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Abstract

The objective of this work is the study and the implementation in MATLAB of an active
set numerical method to solve general quadratic optimization problems (GQP), that is to
say, problems that include the nonconvex case.

Given any symmetric matrix, we study how to calculate a Cholesky factorization, total
or partial. This factorization allows to calculate descent directions for any Hessian of the
objective function whether positive definite or not. Furthermore, we address the resolu-
tion of quadratic problems with l1 terms in the objective function (generalized general
quadratic programming, GGQP). This is a procedure to relax some constraints in some
applications and also control the violation of this constraints in order to obtain an initial
feasible vector, which is necessary to start the iterative process of the active-set methods.

For the programming part of this work, we start with an implementation of the algorithm
already done in FORTRAN (6600 lines of code, approximately), we have studied each
routine (except the update of the Cholesky factors) and we have carried out a new imple-
mentation in MATLAB. Our code has been compared with the quadratic programming
codes of MATLAB and OCTAVE. Our code was superior to them in the nonconvex case
(solving some problems that they do not) and all three performed similarly when solving
convex quadratic problems.

Key words: General quadratic programming, descent and feasible direction, Cholesky
factorization.
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Resumen

El objetivo de este trabajo es el estudio y la implementación en MATLAB de un método
numérico de conjunto activo para resolver problemas de optimización cuadrática general
(GQP), es decir, problemas que incluyen el caso no convexo.

Dada cualquier matriz simétrica, estudiamos la forma de calcular una factorización de
Cholesky, total o parcial. Dicha factorización nos permite obtener direcciones de descenso
para cualquier matriz Hessiana de la función objetivo, sea definida positiva o no. Además,
abordamos la resolución de problemas cuadráticos con términos l1 en la función objetivo
(programación cuadrática general y generalizada, GGQP). Esto permite relajar algunas
restricciones (útil para muchas aplicaciones) y controlar su violación para la obtención de
un vector inicial admisible, necesario para comenzar el proceso iterativo de los métodos
de conjunto activo.

En cuanto a la parte de programación en MATLAB, a partir de una implementación del
algoritmo ya realizada en FORTRAN (6600 ĺıneas de código, aproximadamente), hemos
estudiado cada rutina (a excepción de las readaptaciones de los factores de Cholesky)
y hemos llevado a cabo una nueva programación en MATLAB. Nuestro código ha sido
comparado con los de programación cuadrática de MATLAB y OCTAVE (por ser dos
paquetes cient́ıficos de amplia difusión), mostrándose superior a ellos en la resolución
de problemas no convexos (resolviendo problemas que ellos no resuelven),y teniendo un
comportamiento muy similar a estos en la resolución de problemas convexos.

Palabras clave: Programación cuadrática general, dirección de descenso admisible, fac-
torización de Cholesky.
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Chapter 1

Introduction

Numerical optimization or mathematical programming is a mathematics branch used in
a several sciences to take decisions, whose main goal is minimize or maximize a function
that represents the quantity that we want to optimize: profits, distances, energy or any
quantitative magnitude. It is called objective function. Moreover, the formulation of
an optimization problem includes the conditions that its variables have to satisfy. This
last part of the problem is called the feasible set or the set of constraints. A constraint
that is satisfied as equality at a point is called active constraint at this point. The
active set is particularly important in this framework, as it determines which constraints
will influence the final result of the optimization process.

If the problem consists of a quadratic objective function and linear constraints, it is called
quadratic programming problem. In this report we will be concern about this type
of problems. Quadratic functions are a powerful modelling tool in mathematical pro-
gramming. They appear in various disciplines such as statistics, machine learning (Lasso
regression), finance (portfolio optimization), engineering and control theory. Moreover,
in mathematical programming, quadratic problems are used for solving the nonlinear
ones. General quadratic programming (GQP) covers QP problems including the noncon-
vex case. Some examples with positive semidefinite Hessian appear in linear least squares
problems for data fitting. On the other hand, generalized general quadratic problems
(GGQP) allow relaxing some constraints by including l1 terms in the objective function.
(GGQP) formulation is used in some applications as in image restoring problems [11].

To solve optimization problems we have to use iterative algorithms, which means that
starting from an initial vector, they will generate a sequence of approximants, each one
better than the previous one, until ideally they reach a solution. There are different types
of algorithms: active-set methods, inertia-controlling methods, interior point methods
or sequential methods, to name a few of the most relevant, and each one uses different
strategies to move from one point to the next. We have studied and implemented in
MATLAB an active-set method developed by E. Casas and C. Pola in FORTRAN (see
for instance [13] or [6]).

The programming work has not been a translation task from FORTRAN to MATLAB,
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but it has led to an in-depth study of the approximately 6600 lines of FORTRAN code
to make a new implementation taking advantages of the MATLAB facilities. In relation
to the code, we have modified some aspects, making an implementation of approximately
1300 lines (excluding comments). The code has been made in MATLAB, which is a
software that has a much wider diffusion than FORTRAN nowadays. We have been
more concerned with the indefinite Hessian case, paying special attention to the partial
Cholesky factorization. In this report we illustrate with examples the different types of
factorizations depending on the Hessian, and we analize step by step the process. In terms
of computing, it should be noted that we have not updated the Cholesky factors but we
have done for the QR factors. On the other hand, we have compared the performance of
our code with other softwares: quadprog and qp which are included in two of the most
popular numerical packages, MATLAB and OCTAVE, respectively.

The interest of this work lies in the fact that in MATLAB currently there is no function
that solves the (GQP) problems with indefinite Hessian and moreover it does not solve
the (GGQP) problems. Furthermore, there is no an active set algorithm available for
convex cases. On the other hand, OCTAVE cannot solve most of the (GQP) problems
and for those that does it is much less efficient than ours and finally, Scilab has the toolbox
quapro for solving (GQP) but no for (GGQP) problems and it is not available for all the
operating systems.

This report is divided into two chapters excluding this introduction. Chapter 2 is intended
for the study of (GQP) problems. In the first three sections we present different results
about factorizations and descent directions related to the three types of Hessians: positive
definite, singular positive semidefinite and indefinite, providing examples to illustrate
the internal process of the factorization algorithm. In this chapter, for the stopping
test of the (GQP) algorithm, we consider second order optimality conditions for the
nonconvex case and first order optimality conditions for the convex case. We also present
the algorithm scheme for solving (GQP). As usual in active set methods it needs to start
at a feasible point. Moreover, we present some numerical results and we compare our
results with those provided by MATLAB and OCTAVE. In Chapter 3 we focus on the
(GGQP) problems. We will make a short introduction to subdifferential calculus for
obtaining the corresponding optimality conditions. Last but not least, we introduce an
algorithm for solving (GGQP) problems and we use it for computing the initial feasible
point for starting the resolution of (GQP) problems.
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Chapter 2

General Quadratic Programming
(GQP)

In this chapter we are concerned with solving a general quadratic programming problem,
(GQP), which can be stated as:

(GQP )



Minimize F (x) =
1

2
xTHx+ pTx

x ∈ Rn

subject to

aTj x = bj , j = 1, . . . , nI ;

aTj x ≤ bj , j = nI + 1, . . . , nI + nD ;

lj ≤ xj ≤ uj , j = 1, . . . , n ;

where H ∈ Rn×n is a symmetric matrix1, p and aj∈ Rn, bj∈ R and lj, uj ∈ [−∞,+∞]
satisfying −∞ ≤ lj < uj ≤ +∞. In the theorical results the bound constraints will be
included in the general constraints.

The difficulty to find a solution for a quadratic problem depends strongly on the cha-
racteristics of the objective function, mainly if the Hessian H is positive definite or not.
If H is positive definite, then (GQP) has only one solution. In other case, the problem
can have several local minimums, if there is any solution. All the solutions of the positive
semidefinite case are global. Before starting to study these situations we will give some
key definitions to properly follow the development of the chapter.

Taking into account the objective function, a (GQP) algorithm computes some descent
directions.

Definition 2.0.1. A vector d ∈ Rn is a descent direction in x ∈ Rn, if there is a
number ρ ∈ R+ such that

F (x+ ρd) < F (x), for all ρ ∈ (0, ρ).
1For any matrix M ∈ Rn×n, xTMx = xT

(
1
2 (M + MT )

)
x and 1

2 (M + MT ) is symmetric.
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Proposition 2.0.1. If ∇F (x)Td < 0, then d is a descent direction in x.

Proof. Using the definition of directional derivative, the inequality ∇F (x)Td < 0 implies
that there exists ρ > 0 such that

F (x+ ρd)− F (x)

ρ
< 0 for all ρ ∈ (0, ρ).

From where F (x+ ρd) < F (x) for all ρ ∈ (0, ρ).

There are three types of directions d depending on the type of the curvature:

Definition 2.0.2. Let be d ∈ Rn:

• It is a positive curvature direction if dTHd > 0.

• It is a zero curvature direction if dTHd = 0.

• It is a negative curvature direction if dTHd < 0.

In general quadratic programming no assumptions are made about the matrix H, which
implies that the function F can be nonconvex. In the strictly convex case only positive
curvature descent directions are computed, but in all other cases both zero and negative
as well as positive curvature directions can be used.

We consider an active-set method (see [12] for instance): associated to each feasible
point, x(k), we have a subset of constraints, Wk, that are active at x(k): aTi x

(k) = bi, for
all i ∈ Wk, and such that the vectors {ai}i∈Wk

are linearly independent. The subset Wk

is called working set.

Associated to each working set, Wk, we have a matrix Ak with the vectors {ai}i∈Wk
in its

columns. Moreover, we have two subspaces:

• The null space: N(ATk ) = {z ∈ Rn : ATk z = 0}.

• The range space: R(Ak) = {z ∈ Rn : Aky = z for some y ∈ Rmk}, where mk is
the number of constraints in Wk.

Definition 2.0.3. A vector d ∈ Rn is a feasible direction for a working set Wk, if
d ∈ N(ATk ).

Proposition 2.0.2. If Wk is a working set at x(k) and d(k) is a feasible direction, then

aTi (x(k) + ρd(k)) = bi, for all i ∈ Wk and for all ρ ∈ R.

So, given a point x(k) and a working set Wk, if x(k) does not minimize the function, the
method calculates a new point

x(k+1) = x(k) + ρkd
(k)

4



where d(k) is a feasible and descent direction and the steplength ρk > 0 is a positive value
for which all constraints are satisfied at x(k+1).

To obtain feasible directions we consider the following formula

d(k) = ZkdZk, (2.1)

where Zk is an n× (n−mk) matrix, whose columns form a basis of N(ATk ). The following
equality will be useful for this purpose

F (x(k) + ρd(k)) = F (x(k)) + ρ(d(k))T∇F (x(k)) +
1

2
ρ2(d(k))THd(k). (2.2)

Using (2.1) in the above equality, we can observe the main role of

Hk = ZT
k HZk, (2.3)

to decrease the objective function value. The matrix Hk is called reduced Hessian.

The next three sections focus on the calculation of a descent direction from a factorization
of the reduced Hessian, depending on the type of matrix involved.

2.1 Positive definite reduced Hessian

If the reduced Hessian, Hk, is positive definite, we calculate the direction d(k) solving the
linear system

HkdZk = −ZT
k ∇F (x(k)), (2.4)

with the Cholesky decomposition of Hk (Theorem A.1.1) and taking d(k) = ZkdZk.

Algorithm 2.1.1. (Cholesky Algorithm) Given a symmetric definite positive matrix

H̃ ∈ Rn×n and its Cholesky factorization H̃ = L̃T L̃ (see Theorem A.1.1), where L̃ is
an upper triangular matrix, then this factor is computed row by row using the following
scheme (see, for example, [8]):

for i=1,2,. . .,n

for k=i,i+1,. . .,n

L̃(i, i) =

√√√√H̃(i, i)−
i−1∑
j=1

(L̃(i, j))2;

L̃(i, k) =
1

L̃(i, i)

(
H̃(i, k)−

k−1∑
j=1

L̃(i, j)L̃(k, j)

)
;

end

end.

Now, we prove that d(k) is a descent direction and that we can take the steplength ρ as
large as 1. This value is important in the optimization process as we will see in Proposition
2.5.1.
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Proposition 2.1.1. If Hk is positive definite, ZT
k ∇F (x(k)) 6= 0 and d(k) is calculated by

solving the system (2.4), then d(k) verifies

F (x(k) + ρd) < F (x(k)), for all ρ ∈ (0, 1]. (2.5)

Proof. If we multiply both sides of (2.4), using (2.1) and (2.3), then

∇F (x(k))Td(k) = −(d(k))THd(k).

As ZT
k ∇F (x(k)) 6= 0, the solution of the system (2.4) is a nonzero vector and, so d(k).

Hence, using that H is positive definite, we get −(d(k))THd(k) < 0 and from the above
equality ∇F (x(k))Td(k) < 0.

Taking this into account and using (2.2) and ρ ∈ (0, 1], we have

F (x(k) + ρd(k)) = F (x(k)) + (ρ− ρ2

2
)∇F (x(k))Td(k) < F (x(k)).

2.1.1 Numerical results

In this section we calculate a descent direction using the factorization obtained by our
code cholpar (see A.4) for a positive definite matrix. In particular with this example,
taken from the resolution of the problem presented by Bunch-Kaufman [5], we illustrate
that it does not mind if the Hessian H is positive definite or not, what it is important is
the reduced Hessian and there are cases where H is indefinite but Hk is positive definite.

• Matrix factorization

Consider

H =



1.69 1 2 3 4 5 6 7
1 1.69 1 2 3 4 5 6
2 1 1.69 1 2 3 4 5
3 2 1 1.69 1 2 3 4
4 3 2 1 1.69 1 2 3
5 4 3 2 1 1.69 1 2
6 5 4 3 2 1 1.69 1
7 6 5 4 3 2 1 1.69


and Zk =



0 0
0 0
0 0
0 0
0 0
0 0
0 1
1 0


.

So the reduced Hessian is

ZT
k HZk =

(
1.69 1

1 1.69

)
.

The matrix H is indefinite with two negative eigenvalues (-11.44707, -2.52418).
Nonetheless, the reduced Hessian, Hk, is a symmetric positive definite matrix. Thus,
we can apply directly the Cholesky formulas (see Algorithm (2.1.1)) and we get
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LT =

(
1.3000 0.7692

0 1.0480

)
.

• Calculation of a descent direction

Taking ∇F (x(k)) = (1, 2)T , we get, solving the system (2.4), the direction

d(k) =

(
0.1670169
−1.2822585

)
.

Now we check if this direction is a descent direction: ∇F (x(k))Td(k) = −2.3975 < 0.

2.2 Positive semidefinite and singular reduced He-

ssian

In this section we present a theorem which establishes the existence of a Cholesky factor-
ization for matrices which are positive semidefinite and singular 2(see [6]). In the numerical
resolution of the problem (GQP), we will apply this result to the reduced Hessian (which

will be denoted by H̃ in the following theorem).

Theorem 2.2.1. A nonzero matrix H̃ ∈ Rn×n is positive semidefinite and singular if and
only if there exists a permutation matrix P such that

PH̃P T =

(
L 0
B 0

)(
LT BT

0 0

)
(2.6)

where L ∈ Rm×m is a lower triangular matrix with strictly positive diagonal elements and
B ∈ R(n−m)×m. The rank of H̃ is m and a basis of the null space of H̃ is formed by the
vectors {P Tuj}n−mj=1 defined by

uj =

(
ûj
0

)
− em+j, (2.7)

where em+j is the (m+j)—th column of the identity matrix Idn×n and ûj is the m-vector
solution of the system LT ûj = BT

j with Bj the j-th row of B.

Proof. If we have the factorization (2.6) it is easy to see that H̃ is positive semidefinite.

If d ∈ Rn, then taking d̃ = P Td

d̃T
(
L 0
B 0

)(
LT BT

0 0

)
d̃ =

[(
LT BT

0 0

)
d̃

]T (
LT BT

0 0

)
d̃ =

∥∥∥∥(LT BT

0 0

)
d̃

∥∥∥∥2
2

≥ 0.

To see the reciprocal we use an algorithm that determines if H̃ is positive definite, positive
semidefinite and singular or indefinite. The algorithm returns the Cholesky decomposition
in the first case, the factorization (2.6) in the second one and a partial factorization in
the third case.

2all eigenvalues are nonnegative and at least one of them is zero.
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Factorization Algorithm

1. Set k=1, H̃(k) =
(
h
(k)
ij

)
= H̃, P (k) = Id, where Id is the identity matrix and

β = 1.2·(max{|hjj| : j = 1, ..., n})1/2.

2. Find q such that

h
(k)
qq = max{h(k)jj : j = k, ..., n}.

• If h
(k)
qq <0

Indefinite matrix. STOP the algorithm (2.8)

• If h
(k)
qq =0 =⇒ Find t such that

h
(k)
tt = min{h(k)jj : j = k, ..., n}.

– If h
(k)
tt <0

Indefinite matrix. STOP the algorithm (2.9)

– If h
(k)
tt =0

∗ If j = n

End of factorization. STOP the algorithm. (2.10)

∗ Else find r and s such that

|h(k)rs |= max{|h(k)ij | : n ≥ i > j ≥ k}.

· if |h(k)rs | 6=0

Indefinite matrix. STOP the algorithm.

· if |h(k)rs | =0

End of factorization. STOP the algorithm. (2.11)

• If h
(k)
qq > 0 =⇒ Interchange the rows q and k of H̃(k) and P (k).The new matrices

will be denoted by H̃(k) and P (k+1) respectively.

3. Now the elements of the k-th column of the lower triangular factor are calculated.

For j=1 to k-1

h
(k+1)
ij = h

(k)
ij , i=j,...,n,

h
(k+1)
kk =

√
h
(k)
kk .

8



If k=n
End of factorization. STOP the algorithm.

If k < n =⇒ Continue.

For i=k+1 to n

h
(k+1)
ik =

h
(k)
ik

h
(k+1)
kk

.

If max{|h(k+1)
ij | : i = k + 1, ..., n} > β =⇒ Indefinite Matrix.STOP the algo-

rithm.

Now the elements to the right of the k-th column of the factor are updated using the
Cholesky’s formulas and the last calculated elements.

For j=k+1 to n

h
(k+1)
jj = h

(k)
jj −

(
h
(k+1)
jk

)2
, (2.12)

h
(k+1)
ij = h

(k)
ij − h

(k+1)
ik h

(k+1)
jk , i = j + 1, . . . , n.

4. Set k=k+1. Go to step 2.

Firstly if the algorithm stops in Step 3 with k=n,we will have the Cholesky factorization:

PH̃P T = LLT , (2.13)

where P = P (n+1) and L is a lower triangular matrix with lii > 0 for i=1,. . .,n. Thus, in
this case H̃ is a positive definite matrix.

On the other hand, if the algorithm ends in the Step 2, in (2.10) or (2.11), the factorization
(2.6) is obtained.

If the algorithm stops at (2.8) or (2.9) with k = 1, some diagonal element is negative and
obviously the matrix is indefinite.

In the other cases the algorithm stops with the following factorization

PH̃P T =

(
L 0
B In−m

)(
Im 0
0 D

)(
LT BT

0 In−m

)
, (2.14)

where m = k − 1, L ∈ Rm×m is a nonsingular lower triangular matrix being lij = h
(k)
ij

,1≤ j ≤ i ≤ m , B ∈ R(n−m)×m with bi,j = h
(k)
m+i,j, 1≤ i ≤ n − m, 1 ≤ j ≤ m and

D ∈ R(n−m)×(n−m) is a symmetric matrix with di,j = h
(k)
m+i,m+j, 1≤ j ≤ i ≤ n −m. We

will see that in this case there are negative curvature directions.
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• First we suppose that h
(k)
jj <0, for some index such that k ≤ j ≤ n.

Let Bj−m be the (j-m)-th row of the matrix B and û an m-dimensional vector
obtained from LT û = −BT

j−m. Then, we calculate a descent direction of negative
curvature whose form is P Tu where

u =

(
û
0

)
+ ej, (2.15)

and ej is the j-th vector of the canonical basis.

Now, taking into account the following equalities(
LT BT

0 In−m

)
u =

(
LT û+BT

j−m
0

)
+ ej = ej.

It follows that

(P Tu)T H̃(P Tu) = eTj

(
Im 0
0 D

)
ej = dj−m,j−m = h

(k)
jj < 0. (2.16)

So P Tu is a negative curvature direction of H̃.

• Now we consider the case h
(k)
jj =0, for all j = k, . . . , n and h

(k)
rs 6=0, n ≥ r > s ≥ k.

Be Bs−m and Br−m the rows s-m and r-m of the matrix B respectively. We define
the vector

u =

(
û
0

)
− h(k)rs es + er, (2.17)

where û is the solution of the system LT û = −BT
r−m + h

(k)
rs BT

s−m, while the vectors
er and es are the r-th and s-th vectors of the canonical basis of Rn, respectively.
Then,(

LT BT

0 In−m

)
u =

(
LT û+BT

r−m − h
(k)
rs BT

s−m
0

)
− h(k)rs es + er = −h(k)rs es + er.

So using this equality, it is easy to see

(P Tu)T H̃(P Tu) = (−h(k)rs es + er)
T

(
Im 0
0 D

)
(−h(k)rs es + er) =

= (h(k)rs )2ds−m,s−m + dr−m,r−m − 2h(k)rs dr−m,s−m =

= (h(k)rs )2h(k)ss + h(k)rr − 2(h(k)rs )2 = −2(h(k)rs )2 < 0.

(2.18)

So P Tu is a negative curvature direction.

• If the algorithm stops because |h(k)ik | > β for some i, k + 1 ≤ i ≤ n, it is only

necessary to note that if we calculate h
(k+1)
ii , this will be negative. Using (2.12)

h
(k+1)
ii = h

(k)
ii − (h

(k+1)
ik )2 < h

(k)
ii − β2 ≤ h

(k)
ii − β2 < 0.

So, we are again in a situation with some negative diagonal element and in this case
we have seen before that a negative curvature direction exists.

10



So, if the matrix H̃ is positive semidefinite and singular, only the factorization (2.6) is
possible.

Finally, we have to verify that { P Tuj}n−mj=1 is a basis of the null space of H̃. Using that

P is orthogonal, i.e. P TP = I, it is possible to write H̃ as

H̃ = P T

(
L 0
B 0

)(
LT BT

0 0

)
P. (2.19)

It follows that the rank of H̃ is the same as that of L. Thus, every basis of the null space
of Hk has n−m elements.

On the other side using the definition of uj we have(
LT BT

0 0

)
PP Tuj =

(
LT ûj −BT

j

0

)
= 0.

So, using (2.19), H̃P Tuj=0. The linear independence follows from the definition of
{P Tuj}n−mj=1 .

Now, as a consequence of the Theorem 2.2.1 we present some results about the descent
direction.

Observation 2.2.1. In practice we will try to factorize as much as posible before starting
the pivotation. That is, until the code detect that the matrix is nonpositive definite, it does
not start to exchange elements.

Corollary 2.2.1. Be Hk = ZT
k HZk ∈ Rnk×nk a singular positive semidefinite reduced

Hessian associated with x(k), and its factorization given by

Hk = P T

(
L 0
B 0

)(
LT BT

0 0

)
P. (2.20)

where P,L and B are as in the Theorem 2.2.1.

If U is a matrix whose columns are the vectors P Tuj, j=1,. . . , nk −m, where uj is given
by (2.7) and

d̂ = −ZkUUTZT
k ∇F (x(k)), (2.21)

the following statements are verified:

a) If d̂ 6= 0, then d̂ is a null curvature descent direction.

b) Otherwise, there exists a vector d
(k)
Zk solution of the system (2.4) and d(k) = Zkd

(k)
Zk

is a positive curvature descent direction.

Proof. a) Using that the columns of U are a basis of the null space of Hk and (2.21),
then

d̂THd̂ = 0. (2.22)

11



So, d̂ is a null curvature direction for H. Moreover, using the hypotesis d̂ 6= 0, we
also have

(d̂)T∇F (x(k)) = −||(ZkU)T∇F (x(k))||22 < 0. (2.23)

Using (2.22) and (2.23) together with (2.2) we have that d̂ is also a descent direction.

b) We assume that d̂ = 0 and we will see that there exists a solution for the system
(2.4). Using the linear independence of the columns of the matrices Zk and U , from
d̂ = 0 we conclude that

UTZT
k ∇F (x(k)) = 0.

This means that ZT
k ∇F (x(k)) is orthogonal to a basis of the null space N(HT

k ), using
that Hk is symmetric. So, ZT

k ∇F (x(k)) ∈ R(Hk), which implies that

PZT
k ∇F (x(k)) ∈ R(PHk) = R(PHkP

T )

and, using the factorization (2.20), PZT
k ∇F (x(k)) ∈ R

(
L 0
B 0

)
and, as L is a regular

matrix, there is only one vector v such that(
L 0
B 0

)(
v
0

)
= −PZT

k ∇F (x(k)). (2.24)

Taking ṽ such that LT ṽ = v, then d
(k)
Zk = P T

(
ṽ
0

)
is a solution of the system (2.4):

HkP
T

(
ṽ
0

)
= P T

(
L 0
B 0

)(
L 0
B 0

)T
PP T

(
ṽ
0

)
=

= P T

(
L 0
B 0

)(
LT ṽ

0

)
= P T

(
L 0
B 0

)(
v
0

)
= −ZT

k ∇F (x(k)).

Now, we check that Zkd
(k)
Zk is also a positive curvature direction

dTZkZ
T
k HZkdZk = −dTZkZT

k ∇f(x(k)) = −(ṽT0)PZT
k ∇F (x(k)) =

= (ṽT0)

(
L 0
B 0

)(
v
0

)
= ṽTLLT ṽ =

∥∥LT ṽ∥∥2
2

=
∥∥v∥∥2

2
≥ 0,

taking into account (2.24) and ZT∇f(x(k)) 6= 0.

2.2.1 Numerical results

In this subsection we consider some examples to illustrate step by step how our code
cholpar (see A.4) calculates the factorization (2.20) for a singular positive semidefinite

reduced Hessian. In fact, the code calculates the factor on the right, L̃. We will also
calculate positive or null curvature directions.

The pivotation starts when the first nonpositive radicant of the Cholesky formulas (see
Algorithm (2.1.1)) appears in the process.

12



Note 2.2.1. We will use a vector, ipvt, to store the information of the matrix P. Given
a vector y

ipvt(i) = j means (Py)i = yj

• Factorization of a singular reduced Hessian.

We consider the following matrix

H̃ =


4 −2 2 2
−2 2 2 1
2 2 10 7
2 1 7 5

 . (2.25)

The eigenvalues of this matrix H̃ are {0, 0, 5.1849, 15.8151}, so, the matrix is positive
semidefinite and singular.

– Iteration 13

We inicialize the pivotation vector: ipvt=(1,2,3,4).

We start with the diagonal elements of H̃ and as H̃(1, 1) > 0, we calculate the

diagonal element L̃(1, 1)=2 and the elements in the first row, using the Cholesky
formulas (see Algorithm (2.1.1))

L̃ =


2 −1 1 1
− − −
− −
−

 .

The k-th row will remain unchanged for the rest of the process.

– Iteration 2
For the element L̃(2, 2), we first calculates its radicant and as it is positive,
following the algorithm, we calculate the rest of the elements in the second row.

L̃ =


2 −1 1 1

1 3 2
− −
−

 .

– Iteration 3
Using the Cholsesky formulas, we get L̃(3, 3) = 0. Since it is not positive the

rest of the elements on the diagonal are calculated: L̃(4, 4) = 0. And now we

have to find max{L̃(j, i); k ≤ j < i ≤ n}. For our example, using again the

Cholesky formulas: L̃(3, 4) = 0, so the factorization is finished with

L̃ =


2 −1 1 1
0 1 3 2
0 0 0 0
0 0 0 0

 ; ipvt = (1, 2, 3, 4).

3In the k-th iteration the k-th diagonal element for L̃ is chosen and k-1 is the size of the factorized
matrix.
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If we compare with the factorization (2.20), for our example, we get the following
submatrices

L =

(
2 0
−1 1

)
; and B =

(
1 3
1 2

)
;

• Calculation of a descent direction

– Here we take ∇F (x(k))=(1,2,3,4)T and Zk = Id.
The reduced Hessian Hk, is positive semidefinite and singular, so we calculate
the descent direction as Corollary 2.2.1 states. Using (2.21), we obtain

d̂ =


−12.2500
−18.0000

5.0000
1.5000

.

As d̂ 6= 0, we take d(k) = d̂. We check that this direction meets the requirements

1. (d(k))T∇F (x(k))=-27.2500 <0. So, it is a descent direction.

2. (d(k))THkd
(k)=0. So, it is a null curvature direction.

– Now we choose a different gradient vector: ∇F (x(k))=(1,-1.5,-2.5,-1.5)T , and
the same matrix Zk. Repeating the same steps that for the previous case, using
(2.21), we have d̂ = 0. So, the system HkdZk = −Z̃∇F (x(k)) has to be solved to

obtain the direction d
(k)
Zk and, then d(k) = Z̃d

(k)
Zk . In our example, v = (−0.5, 1)T ,

ṽ = (0.25, 1)T , d
(k)
Zk = (0.25, 1, 0, 0)T and finally

d(k) =


0.2500
1.0000

0
0

.

We check that this direction meets the requirements

1. (d(k))T∇F (x(k))=-1.2500 <0. So, it is a descent direction.

2. (d(k))THkd
(k)=1.2500. So, it is a positive curvature direction.

Observation 2.2.2. It is important underline the fact that GQP algorithm can work with
matrices which have two or more null eigenvalues. This is not the case for the inertia-
controlling methods, which only allow one nonpositive eigenvalue (see, for example, [9]).

2.3 Indefinite reduced Hessian

If the reduced Hessian is indefinite, we have the following factorization

PHkP
T =

(
L 0
B In−m

)(
Im 0
0 D

)(
LT BT

0 In−m

)
, (2.26)

Now we give a result to have a formula to compute the direction in the indefinite reduced
Hessian case.
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Corollary 2.3.1. If Hk is indefinite, σ = −sign((ZkP
Tu)T∇F (x(k))), P is the permu-

tation matrix associated to the factorization (2.26) and u is given by (2.15) or (2.17),
then d(k) = σZkP

Tu, is a negative curvature direction for the Hessian H and a descent
direction for the objetive function F at x(k).4

Proof. Taking H̃ = ZT
k HZk as in Theorem 2.2.1, using (2.16) and (2.18) we conclude that

d(k) is a negative curvature direction for H: d(k)Hd(k) < 0. Moreover, using the formula
of d(k), ∇F (x(k))d(k) < 0. Hence, using (2.2)

F (x(k) + ρd(k)) < F (x(k)), ∀ρ > 0.

Therefore, d(k) is a negative curvature direction for H and a descent direction for the
objective function.

2.3.1 Numerical results

In this subsection, we illustrate in detail how our code calculates the factorization of a
matrix with one negative eigenvalue.

• Matriz factorization

We consider the following matrix

H̃ =


7.3148 −2.7420 1.6468 −0.3105
−2.7420 −1.1770 5.7882 0.9989
1.6468 5.7882 1.9622 −3.6600
−0.3105 0.9989 −3.6600 5.900

 .

The eigenvalues of H̃ are {8, 4, 9,−7}, i.e., the matrix is indefinite, therefore, it will
not be possible to factorize the matrix completely with the Cholesky decomposition.
The idea is to factorize as large part as possible without pivoting.

We start by calculating the factorization of the matrix H̃ as in Subsection 2.2.1.

– Iteration 1
We initialize the pivoting vectot ipvt = (1, 2, 3, 4)T .

We start with the diagonal elements of H̃ and as H̃(1,1)> 0, we calculate the
elements in the first row.

L̃ =


2.7046 −1.0138 0.6089 −0.1148

− − −
− −

−

.

– Iteration 2 In this case we calculate the element L̃(2, 2) = −2.2049 < 0, so in
this situation, we calculate the rest of the diagonal elements in the same way.

L̃ =


2.7046 −1.0138 0.6089 −0.1148

-2.2049 − −
1.5915 −

5.8868

.

4The function sign: R −→ {−1, 1} is defined by: sign(x)=1 if x ≥0 and sign(x)=-1 if x <0.
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As the Cholesky factorization can no longer be applied, the permutation is
started. The first step is to look for the largest element of the diagonal in the
unfactorized part of the matrix, which turns out to be L̃(4, 4)=5.8868. Then, we
permute the fourth row with the second row and we do the same permutation
with second and fourth columns.
In this iteration we calculate the elements in the second row and modified the
diagonal elements using the Cholesky formulas (see Algorithm (2.1.1)).
This iteration finish with the following

L̃ =


2.7046 −0.1148 0.6089 −1.0138

2.4263 −1.4797 0.3637
-0.5980 −

-2.3372

; ipvt=(1,4,3,2).

– Iteration 3
All the elements in the diagonal are negative in the unfactorized matrix. We
search for the minimum of them and the rows and columns needed to place it
in the position (3,3) are permuted. In this case it involves the second and third
rows and columns obtaining

L̃ =


2.7046 −0.1148 −1.0138 0.6089

0 2.4263 0.3637 −1.4797
0 0 -2.3372 ∗
0 0 ∗ -0.5980

 and ipvt(1,4,2,3).

This factorization has the same estructure as the represented in (2.26), with

P T =


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

 ;L =

(
2.7046 0
−1.0138 2.4263

)
;

B =

(
−0.1148 0.3637
0.6089 −1.4797

)
;D =

(
−2.3372 ∗
∗ −0.5980

)
;

• Calculation of a descent direction

We take ∇F (x(k)) = (1, 2, 3, 4)T and Zk the identity matrix. The direction obtained
is:

d(k) =


−0.36849
−1
0

0.14990


We check that this direction meets the requirements:

1. (d(k))T∇F (x(k)) = −1.768876 < 0. So, it is a decent direction.

2. (d(k))THkd
(k) = −2.337154. So, it is a negative curvature direction.

16



2.4 Optimality conditions

These conditions provide a mechanism to stop the algorithms and a criteria to decide
when a vector is a solution to the optimization problems.

In the general quadratic programming framework it is posible that the hypothesis of the
sufficient first-order optimality conditions (see Theorem A.2.1) do not hold true, because
if the matrix H has some negative eigenvalue the function is not convex. In this situation
we have to use the second-order optimality conditions [7]. In the following result we give
the optimality conditions used by our code.

Theorem 2.4.1. Be x ∈ Rn a feasible point for the problem (GQP) and λ ∈ RnI+nD

the Lagrange multiplier vector satisfying (A.1),(A.2) and (A.3). Be W the index set
corresponding to the equality constraints and also the inequality constraints with strictly
positive Lagrange multiplier:

W = {j : j = 1, . . . , nI} ∪ {j : j > nI and λj > 0}.

Be A the working set matrix: A = (aj)j∈W ∈ R(n×m), and Z ∈ Rn×(n−m) with full rank

and such that A
T
Z = 0.

If m=n or Z
T
HZ is positive semidefinite, then x is a local minimum for the (GQP)

problem.

Observation 2.4.1. An important detail is that we need that the Lagrange multipliers
associated with inequality constraints be positive to ensure that x is a local minimum. We
illustrate this in the following example from [6]:

Min F (x) = x23 − 2x1x2

subject to

0 ≤ x1 + x2 ≤ 2

x1 − x2 ≤ 2

.

Let x = (−1, 1, 0)T and λ = (0, 2)T . Then

ZT
k Hk = (0, 0, 1)

 0 −2 0
−2 0 0
0 0 2

 = 2

is positive definite. However, taking ε 6= 0 and xε = (ε− 1, ε+ 1, 0)T , F (xε) = 2(1− ε2) <
2 = F (x). So, x is not a local minimum.

2.4.1 Numerical method for computing a basis of null space

Following [10], we calculate a basis for the subspace N(ATk ) using the factorization QR.
We supose that there are mk constraints in the working set: Ak ∈ Rn×mk , and we consider
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the QR factorization for the matrix Ak:

Ak = QkRk, (2.27)

where Qk ∈ Rn×n is an orthogonal matrix and Rk ∈ Rn×mk an upper triangular matrix.

We distinguish the following submatrices in Qk: the first mk columns, Yk, and the rest of
the columns, Zk. On the other hand, in Rk we extract from the first mk rows, an upper
triangular matrix R̂k.

Proposition 2.4.1. It is verified:

a) The column set of Yk is a basis of R(Ak).

b) The column set of Zk is a basis of N(ATk ).

Proof. Since Qk is orthogonal, its columns are linearly independents and so the columns
of Yk and Zk are linearly independents. Moreover, Ak = QkRk = YkR̂k, so the columns
of Yk are a generator system of R(Ak) and, as QT

kQk = Id, Y T
k Zk = 0 and therefore, the

columns of Zk belongs to N(ATk ).

2.5 An algorithm for GQP

At this point we present the algorithm scheme used to solve the problem (GQP).

Algorithm for general quadratic programming

1. Set k=0. Calculate an initial feasible vector, x(0), the initial working set, W0, its
QR factorization and the total or partial Cholesky factorization of the first reduced
Hessian, Hk.

2. • If ZT
k ∇F (x(k)) 6= 0 or Hk is not positive semidefinite, go to Step 3.

• In other case, calculate Lagrange multiplier candidates solving the linear system

R̂kλ = −Y T
k ∇f(x(k)) (2.28)

– If all the Lagrange multipliers candidates associated with inequality cons-
traints of Wk are strictly positive, then x(k) is a local minimum. STOP.

– Else remove from Wk the inequality constraint associated with the minimum
multiplier, update the QR factorization and compute the descomposition of
the new reduced Hessian. Go to Step 3.

3. Calculate a descent direction:

• If Hk is a positive definite matrix, calculate d
(k)
Zk solving the system (2.4) with

the Cholesky decomposition. Take d(k) = Zkd
(k)
Zk. Go to Step 4.

• If Hk is a positive semidefinite matrix, calculate d̂ from (2.21):

– If d̂ 6= 0, d(k) = d̂. Go to Step 5.

– If d̂ = 0, solve the system (2.4) with factorization (2.6) and take d(k) =

Zkd
(k)
Zk. Go to Step 4.
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• If Hk is an indefinite matrix, calculate a negative curvature descent direction
using (2.15) or (2.17). Go to Step 5.

4. Calculate ρk using the following formula

ρk = min

{
1, min

j /∈Wk,a
T
j d

(k)>0

bj − aTj x(k)

aTj d
(k)

}
. (2.29)

Take x(k+1) = x(k) + ρkd
(k) and k=k+1. If ρk=1 and it is not associated with any

constraint, then go to Step 2, in other case go to Step 6.

5. Calculate ρk using the next formula

ρk = min
j /∈Wk,a

T
j d

(k)>0

bj − aTj x(k)

aTj d
(k)

. (2.30)

Take x(k+1) = x(k) + ρkd
(k) and k=k+1. If the working set Wk is empty, then the

quadratic problem is unbounded in the feasible region. STOP.

6. If the lengthstep ρk is associated with a constraint whose index is jk, add jk to the
working set Wk. Modify QR factorization and compute the new factors for the new
reduced Hessian. Go to Step 2.

Note 2.5.1. In the Step 2 we do not calculate Lagrange multipliers candidates when Hk is
not positive semidefinite because, using the necessary second-order optimality conditions
(Theorem A.2.2), we know that x(k) is not a solution for the optimization problem.

Now we will give a result which justify the importance of the case ρk = 1, when Hk is
positive semidefinite and d(k) is obtained by solving the system (2.4).

Proposition 2.5.1. Let the matrix Hk be positive semidefinite and d(k) a solution of (2.4).
If x(k) is a feasible point, then x(k) + d(k) is a global solution of the following problem

(P )Wk



Min F (x)

x ∈ Rn

subject to

aTj x = bj, j ∈ Wk

aTj x ≤ bj, j /∈ Wk

.

Proof. First of all we study a similar problem but only with equality constraints:

(P )Eq


Min F (x)

x ∈ Rn

subject to

aTj x = bj, j ∈ Wk

.

Its feasible set verifies:

{x ∈ Rn : aTj x = b, j ∈ Wk} = {x(k) + d : aTj d = 0, j ∈ Wk} = {x(k) + Zky : y ∈ Rn−mk}.
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If we also use (2.2), (P )Eq is equivalent to the following unconstrained problem:

(P̃ )

Min φ(y) = F (x(k)) +∇F (x(k))TZky +
1

2
yTHky

y ∈ Rn−mk

,

where Hk = ZT
k HZk. As Hk is positive semidefinite, φ is a convex function. At this point

let us note that d
(k)
Zk verifies the sufficient first-order optimality condition for (P̃ ), and,

then: ∇φ(d
(k)
Zk) = 0.

So, d
(k)
Zk is a global solution for (P̃ ) and x(k) + d(k) is a solution for (P )Eq.

Finally, we will see that, in fact, x(k) + d(k) is a global solution for (P )Wk
.

• x(k) + d(k) is a feasible point for (P )Wk

– If j /∈ Wk, using the formula for the steplength (2.29) and ρk = 1, we get:

bj − aTj x(k)

aTj d
(k)

≥ 1

or the equivalent inequality aTj (x(k) + d(k)) ≤ bj.

– If j ∈ Wk, we have
aTj (x(k) + d(k)) = bj,

using that d(k) is a feasible and d(k) = Zkd
(k)
Zk with Zk ∈ N(ATk ).

• Using that feasible set of (P )Wk
is a subset of the feasible set of (P )Eq, we deduce

that x(k) + d(k) is also a global solution for (P )Wk
.

Now we present a result about the convergence of the algorithm which will depend on
degeneracy, so, first we introduce this concept

Definition 2.5.1. We will say that the degeneracy occurs at a point x(k) if there exists
a constraint j such that

aTj x
(k) = bj, j /∈ Wk and aTj d

(k) > 0.

Theorem 2.5.1. If the objective function is bounded below in the feasible set and dege-
neracy does not occur at stationary points (see Definition A.1.7), then the GQP algorithm
converges to a local minimum in a finite number of iterations.

Proof. When we removed a constraint from the working set, Wk (in Step 2), x(k) is a
global minimum for the problem (P)Wk

(see Proposition 2.5.1). In fact, it is enough to
realize that ZT

k ∇F (xk)=0 and ZkHZk is positive semidefinite. So,

F (x(k) + Zky) = F (x(k)) +∇F (x(k))TZky +
1

2
yTHky ≥ F (x(k)) for all y ∈ Rn−mk .
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Furthermore, as degeneracy does not occur at x(k) we have the strictly decreasing of the
objective function: F (x(k+1)) < F (x(k)). And we conclude that the working set Wk does
not appear a second time in the optimization process. To obtain the conclusion we take
into account:

• There exists a finite number of different working sets.

• At least each n iterations the algorithm has stationary points.

Therefore, after a finite number of iterations the algorithm will find a working set for which
the reduced Hessian is positive semidefinite, the reduced gradient is null and also the
Lagrange multipliers associated to the inequality constraints of Wk are strictly positives.
Then, by Theorem 2.4.1 the point x(k) is a local minimum.

2.5.1 Numerical results

In this subsection we will describe how the algorithm solves some non-convex quadratic
problems analysing each iteration of the process.

We explain the notation that we will use to refer to the constraints in the following results.
Each constraint of the problem is identified with an integer value as Table 2.1 shows

Integrer Type of constraint
−i ∈ [−n,−1] the lower bound constraint: lbi ≤ x(i)
i ∈ [1, n] the upper bound constraint: x(i) ≤ ubi

i ∈ [n+ 1, n+ nI ] the equality constraint: aTi−nx = bi−n
i > (n+ nI) the inequality constraint: aTi−nx ≤ bi−n

Table 2.1: Integer assignment criteria for the problem constraints.

• Example 1: This problem, taken from Bunch-Kaufman [5], is interesting because
the Hessian matrix is indefinite with at least two local minimums. It has eigth
variables, the Hessian matrix

hij =

{
|i− j| if i 6= j,

1.69 if i=j;

and the linear term of the objective function is given by

p =


7
6
...
0

 .

Moreover, It has seven general inequality constraints:

xi − xi+1 ≤ 1 + 0.05(i− 1) i=1,. . . ,7.
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and the following bound constraints

−i− 0.1(i− 1) ≤ xi ≤ i i=1,. . . ,8.

We start with the vector x
(0)
i = −i, for i = 1, . . . , 8 and we reach a minimun in seven

iterations with the following process:

ITERATION 1:

Initial constraints in the working set: -1,9.

A negative curvature direction has been calculated.

Constraint added to the working set: 10.

Number of nonpositive eigenvalues of the reduced Hessian: 2.

ITERATION 2:

Constraints in the working set: -1,9,10.

A negative curvature direction has been calculated.

Constraint added to the working set: 11.

Number of nonpositive eigenvalues of the reduced Hessian: 2.

ITERATION 3:

Constraints in the working set: -1,9,10,11.

A negative curvature direction has been calculated.

Constraint added to the working set: 12.

Number of nonpositive eigenvalues of the reduced Hessian: 1.

ITERATION 4:

Constraints in the working set: -1,9,10,11,12.

A negative curvature direction has been calculated.

Constraint added to the working set: -6.

Number of nonpositive eigenvalues of the reduced Hessian: 1.

ITERATION 5:

Constraints in the working set: -1,9,10,11,12,-6.

A positive curvature direction has been calculated.

Constraint added to the working set: 8.

Number of nonpositive eigenvalues of the reduced Hessian: 0.

ITERATION 6:

Constraints in the working set: -1,9,10,11,12,-6,8.

A positive curvature direction has been calculated.

Constraint added to the working set: 7.

Number of nonpositive eigenvalues of the reduced Hessian: 0.

ITERATION 7:

Constraints in the working set: -1,9,10,11,12,-6,8,7.

Constraint removed from the working set: -6.

A positive curvature direction has been calculated.

Constraint added to the working set: 6.
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STOP execution: we have found a local minimum.

The process ends with

x=(-1, -2, -3.05, -4.15, -5.3, 6, 7, 8)T and F (x)=-621.4878250000002.

• Example 2: We consider an objective function defined with

H =


1 2 4 1
2 13 11 5
4 11 17 5
1 5 5 2

 and p =


−3
−15
−15
−6

 ,

with the variables subject to the following equality constraint:

x1 + 2x2 + 4x3 + x4 = 0.

and the inequality constraint:

x1 − 7x2 + x3 − 2x4 ≤ 0.

For this example, where H has two null eigenvalues, we have an infinite number of
solutions: 

−2
1
0
0

+ β


−10
−1
3
0

+ γ


−1
−1
0
3

 .

with β, γ ∈ R. Starting at the point x(0)=(0, 0, 0, 0)T we reach a minimun in two
iterations with the scheme:

ITERATION 1:

Initial constraints in the working set: 5,6.

Constraint removed to the working set: 6.

A positive curvature direction has been calculated.

Number of nonpositive eigenvalues of the reduced Hessian: 2.
ITERATION 2:

Initial constraints in the working set: 5,6.

A positive curvature direction has been calculated.

Number of nonpositive eigenvalues of the reduced Hessian: 2.

STOP execution: we have found a local minimum.

The process ends with

x=(-0.27273, 1.0909, -0.54545, 0.27273)T and F (x)=-4.5.

• Example 3: We consider the function (taken from [6]), corresponding to

H =


−1 0 0 0 0
0 0.36 0.48 0 0
0 0.48 0.64 0 0
0 0 0 0 0
0 0 0 0 1

 and p =


2

1.2
1.6
1
−7

 .
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The following inequality constraints:

−2 ≤ 0.6x2 + 0.8x3 ≤ 1,

x1 − x4 + x5 ≤ −10,

and the boundary constraints for the components

0 ≤ x1 ≤ 1 and − 200 ≤ x4 ≤ 5.

The matrix H has one negative and two null eigenvalues. Starting at the point
x(0)=(0, -5, 5, 5, -5)T we reach a minimun in two iterations and the behaviour of the
program was:

ITERATION 1:

Initial constraints in the working set: -1,4,6,8.

Constraint removed to the working set: 6.

A positive curvature direction has been calculated.

Constraint added to the working set: 7.

Number of nonpositive eigenvalues of the reduced Hessian: 1.

ITERATION 2:

Initial constraints in the working set: -1,4,8,7.

Constraint removed to the working set: 7.

Number of nonpositive eigenvalues of the reduced Hessian: 1.

STOP execution: we have found a local minimum.

The process ends with

x=( 0, -6.8, 2.6, 5, -5)T and F (x)=50.5.

• Example 4: In this example from [6], we have

hij =



− 19801 if i=j=1

− 1963 if i=j>2

− 11692 if j=1 2≤ i ≤ 100

− 11692 if i=1 2≤ j ≤ 100

− 2044 in other case

and p =

−1
...
−1

 .

And the following inequality constraint:

−10 ≤ x1 + . . .+ x100 ≤ 10.

The matrix H has one negative eigenvalue and the rest are strictly positive. Starting
at the point x(0) = 0 the algorithm find a solution in only two iterations:

ITERATION 1:

Initial constraints in the working set:0.

A negative curvature direction has been calculated.
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Constraint added to the working set: 101.

Number of nonpositive eigenvalues of the reduced Hessian: 1.

ITERATION 2:

Initial constraints in the working set: 101.

A positive curvature direction has been calculated.

We have found a local minimum.

Number of nonpositive eigenvalues of the reduced Hessian: 0.

STOP execution: we have found a local minimum.

The problem has a local minimun where the function values is f(x)= -3125243.28905.

• Example 5: Now we take

H = −Idn×n and p =

0
...
0


subject to the following boundary constraints: −1 ≤ xi ≤ 1 for i = 1, . . . , n.

This problem has the peculiarity that has a minimum at any x such that |xi|=1 for
i = 1, . . . , n.

For n=100 and starting at x(0) = (0, . . . , 0)T we have found a local minimum after
one hundred and one iterations, where the objective function value is F (x)=-100.

Now, we analize a collection of examples from QPLIB [1], a library of quadratic progra-
mming instances. We choose those whose variables have real values (they are not restricted
to integer values) and with linear constraints.

In Table 2.2 we present the problem in the first five columns (code number of the problem,
number of variables, number of nonpositive eigenvalues of the Hessian, number of equality
constraints and number of inequality constraints), then we show the initial vector, the
number of iterations for solving the problem, the number of nonpositive curvature direc-
tions that have been computed, the objective function value at the computed solution and
if this solution is a global or a local minimum (see Definition A.1.1 and Definition A.1.2).
Some of the numerical solutions are local minimums, and to check it we have been used
Theorem 2.4.1.

In Table 2.3 we show a comparative between the results obtained by our code and other
softwares. We will consider the quadprog function from MATLAB [2] and the qp function
from OCTAVE [3]. For each example (fisrt column), we present the number of iterations
and the final function value (in the fourth and fifth column, respectively).
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Software: Quaprog

Problem n nNpeig nI nD x(0) Niter nNd fval Minimum
0018 50 24 1 0 e14 3 0 -6.3860149815 Global

e17 3 0 -6.3860149815 Global
e20 3 0 -5.7679399370 Local
e39 3 0 -6.3860149815 Global
e45 4 0 -5.3386872077 Local

0343 50 24 1 0 e1 5 0 -5.8237238705 Local
e14 4 0 -6.3860149816 Global
e45 5 0 -5.3386872077 Local

2712 200 100 1 0 e21 11 3 0.0128688328 Global
e100 3 0 0.0555190572 Local
e163 8 1 0.1488494049 Local

2761 500 250 1 0 e48 2 0 0.0010485291 Global
e250 5 0 0.0213262913 Local
e442 6 1 0.0213262914 Local

Table 2.2: Solving with our code some problems of the library QPLIB.

Example Code Iterations Fval
1 Quaprog 7 -621.487825

Quadprog(MATLAB) * (*1)
qp(OCTAVE) 10000 -69.995 (*3)

2 Quaprog 2 -4.500000
Quadprog(MATLAB) 3 -4.238135·10−9

qp(OCTAVE) 1000 3.7278·10−14(*3)
3 Quaprog 2 50.5

Quadprog(MATLAB) 1 (*2)
qp(OCTAVE) * (*3)

4 Quaprog 2 -3125243.28905
Quadprog(MATLAB) * *1

qp(OCTAVE) 4 -3125243.28905
5 Quaprog 101 -100

Quadprog(MATLAB) * *1

qp(OCTAVE) 201 -100

Table 2.3: Comparing different QP codes.

The initial vector x(0) is the same as the one used in the Section 2.5.1.

The MATLAB code quadprog is not be able to solve nonconvex quadratic problems. The
algorithms that it uses are of interior-point or trust-region type. In Table 2.3:

• (*1) means that the program stops because it detects that the problem is nonconvex.

• (*2) indicates that it stops because it converges to an infeasible point.
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• For the example 2, MATLAB sais that it solves the problem but it really does not,
the computed vector is neither a global nor a local minimum.

On the other hand, OCTAVE solves Examples 4 and Example 5 although it does twice
as many iterations than our code. Moreover, in the output OCTAVE identifies these
problems as convex. Maybe this could be because the reduced Hessians used for solving
the problem were positive definite (but the Hessians of these problems are not definite
positive matrix). Furthermore, OCTAVE does not solve the rest of examples. The mark
(*3) means that it can not progress from the objective function value showed and gives
a message saying that it exceeds the maximum iteration number, even for 106 iterations.
In particular, for Example 3, qp is also unable to return any value because of computing
difficulties.

Table 2.4 shows the numerical results obtaining for OCTAVE for the same problems of
Table 2.2.

Software: qp (OCTAVE)

Problem n nNpeig nI nD x(0) Niter fval
0018 50 24 1 0 e14 7 -3.14317632338

e17 7 -3.14317632338
e20 10 -2.87665108035
e39 7 -3.14317632338
e45 9 -2.59490655613

0343 50 24 1 0 e1 16 -2.77901982431
e14 8 -3.14317632338
e45 10 -2.59490655613

2712 200 100 1 0 e21 20 0.01255528191 (**)
e100 8 0.04674979429
e163 32 0.03337821682

2761 500 250 1 0 e48 6 0.00104791687 (**)
e250 19 0.04270710157
e442 28 0.02884602850

Table 2.4: Solving with OCTAVE problems of the library QPLIB.

In these examples OCTAVE always stops identifying the problems as convex and returning
what it claims to be a global solution, although these points are not. Moreover, it can be
appreciated that for each example and each initial vector, OCTAVE does more iterations
than our code.

Let us remark that the objective function values with the mark (**), are better than ours,
but if we evaluate the objective function at the final point given by the code, the values
obtained are:
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Problem x(0) fval
2712 e21 0.0131535824
2761 e48 0.0010489173

Table 2.5: Objective function values for OCTAVE.

As a comment, quadprog from MATLAB has failed in all these four examples because it
identifies these problems as nonconvex, independently of the initial point.

Now we will consider five numerical experiments related to the convex QP case. For each
problem, we show the Hessian matrix, the vector of the linear term and the constraints:

Example 6 : H =

1
. . .

n

, p(i) = 0, i = 1, . . . , n and the constraints

−x1 − x2 − . . .− xn ≤ −10 and 0 ≤ xi, i = 1, . . . , n, where n=100.

Example 7 : H =

1
. . .

n

, p(i) = (−1)i
√
i, i = 1, . . . , n and the constraints

−x1 − x2 − . . .− xn ≤ −10 and 0 ≤ xi, i = 1, . . . , n, where n=100.

Example 8 : H =

6 2 1
2 5 2
1 2 4

, p(i) = (−8,−3,−3)T and the constraints

x1 + x3 = 3 and x2 + x3 = 0.

Example 9 : H =

 4 0 −4
0 4 2
−4 2 6

, p(i) = (−2, 2, 1)T and the constraints xi ≥ 0, i=1,2,3.

Example 10 : H =

 2 −1 0
−1 2 0
0 0 0

, p(i) = (−3, 0, 1)T and the constraints

x1 + x2 ≤ 2 and 0 ≤ xi ≤ 1, i=1,2,3.

So, from Table 2.6 we can see that our code get the same solution and requires a similar
number of iterations that the softwares of MATLAB and OCTAVE. Only in the first
case MATLAB requires fewer iterations than our code and OCTAVE. The initial point
indicated is used by our code and OCTAVE, but not for MATLAB.
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Convex problems

Example Software x(0) fval iter
6 Quaprog (1, . . . , 1)T 9.638781798697996 4

Quadprog(MATLAB) 9.638781798703729 4
qp (OCTAVE) 9.638781798698002 3

7 Quaprog (1, . . . , 1)T -24.96886835221521 53
Quadprog (MATLAB) -24.96886834566575 5

qp (OCTAVE) -24.96886835221522 53
8 Quaprog (3,0,0)T -3.5 2

Quadprog (MATLAB) -3.5 1
qp (OCTAVE) -3.5 2

9 Quaprog (0,0,0)T -0.75 3
Quadprog (MATLAB) -0.75 5

qp (OCTAVE) -0.75 5
10 Quaprog (0,0,0)T -2.25 3

Quadprog (MATLAB) -2.25 4
qp (OCTAVE) -2.25 5

Table 2.6: Solving quadratic convex problems.

2.6 A few practical details

This section is related to our code. We show some details of its implementation.

2.6.1 About QR factorization

In this subsection we will explain how we update the QR factors in the code depending
on whether a constraint has been removed or added to the working set.

Let Wk be the working set whose associated matrix is Ak. The QR factorization of Ak is
given by (2.27), where the factors Q and R has the same estructure that in Section 2.4.1.

When we add a new constraint, aTj x ≤ bj, to the working set, Wk+1 = Wk ∪ {j}, the
associated matrix will have a new extra column which will be placed at the end of the
matrix:

Ak+1 = (Ak aj).
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So, we will have Ak+1 = QkR̂k+1, with R̂k+1 = (Rk Q
T
k aj), having the following structure:

R̂k+1 =



∗ ∗ ∗ . . . ∗
0 ∗ ∗ . . . ∗
0 0 ∗ . . . ∗
...

. . . . . . . . . . . .
...

. . . . . . 0 ∗
0 0 0 0 ×
...

...
...

...
...

0 0 0 0 ×


We obtain the QR factors by using only one Householder matrix, Ho, to transform the
elements indicated by × into 0. So, Rk+1 = HoR̂k and Qk+1 = QkHo.

In the case that we remove the j-th constraint from the working set, the matrix Ak+1

will have one less column than Ak. So, Ak+1 = QkR̂k+1, where R̂k+1 has the following
structure:

R̂k+1 =



∗ ∗ . . . ∗ . . . ∗

0 ∗ . . . ∗ . . . ∗

0 0
. . .

. . .
. . . ∗

...
. . .

. . . ∗ . . .
...

...
. . .

. . . × ∗
...

...
. . .

. . .
. . .

. . . ∗
...

...
...

...
... ×

0 0 0 0 0 0
...

...
...

...
...

...
0 0 0 0 0 0


Now, we update the QR factors by using mk− j Givens matrices to transform into 0 each
element indicated by ×, one per column. We denote as Gj,j+1 the Givens matrix which
cancels the element (j+1,j) and has the following structure:

Gj,j+1 =


(Id)j−1

cj sj
sj −cj

(Id)n−(j+1)

 .

Thus, the matrix R̂k+1 = Gmk−1,mkGmk−2,mk−1 . . . Gj,j+1R̂k is an upper triangular matrix
and now Ak+1 = Qk+1R̂k+1, where

Qk+1 = QkG
j,j+1 . . . Gmk−2,mk−1Gmk−1,mk .

As a final comment, note that the columns of the matrix Zk remain unchanged, and Zk+1

is formed by the columns of Zk and a new column, which is placed in the first position.
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We have chosen the QR factorization to solve linear systems because it is more stable
than other factorizations as LU. The use of QR factorization is not suitable for large scale
problems.

2.6.2 Solving with Cholesky factorization and pivotation

IfHk ∈ Rnk×nk is a reduced Hessian and its Cholesky factorization is given by PHkP
T=LLT ,

being P a pivotation matrix. If g is an nk-dimensional vector, then the solution of the
system Hkd = g, can be obtained by the following steps:

• ū is calculated solving the system Lu = Pg.

• v̄ is calculated solving the system Ltv = ū

• The solution is d̄=P T v̄

Observation 2.6.1. Let us notice that in computational practice we can avoid the storage
of the pivotation matrix P , and also the multiplications, by using a vector with as many
columns as P .

Observation 2.6.2. In relation to computational efficiency let us note that we only need
to solve triangular linear systems for getting the directions.
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2.6.3 Cholpar code

We end up this section presenting the factorization code to illustrate the complexity of
the algorithm:

1 f unc t i on [LT, ipvt , ind ]= cho lpar (H, n , Z , NColZ ,mode)
2 %%%%%%%%%%%%
3 %Author : Car los Crespo under the d i r e c t i o n o f C e c i l i a Pola
4 %Date :27/11/2020
5 %Reference : anfm03 FORTRAN func t i on o f Eduardo Casas and Ce c i l i a Pola .
6 %OBJECTIVE: This program c a l c u l a t e s a t o t a l or p a r t i a l
7 %Cholesky
8 % P∗M∗(Z ’∗H∗Z) ∗M’∗P’
9 % where P i s a permutation matrix and M=f l i p ( eye (NColZ , 1 ) ) .

10 %
11 % Input l i s t :
12 % − H: nxn−dimens iona l matrix
13 % − n : number o f rows ( and columns ) o f H
14 % − Z : nxNColZ−dimens iona l matrix .
15 % − NColZ : number o f columns o f Z .
16 % − mode i s an i nd i c a t o r that takes the va lue s :
17 % ∗0 : i f the matrix i s i n d e f i n i t e the f a c t o r i z a t i o n i s
18 % not c a r r i e d out .
19 % ∗ other number : the f a c t o r i z a t i o n i s c a l c u l a t ed ( p a r t i a l
20 % or complete ) .
21 %
22 % Output l i s t :
23 % − LT: from row ind+1 i t conta in s the upper t r i a n gu l a r matrix
24 % of the Cholesky f a c t o r i z a t i o n o f the f a c t o r i z e d box ( the
25 % f a c t o r i z a t i o n w i l l be p a r t i a l in the i n d e f i n i t e case )
26 % − i pv t : i n d i c a t e the exchange o f the columns and rows a s s o c i a t ed
27 % with matrix P
28 % − ind : v a r i ab l e that takes the next va lue s :
29 % ∗ n : i f the f a c t o r i z a t i a o n has not been done and modo=0
30 % ∗(−1 ,ND+1) : i f the f a c t o r i z a t i o n i s f i n i s h e d . ND−ind i s
31 % the s i z e o f the non−zero part o f LT.
32 % ∗(−ND−1 ,0) : the f a c t o r i z a t i o n i s not f i n i s h e d . A negat ive
33 % element in the po s i t i o n −IND in the d iagona l o f
34 % the matrix LT has been found .
35 % ∗(−2∗ND−1,−ND) : the f a c t o r i z a t i o n i s not complete because
36 % the matrix i s i n d e f i n i t e : LT has in the po s i t i o n
37 % −IND−ND in the d iagona l a nu l l e lement and a non−zero
38 % element in the po s i t i o n (−ND−IND,−ND−IND+1)
39 %%%%%%%%%%%%
40 eps1=eps ˆ 0 . 7 5 ; ind=0;LT=ze ro s (n , n) ; Z=Z ( : , NColZ : −1:1) ;
41 i f NColZ==0
42 LT= [ ] ; i pvt = [ ] ; ind=0;
43 r e turn
44 end
45 i f ind==0
46 ndim=NColZ ; i i f a c t =0; ipvt =(1:ndim) ;
47 end
48 smax=1;
49 f o r i =1:ndim
50 i f ind==0
51 i i=i ;
52 end
53 s=Z ( 1 : n , i ) ’∗H(1 : n , 1 : n ) ∗Z ( 1 : n , i ) ;
54 i f mode==0 && s<−eps1
55 ind=n ;
56 r e turn
57 end
58 LT( i i , i )=s ; smax=max( abs ( s ) , smax) ;
59 end
60 i f ndim==1
61 i k=ind+1; s=LT( ik , 1 ) ;
62 i f s>eps1
63 LT( ik , 1 )=sq r t ( s ) ; ind=0;
64 e l s e i f s<−eps1
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65 ind=−1;
66 e l s e
67 ind=1;
68 end
69 r e turn
70 end
71 eps0=eps ∗smax ; eps1=eps0 ∗ ind ; s1=0; beta=max( eps0 ∗ndim∗10 , s q r t ( smax) ∗1 . 2 ) ;
72 f o r k=1:ndim−1
73 eps1=eps1+eps0 ; kk=k+1; ik=k ; ik0=ik −1;
74 i f i i f a c t==0
75 LT(k , k )=LT(k , k )−LT( 1 : ik0 , k ) ’∗LT( 1 : ik0 , k ) ;
76 sk=LT(k , k ) ;
77 i f s1>beta | | sk<=eps1
78 i i f a c t =1;
79 f o r i=kk : ndim
80 LT( i , i )=LT( i , i )−LT( 1 : ik0 , i ) ’∗LT( 1 : ik0 , i ) ;
81 end
82 end
83 e l s e
84 sk=LT( ik , k ) ;
85 end
86 i f s1>beta
87 s=−1;
88 e l s e i f i i f a c t==1
89 j=k ; s=sk ;
90 f o r i=kk : ndim
91 i i=i+ind ; R i i=LT( i i , i ) ;
92 i f Ri i>s
93 j=i ; s=Ri i ;
94 end
95 end
96 e l s e
97 s=sk ; j=k ;
98 end
99 i f s>eps1

100 i f i i f a c t==1
101 index=LT( 1 : ik0 , k ) ;LT( 1 : ik0 , k )=LT( 1 : ik0 , j ) ;LT( 1 : ik0 , j )=index ;
102 auxipvt=ipvt (k ) ; i pvt ( k )=ipvt ( j ) ; i pvt ( j )=auxipvt ;LT( ind+j , j )=sk ; l=ipvt (k ) ;
103 e l s e
104 l=k ;
105 end
106 sk=sq r t ( s ) ;LT( ik , k )=sk ;w=H∗Z ( 1 : n , l ) ; s1=0;
107 f o r i=kk : ndim
108 j=ipvt ( i ) ; s=Z ( 1 : n , j ) ’∗w;
109 i f ik0>0
110 s=s−LT( 1 : ik0 , i ) ’∗LT( 1 : ik0 , k ) ;
111 end
112 Rik=s/ sk ; s1=max( s1 , abs (Rik ) ) ;LT( ik , i )=Rik ; i i=i ;
113 i f i i f a c t==1
114 LT( i i , i )=LT( i i , i )−Rik∗Rik ;
115 end
116 end
117 e l s e
118 s=sk ; j=k ;
119 f o r i=kk : ndim
120 i i=ind+i ; R i i=LT( i i , i ) ;
121 i f Ri i<s
122 j=i ; s=Ri i ;
123 end
124 end
125 i f s<−eps1
126 i f mode==0
127 ind=n ;
128 r e turn ;
129 end
130 index=LT( 1 : ik0 , k ) ;LT( 1 : ik0 , k )=LT( 1 : ik0 , j ) ;LT( 1 : ik0 , j )=index ;
131 auxipvt=ipvt ( j ) ; i pvt ( j )=ipvt ( k ) ; ipv t ( k )=auxipvt ;LT( ind+j , j )=sk ;
132 LT( ik , k )=s ; ind=−k ;
133 r e turn ;
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134 e l s e
135 f o r j=k : ndim−1
136 nj=ipvt ( j ) ; i j=j+ind ;w=H∗Z ( 1 : n , nj ) ;w(n)=s1 ;
137 f o r i=j +1:ndim
138 j=ipvt ( i ) ; s1=Z ( : , i pvt ( i ) ) ’∗w;
139 i f ik0>0
140 s1=s1−LT( 1 : ik0 , i ) ’∗LT( 1 : ik0 , j ) ;
141 end
142 LT( i j , i )=s1 ; s1=abs ( s1 ) ;
143 i f s1>s
144 s=s1 ; l=i ;
145 end
146 end
147 i f s>eps1
148 i f mode==0
149 ind=n ;
150 r e turn
151 end
152 index=LT( 1 : ik0 , k ) ; index2=LT( 1 : ik0 , kk ) ;
153 LT( 1 : ik0 , k )=LT( 1 : ik0 , j ) ;LT( 1 : ik0 , j )=index ;
154 LT( 1 : ik0 , kk )=LT( 1 : ik0 , l ) ;LT( 1 : ik0 , l )=index2 ;
155 LT( ik , kk )=LT( i j , l ) ; auxipvt=ipvt ( j ) ; i pvt ( j )=ipvt ( k ) ;
156 i pv t ( k )=auxipvt ; auxipvt=ipvt ( l ) ; i pvt ( l )=ipvt ( kk ) ;
157 i pv t ( kk )=auxipvt ; ind=−ndim−k ;
158 r e turn
159 end
160 end
161 ind=ndim−k+1;
162 r e turn
163 end
164 end
165 end
166 eps1=eps0+eps1 ; in=ndim+ind ;
167 i f i i f a c t==0
168 LT( in , in )=LT( in , in )−LT( 1 : in −1, in ) ’∗LT( 1 : in −1, in ) ;
169 end
170 s=LT( in , ndim) ;
171 i f s>eps1
172 LT( in , ndim)=sq r t ( s ) ; ind=0;
173 e l s e i f s<−eps1
174 ind=−ndim ;
175 e l s e
176 ind=1;
177 end
178 end
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Chapter 3

Generalized General Quadratic
Programming (GGQP)

Now we add to the quadratic programming problem (GQP) some extra nondifferentiable
terms in the objective function, that are regulated by a parameter α > 0,

(GGQP )



Minimize F̃ (x) =
1

2
xTHx+ pTx + α

(
nIF∑
j=1

|āTj x− b̄j| +

nIF+nDF∑
j=nIF+1

(āTj x− b̄j)+

)
x ∈ Rn

subject to

aTj x = bj , j = 1, . . . , nI ;

aTj x ≤ bj , j = nI + 1, . . . , nI + nD;

lj ≤ xj ≤ uj , j = 1, . . . , n .

where (āTj x− b̄j)+ = max{0, āTj x− b̄j} and α is called penalty parameter.

Before proceding further, we will establish a notation that might be useful in the following.

ξ(x) =

nIF+nDF∑
j=1

ξj(x) where ξj(x) =

{
|āTj x− b̄j| for j=1,. . . , nIF

(āTj x− b̄j)+ for j = nIF+1, . . . , nIF + nDF

In relation to these terms it is interesting to note the following equivalence:

ξ(x) = 0⇐⇒ x verifies

{
āTj x = b̄j for j=1, . . . , nIF

āTj x ≤ b̄j for j = nIF+1, . . . , nIF + nDF

So, we can consider that l1 penalty terms are associated with some relaxed constraints
of a (GQP) problem. The level of verification of such constraints could be controled by
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varying the value of the penalty parameter. Note that we distinguish with a bar the
coefficients of such constraints. Moreover, problem (GGQP) leads to the same solutions
that (GQP) provided when the penalty parameter is large enough and there exists feasible
points for all the constraints.

This kind of problems appears frequently solving non-linear programming problems (NLP)
by a sequential quadratic programming method (SQP) (at each iteration they calculate
the descent direction by solving a quadratic problem). The non-linear problem may have
linear constraints and non-linear constraints:

(LC)

{
aTj x = bj; if j = 1, . . . , nI

aTj x ≤ bj if j=1,. . . , nD
; (NLC)

{
h(x) = 0; if j = 1, . . . , nIF

g(x) ≤ 0 if j = 1 + nIF , . . . , nIF + nDF

If x(k) is the current approximation, x(k) is feasible for the linear constraints and (SQP)
methods use linear approximations of the nonlinear constraints:

(NLCd)

{
∇h(xk)Td = −h(xk) if j = 1, . . . , nIF

∇g(xk)Td ≤ −g(xk) if j = 1 + nIF , . . . , nIF + nDF
.

For avoiding non feasible quadratic programs, the (NLCd) constraints can be introduced
in the penalty term of the quadratic problem.

The (LC) constraints will be transformed into the following ones:

(LCd)

{
aTj d = 0 if j=1,. . . , nI

aTj (d+ xk) ≤ bj if j=1,. . . , nD
.

In practical optimization, formulations with penalty terms l1 are used in many applications
as for image restoring (see, for instance, [11]).

3.1 Some results of subdifferential calculus

To raise an algorithm that solves the (GGQP) problem, first we need to determinate the
optimality conditions associated to (GGQP).

The optimality conditions criteria , in Section 2.4 and in Appendix A.2 (Theorem A.2.1
and A.2.2), involve the derivates of the functions. However, now our objective function
contains non-differentiable terms, so we have to use some results of subdifferental calculus
for convex functions (see [4]).

Definition 3.1.1. A function f : K −→ (−∞,+∞], not identically +∞, defined on a
convex set K ⊂ Rn, is said to be convex if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y), ∀t ∈ (0, 1), for all x, y ∈ K. (3.1)

If the inequality is strict the function is said to be strictly convex.
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Definition 3.1.2. The essential domain for a funcion f : Rn −→ (−∞,+∞] is:

dom(f) = {x ∈ Rn : f(x) < +∞} (3.2)

Note that every convex function defined on a convex set f : K −→ (−∞,+∞] can be
expanded to Rn considering the function f : Rn −→ (−∞,+∞] given by:

f(x) = f(x) if x ∈ K,

We can already present the main concept for our interests.

Definition 3.1.3. A subgradient of a function f : Rn −→ (−∞,+∞] at the point
x ∈ Rn is a vector x∗ ∈ Rn such that

(x∗)T (y − x) + f(x) ≤ f(y), ∀y ∈ Rn.

The set of all subgradients of f at x is called subdifferential of f at x and it is denoted
by ∂f(x).

The subdifferential concept is a generalisation of the classical gradient, as we see in the
following result

Proposition 3.1.1. Let f : Rn −→ (−∞,+∞] be a convex function that is differentiable
at the point x ∈ dom(f). Then,

∂f(x) = {∇f(x)}.

Now we will apply these concepts to calculate subdifferentials related to our objective
function.

• The function f : R −→ R, defined by f(x) = max{0, x}

1. If x ∈ (0,∞), then f(x) = x, and using the above proposition,

∂f(x) = {f ′(x)} = {1}.

2. If x ∈ (−∞, 0), then f(x) = 0, and using the same arguments as before,

∂f(x) = {f ′(x)} = {0}.

3. If x = 0, f is not differentiable. At this point, using Definition 3.1.3, we obtain
the following equivalences:

x∗ ∈ ∂f(0)⇐⇒ (x∗)Ty ≤ max{0, y}, ∀y ∈ R⇐⇒

{
(x∗)Ty ≤ y if y > 0

(x∗)Ty ≤ 0 if y ≤ 0
.

So, in this case, ∂f(0) = [0, 1].
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• The function f : R −→ R defined by f(x) = |x|.

1. If x ∈ (0,∞), then f(x) = x, and as it is diferentiable and convex,

∂f(x) = {f ′(x)} = {1}

2. If x ∈ (−∞, 0), then f(x) = −x, and as in the previos case,

∂f(x) = {f ′(x)} = {−1}

3. If x = 0, at this point f is not differentiable. The following equivalences state
∂f(0) = [−1, 1]:

x∗ ∈ ∂f(0)⇐⇒ (x∗)Ty ≤ |y|, ∀y ∈ R⇐⇒

{
(x∗)Ty ≤ y if y > 0

(x∗)Ty ≤ −y if y ≤ 0
.

Summarizing, for the function f(x) = max{0, x} the subdifferential ∂f(x) ⊂ [0, 1] and
for f(x) = |x|, ∂f(x) ⊂ [−1, 1]. Now, using these subgradients, we will get the optimality
conditions for the generalized quadratic programming.

3.2 Optimality conditions with subdifferential calcu-

lus

Now we state the optimality conditions for problem (GGQP) (see [13], for instance). In
the following result we consider first order optimality conditions.

Theorem 3.2.1. Given the problem (GGQP), be x ∈ Rn a feasible point.

If x is a local solution of (GGQP) problem, then there are two Lagrange multiplier vectors,
µ ∈ RnIF+nDF and λ ∈ RnI+nD , such that:

Hx+ p+

nIF+nDF∑
j=1

µjaj +

nI+nD∑
j=1

λjaj = 0; (3.3)

µj ∈


{1} if aTj x− bj > 0,

[−1, 1] if aTj x− bj = 0, j = 1 . . . , nIF ;

{−1} if aTj x− bj < 0,

(3.4)

µj ∈


{1} if aTj x− bj > 0,

[0, 1] if aTj x− bj = 0, j = nIF + 1, . . . , nIF + nDF ;

{0} if aTj x− bj < 0,

(3.5)

λj(a
T
j x− bj) = 0, j = nI + 1, . . . , nI + nD; (3.6)

λj ≥ 0, j = nI + 1, . . . , nI + nD. (3.7)
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If H is positive semidefinite the reciprocal is also true.

Now we present a sufficient second order optimality condition for the nonconvex case:

Theorem 3.2.2. Let x ∈ Rn be a feasible point for the (GGQP) problem, λ ∈ RnI+nD

and µ ∈ RnIF+nDF satisfying the first-order optimality conditions (3.3), (3.4), (3.5), (3.6)
and (3.7); the index sets

I = {j : 1 ≤ j ≤ nI} ∪ {j : j > nI and λj > 0}

and I = {j : 1 ≤ j ≤ nIF and − 1 < µj < 1} ∪ {j : j > nIF and 0 < µj < 1},

m=card(I)+card(I), AI = (aj)j∈I , AI = (aj)j∈I and Z ∈ Rn×(n−m) with full rank and

such that A
T

I Z = A
T

I Z = 0.

Then, if m=n or Z
T
HZ is positive semidefinite, then x is a local minimum.

Observation 3.2.1. In the Theorem 3.2.2 if m=n or Z
T
HZ is semi-positive definite,

then x is a strictly local minimum.

3.3 An algorithm for GGQP

This algorithm follows the same structure as the algorithm for the problem (GQP), so,
instead of repeating the whole algorithm we only will explain the differences. These
changes affect mainly in the calculation of the gradient and the descent direction, adapting
also the stop conditions to the new optimality conditions theorem.

Now the working set Wk is formed by both constraints belonging to the feasible set of
(GGQP) as well as those that are in the objective function, whose associated matrix are
Ak and Ak. We denote as Jk the index set of the constraints in the objective function such
that they are not in the working set and as Ik the set formed by the active constraints
which belong to the feasible set of (GGQP).

Based on the subdifferentials calculated in the final part of Section 3.1, we replace ∇f(x)
by

g(k) = Hx(k) + p+ α

nIF+nDF∑
j=1

γ
(k)
j aj

where

γ
(k)
j =


− 1 if aTj x

(k) < bj and j = 1, . . . , nIF ,

+ 1 if aTj x
(k) > bj,

0 in other case.

Now in the Step 2, to know if we get a solution for the problem (GGQP), we have to
check if the computed Lagrange multipliers associated to the current working set meet
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the conditions of Theorem 3.2.1 and, furthermore, they do not take extreme values. If
not, we removed the multiplier that most violates the correspponding condition:

s = minj∈Wk,j>nI
{s(k)j }

where

s(k) =


λ
(k)
j ,

1− |µ(k)
j |,

min{µ(k)
j , 1− µ(k)

j },
for constraints belonging to the feasible set, associated with relaxed equality constraints
and associated with relaxed inequality constraints, respectively.

As we did in Section 2.5 we update the QR factors and we computed the decomposition
of the new reduced Hessian. But now, if we removed from the working set a constraint l
associated to the objective function we have to update the gradient as follows:

ĝ(k) = g(k) + σ(k)al (3.8)

being

σ(k) =


1 if µ

(k)
l > 1

0 if µ
(k)
l < 0 and l > nIF

− 1 if µ
(k)
l < −1 and l ≤ nIF

.

Now, we calculate the descent direction d(k) with the new gradient. We have to check
that d(k) verifies that the sign of aTl d

(k) is consistent with the election of the value for σk.
As we have removed a constraint from the working set, we have the following equality:

g(k) + Akµ
(k)
j aj + Akλ

(k)
j aj = 0,

from which

−
(
Akµ

(k)
j + Akλ

(k)
j

)T
d(k) = (g(k))Td(k)

and as we have that aTj d
(k) = 0 and aTj d

(k) = 0 for all j ∈ Wk \ {l}, then

−µ(k)
k cTl d

(k) = (g(k))Td(k),

and adding to the both sides σaTl d
(k) and using (3.8)

aTl d
(k) =

ĝTd(k)

(−µ(k)
j + σ(k))

.

Now, as we know that d(k) is a descent direction, we have ĝTd(k) < 0, and depending on
the value of σ(k), we have

aTl d
(k)

{
> 0 if σ(k) = 1,

< 0 if σ(k) = −1 or 0,
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and d(k) is consistent with the σ(k).

We now focus in the calculation of the steplength associated to the descent direction.
We will consider three cases: positive, null or negative curvature direction. The general
scheme for all the cases is the following:

For the active constraints of the feasible set of (GGQP), the steplength expression is

ρstrict = min
j /∈Ik,aTj d(k)>0

bj − aTj x(k)

aTj d
(k)

. (3.9)

Now we define the sets:

Vk,1 = {j ∈ Jk : aTj x
(k) − bj > 0, aTj d

(k) < 0};

Vk,2 = {j ∈ Jk : aTj x
(k) − bj < 0, aTj d

(k) > 0}.

For each index of these sets we have a steplength where the associated constraint becomes
active. We consider the minimum of these steplenghts:

ρobj = min
j∈(Vk,1∪Vk,2)

bj − aTj x(k)

aTj d
(k)

• If d(k) is a positive curvature direction, then the steplength is calculated by:

ρk = min{1, ρstrict, ρobj}

If ρk < 1, then it is associted with a constraint and as we do in Section 2.5, we add
it to the working set, Wk, modify the QR factors and compute the new factors for
the new reduced Hessian.

In the other hand, if ρk = 1 and it is not associated wih any constraint, we take
x(k+1) = x(k) + d(k) and the next iteration starts.

• If we have computed a null curvature direction and the index set used in (3.9) is
empty, then it is possible that the objective function is not bounded below in this
direction. To check this, assuming that the steplengths ρj, where j ∈ (Vk,1 ∪ Vk,2),
are ordered from smallest to largest, being s the number of elements of the set, we
use the following algorithm:

Be δ = (g(k))Td(k) and j=1.

1. If δ > 0, then STOP.

2. In other case

– If j=s, then the problem is not bounded below. STOP.

– In other case, j=j+1 and δ = δ + νja
T
j d

(k), where

∗ νj = −2 if aTj x
(k) > bj and j = 1, . . . , nIF .
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∗ νj = −1 if aTj x
(k) > bj and j > nIF .

∗ νj = +1 if aTj x
(k) < bj and j > nIF .

∗ νj = +2 if aTj x
(k) < bj and j = 1, . . . , nIF .

Go to Step 1.

If in (3.9) the set Ik is not empty or the previous algorithm stops in Step 1, the
problem is bounded in the direction of d(k) and we take the final steplength

ρk = min{ρestric, ρobj}. (3.10)

• If d(k) is a negative curvature direction and the index set of (3.9) is empty the
problem is not lower bounded. Indeed using (2.4) and (d(k))THd(k) < 0

f(x(k) + ρd(k)) −→ −∞ when ρ −→ +∞

In other case we take the steplength as in (3.10).

3.4 Calculation of a feasible point

The active-set methods need to start at one initial feasible point. Since it is not always
easy to find a feasible point, we have to use some strategy to achive one and there are
several approaches for it. For instance, it is posible to calculate an initial feasible point,
x(0), through the resolution of a particular case of a generalized quadratic problem. Given
a (GQP) problem, we keep the equality constraints in the feasible set while the inequality
constraints are included in the objective function in the following way:

(Paux)



Minimize F̃ (x) =

nI+nD∑
j=nI+1

(aTj x− bj)+

x ∈ Rn

subject to

aTj x = bj , j = 1, . . . , nI .

Proposition 3.4.1. If there are feasible points for the problem (GQP), then there exists
at least one solution. Moreover, if x(0) is a solution of (Paux), then x(0) is a feasible point
for (GQP).

Proof. Let us assume that x̂ is a feasible point for (GQP), then it is also a feasible point
for (Paux), since aTj x̂ = bj for j = 1, . . . , nI . Furthermore, we have that aTj x̂− bj ≤ 0, for

j = nI + 1, . . . , nI + nD and, then F̃ (x̂) = 0 ≤ F̃ (x) for all x feasible for (Paux). Then, x̂
is a global solution for (Paux).

Finally, If x(0) is a solution for (Paux), using the convexity of the problem, it is a global

solution and, then F̃ (x(0)) = 0 and therefore x(0) is a feasible point for (GQP).
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This procedure to find an inital feasible point has some advantages to be used as a first
step for the GQP programming algorithm. In fact, it will provide an associated working
set and its corresponding QR factorization.

In the Table 3.1 we present some feasible initial vectors calculated by this procedure for
some of the problems of Section 2.5.1.

Example nI nDF iter Starting point feasible point
1 0 23 8 (0,. . .,0)T (1,2,3,4,5,6,7,8)T

2 1 1 2 (1,0,0,-1)T (0.90909,0.36364,-0.18182,-0.909090)T

3 0 7 3 (0,0,0,0,0)T (0,0,0,5,-5)T

4 0 2 2 (20,. . .,20)T (10,. . .,10)T

5 0 200 3 (2,0,. . .,0,2)T x1 = x100 = 1, x82 = −1, xi = 0 otherwise

Table 3.1: Computing feasible points with (Paux).
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[11] C. Laguillo. Técnica de optimización para la recuperación de imágenes. TFG para
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restricciones. PhD thesis, Dpt. Matemáticas, Estad́ıstica y Computación, Universi-
dad de Cantabria, 1992.

44

http://qplib.zib.de/instances.html
https://es.mathworks.com/help/optim/ug/quadprog.html
https://runebook.dev/es/docs/octave/quadratic-programming
https://www.researchgate.net/publication/262562854_On_subdifferential_calculus
https://www.researchgate.net/publication/262562854_On_subdifferential_calculus


Appendices

45



Appendix A

Background material

A.1 Some definitions

We consider the following problem:

(P )

{
min F (x)

x ∈ K ⊂ Rn.

where
K = {x ∈ Rn : hi(x) = 0, i = 1, . . . , nI ; gj(x) ≤ 0, j = 1, . . . , nD}.

Definition A.1.1. A vector x ∈ Rn is a global minimum for the problem (P) if it
verifies that

F (x) ≤ f(y), for all y ∈ K.

Definition A.1.2. A vector x is a local minimum (strict) for a problem (P) if there
is an open neighborhood U of x such that

F (x) ≤ f(y), for all y ∈ K ∩ U,

(F (x) < f(y), for all y ∈ K ∩ U.

Definition A.1.3. A convex quadratic problem is a linear constrained optimization
problem where the Hessian of the objective function is a symmetric positive definite matrix.

Definition A.1.4. A point x is a feasible point for an optimization problem (P) if it
satisfies all the constraints of the problem.

Definition A.1.5. A problem with linear constraints verifies that K is as follows:

K = {x ∈ Rn : aTj x = bj, j = 1, . . . , nI ; aTj x ≤ bj, j = nI + 1, . . . , nI + nD}

Definition A.1.6. The bound constraints are upper or lower limits which restrict the
components of the solution x.
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Definition A.1.7. A stationary point is a point x that meets ZT
k ∇F (x(k)) = 0.

Theorem A.1.1. (Cholesky decomposition) Be A ∈ Rn×n, then the following state-
ments are equivalent:

• A is a symmetric positive definite matrix.

• There exist a unique lower triangular matrix L ∈ Rn×n with positive diagonal entries
such that

A = LLT .

A.2 Optimality conditions for quadratic programming

First-order Optimality conditions
Theorem A.2.1. Given the following problem

(GQP )


Minimize F (x) =

1

2
xTHx+ pTx

subject to x ∈Rn

aTj x = bj , j = 1, . . . , nI ;

aTj x ≤ bj , j = nI + 1, . . . , nI + nD ;

be x a feasible point. If x is a solution of (GQP), then there exists a Lagrange multiplier
vector λ ∈ RnI+nD such that

∇f(x) +

nI+nD∑
j=1

aTj λj = 0; (A.1)

λj(a
T
j x− bj) = 0, j = nI + 1, . . . , nI + nD; (A.2)

λj ≥ 0, j = nI + 1, . . . , nI + nD; (A.3)

Moreover if F is a convex function, the reciprocal is also true.

Necessary Second-order Optimality conditions
Theorem A.2.2. Given the problem (GQP) from the previous Theorem, x a solution of
(GQP) and

J = {j ∈ {1, . . . , nI + nD} : aTj x− bj = 0},
then there are two vectors λ ∈ RnI and µ ∈ RnD such that

Hx+ p+

nI∑
j=1

ajλj +

nI+nD∑
j=nI+1

ajµj = 0; (A.4)

µj ≥ 0, µj(a
T
j x− bj) = 0, j = nI + 1, . . . , nI + nD; (A.5)

aTj x− bj = 0, j = 1, . . . , nI , aTj x− bj ≤ 0, j = nI + 1, . . . , nI + nD; (A.6)

dTHd ≥ 0, for all d ∈ Rn such that aTj d = 0, if j ∈ J . (A.7)
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A.3 Notations

We present in this section some notation that have been used in the text.

• R+ = {x ∈ R : x > 0}.

• Be x, y ∈ Rn, x ≥ y if and only if xi ≥ yi, for all i = 1, . . . , n.

• Wk = {j : aTj x− bj = 0 and {aj}j∈Wk
linearly independent} is the working set.

• Id is the identity matrix

A.4 Code list

In this section we present all the MATLAB functions that we have programmed and a
brief description about their funcionality.

• anrs02.m : Solve a system as (P TRTRP )x = b, where P is a permutation matrix
and R is an upper triangular matrix.

• cholpar.m: Calculate the partial or total Cholesky factorization for a matrix as
PZTHZP T , where P is a permutation matrix,

If the matrix ZTHZ is positive definite the Cholesky decomposition (LLT ) will be
used, if it is positive semidefinite and singular (2.20) will be done and in indefinite
case,the factorization (2.26) will be computed.

• qpdes.m: Calculate a descent direction for a quadratic problem.

• qpstep.m: Calculate the lengthstep along the descent direction.

• qr1.m: Modify the QR factors of the working set matrix Ak when a constraint is
added to the working set.

• qr2.m: Modify the QR factors of the working set matrix Ak when a constraint is
removed from the working set.

• quaprog.m: Solve a quadratic optimization problem.

• sollowtri.m: Solve a system as Lx = y, where L is a lower triangular matrix.

• solupptri.m: Solve a system as Rx = y, where R is an upper triangular matrix.

• aux003.m: Depending on an initial parameter it adds to the working set one active
constraints associated to the objective function and it updates the QR factors or it
simply updates the initial working set.
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A.5 Qpdes code

Now we present the code of qpdes

1 f unc t i on [ d , id ]=qpdes (Z ,LT, g , a ,w, ipvt , n , ng , ind , in fo , id )
2 %%%%%%%%%%%%
3 %Author : Car los Crespo under the d i r e c t i o n o f C e c i l i a Pola
4 %Date : 28/1/2021
5 %Reference : desr03 FORTRAN func t i on o f Eduardo Casas and Ce c i l i a Pola .
6 %
7 % Purpose : t h i s program c a l c u l a t e s a descent d i r e c t i o n f o r a quadrat i c
8 % problem
9 %

10 %Input L i s t :
11 %−LT: An nxn upper t r i a n gu l a r matrix which i s c a l c u l a t ed in cho lpar
12 %−Z : An ngxn matrix whose columns form a ba s i s o f the nu l l space o f
13 % the matrix a s s o c i a t ed to the working s e t Ak’
14 %−a : An ng vec to r which conta in s the c o e f f i c i e n t s o f the l a s t
15 % con s t r a i n t removed from the a c t i v e s e t i f id<−ng or id>ng .
16 %−w: A work vec to r o f dimension 2∗N. I f i n f o=10 in the f i r s t n
17 % coord ina t e s i t has the reduced grad i en t
18 %−i pv t : A vec to r o f dimension n conta in ing ipvt vec to r o f cho lpar
19 %−n : Number o f columns o f the matrix Z
20 %−ng : Dimension o f g rad i en t vec to r
21 %−ind : A number that i n d i c a t e s which type o f f a c t o r i z a t i o n has been
22 % produced in cho lpar
23 %− i n f o : This v a r i ab l e i n d i c a t e s depending on i t s va lue :
24 % ∗0 : The pro j e c t ed grad i en t i s any vec to r
25 % ∗1 : The pro j e c t ed grad i en t i s a s c a l a r mu l t ip l e
26 % of the n−th vec to r o f the canon i ca l b a s i s
27 % ∗10 : The pro j e c t ed grad i en t i s g iven
28 %−id : This v a r i ab l e i n d i c a t e s dependenig on i t s va lue
29 % ∗<> 0 :
30 % ∗0 : In other case
31 %
32 %Output L i s t :
33 %−d : Vector conta in ing the descent d i r e c t i o n
34 %−id : Var iab le which i n d i c a t e s how the descent d i r e c t i o n has been c a l c u l a t ed
35 % ∗0 : negat ive or nu l l curvature d i r e c t i o n
36 % ∗1 : other case
37 %%%%%%%%%%%%
38 Z=Z ( : , n : −1:1) ; d=ze ro s (ng , 1 ) ; eps1=eps ˆ . 7 5 ; indmul=id ; id =0; s=0;%
39 %In the case o f ind>=0 the pro j e c t ed grad i en t i s c a l c u l a t ed ( p o s i t i v e
40 % sem id e f i n i t e case )
41 i f ind>=0
42 i f i n f o==0
43 w( 1 : n)=−Z ( : , 1 : n ) ’∗ g ;
44 e l s e i f i n f o==1
45 wn=−Z ( : , n ) ’∗ g ;
46 e l s e i f i n f o==10
47 i n f o =0;
48 w( 1 : n)=−w(1 : n) ;
49 end
50 end
51 % Projec ted Hess ian p o s i t i v e d e f i n i t e
52 i f ind==0
53 id =1;
54 i f i n f o==0
55 [w( 1 : n) , i f a l l o ]=ansr02 (LT( 1 : n , 1 : n ) ,w( 1 : n) , ipvt ) ;
56 i f i f a l l o==1
57 r e turn ;
58 end
59 e l s e
60 y=ze ro s (n , 1 ) ; y (n)=wn/LT(n , n) ;
61 [w( 1 : n) , i f a l l o ]= s o l upp t r i (LT( 1 : n , 1 : n ) , y ) ;
62 i f i f a l l o==1
63 r e turn ;
64 end
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65 end
66 % Projec ted Hess ian i n d e f i n i t e . In t h i s case a d i r e c t i o n o f negat ive
67 % curvature i s c a l c u l a t ed
68 e l s e i f ind< −1 && ind>=−n
69 m=−ind ;m2=m−1;B=−LT( 1 :m2,m) ;
70 [ d ( 1 :m2) , i f a i l ]= s o l upp t r i (LT( 1 :m2, 1 :m2) ,B) ;
71 i f i f a i l==0
72 w( 1 : n)=0;
73 f o r i =1:m2
74 w( ipvt ( i ) )=d( i ) ;
75 end
76 w( ipvt (m) )=1;
77 e l s e
78 f p r i n t ( ’ Error ’ ) ;
79 r e turn ;
80 end
81 e l s e i f ind<−n
82 m=−ind−n ;m1=m+1;Hrs=LT(m,m1) ;B=−LT( 1 :m−1,m1)+Hrs∗LT( 1 :m−1,m) ;
83 i f m>1
84 [ d ( 1 :m−1) , i f a i l ]= s o l upp t r i (LT( 1 :m−1 ,1:m−1) ,B) ;
85 i f i f a i l==1
86 r e turn
87 end
88 end
89 d(m)=−Hrs ;
90 f o r i =1:m
91 w( ipvt ( i ) )=d( i ) ;
92 end
93 w( ipvt (m1) )=1;
94 % Hess ian p o s i t i v e s em i d e f i n i t e case
95 e l s e i f ind>0 && ind<n
96 k=0;m=n−ind ;
97 i f i n f o==0
98 w(n+1:2∗n)=w( ipvt ( 1 : n) ) ;
99 e l s e

100 i =1;
101 whi le n˜=ipvt ( i )
102 i=i +1;
103 end
104 end
105 % A base o f the p ro j e c t ed Hess ian nu l l space i s computed
106 f o r j =1: ind
107 mj=m+j ;
108 [w( 1 :m) , i f a i l ]= s o l upp t r i (LT( 1 :m, 1 :m) ,LT( 1 :m,mj) ) ;
109 i f i f a i l==1
110 r e turn ;
111 end
112 i f i n f o==0
113 s=w( 1 :m) ’∗w(n+1:n+m)−w(mj+n) ;
114 e l s e
115 i f i==mj
116 s=−wn;
117 e l s e i f i<=m
118 s=w( i ) ∗wn;
119 e l s e
120 s=0;
121 end
122 end
123 i f abs ( s )>eps1
124 k=1;d ( 1 :m)=d ( 1 :m)+s ∗w(1 :m) ; d(mj)=−s ;
125 f o r i =1:n
126 w( ipvt ( i ) )=d( i ) ;
127 end
128 end
129 end
130 %I f k=0 means that the p ro j e c t ed grad i en t i s or thogona l to the base o f
131 %the nu l l space . A descent d i r e c t i o n i s computed in t h i s case
132 i f k==0
133 id =1;
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134 i f i n f o==0
135 f o r i =1:n
136 w( ipvt ( i ) )=w(n+i ) ;
137 end
138 [w( 1 : n) , i f a i l ]= ansr02 (LT( 1 :m, 1 :m) ,w( 1 : n) , ipv t ( 1 :m) ) ;
139 i f i f a i l ==1
140 r e turn
141 end
142 w( ipvt (m+1:n) )=0;
143 e l s e
144 d(m)=−1;d ( 1 :m−1)=0;
145 [ d ( 1 :m) , i f a i l ]= s o l upp t r i (LT( 1 :m, 1 :m) ,d ( 1 :m) ) ;
146 i f i f a i l ==1
147 r e turn
148 end
149 d(m+1:n)=0;
150 f o r i =1:n
151 w( ipvt ( i ) )=d( i ) ;
152 end
153 end
154 end
155 end
156 % The obtained d i r e c t i o n i s p ro j e c t ed
157 i f ind==n && in f o==1
158 i f abs (wn)>eps1
159 d ( 1 : ng )=wn∗Z ( 1 : ng , 1 ) ;
160 e l s e
161 id =1;
162 d ( 1 : ng )=0;
163 end
164 e l s e i f ind==−1
165 d ( 1 : ng )=Z ( 1 : ng , ipvt (1 ) ) ;
166 e l s e
167 i f ind==n
168 s=norm(w( 1 : n) ) ;
169 i f s<=eps1
170 id =1;d ( 1 : ng )=0;
171 end
172 end
173 i f ind˜=n | | ( ind==n && id==0)
174 d ( 1 : ng )=Z ( 1 : ng , : ) ∗w( 1 : n) ;
175 end
176 end
177 % The d i r e c t i o n c a l c u l a t ed i s a f f e c t e d with the appropr ia te s i gn to
178 % turn i t a descent d i r e c t i o n
179 i f ind<0 | | ( id==1 && in f o ==1 && ind>0)
180 i f id==1
181 s=d ’∗ g ;
182 i f s>0
183 d ( 1 : ng )=−d ( 1 : ng ) ;
184 e l s e
185 s=−s ;
186 end
187 e l s e
188 i f indmul==0
189 s=d ’∗ g ;
190 e l s e
191 i f indmul >ng | | indmul <−ng
192 s=d ’∗ a ;
193 e l s e
194 s=d( abs ( indmul ) ) ;
195 end
196 end
197 i f ( indmul>=0 && s>0) | | ( indmul<0 && s<0)
198 d ( 1 : ng )=−d ( 1 : ng ) ;
199 end
200 end
201 end
202 end
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