establish a formula for estimating the 

flame height and length in wildfires from the fireline intensity. The derivation is based on the energy conservation principle 

and on the concept of the energy flow rate in the convection column above a fireline, the latter was originally introduced

by Byram in 1959 [20] . 

Evidently, flame geometry is strongly affected by wind (see Fig. 1 ) and terrain slope. In our formulation, we assume that,

in the no-wind no-slope condition, flame geometry is fully characterised by the process’s energy, while the wind and slope 

rule the flame tilting angle and they cause a stretching of the flame. 

The actual impacts of wind and the slope on flame geometry are considered by combining the Byram relation between 

fireline intensity and the rate of spread (ROS) by using Rothermel’s ROS model, which explicitly displays wind and slope 

corrections [21,22] . It turns out that the impacts of wind and slope on flame geometry depend on the same wind- and

slope-correcting factors of the ROS: the flame length increases when they augment the ROS. 

To conclude, fireline intensity is related to the propagation of a front and drives fire-spotting, which accelerates the 

spreading of a fire [23,24] ; therefore, fire-spotting is crucial for simulating the evolution of a burning area, and cannot

be disregarded. Due to its unpredictable nature, fire-spotting modelling, here, is considered through a statistical approach 

embodied in a proper probability density function (PDF). Wang [25] studied the downwind distribution of firebrands by 

considering the maximum travel distance, which also depends on the geometrical characteristics of a flame. Martin & Hillen 

[24] studied, in detail, the spotting distribution by considering launching and landing distributions. Kaur & Pagnini [26] pro- 

posed a physical parametrisation of the fire-spotting distribution by considering the maximum loftable height of a firebrand, 

mean wind, and fireline intensity. 

Therefore, to estimate the impact of meso-scale factors on fire-spotting and wildfire propagation, we include flame ge- 

ometry and slope in a physical parametrisation called RandomFront model, which has already been proposed and updated 

by this research group [27–30] as well as implemented in real cases [31] , and adopted in Part 1 [32] . Within this parametri-

sation, numerical simulations show that flame geometry, particularly flame length, contributes to the generation of indepen- 

dent secondary fires. Meanwhile, terrain slope enhances the propagation of a front, such that independent secondary fires 

are rapidly merged. 

As a final introductory remark, we clarify that some of the contents of this paper have already been presented in a pre-

liminary version [33] . However, we emphasise that those common parts have indeed largely been revised and corrected for 
3 
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the present paper; moreover, the current study includes an extension to cases with terrain slope, such that new numerical 

simulations have been executed from a different planning perspective. 

The remainder of the paper is organised as follows. Section 2 is devoted to discussing the role of reduced-scale facilities

in understanding and modelling full-scale wildfires, while Section 3 reports on the relation between flame length and fireline 

intensity. Section 4 deals with the derivation and analysis of Albini’s formula relating flame length and fireline intensity. In 

Section 5 , a new formula for such a relation is derived based on the energy conservation principle. The inclusion of this

last formula in the fire-spotting RandomFront model is discussed in Section 6 , while the corresponding simulations are 

reported in Section 7 . Section 8 , with final remarks, concludes. 

2. Reduced-scale facilities and fire spreading models 

It is well-known and has certainly been established that “small-scale flame dynamics provide limited insight into wildfire 

behavior” [34] . Many processes occur contemporarily during a wildfire event (e.g. buoyancy, convection, radiation, chemical 

reactions, and wind flow), spanning over so many ranges of temporal and spatial scales that they cannot scale simultane- 

ously to allow for the derivation of simplified analogues [35] . 

Specifically, when dimensional analysis is strictly applied to forest fires, the non-dimensional quantities obtained can 

exceed 30 [36] or much more [37] ; furthermore, when suitable sub-ensembles are selected on a physical basis, they account

for 14 of such non-dimensional quantities [38] , 11 [36,39] , or at least 7 [40] . Then, despite this effort, a complete scaling

that satisfies all the derived scaling laws is not possible. 

This means that, within this framework, the formulation of a partial model is a unique viable option, which is more

an art than a science, notwithstanding some physical reductionistic assumptions [36–38,41] . Only a few scaling laws have 

emerged as useful for a better understanding of fires; however, regrettably, these scaling laws concern different combustion 

phenomena [38,40,42–47] . 

Even worse, besides convection, radiative heat transfer is the other heat transfer mechanism responsible for fire spread; 

however, radiation effects do not scale [38,43] because their importance increases with increasing flame size [43,48] . The 

relative contribution of convective and radiative heating rates depends on the fuel and the environment [49] ; therefore, a

similarity analysis is not reliable for studying fire spread, because a change of the main heat transfer mechanism, i.e. from

convective to radiative or vice versa, may occur [43,45,49] ; (see, also, [50] and the references therein). 

Therefore, the identification of a heat transfer mechanism also requires an investigation of the fuel bed in which the fire

spreads, while in reduced-scale facilities, such fuel beds should be as similar as possible to those of the full-scale events

[34,43] . Indeed, when reduced-scale fuel beds do not replicate the natural fuel-complex structure of the full-scale wild- 

fire, the interpretation of the flammability trials cannot be extrapolated beyond the experimental setting [51] : this occurs, 

for example, with crown fires, whose scaling fails because bench-scale tests are mainly based on radiation heat flux [52] .

Moreover, the moisture content does not scale, because its equilibrium state depends on ambient conditions [53] , and it

transpires that even the ROS does not scale when the fire spreads in steep-slopes or high wind-speed conditions [53] . 

Moreover, reduced-scale experiments are generally unreliable in cases with important wind-fire interactions, because of 

the difficulties in reproducing atmospheric stability, except when it is neutral [43] ; additionally, the unreliability applies in 

cases with multiple fire interactions, because the latter depends on the wind that is generated by the fires themselves [43] .

Hence, generally, reduced-scale experiments are unlikely to contribute to an understanding of wildfires; for a discussion, 

see, for example, [34,53–55] . 

Finally, with respect to the present research - where the role of flame geometry is investigated in fire-spotting generated 

fires - it is reported that, since radiative effects do not scale [38,43] , and due to the strong relation between radiative heat

transfer and flame geometry [11,12,43,48,56] , the modelling approach discussed here cannot be based on or obtain input 

from studies concerning pool fires, e.g. [42] ; neither can cases with wind flow be useful, e.g. [47,57] , because they do not

provide any understanding of the flame geometry and entrainment rate in real wildfires. Indeed, in pool fires, the fuel-fire 

and wind-fire interactions occur with parallel fuel flow and buoyancy, unlike in wildfires, where wind and buoyancy are in 

perpendicular directions [45] ; furthermore, generally, a poor understanding of wildfires from pool fires emerges already at 

the level at which the fire spreads because a different setting of the Strouhal–Froude numbers is necessary for displaying 

correlation: the burner diameter-length scale is replaced in wildfires by the flame length rather than by the horizontal flame 

zone depth [45] . 

3. Flame geometry and fireline intensity: what the data say 

A flame is geometrically characterised by height, length, and tilt. Different definitions are found in the literature, e.g. 

[17,58,59] ; however, all the existing definitions are linked by trigonometric formulae. In this study, we adopt, for our conve-

nience, definitions that allow for stressing the separation between flame angle and terrain slope angle [56,59–61] . We define

flame geometry as follows: 

Definition 1 (Flame height) . The flame height, h ( m ), is measured along the axis perpendicular to the terrain that can be

sloped. 
4 
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Fig. 2. Flame geometry in cases of up-slope wind such that h = L f cos (θ + ω) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definition 2 (Flame length) . The flame length L f ( m ) is defined as the distance between the flame height tip and the mid-

point of the flame depth [17,58,59] . 

Definition 3 (Flame tilt) . The flame tilt is defined as the sum of the terrain slope angle ω and the tilting angle θ . 

These flame geometry characteristics are related by the formula, h = L f cos (θ + ω) (see Fig. 2 ). 

The tilting angle θ accounts for the concurrent effects of wind and slope that are not joined in a simple additive formula,

i.e. θ = θ (U, ω) � = θ (c U U + c ω ω) where U is the mean wind while the parameters c U and c ω represent the corresponding

dimensional scales; and it reduces to the corresponding angle in the limiting cases: 

θ = θ (U, ω) = 

{ 

θ (U, 0) = θw 

(U) , with wind but no−slope , 
θ (U, ω) , with slope and wind , 
θ (0 , ω) = θs (ω) , with slope but no−wind. 

(1) 

Several experimental measurements display a power-law relationship between the flame length L f and the fireline intensity 

I f . The fireline intensity I f (kW m 

−1 ) , was established by Byram [9,62,63] from measurements of fire spread and fuel con-

sumption. Notwithstanding, fireline intensity is of paramount importance in quantifying wildfire behaviour, both in applied 

and in theoretical studies (see, e.g. [8,27,64,65] ); its experimental measurements remain an issue [66] . Fireline intensity is

also related to flame geometry (see [58,62] and the references therein). A widely used approximated empirical relation is 

given by [8,17] 

L f = β0 I 
β1 

f 
, (2) 

where β0 and β1 are two positive parameters. Unfortunately, the values of β0 and β1 tend to be mostly scattered, while 

the sole constraint that emerges is that the power-law exponent is 0 < β1 < 1 (see Table 1 for a list from the literature

and Fig. 3 for their graphical representation). Thus, a theoretical determination of the parameters β0 and β1 is necessary to 

provide an insight into reducing and clarifying such variability. 

In the following section, first, we report and discuss the estimation of the flame height derived by Albini [10] , which

is based on the vertical variation of the mass flow rate of the flame fluid. We also consider the improvements to Albini’s

formula by Nelson Jr. and co-authors [5] , who, by considering the characteristic buoyant velocity, obtained β1 = 2 / 3 . Later,

we also derive and discuss an estimation based on the energy conservation principle that leads to β1 = 2 / 3 . 

4. The vertical variation of the mass flow rate of the flame fluid for estimating the flame height: Albini’s formula 

To the best of our knowledge, the first model in the literature for a wind-blown turbulent flame from a line fire was

proposed by Albini in 1981 [10] . Albini’s derivation, which is intended for a case with wind and flat terrain, i.e. ω = 0 , is

based on the mass flow rate of the flame fluid, here denoted by ˙ m ( kg s −1 ), which is defined at the altitude z as ˙ m = ρfm 

w f �,

where ρfm 

( kg m 

−3 ), w f ( m s −1 ), and � ( m 

2 ) are the flame mass density, the vertical component of flame velocity, and the

horizontal cross-sectional sheet of the flame, respectively. The horizontal wind generates a change in the mass flow rate at 
5 
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Fig. 3. Flame length–fireline intensity dependencies from Table 1 . 

Table 1 

Empirical parameters of the flame length–fireline intensity interdependence according to formula (2) . 

References β0 β1 

Fernandes et al., 2000 [67] 0.0516 0.453 

Byram, 1959 [9] 0.0775 0.46 

van Wilgen, 1986 [68] 0.0075 0.46 

Nelson Jr. and Adkins, 1986 [69] 0.0475 0.493 

Vega et al., 1998 [70] 0.087 0.493 

Newman, 1974 [71] 0.0577 0.5 

Nelson Jr. (under-storey fuels), 1980 [72] 0.04425 0.5 

Nelson Jr. (Southern US fuels), 1980 [72] 0.0577 0.5 

Fernandes et al. (head fire), 2009 [73] 0.045 0.543 

Catchpole et al., 1998 [74] 0.0325 0.56 

Anderson et al. (lodgepole pine slash), 1966 [75] 0.074 0.651 

Thomas, 1963 [76] 0.02665 2/3 

Wang, 2011 [25] 0.026445 2/3 

Fons, 1963 [77] 0.127 2/3 

Butler, 2004 [78] 0.0175 2/3 

Anderson et al. (Douglas-fir slash), 1966 [75] 0.0447 2/3 

Weise and Biging, 1996 [17] 0.016 0.7 

Fernandes (back fire), 2009 [73] 0.029 0.724 

Burrows, 1994 [79] 0.0147 0.767 

Clark (head fire), 1983 [80] 0.000722 0.99 

 

 

 

two different altitudes, while this change results in the equation 

d ˙ m 

dz 
= ηρU , (3) 

where η is a constant fraction of impinging air stream incorporated into the flame fluid flow; ρ ( kg m 

−3 ) and U ( m s −1 ) are

the characteristic air density and the mean wind speed at a height z, respectively. 

Denoting the flame height by h ( m ), and assuming that ρU is constant in the interval 0 ≤ z ≤ h , then, after the integration

of (3) over z in the same interval 0 ≤ z ≤ h , we have 

˙ m t = 

˙ m g + ηρU h, (4) 

where ˙ m t and ˙ m g refer to the measurement at the flame top z = h and at the ground level z = 0 , respectively. 

The mass flow rate of the flame fluid ˙ m is related to the flame temperature T ( K ) by the sensible energy conservation

formula [5] 

d ( ˙ m c p T ) = c p T a 
d ˙ m 

, (5) 

dz dz 

6 
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where c p ( kJ kg 
−1 

K 

−1 ) is the specific heat of air at constant pressure and T a ( K ) is the free-air temperature at the elevation

of the fire (absolute ambient air temperature), such that, after the integration over z, it leads to 

˙ m t 

˙ m g 
= 

T g − T a 

T t − T a 
, (6) 

where T t and T g refer to the measurement at the flame top z = h and at the ground level z = 0 , respectively. Finally, by

combining (4) and (6) , flame height can be obtained as 

h = 

( ˙ m t − ˙ m g ) 

ηρU 

= 

T g − T t 

T t − T a 

˙ m g 

ηρU 

= h A81 . (7) 

In 2012, Nelson Jr. and co-authors [5] followed the same formulation by Albini; however, they also introduced the fireline

intensity I f through the formula 

I f = 

˙ m g c p (T g − T a ) . (8) 

By plugging Formula (8) into (7) , Albini’s formula leads to a linear relation between the fireline intensity and the flame

height, i.e. 

h = 

(T g − T t ) 

(T t − T a )(T g − T a ) 

I f 
ρc p ηU 

. (9) 

Moreover, Nelson Jr. and co-authors considered, in addition, an estimation of entrainment: the mixing between the mass 

flow rate and the ambient air. By using the characteristic buoyant velocity w c and by inferring 

ηU = αw c = α

(
2 gI f 

ρc p T a 

)1 / 3 

, (10) 

where g ( m s −2 ) is the acceleration due to gravity and α is an entrainment constant, the formula for computing the flame

height takes the form 

h = 

T a (T g − T t ) 

α(T t − T a )(T g − T a ) 

[
1 

2 g(ρc p T a ) 2 

]1 / 3 

I 2 / 3 
f 

= h N12 . (11) 

The factor (T g − T t ) / (T t − T a ) in (11) is stated equal to 1 by Nelson Jr. and co-authors [5] ; however, this does not always hold.

Summarising, the flame height originally derived using this approach turns out to be linearly proportional to the fireline 

intensity, i.e. h ∼ I f . However, in the following revised formulation by Nelson Jr. and co-authors [5] , by formulating flame

characteristic equations and considering the entrainment for low-wind fires [5] , the flame height is found to be proportional

to the fireline intensity with the power 2 / 3 . 

Remark 1. From Albini’s original derivation with a flat terrain, by taking h ∼ I f , after some manipulations that are not re-

ported here (see [10, p. 164, formulae (36–39)] ), the flame length for the minimum wind speed turns out to be proportional

to the fireline intensity to the power 2 / 3 , i.e. L f ∼ I 2 / 3 
f 

: this means that the flame tilt turns out to be dependent on the

fireline intensity, i.e. cos θ ∼ I 1 / 3 
f 

. 

Remark 2. From the revised derivation of Albini’s formula by Nelson Jr. and co-authors [5] , with a flat terrain, it follows

that h ∼ I 2 / 3 
f 

, and, after some manipulations not reported here (see [5, p. 131, formulae (18–24)] ), the flame tilting angle θ
turns out to be independent of the fireline intensity, which means that the flame length is proportional to the power 2 / 3 ,

i.e. L f ∼ I 2 / 3 
f 

. 

Remark 3. The formalism developed by Albini [10] , followed by Nelson Jr. and co-authors [5] , holds when the vertical

variations in the pressure are negligible with respect to the temperature variations, while an in-canopy profile is considered 

for temperature and wind with relaxing factors of the same order. 

Indeed, the derivation of Albini’s formula is based on the assumption ρU = constant in the integration interval 0 ≤ z ≤ h .

However, although, for general purposes, ρ and U can be separately approximated as constant ambient air characteris- 

tics, the integration interval is indeed very small with respect to the length scales of the atmospheric boundary layer and,

moreover, the process occurs inside a forest canopy. We have found that possible reasoning for supporting the assumption 

ρU = constant , is the following. Temperature [81–83] and wind [84–86] profiles inside a canopy can be modelled by 

T ( z ) = T g + ( T H c − T g ) e 
−a ( 1 −z/H c ) , U ( z ) = U H c e 

−b ( 1 −z/H c ) , (12) 

where H c is the top of the canopy, such that T H c and U H c are the temperature and wind values at z = H c , respectively,

while the parameters a and b are the relaxing factors. Then, using the ideal gas law, i.e. P = ρR a T 
′ ( kg m 

−1 s −2 ), where R a 
( J kg 

−1 
K ) is the gas constant per unit mass of air, without loss of generality, we have applied the shift T ′ = T − T g , such that

T ′ 
H c 

= T H c − T g , from the hydrostatic balance, i.e. 
dP 

dz 
+ ρg = 0 ; thus, it follows that 

P = P 0 exp 

{
− g 

R a T ’ H 

∫ z 

0 

T ’ H c 

T ’ 
dξ

}
, (13) 
c 

7 
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where g/ (R a T 
′ 

H c 
) establishes a very large length scale and, thus, P � P 0 in 0 ≤ z ≤ H c . Finally, within this framework, again

from the ideal gas law, we have that 

ρ � 

P 0 
R a T ’ 

= 

P 0 

R a T ’ H c 

e a ( 1 −z/H c ) , (14) 

which leads to the constant ρU � P 0 U H c / (R a T 
′ 

H c 
) when a � b. 

Remark 4. Albini’s formula cannot account for terrain slope and requires entrainment. 

Indeed, when a fire propagates over a sloped terrain, the flame height is geometrically affected by the slope angle ω
according to the geometrical setting shown in Fig. 2 . This modification is mainly because the flame height is driven by the

buoyancy force. The direction of the wind and the ROS remain parallel to the terrain and directed in the up-slope direction,

while the normal direction of the buoyant flux is independent of the terrain slope, such that, over a sloped terrain, it is not

in the cross-slope direction. 

By assuming the notation reported in Fig. 2 , it is possible to show that Albini’s formula (9) cannot account for the terrain

slope, and that it calls for the inclusion of entrainment (11) . Indeed, the derivation of Formula (9) begins with the normal

variation of the mass flow rate that is proportional to the wind component in the perpendicular direction. Hence, let ˆ z be

the normal direction determined by the buoyancy force; Formula (3) becomes 

d ˙ m 

d ̂  z 
= ηρU cos ω, (15) 

where U cos ω is the projection of the wind from the up-slope direction to the direction perpendicular to ˆ z . 

Under the same assumptions used for the derivation of (9) , the integration of (15) yields 

m t = m g + ηρU cos ω h ˆ z , (16) 

such that, after using (6) , 

h ˆ z = 

T g − T t 

T t − T a 

˙ m g 

ηρU cos ω 

= 

h A81 

cos ω 

, (17) 

where h A81 is the flame height originally derived by Albini, defined in (7) ; finally, by noting that, in the present geometrical

setting, h = h ˆ z cos ω, it follows that h = h A81 , which clearly does not account for the terrain slope. 

In the adopted geometrical setting, the entrainment ratio (10) turns out to be 

ηU cos ω = αw c = α

(
2 gI f 

ρc p T a 

)1 / 3 

; (18) 

then, using Formula (9) , and remembering the flame height h N12 derived by Nelson Jr. and co-authors through the inclusion

of entrainment (11) , it holds that 

h = 

1 

α

T a ( T g − T t ) 

( T t − T a ) ( T g − T a ) 

[
1 

2 g ( ρc p T a ) 
2 

]1 / 3 

I 2 / 3 
f 

cos ω = h N12 cos ω, (19) 

which properly accounts for the terrain slope. 

Remark 5. The derivation of the entrainment-including formula (11) is based on the ad hoc assumption (10) , which connects

the horizontal mean wind speed U and the characteristic vertical buoyant velocity w c , which are indeed two independent 

quantities; this independence is reflected by the necessity to introduce two other independent parameters η and α. The 

horizontal and vertical components of the wind field are indeed related by turbulence in the form of the Reynolds stress

tensor. 

5. The energy conservation principle for estimating the flame height 

5.1. Flame-height formula derivation 

To improve the computation of the flame height, we set the theoretical underpinning for its estimation on the physical

basis provided by the conservation of energy. We start by considering the paradigmatic case without wind and without 

slope, such that, from geometrical arguments, the flame height coincides with the flame length, while the energy balance is 

applied. 

Our formulation assumes that the flame geometry is fully characterised by the energy process that provides the flame 

length in the no-wind no-slope case, while the wind and the slope affect the flame length through a geometrical rotation

plus a stretching. The measured flame height is the elevation of the flame tip perpendicular to the ground. 

We consider an air parcel located at the top of the flame, at the height z = Z which is initially not buoyant, i.e. the

vertical velocity w is equal to 0, while the parcel is heated by the flame. From the principle of conservation of energy, we

have 

e + PV + H − [ e 0 + P 0 V 0 + H 0 ] = Q − W sh , (20) 
8 
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where e ( J ) is the internal energy of the gas, P ( kg m 

−1 s −2 ) and V ( m 

3 ) are the pressure and the volume, respectively, H

( J ) is the mechanical energy, Q ( J ) is the heat transferred into the gas, while W sh ( J ) is the shaft work used to move the

fluid. The terms with the subscript 0 refer to the initial instant, while those without it refer to a generic instant. The initial

mechanical energy is 

H 0 = gZ , (21) 

which turns into 

H = g ( Z + δZ ) + 

w 

2 

2 

, (22) 

where g is the acceleration due to gravity and δZ is the vertical displacement done by the air parcel. The work done on the

gas is stated equal to the work necessary to balance the force of gravity, i.e. 

W = PV − P 0 V 0 + W sh = −g ( Z + δZ ) , (23) 

while the heat transferred into the gas is stated equal to the increase in the internal energy, i.e. 

Q = e − e 0 . (24) 

Plugging all the above formulae into (20) , we obtain the vertical velocity due to the convection above the fireline as 

| w | = 

√ 

2 gZ . (25) 

The conversion of turbulent kinetic energy into heat may also be included as a sink in (22) , i.e. H → H − ε where ε is the

turbulent kinetic energy dissipation, and also as a source in (24) , i.e. Q → Q + ε, and Formula (25) is still obtained. 

To estimate the vertical velocity | w | we now consider the energy flow rate in the convection column above a line of

fire P f , which is defined as the rate at which thermal energy is converted to kinetic energy in the convection column at a

specified height z [20,87] . The equation is 

P f (z) = 

gI f 
c p T a 

= 

1 

2 

ρ w 

2 | w | = 

1 

2 

ρ | w | 3 . (26) 

We assume that the definition of P f given in (26) holds in the general case with wind and slope as well as in the case

of a flat terrain with or without weak wind. We then distinguish between the two cases through the value of the fireline

intensity, which is denoted by I f in the general case and by I f 0 in the no-wind no-slope case. To establish the relation

between the two values, we consider the linear relation between the ROS and the fireline intensity established by Byram’s 

formula [9,62] . Later, we recast the fireline intensity by using the ROS from Rothermel’s model [21,22] , where an increasing

factor due to wind and slope is employed. Rothermel’s model is the most widely used in fire management systems and the

wildfire theory. It is a surface-fire spread model based on the heat balance, and the ROS is computed by 

V ROS = V ROS 0 

(
1 + φwind + φslope 

)
, (27) 

where V ROS 0 
( m s −1 ) is the ROS in the no-wind no-slope case, while the coefficients φwind and φslope refer to the wind and

slope effects. Hence, using Byram’s classical formula [9,62] for both cases, i.e. 

I f = ϕRV ROS , I f 0 = ϕRV ROS 0 , (28) 

where ϕ ( kJ kg 
−1 

) is the fuel net low heat of combustion and R ( kg m 

−2 ) is the weight of fuel consumed per unit area in

the active flaming front, from (27) and (28) , we obtain 

I f 
I f 0 

= 

V ROS 

V ROS 0 

= 1 + φwind + φslope , (29) 

where φwind and φslope are exactly those adopted for Rothermel’s model, whose values are established as [21] 

φwind = CU 

B 
(
β/βop 

)−E 
, φslope = 5 . 275 β−0 . 3 tan 

2 ω (30) 

with 

C = 7 . 47 exp 

(
−0 . 133 ξ 0 . 55 

)
, 

B = 0 . 02526 ξ 0 . 54 , 

E = 0 . 715 exp 

(
−3 . 59 × 10 

−4 ξ
)
, 

where ξ = 4 /d is the fuel particle surface-area-to-volume ratio, d is the diameter of circular particles or the edge length of 

square particles, β is the packing ratio defined as 

β = 

overdry bulk density 

ovendry particle density 

and βop = 3 . 348 ξ−0 . 8189 is the optimum packing ratio. 
9 
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Finally, within this framework, by plugging (25) into (26) , we have a formula in the no-wind no-slope case for com-

puting the top of the flame Z. Since, in the energy balance procedure, we considered the case with negligible wind, from

geometrical considerations, it follows that the flame is elongated by the rise Z of a flame parcel providing the flame length

L f 0 and, due to the weak influence of wind, it is comparable to the flame height [76,88] ; thus, 

Z = L f 0 = 

[
1 

2 g ( ρc p T a ) 
2 

]1 / 3 

I 2 / 3 
f 0 

= h 0 , (31) 

where the subscript 0 stands for the absence of both wind and slope. Formula (31) straightforwardly follows from the

application of the energy conservation principle and the concept of the energy flow rate in the convection column above a

fireline. 

When the wind is not negligible and the terrain is sloped, the estimation of the general-case flame length L f is obtained

from Formula (31) by replacing the fireline intensity I f 0 with its generalisation I f given in (29) , which yields 

L f = 

[
1 

2 g(ρc p T a ) 2 

]1 / 3 

I 2 / 3 
f 0 

(1 + φwind + φslope ) 
2 / 3 = 

[
1 

2 g(ρc p T a ) 2 

]1 / 3 

I 2 / 3 
f 

. (32) 

From the ratio between (32) and (31) , it follows that 

L f 
L f 0 

= (1 + φwind + φslope ) 
2 / 3 (33) 

and, by combining 29 –(32) , it holds that 

I f = 

√ 

2 g ρc p T a L 
3 / 2 

f 0 
(1 + φwind + φslope ) . (34) 

Finally, from trigonometric reasons (see Fig. 2 ) and Formulae ( 31,33 ), it holds that 

h = L f cos (θ + ω) = h 0 (1 + φwind + φslope ) 
2 / 3 cos (θ + ω) . (35) 

From formula (35) , it turns out that, within the proposed derivation, conservation of energy provides the elongation of the

flame in the basic case without wind and a flat terrain, while this elongation is stretched further by the wind and/or by the

slope through the perturbation parameters φwind and φslope . Finally, wind and slope also affect the flame height through the 

geometrical effects embodied by the angles θ and ω. 

Concerning the comparison with data, we observe that the 2 / 3 power law in the fireline intensity is consistent with the

estimation by dimensional reasons as well as with previous empirical and theoretical results [8,10,19] (see, also, Table 1 ).

Then, from comparing (31) and (2) , it follows that β1 = 2 / 3 and the pre-factor β0 is 

β0 = 

[
1 

2 g(ρc p T a ) 2 

]1 / 3 

. (36) 

5.2. The role of the wind 

Using (26) and (32) , Formula (35) can be re-written as 

h = cos ( θ + ω ) 

[ 
1 

2 g 3 ρ2 

] 1 / 3 
P 2 / 3 

f 
, (37) 

where the horizontal energy flow also affects the flame height through the flame angle θ . 

Byram introduced the concept of energy flow rate in the convection column above a fireline, as well as that of energy

flow rate in the wind field [20,87] . The energy flow rate in the wind field P w 

, is the rate of flow of kinetic energy through a

vertical plane of unit area in a neutrally stable atmosphere at the height z specified for P f , i.e. 

P w 

(z) = 

1 

2 

ρ ( U − V ROS ) 
2 | U − V ROS | = 

1 

2 

ρ | U − V ROS | 3 . (38) 

Byram proposed to use the ratio κ = P f /P w 

to characterise wildfires; thus, this ratio is also called Byram’s energy criterion

[20,87] . Byram pointed out that this ratio could be useful in understanding and predicting the onset of erratic fire behaviour

and the occurrence of blow-up fires. In particular, a strong relationship has been observed between the occurrence of blow- 

up fires and values of this ratio close to 1 [89] . When this ratio is close to 1, the horizontal and vertical forcing are balanced,

and the propagation is then not mainly driven by one or other forcing. In this situation, fluctuations govern the motion, and

erratic behaviour follows. The ratio κ can be related to the so-called convective Froude number [89] . 

Let us consider Byram’s energy criterion; from (26) and (38) , we have the following equalities: 

κ = 

| w | 3 
| U − V ROS | 3 

= 

2 gI f 

ρc p T a | U − V ROS | 3 
. (39) 
10 
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From the left side of Formula (39) , it holds that 

| w | = κ1 / 3 | U − V ROS | . (40) 

Entrainment can roughly be understood as the mix between the ambient air and the rising plume of hot air above the

fireline. From this viewpoint, the ratio between the wind U and the quantity | U − V ROS | states how much the horizontal

mean wind enters into the rising column. Hence, we replace, here, the entrainment assumption (10) with the relation 

ηU = | U − V ROS | . (41) 

Using Formula (41) , we have a number of results. Combining (40) and (26) , from (41) , we obtain 

ηU = | U − V ROS | = 

| w | 
κ1 / 3 

= 

1 

κ1 / 3 

(
2 gI f 
ρc p T a 

)1 / 3 

, (42) 

which, compared with (10) , yields 

α = 

1 

κ1 / 3 
. (43) 

Therefore, by comparing (19), (32), (35) , and (43) , it follows that 

cos ( θ + ω ) = 

T a ( T g − T t ) 

( T t − T a ) ( T g − T a ) 
κ1 / 3 cos ω, (44) 

where the effect of the wind appears indirectly through the ambient temperature T a , and, if κ is replaced by (40) , then the

angle θ increases when the wind increases. 

Formula (44) establishes, for a given slope ω, a method of measuring the flame angle θ - which is a local geometric

information that depends on the wind - in terms of the temperature and of the Byram ratio; these are indeed general

characteristics of a fire and the environment, and thus an effective estimation of θ is provided. This ability to effectively 

estimate the angle θ turns out to be a useful property of formula (44) , if is implemented in operational simulators of

wildfires. 

Concerning the flame height, from (44) , Formula (35) becomes 

h = 

T a (T g − T t ) 

(T t − T a )(T g − T a ) 
h 0 (1 + φwind + φslope ) 

2 / 3 κ1 / 3 cos ω. (45) 

5.3. Analysis of ROS 

The formulae derived in the previous sections can be manipulated to derive further formulae and, in particular, some 

useful relations. One such useful relation relates the ROS with the flame length. Indeed, using Formulae 28 –(34) , it holds

that 

V ROS = 

ρc p T a 

ϕR 

√ 

2 g L 3 / 2 
f 0 

(
1 + φwind + φslope 

)
= 

ρc p T a 

ϕR 

√ 

2 g L 3 / 2 
f 

, (46) 

which is consistent with the empirical data in Table 4-2 in [90] , in the sense that increasing the flame length accelerates

the fire spreading. 

Moreover, within the theoretical framework that led to formula (35) , the following remark can be made on the pertur-

bation parameters φwind and φslope of Rothermel’s model of the ROS. 

Remark 6. From geometrical reasons, it follows that h < h 0 ; then, it holds that (
1 + φwind + φslope 

)2 / 3 
cos ( θ + ω ) < 1 , (47) 

from which 

φwind + φslope < [ cos ( θ + ω ) ] 
−3 / 2 − 1 , (48) 

and the upper bound of the tilting angle θ is 

θ < arccos [(1 + φwind + φslope ) 
−2 / 3 ] − ω. (49) 

6. Application to the firebrand landing distribution 

In anticipation of the study on the role of flame geometry and slope on fire-spotting generated fires, we consider Ran-

domFront [29] , a physical parameterisation of fire spotting for operational fire spread models, which was adopted in Part 

1 [32] . Specifically, we consider the downwind firebrand landing distance � to be distributed according to a lognormal q (� )

[26,28] : 

q ( � ) = 

1 √ 

2 πσ� 
exp 

{ 

−1 

2 

[
ln ( �/μ) 

σ

]2 
} 

, (50) 
11 
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with a median μ and a mode μe −σ 2 
, such that [26] 

μ = H max 

[ 
3 

2 

ρ

ρf 

C d 

] 1 / 2 
, (51) 

where H max is the maximum loftable height ( m ), ρf ( kg m 

−3 ) is the fuel density, and C d is the drag coefficient. The maximum

loftable height H max depends on the fireline intensity and atmospheric stability [26,91] ; a detailed study of this dependence

and the impact of the atmospheric stability conditions is provided in the first part of the present research [32] . 

To include the flame length in the fire-spotting model in the form of Formula (2) , the maximum travel distance for a

spherical firebrand is written, following [25] , in the form 

� max = H max 

{
β2 tan ( θ + ω ) + 

[ 
3 

2 

ρ

ρf 

C d Fr 

] 1 / 2 }
, (52) 

where β2 = 0 . 7 is a correction factor [25] and Fr = (U cos ω) 2 / (gr) is the Froude number where r ( m ) is the firebrand radius.

Since, in the general case with both wind and slope, a formula for the tilting angle θ is not yet available, we use the formula

provided by Pagni & Peterson [39] , which, in our notation, reads tan θ = 1 . 4 U(gL f ) 
−1 / 2 . Hence, according to Formula (33) ,

the slope affects the tilting angle through the flame length L f , such that 

tan θ = 1 . 4 

U √ 

gh 0 

(
1 + φwind + φslope 

)1 / 3 
, (53) 

where h 0 is established in (31) ; finally, from trigonometric identities, we obtain 

tan ( θ + ω ) = 

tan θ + tan ω 

1 − tan θ tan ω 

, cos ( θ + ω ) = 

1 − tan θ tan ω [
1 + tan 

2 θ
]1 / 2 

cos ω. (54) 

The maximum landing distance can be represented by a certain p th percentile of the lognormal distribution [28] , which is

quantified by the parameter z p such that 

� max = μ exp (z p σ ) . (55) 

Thus, from ( 51,52 ), and (55) , it holds that 

σ = σ (ω) = 

1 

z p 
ln 

{ 

U √ 

gr (1 + tan 

2 ω) 
+ β2 

√ 

2 ρf 

3 ρ C d 

1 . 4 U + 

√ 

gh 0 (1 + φwind + φslope ) 2 / 3 tan ω √ 

gh 0 (1 + φwind + φslope ) 2 / 3 − 1 . 4 U tan ω 

} 

. (56) 

To conclude, the phenomenology reproduced by the present parametrisation (56) is that, for an increasing flame length 

L f , the parameter σ decreases, while the mode of the lognormal moves towards a larger value of the firebrand’s landing

distance, with the effect of increasing the probability of generating separate independent fires that are far from the main 

fire. This effect is studied in the following section through some test cases performed with the wildfire propagation model 

described and used for simulations in Part 1 [32] ; however, the parameter σ is now implemented according to Formulae 

(56) and (46) . 

7. Results and discussions 

7.1. When the slope rides the bench 

We aim to study the effects of flame geometry and slope on fire-spotting. For this purpose, first, we consider a flat

terrain, such that we analyse the role of flame geometry only. Later, we discuss the role of slope in comparison with the

role of flame geometry. 

In particular, based on some experimental measurements of flame length, we simulate sample test cases with a flat 

terrain and constant wind. The impact of flame geometry on fire-spotting is investigated through the modelling approach 

described in Part 1 [32] , which means that flame length is included in the parametrisation of the lognormal distribution of

the firebrand landing distance (50) using Formula (56) for the parameter σ . Briefly, the code used to simulate the fire-front

motion is based on the Level-Set Method (LSM) [92] , as with other operational fire simulators (see, e.g. [93–95] ), while at

the post-processing stage, the fire-front is then distributed accordingly to the PDF corresponding to the sum of the random 

fluctuations due to the turbulent heat transport, i.e. a bi-variate Gaussian density with a diffusion coefficient D , and due

to the fire-spotting, i.e. the lognormal (50) with the parametrisation proposed above. Thus, by varying the values of the 

parameters, different values of σ are obtained. 

The results for several formulations are plotted in Fig. 4 . This plot shows that, for a sufficiently high fireline intensity,

the standard deviation of the firebrand landing distribution σ approaches a constant value, with a very slight dependence 

on fireline intensity. On the other hand, different formulations of the flame length that also consider environmental factors 

lead to quite a wide range of possible values of σ . 
12 
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Fig. 4. Parameter σ of the firebrand landing distribution (56) for a flat terrain ω = 0 and constant wind U versus fireline intensity for various empirical 

formulations of the flame length from Table 1 . 

Fig. 5. Fire-front at t = 119 min . Left: by including flame length according to (56) , such that σ = 7 . 6 . Right: without considering flame length and σ = 6 . 4 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Test 1. Comparison of fire-front propagation with and without flame length We simulate fire spreading with flame 

length, i.e. parameter σ is computed using Formula (56) , and without flame length, i.e. parameter σ is computed as in

Part 1 [32] . The wind speed is set as U = 5 . 6 ms −1 , the fireline intensity as I f = 20 MW m 

−1 , and the diffusion coefficient as

D = 0 . 015 m 

2 s −1 . 

In Part 1 [32] , we do not consider flame length, while here, we improve the parameterisation proposed in [28] by in-

cluding this meso-scale factor. In this example, we study the effect of this improvement by comparing the results of the

two parametrisations. In particular, for the considered set of parameters, when the flame length is included, we have, from 

Formula (56) , that σ = 7 . 6 , and when it is not included, we have that σ = 6 . 4 . The fire-front simulated using both values

is presented in Fig. 5 . The results show that the flame length is an influential factor in the fire-spotting model; indeed, in

this case, fire-spotting is observed and, due to the merging of the secondary with the primary fires, the resulting front has

a more complex shape. The relationship between flame length and fireline intensity may vary due to a plethora of possible

system configurations, as shown in Section 5 ; this explains the variety of the parameters β0 and β1 in (2) from the em-

pirical data. Thus, Formula (56) allows us to also adjust the fire-spotting model to different vegetation and environmental 

conditions. 

Test 2. Comparison of fire-front propagation for different flame lengths, as given by different values of β0 : We 

simulate fire spreading by using the interdependence between flame length and fireline intensity (2) (see Table 1 ). The

other parameters are set as follows: wind speed U = 4 . 47 ms −1 , fireline intensity I f = 20 MW m 

−1 , and diffusion coefficient

D = 0 . 4238 m 

2 s −1 . 

In this test, we consider the effects of the proposed parametrisation (56) according to various empirical relations between 

flame length and fireline intensity. Flame length does not affect the parameter μ (51) ; thus, the value μ = 8 . 419 , obtained by

the chosen set-up, is constant and independent of flame length. Different values of σ that correspond to different empirical 

values of β are collected in Table 2 . It turns out that, with a larger flame length L , i.e. small σ , the distribution of the
0 f 
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Table 2 

Parameters β0 and σ for fixed β1 = 2 / 3 . 

References β0 σ

Fons, 1963 [77] 0.1270 5.846 

Anderson et al. (Douglas-fir slash), 1966 [75] 0.0447 6.191 

Wang, 2011 [25] 0.0264 6.415 

Butler, 2004 [78] 0.0175 6.615 

Fig. 6. Fire front at t = 29 min simulated by using flame length – fireline intensity formula (2) with β1 = 2 / 3 and various β0 : (a) β0 = 0 . 1270 (Fons, 1963 

[77] ); (b) β0 = 0 . 0447 (Anderson et al., 1963 [75] ); (c) β0 = 0 . 0264 (Wang, 2011 [25] ); (d) β0 = 0 . 0175 (Butler, 2004 [78] ).. 

 

 

 

 

 

 

 

 

landing distance of the firebrands (50) displays a larger mode that generates long-distance spotting. Hence, the primary fire 

generates far-away secondary fires that, in turn, rapidly generate further spotting, such that the merging process turns out 

to be slower than the ignition by fire-spotting. The final pattern results in many independent fires (see Fig. 6 a). In contrast,

when short-distance spotting occurs, the primary fire rapidly merges with the secondary fires, and a unique cumulative 

burning zone is observed (see Figs. 6 b-d). 

Thus, according to the proposed fire-spotting model, a smaller flame length (with the same fire intensity) leads to 

shorter-distance spotting, usually with a rapid merging of spot-fires. This is consistent with real fires, with many types 

of fuel with any fireline intensity [16] . These spot fires can generate new fire-spotting, which results in an extremely fast-

moving flaming zone (see Fig. 7 ; the solid line represents the burning area growth in the case of β0 = 0 . 1270 , which corre-

sponds to the fire-front given in Fig. 6 a). 

Test 3. Comparison of fire-front propagation for different flame lengths as given by different values of β1 � = 2 / 3 : We

simulate fire spreading using the interdependence between flame length and fireline intensity (2) with fixed β0 and variable 

β1 (see Table 1 ). The other parameters are set as follows: wind speed U = 4 . 47 ms −1 , fireline intensity I f = 20 MWm 

−1 and

diffusion coefficient D = 0 . 4238 m 

2 s −1 . 

In this test, with reference to Table 1 , the values of the empirical parameters β0 and β1 and of the corresponding values

of σ are reported in Table 3 . We highlight the following demonstrative cases: 

a. β1 ≈ 1 corresponds to a linear relation between the flame length and the fireline intensity, as experimentally observed 

by Clark [80] . A linear relation was, indeed, theoretically established by Albini between flame height and fireline intensity 

[10] , as shown in the derivation of Formula (9) of the present paper. However, from Albini’s model, the flame height–

fireline intensity relation follows a 2 / 3 power law (see Formula (11) ). Therefore, the linear case remains on an empirical

basis only. The burning area at t = 29 min is presented in Fig. 8 a. The flame described by the parameters β = 0 . 0 0 0722
0 

14 



V.N. Egorova, A. Trucchia and G. Pagnini Applied Mathematical Modelling 104 (2022) 1–20 

Fig. 7. Burning area with respect to time for various flame length formulations with varying β0 and fixed β1 = 2 / 3 . 

Table 3 

Empirical parameters of the flame length–fireline intensity interdependence and corresponding values of σ . 

References β0 β1 σ

Clark, 1983 [80] 0.000722 0.99 6.115 

Weise and Biging, 1996 [17] 0.016 0.7 6.663 

Byram, 1959 [9] 0.0775 0.46 6.927 

Fig. 8. Fire front at t = 29 min simulated by using flame length – fireline intensity formulas proposed in: (a) Clark, 1983 [80] , β0 = 0 . 016 , β1 = 0 . 7 ; (b) 

Weise and Biging, 1996 [17] , β0 = 0 . 0775 , β1 = 0 . 46 ; (c) Byram, 1959 [9] , β0 = 0 . 0775 , β1 = 0 . 46 .. 

 

 

 

 

 

 

 

and β1 = 0 . 99 generates short-distance spotting characterised by immediate merging. The front propagates faster than 

the secondary fires ignite; thus, in this case, the impact of fire-spotting in the propagation of the fire front is negligible. 

b. The theoretical value for parameter β1 is expected to be β1 = 2 / 3 ; thus, we also consider β1 ≈ 2 / 3 [17] , to determine the

effects of small fluctuations in the power-law formula linking flame length and fireline intensity. The result is presented 

in Fig. 8 b. The flame represented by these parameters is similar to the one in the previous case for the chosen value of

the fireline intensity. Thus, again, short-distance spotting is observed with fast merging. When the power law is around 

the theoretical value 2 / 3 , the coefficient β0 plays an important role because it represents environmental factors for 

ignition. 

c. In this case, we consider the classical power law proposed by Byram [9] , i.e. β1 < 2 / 3 , which is the most used phe-

nomenological approach. Many recent studies use these empirical parameters to estimate flame length or fireline inten- 

sity. The fire front at t = 29 min is shown in Fig. 8 c. In this case, the effect of secondary fires is more evident, because

the travel distance of firebrands exceeds the area swept by the wildfire. This is due to a sufficiently large coefficient β0 ;

thus, for a fixed fireline intensity, the flame is found to be sufficiently large to produce the secondary fires. 

These numerical examples show that flame geometry, particularly flame length, is an important factor for a firebrand 

landing distribution, in the sense that fluctuations in this parameter may significantly change the behaviour of fire-spotting 

and, consequently, of front propagation: however, the slope overturns this phenomenology. 

7.2. When the slope enters the game 

When the propagation of a front occurs along a sloped terrain, the role of the slope cannot be disregarded. Specifically,

the effect of the slope on the ROS tends to be stronger on the flame geometry and on the parameter of the firebrands’

landing distribution σ (50) . This is displayed in the generated patterns of the burned area (see Fig. 9 ). 
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Fig. 9. Fire spreading over a sloping terrain with tan ω = 0 , 0 . 1 , 0 . 5 , 0 . 75 , in clockwise rotation from the top-left, and U = 10 ms −1 . Other parameters are 

chosen as in Fig. 6 (a). 

Fig. 10. Variability of parameter σ (56) with respect to the slope ω and the wind U as calculated through the ratio σ (U, ω) /σ (U, 0) . 

 

 

 

 

 

Indeed, the parameter σ (56) , which controls firebrands’ landing distance, is almost constant with respect to the slope 

(see Fig. 10 ). In contrast, the ROS is strongly accelerated by the slope (see Fig. 11 ). This difference in the importance of

the role of the slope has a remarkable quantitative effect on the resulting burned area, with the final dynamic as follows:

Although the slope increases firebrands’ landing distance through the contribution of the flame length to the parameter σ , 

the augmentation of the ROS due to the slope is of such importance that the merging process is sufficiently rapid to cover

the generation of secondary fires by fire-spotting. 

As a matter of fact, such quantitative difference is an inner part of the formalism, as it emerges from the ratios (29) and

(33) , and the slope-dependent determination of σ (56) : the slope affects the ROS linearly (29) , and affects the flame length

with the power law 2 / 3 (33) , while it almost does not affect σ (56) : 

σ � 

1 

z p 
ln 

⎧ ⎨ 

⎩ 

U √ 

gr 
(
1 + ω 

2 
) + β2 

√ 

2 ρf 

3 ρ C d 

ω + �

1 − �ω 

⎫ ⎬ 

⎭ 

, (57) 

where � = 1 . 4 U/ 
√ 

gh 0 (1 + φwind + 5 . 275 ω 

2 /β0 . 3 ) 2 / 3 and the approximation 

√ 

φslope ∝ tan ω � ω has been used. 
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Fig. 11. Variability of the ROS with respect to the slope ω and the wind U as calculated through the ratio (29) . 

 

 

 

 

 

 

 

8. Conclusions 

In this study, we have analysed the role of meso-scopic features in the propagation of wildfires. Specifically, we have 

considered flame geometry and terrain slope. 

The 2 / 3 power-law relationship between flame length and fireline intensity is theoretically established based on the 

energy conservation principle and the energy flow rate in the convection column above the fireline, considering wind and 

slope. This new formulation refines the previous results by Albini [10] and Nelson Jr. and co-authors [5] . 

It is well established by experiments that flame length is related to fireline intensity while, because of a trigonometric 

relation, flame length is linearly proportional to flame height. The trigonometric factor of proportionality turns out to be 

independent of fireline intensity, while its variability is mainly due to wind and slope. The proposed formula allows for 

an estimation of the influence of some ambient factors on flame geometry using definition (36) . Therefore, for realistic

tests with the same (dimensionally correct) power-law factor, smaller values of the proportionality coefficient represent a 

higher ambient temperature or vegetation with higher specific heat. Hence, for different types of fuel, flame length relates 

to fireline intensity through different coefficients of proportionality. Thus, the proposed formula allows a specification of the 

fire-spotting model in accordance with the type of fuel in each particular case. 

The proposed fire-spotting model is based on a lognormal distribution of firebrands’ landing distance, and depends on 

two parameters: μ and σ . Both parameters depend on ambient factors, such as wind speed and air temperature. Parameter 

μ also considers the atmospheric stability conditions. As shown in the first part of the present study [32] , the boundary layer 

depth slightly affects the fire-spotting itself; however, it is more significant for turbulence because it affects the propagation 

of the main fire. Parameter σ is extended here to account for, apart from the wind velocity, the flame geometry and the

slope. Note that the vegetation feeds the fire by affecting the fireline intensity and, consequently, the flame length. Thus, 

by adding the flame length, we include the specified surround vegetation factors in the model, i.e. we adjust the model to

various local conditions. In other words, depending on the flame length, different scenarios can be modelled. 

This flexibility meets the requirements for the validation of wildfire spread models that, to cover a sufficient range of 

conditions, must include a certain level of variability in the values of the main parameters, such as wind speed and fuel

moisture content [35] . However, we remind the reader of the large uncertainties that still affect the simulations of fire

spreading; thus, validation relies more on probabilistic forecasting than on a single deterministic prediction [96] . In this 

sense, the flexibility of the present formulation allows for an input distribution of the desired parameters. 

Numerical examples show intriguing patterns. Indeed, on flat terrain, flame length is a significant factor in the fire- 

spotting model, due to its effects on the distribution of firebrands’ landing distance. Flame geometry changes a firebrand’s 

travel distance and, in terms of the proposed model, the parameter σ of the lognormal distribution, such that the following

situations can be observed: 

1. No fire-spotting: when a firebrand travel distance is insufficient to produce an independent secondary fire. Usually, this 

happens when the flame length is not sufficiently large. 

2. Merging of secondary fires: when the propagation of the main fire front is more rapid than the generation of secondary

fires. In this case, fire-spotting still occurs, but the main front catches up to the secondary fires. 

3. Fire-spotting: when a flame is large enough to generate firebrands that can travel a long distance. Each secondary fire 

later produces new secondary fires; thus, the fire-front propagation speed increases rapidly, a larger area is burned, and 

the risk that the fire passes over obstacles and fire-safety zones is much higher. 

However, when the propagation occurs on sloped terrain, the slope enhances the ROS sufficiently for the speed of the 

merging process among independent fires to remove the generation of fire-spotting ignited fires. This result follows from 

the whole formulation derived here. 
17 



V.N. Egorova, A. Trucchia and G. Pagnini Applied Mathematical Modelling 104 (2022) 1–20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thus, we summarise the findings of our study by stating that the two meso-scopic features considered here have the 

following roles: increasing the flame length increases firebrands’ landing distance and then independent fires, generated by 

fire-spotting, emerge; however, the presence of a slope increases the ROS by causing a fast merging among the independent 

fires. 

We end by reporting that the simulations were performed using the code LSFire+, programmed in C and Fortran, in 

which the model proposed here acts as a post-processing routine at each time step in an LSM code [97] . The simulations

were run on the cluster HYPATIA at BCAM, Bilbao, using OpenMP memory parallelism shared in 24 cores inside 395 of

an Intel(R) Xeon(R) CPU E5-2680 v3 2.50GHz node with 128GB RAM. Running the code for 45 simulated minutes required 

approximatively 140 minutes of physical time. The code LSFire+ is freely available at the official git repository of BCAM at: 

https://gitlab.bcamath.org/atrucchia/randomfront-wrfsfire-lsfire . 
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