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ABSTRACT 

In the last years, European producers of cultured sea bass and sea bream have had to compete strongly 

among them as well as with Turkish producers to be competitive. One important factor of economic 

competitiveness is to produce efficiently. For this reason, we have evaluated the technical efficiency 

of European producers of cultured sea bass and sea bream in the last decade (2008-2017) using the 

stochastic production frontier (SPF) approach and we have analyzed the effect of some specific-firm 

factors in firms’ productivity. To do this analysis, we have employed a representative sample of 73 

European firms producing sea bass and sea bream in the Mediterranean Sea. Data for this analysis was 

obtained from the ORBIS and EUMOFA databases. The majority of European firms producing 

cultured sea bass and sea bream in the Mediterranean Sea presented a productivity over 90%, being 

Cypriot and Greek firms the most productive. We have also found evidence that technical efficiency 

of these firms is positively related to their location (better environmental conditions in the Eastern 

Mediterranean Sea) and size (increasing production returns related to a higher level of quality in the 

making decisions or in the organization of the production process). 
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Technical efficiency of sea bass and sea bream farming in the 

Mediterranean Sea by European firms: A stochastic production frontier 

(SPF) approach 
 

 

Introduction 

European sea bass (dicentrarchus labrax) and gilthead sea bream (sparus aurata) are economically 

important cultured fish species along the Mediterranean coast. Traditionally, sea bass and sea bream 

have been farmed extensively in the coastal lagoons and brackish ponds in northern Italy (vallicultura) 

and southern Spain (esteros) where fish is allowed to enter inside the lagoons to be trapped and fed 

naturally until it is harvested (EU, 2012), although only a few farms still use these traditional methods 

to grow fish. On the other hand, at the end of the 70’s and the beginning of the 80’s, intensive rearing 

methods based on complex hatchery techniques were developed and implemented in most 

Mediterranean countries to substitute traditional extensive farming methods. However, nowadays, a 

large part of the production is cultivated in floating cages in the sea. 

 In 2015 both species represented respectively the 9.88% and 10.83% of the total value of the 

European aquaculture sector (EU, 2018). The EU is one of the largest producers of sea bass and sea 

bream in the world (EU, 2012), being Greece the largest producer within the EU followed by Spain 

(see Table 1). The figures in Table 1 show that in 2017 the total European production of cultured sea 

bass and sea bream was around 174,038 tons equally divided for each specie (54.5% of sea bream and 

45.5% of sea bass). The main producer is Greece with 100,232 tons, which represents the 57.6% of 

the total European production, followed by Spain with 34,661 tons (a 19.9% of the total production), 

whereas the smallest producers in Europe are Slovenia and Portugal with only 80 and 1,739 tons 

respectively. 

 

------------------------------------------- 

Table 1 about here 

------------------------------------------- 

 

 In the last years, European producers of cultured sea bass and sea bream have had to compete 

strongly among them as well as with Turkish producers to be competitive (Globefish, 2015). One 

important factor of economic competitiveness is to produce efficiently. Efficiency studies on 

aquaculture are relatively few compared with other industries and they are focused mainly on no 

European countries (Alam, 2011). Moreover, the identification of the factors that determine 
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aquaculture firms’ productivity is also an important issue in order to propose managerial decisions in 

the sector. Therefore, the purpose of this work is twofold: first, we have evaluated the technical 

efficiency of European producers of cultured sea bass and sea bream using the stochastic production 

frontier approach and, second, we have analyzed the effect of some specific-firm factors such as 

location, production type (organic), years of experience, and size on firms’ inefficiency. 

 

Technical efficiency: definition and measurement 

Most of the literature about efficiency is based on Farrell’s pioneer paper (1957) who developed a 

conceptual model involving the contraction of inputs to an efficient frontier (Tingley, Pascoe, & 

Coglan, 2005). Technical efficiency (hereinafter, TE) refers to the ability of a decision-making unit 

(farm or firm) to minimize input used in the production of a given bundle of outputs, or the ability to 

obtain maximum output from a given bundle of inputs (Farrell, 1957; Kumbhakar & Lovell, 2000; 

Alam, 2011). These two definitions of TE lead to what is known as output and input-oriented efficiency 

measures respectively. 

 The measurement of TE is based upon deviations of observed output from the best production or 

efficient production frontier. The frontier production function defines potential output that can be 

produced by a firm with the given level of inputs and technology (Kumar, Birthal, & Badruddin, 2004). 

If a firm’s actual production point lies on the frontier, it is perfectly efficient whereas if it lies below 

the frontier, then it is technically inefficient, being the ratio of actual to potential production the level 

of efficiency. Two methodologies are commonly used to describe the efficient production frontier and, 

therefore, estimate efficiency values (Tingley et al., 2005): the stochastic production frontier (SPF) 

and the data envelopment analysis (DEA). Both approaches have been widely used to analyze 

productivity in the aquaculture sector for different species and countries (Iinuma, Sharma, & Leung, 

1999; Sharma, Leung, Chen, & Peterson, 1999; Dey, Paraguas, Bimbao, & Regaspi, 2000; Ara, Alam, 

Rahman, & Jabbar, 2004; Dey, Paraguas, Srichantuk, Xinhua, Bhatta, & Dung, 2005; Bozoglu, 

Ceyhan, Cinemre, Demiryurek, & Lilic, 2006; Cinemre, Ceyhan, Bozoglu, Demiryurek, & Kilic, 2006; 

Kaliba & Engle, 2006; Alam & Murshed-e-Jahan, 2008; Alam, 2011; Islam, Tai, & Kusairi, 2016; 

Ngoc, Gaitán-Cremaschi, Meuwissen, Le, Bosma, Verreth, & Lansink, 2018). 

 Any of these approaches has its advantages and disadvantages. The SPF approach is a parametric 

method that accounts for production uncertainty (stochastic noise), allows simultaneous estimation of 

individual technical efficiency of firms as well as determinants of technical efficiency, and permits 

statistical tests of hypotheses pertaining to production structure and the degree of inefficiency (Battese 

& Coelli, 1995). On the other hand, the DEA approach does not assume a parametric form for the 

production technology and does not make assumptions about the error term, assuming that an agent’s 
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inability to produce the maximal output, given their input mix, is due to agent-specific technical 

inefficiency (Aigner, Lovell, & Schmidt, 1977; Meeusen & van den Broeck, 1977). In this case 

efficiency frontier is constructed with the help of the linear programming technique developed by 

Charnes, Cooper, and Rhodes (1978) that puts more efficient firms in the frontier ray being the distance 

between this ray and the location of other firms which are not in this ray the efficiency measure. DEA 

is, consequently, a more general and flexible model than its parametric counterpart, although its results 

are very sensitive to outliers and sampling variation (Cesaro, Marongiu, Arfini, Donati, & Capelli, 

2009). For all these reasons, the application of the SPF approach has been used for the assessment of 

TE in a wide range of industries (Tingley et al., 2005) whereby we have decided to employ this 

approach in our research. 

 According to Battese and Coelli (1992, 1995), a general SPF model for panel data can be given by: 

 

𝐿𝑛𝑌𝑖𝑡 = 𝐿𝑛(𝐱𝑖𝑡 , 𝛃) + 𝑣𝑖𝑡 − 𝑢𝑖𝑡 (1) 

 

were Yit denotes the production of the i-th firm at the t-th time period; xit is a vector of input quantities 

and  is a vector of unknown parameters to be estimated. Besides, uit is a time-varying panel-level 

effect to estimate the technical inefficiency of the firm i at year t (where uit ≥ 0) and vit is assumed to 

be an independent and identically distributed 𝑁(0, 𝜎𝑣
2) random error independent of the uit and the 

covariates in the model. When ui,t = 0, the i-th firm lies on the stochastic frontier and, hence, can be 

considered technically efficient at time t. If ui,t > 0, the production lies below the frontier and, hence, 

the i-th firm is inefficient. Then, technical efficiency of the i-th firm at the t-th time period (TEit) can 

be expressed as the ratio of actual (observed) output relative to the potential (maximum feasible) output 

(Lachaal, Chebil, & Dhehibi, 2004): 

 

𝑇𝐸𝑖𝑡 =
𝐿𝑛𝑌𝑖𝑡

𝐸(𝐿𝑛𝑌𝑖𝑡 𝑢𝑖𝑡=0,𝑥𝑖𝑡⁄ )
= 𝑒(−𝑢𝑖𝑡) (2) 

 

so that this measure takes values between 0 and 1 with smaller ratios reflecting greater inefficiency 

(inverse relationship). 

 The inefficiency term can follow different specifications about its time behavior considering that it 

can be fixed or variable across the years. Thus, if we have a time-varying specification proposed by 

Battese and Coelli (1992), uit would be: 

 

𝑢𝑖𝑡 = 𝑢𝑖 ∙ 𝑒
−(𝑡−𝑇𝑖) (3) 
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where Ti is the last period in the i-th panel,  is the decay parameter, and 𝑢𝑖~𝑁
+(𝜇, 𝜎𝑢

2). When  > 0, 

the degree of inefficiency decreases over time whereas when  < 0, the degree of inefficiency increases 

over time. On the other hand, when  = 0, the time-varying decay model reduces to the time-invariant 

model (uit = ui). However, all these specifications do not define the inefficiency effects in terms of 

specific-firm explanatory variables as the Battese and Coelli’s (1993, 1995) model does, in which the 

inefficiency effects, uit, in the stochastic frontier model (1) can be specified as: 

  

𝑢𝑖𝑡 = 𝑧𝑖𝑡𝛿 + 𝑤𝑖𝑡  (4) 

 

where zit is a set of explanatory variables,  an unknown vector of coefficients, and wit a set of random 

variables. These random variables are defined by the truncation of the normal distribution with zero 

mean and variance, 2, such that the point of truncation is −zit (Battese & Coelli, 1993). 

 There are several potential functions for the SPF, being the logarithmic transcendental (translog) 

and Cobb-Douglas production functions the most common. A translog function is given by: 

 

𝐿𝑛𝑌𝑖𝑡 = 𝛽0 + ∑ 𝛽𝑗𝑗 𝐿𝑛𝑋𝑖𝑡,𝑗 +
1

2
∑ ∑ 𝛽𝑗,𝑘𝐿𝑛𝑋𝑖𝑡,𝑗𝑘𝑗 𝐿𝑛𝑋𝑖𝑡,𝑘 + 𝑣𝑖𝑡 − 𝑢𝑖𝑡 (5) 

 

 On the other hand, the Cobb–Douglas function is a special case of the translog production function 

where all βj,k = 0. In this case we would have the following model: 

 

𝐿𝑛𝑌𝑖𝑡 = 𝛽0 + ∑ 𝛽𝑗𝑗 𝐿𝑛𝑋𝑖𝑡,𝑗 + 𝑣𝑖𝑡 − 𝑢𝑖𝑡 (6) 

 

 Both production functions are widely used to represent the technological relationship between the 

amounts of two or more inputs and the amount of output that can be produced by those inputs. The 

main advantages of the translog over the Cobb-Douglas production function is that it permits to pass 

from a linear relationship between the output and the production factors to a non-linear one (Pavelescu, 

2011). Besides, it does not assume any specific premises such as the perfect substitution between 

production factors as well as the perfect competition on the production factors’ market (Klacek, 

Vosvrda, & Schlosser, 2007; Pavelescu, 2011). 

 Of particular concern for economists and firms’ managers is to know whether or not the technology 

exhibits increasing, decreasing, or constant returns to scale. Thus, the technology is said to exhibit 

increasing, decreasing, or constant returns to scale if a proportional increase in all inputs results in a 
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more than, less than, or same proportional increase in output (Alam, 2011). The elasticity of production 

with respect to the factor j, which represents the percentage change in output derivable from the 

percentage change of factor input j, is equal to j in a Cobb-Douglas production function so that it is a 

constant value regardless the period of time, whereas for the translog function it is defined by: 

 

𝜀𝑗𝑡 = 𝜕𝐿𝑛𝑌𝑖𝑡 𝜕𝐿𝑛𝑋𝑗⁄ = 𝛽𝑗 + 𝛽𝑗𝑗𝐿𝑛𝑋𝑖𝑡,𝑗 +∑ 𝛽𝑗𝑘𝐿𝑛𝑋𝑖𝑡,𝑘𝑗≠𝑘  (7) 

 

 In this last case, however, elasticities are no longer fixed and identical for all the individuals and 

periods, and they also depend on the quantities of other input factors (Helali & Kalai, 2015). 

 

Methodology 

Data 

We have used an unbalanced panel data set composed of a representative sample of 73 European firms 

producing cultured sea bass and sea bream in the Mediterranean Sea over the period 2008 to 2017 (this 

sample, which includes the most important firms in the sector, represents around the 70% of the total 

producers according to our own estimations). We count for this analysis with 591 observations in total 

since there are 139 missing values. Data was obtained from the ORBIS and EUMOFA databases and 

all monetary figures are presented in USD. From an econometric point of view, the use of panel data 

has some advantages over cross section data in the estimation of stochastic frontier models since either 

it makes possible to relax the strong distributional assumptions made with cross sectional data or gives 

estimates of technical efficiency with more desirable statistical properties (Lachaal et al., 2004). 

 

Method 

Considering that our dataset includes a rather long period of observations (T = 10 years), a time-varying 

specification of inefficiency seems to be the most plausible choice. Consequently, we adopted the 

Battese and Coelli’s (1993, 1995) SPF model for panel data to estimate technical efficiency of 

European sea bass and sea bream firms. To perform the analysis, we used translog and Cobb-Douglas 

production functions in which the inefficiency effect (uit) has a truncated normal distribution with 

mean (Zit), where Zit is a set of covariates explaining the mean of inefficiency. The formulation of the 

empirical model employed in this research using a Cobb-Douglas SPF is specified as follows: 

 

𝐿𝑛(𝑌𝑖𝑡) = 𝛽0 + 𝛽1𝑌𝐸𝐴𝑅𝑡 + 𝛽2𝐿𝑛(𝐿𝐴𝐵𝑖𝑡) + 𝛽3𝐿𝑛(𝐶𝐴𝑃𝑖𝑡) + 𝑣𝑖𝑡 − 𝑢𝑖𝑡 (8) 
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where Ln denotes the natural logarithm; Yit is the production (tons) of cultured sea bass and sea bream 

of the i-th firm at the t-th time period estimated dividing each firm’s annual revenues between the 

yearly weighted average price of sea bass and sea bream in the national market of the firm; YEARt is a 

variable to account for a technological change and indicates the year of the observation involved 

(Battese & Coelli, 1995); LABit is the labor employed by each firm (number of employees); CAPit is 

the total capital invested by a firm measured by firms’ total assets (millions of USD); 2 and 3 are the 

output elasticities of labor and capital invested respectively; vit is a random error term to capture errors 

beyond the firm’s control which is distributed independently and identically N(0, v
2); and uit is the 

error term used to denote technical inefficiency in production process, which is presumed to be non-

negative and distributed independently of vit, such that uit is obtained by truncation (at zero) of the 

normal distribution with mean, zit, and variance, 2. The choice of variables introduced in the 

production frontier model has been subject to the production economic theory and data availability. 

 Simultaneously, the technical inefficiency values estimated with the specified SFP model were 

regressed using different specific-firm factors as follows (hereinafter it will be referred as the 

inefficiency effects model): 

 

𝑢𝑖𝑡 = 𝛿0 + 𝛿1𝑌𝐸𝐴𝑅𝑡 + 𝛿2𝑊𝐸𝑆𝑇𝑖 + 𝛿3𝐸𝐴𝑆𝑇𝑖 + 𝛿4𝑂𝑅𝐺𝑖 + 𝛿5𝐴𝐺𝐸𝑖𝑡 + 𝛿6𝑆𝐼𝑍𝐸𝑖𝑡 +𝑤𝑖𝑡  (9) 

 

where YEARt has been defined formerly and it is included in the inefficiency effects model (9) to verify 

the existence of a yearly trend in firms’ inefficiency;  WESTi and EASTi are dummy variables to control 

firms’ location,1 being WESTi = 1 when the i-th firm is located in the West Mediterranean Sea (Spain 

and France) and 0 otherwise and  EASTi = 1 when it is located in the East Mediterranean Sea (Cyprus 

and Greece) and 0 otherwise; ORGi is a dummy variable to differentiate the organic and no-organic 

system of production, being ORGi = 1 when the i-th firm is producing organic fish and 0 otherwise 

since organic production can be more or less efficient in the use of inputs in the production process 

(Lakner & Breustedt, 2015); AGEit is the experience of the i-th firm at the t-th time period measured 

as year t minus the firm’s year of establishment since the more years of experience operating in the 

market could have a positive effect on firms’ knowledge to employ the inputs what would increase 

their productivity (Misra & Misra, 2014; Iliyasu, Mohamed, & Terano, 2016); SIZEit is the dimension 

of the i-th firm at the t-th time period measured with the inverse of firm’s total annual revenues 

(millions of USD) so that larger firms are more efficient because they would obtain increasing 

 
1 This variable can be a proxy for possible differences in general physical and environmental conditions (Tzouvlekas, 

Pantzios, & Fotopoulos, 2001). For example, the average temperature of the sea, which is higher in the East Mediterranean 

Sea, is a recognized factor that influences positively in fish growth (Llorente & Luna, 2013). 
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production returns related to a higher level of quality in the making decisions or in the organization of 

the production process (Alvarez & Crespi, 2003; Misra & Misra, 2014; Rezitis & Kalantzi, 2016).2 

Consequently, the intercept of the model, 0, captures the average efficiency of those firms located in 

the Middle Mediterranean Sea (Croatia, Italy, and Slovenia) that are not producing organic fish. 

 Maximum likelihood (ML) estimates of the parameters of the stochastic frontier and the 

inefficiency effects models were obtained simultaneously using the sfpanel command in the STATA 

statistical software package (version 12.0) developed by Belotti, Daidone, Ilardi, and Atella (2013). 

The statistical properties of these estimates are explicitly discussed in Battese and Coelli (1993). 

 

Analysis of results 

Sample characteristics 

Descriptive statistics of the variables used to estimate the SPF (8) and the inefficiency effects (9) 

functions are presented in Table 2. The average production (output) of cultured sea bass and sea bream 

in our sample was 3,776 tons with a range between 2 and 58,931 tons so that we have employed a 

sample with a wide distribution of the dependent variable in which we have micro, small, medium, as 

well as large firms. Regarding factor inputs, the average of labor employed by the sampled firms is 

around 77 employees and the invested capital (total assets) is 34.6 million of USD. As for the variables 

to explain technical inefficiency, the 26% of the sample is composed of firms located in the Western 

Mediterranean Sea (France and Spain) and the 42% is located in the East Mediterranean Sea (Cyprus 

and Greece). Moreover, the 29% of firms is producing organic sea bass and sea bream. Finally, the 

average years of experience of these firms is almost 17 years and the average firms’ size, measured by 

the inverse of their annual revenues (in millions of USD), is 0.78. 

 

------------------------------------------- 

Table 2 about here 

------------------------------------------- 

 

Estimates of the SPF 

Robust maximum-likelihood (ML) estimates of a time-variant SPF model with a truncated normal 

inefficiency distribution for the Cobb-Douglas and translog production functions obtained with a 

sample of 73 European firms producing cultured sea bass and sea bream in the Mediterranean Sea are 

 
2 We have used the inverse of income instead of income directly, or other transformations (logarithmic or power), because 

it has been the only option to obtain the parameter estimates of our model since the estimation method required a 

convergence of the different solutions (iterative process). 
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presented in Table 3. Our results show that the two production functions are strongly significant (p < 

0.01) with a 2 value in the likelihood ratio test of 1,599.92 and 4,275.35 respectively. Next, we have 

tested if there is significant technical inefficiency using the null hypothesis H0:  = 0, which tests 

whether the observed variations in efficiency are simply random or systematic. If  is zero, the 

differences in the production will be entirely related to statistical noise, while if  is different to zero 

reveals the presence of technical inefficiency. The estimate of parameter lambda was equal to 

  = 3.7169 (p < 0.01) for the Cobb-Douglas production function and   = 4.6050 (p < 0.01) for the 

translog function. This result indicates the presence of inefficiency in Mediterranean production of 

cultured sea bass and sea bream, indicating that the difference between the observed output and frontier 

output is not due to the statistical variability alone but also due to technical inefficiency. Therefore, a 

high proportion of the output variance is explained by the existing differences in the degree of technical 

inefficiency in these firms (78.80% in the Cobb-Douglas production function and 82.16% in the 

translog form). 

 Moreover, according to the results presented in Table 3, in the Cobb-Douglas production function 

all slope coefficients have the positive expected signs and they are highly significant (p < 0.01). 

Furthermore, the sum of all slope coefficients in the Cobb-Douglas function is equal to 0.9619 so that 

we can reject the null hypothesis H0: 2 + 3 = 1 (2
1 = 8.38, p < 0.01), revealing that the firms we 

have used in our analysis are operating, on average, at decreasing returns to scale. The variable of 

capital (CAP) has the highest elasticity (3 = 0.6587), whereas labor (LAB) is the variable with the 

lowest elasticity (2 = 0.3032). In the case of the translog production function, four parameters were 

found to be statistically significant at the 1% significance level. In contrast, the coefficient of the trend 

variable (YEAR) was not significantly different to zero in any case, so that we cannot accept the 

hypothesis of technical change. The choice of the model that better fits to the data is done utilizing the 

likelihood-ratio (LR) test.3 Regarding this point, it can be inferred that the translog function is the most 

appropriate functional form since the null hypothesis H0: βj,k = 0 was rejected (2
3 = 38.82, p < 0.01). 

 

------------------------------------------- 

Table 3 about here 

------------------------------------------- 

 

 
3 The likelihood-ratio test statistic, LR = −2[Ln{L(H0)} – Ln{L(H1)}] where L(H0) and L(H1) are the values of the likelihood 

function under the null (H0) and the alternative hypothesis (H1) respectively, has approximately a chi-square (2) 

distribution with the degrees of freedom given by the number of restrictions (parameters equal to zero) imposed in the null 

hypothesis. 
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Determinants of TE 

The impact of any specific-firm factor on firms’ inefficiency, estimated through the coefficients , are 

presented in Table 3 as well. First of all, the estimated coefficient of the yearly trend (1) is positive, 

although it is not significant in any case. In consequence, we cannot accept the existence of a declining 

trend in technical efficiency throughout the ten-year period. 

 By contrast, the results of Table 3 show that the estimated coefficients of the dummy variables 

included in the inefficiency effects model to control the firms’ location are both negative and 

statistically significant, being the coefficient of the EAST variable (3) larger than the coefficient of 

the WEST variable (2). Therefore, firms located in the East Mediterranean Sea appear to be more 

efficient than firms located in other Mediterranean zones, being the firms located in the middle of the 

Mediterranean Sea the most inefficient on average. According to this finding, we can infer that some 

environmental factors related to the locations of firms (e.g., sea temperature) could be impacting 

positively on firms’ productivity. A similar result to this one was also reported by Llorente and Luna 

(2013). Moreover, the positive sign of the coefficient associated with the firm’s size (6) is highly 

significant (p < 0.01) what implies that large firms are comparatively more efficient than small firms 

since the size variable has been measured with the inverse of firms’ annual revenues. 

 The rest of the estimated coefficients about the firm’s production type (4) and experience (5) are 

both negative, indicating that these factors led to decrease technical inefficiency. Thus, the results of 

Table 3 indicate that the production system of those firms producing organic fish has a positive impact 

on firms’ productivity, although this effect is not statistically significant with any production function. 

Therefore, we have not found any empirical evidence that organic production could be more inefficient 

than non-organic. The same result was obtained from firms’ experience. Thus, the evidence obtained 

shows that firms’ productivity increases when firms have more years of experience, although this 

effect is neither statistically significant with any production function. 

 

TE values 

The annual evolution of firms’ average estimates of TE values in the period 2008-2017 is showed in 

Figure 1. In Figure 1 we can observe that the annual TE mean presents two different patterns during 

the last decade with a very smooth decreasing linear trend between 2008-2014 (the TE mean decreased 

from 0.936 in 2008 up to 0.891 in 2014), and a small increase of it after 2014 (the TE mean grew up 

to 0.910 three years later). Hence, the average efficiency of European firms producing cultured sea 

bass and sea bream in the Mediterranean Sea has been always over the 89% throughout the ten-year 

period. 
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------------------------------------------- 

Figure 1 about here 

------------------------------------------- 

 

The distributions of firms’ average estimates of TE values in decile range and by country are presented 

in Tables 4 and 5 respectively. Regarding the distribution of TE values by deciles (Table 4), we observe 

a concentration of these values in the superior deciles whereas there is only one firm operating below 

the 60 per cent of technical efficiency. On the other hand, the majority of firms presents a productivity 

over 0.90 (the 61.6% of the sampled firms). Therefore, we can infer that the average level of 

productivity of European firms producing cultured sea bass and sea bream in the Mediterranean Sea 

was very high throughout the 2008-2017 period with a TE mean value of 0.891 (see Table 5). 

 

------------------------------------------- 

Table 4 about here 

------------------------------------------- 

 

 On the other hand, the analysis of TE values by country (Table 5) shows a wide variation in the 

average of the estimated technical efficiencies among the European countries, ranging between 0.820 

of Croatia and 0.991 of Cyprus. At the same time, some countries present a wide distribution of their 

TE values what can be considered a wide room for improvement in their technical efficiency. Thus, 

TE values of Italian firms vary from 0.594 to 0.988, with a mean value of 0.843, as well as the TE 

values of Croatian and Greek firms with productivity ranges of 0.276 and 0.254 respectively. On 

average, Cypriot firms seem to be the most productive, with a TE mean of 0.991. These firms also 

present a very short variation in their technical efficiency (TE range = 0.063). However, Croatian and 

Slovenian firms seem to be, on average, the least productive with a TE mean of 0.820 and 0.830 

respectively. According to the findings presented in our analysis, the location (East Mediterranean 

Sea) and the larger size are two factors that are impacting positively in the productivity of Cypriot and 

Greek firms (they are located in the East Mediterranean Sea and have an average size of 0.10 and 0.39 

respectively), whereas they are impacting negatively in the technical efficiency of Croatian and 

Slovenian firms (they are located in the Middle Mediterranean Sea and have an average size of 1.54 

and 1.15 respectively). 

 

------------------------------------------- 
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Table 5 about here 

------------------------------------------- 

 

Conclusions 

The purpose of this work has been twofold: first, we have evaluated the technical efficiency of 

European producers of cultured sea bass and sea bream in the Mediterranean Sea in the last decade, 

from 2008 to 2017, using the stochastic production frontier (SPF) approach and, second, we have 

analyzed the effect of some specific-firm factors such as location, production type (organic), years of 

experience, and size on firms’ inefficiency. To do this analysis, we have used an unbalanced panel 

composed of a representative sample of 73 firms from 7 European countries (Croatia, Cyprus, France, 

Greece, Italy, Slovenia, and Spain) producing sea bass and sea bream in the Mediterranean Sea. 

Economic data for this analysis was obtained from the ORBIS and EUMOFA databases. Maximum 

likelihood (ML) estimates of the parameters of the stochastic frontier and the inefficiency effects 

model were obtained simultaneously employing the Battese and Coelli’s (1993, 1995) SPF model for 

panel data. 

 According to the results obtained with the Cobb-Douglas production function, the firms used in our 

analysis were operating at decreasing returns to scale although they were operating very close to the 

unity. Furthermore, capital was the input factor with the highest elasticity, being labor the factor with 

the lowest elasticity. We have not also found empirical evidence of technical change in factors’ 

productivity. 

 In the last decade (2008-2017), the majority of European firms producing cultured sea bass and sea 

bream in the Mediterranean Sea presented a productivity over 90% with a TE mean value of 89.1%. 

On average, Cypriot and Greek firms seem to be the most productive with a TE mean value of 99.1% 

and 93.6% respectively, whereas the Croatian and Slovenian firms seem to be the least productive with 

a TE mean value of 82% and 83% respectively. Our findings also show a wide variation in the average 

of the estimated technical efficiencies among the European countries or even within some countries 

(e.g., Italy) what can be considered a wide room for improvement in firms’ technical efficiency. 

Moreover, we have not observed any increasing or decreasing trend in technical efficiency throughout 

the analyzed period of research. 

 Finally, we have also found evidence that technical efficiency of those firms that are farming sea 

bass and sea bream in the Mediterranean Sea is positively related to their location, probably due to 

better physical and environmental conditions (e.g., firms located in the Eastern Mediterranean Sea 

presented, on average, better efficiency values), and size (increasing production returns related to a 

higher level of quality in the making decisions or in the organization of the production process). Thus, 
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the location (East Mediterranean Sea) and larger size of Cypriot and Greek firms are two factors 

impacting positively on their technical efficiency, whereas the location (Middle Mediterranean Sea) 

and smaller size of Croatian and Slovenian firms are impacting negatively on it. 
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Table 1. European production of cultured sea bass and sea bream (2017) 

Country 
Sea bass Sea bream Total 

Tn % Tn % Tn % 

Croatia 5,616 53.8 4,830 46.2 10,445 6.0 

Cyprus 2,254 31.3 4,950 68.7 7,204 4.1 

France 1,413 47.9 1,534 52.1 2,947 1.7 

Greece 44,285 44.2 55,948 55.8 100,232 57.6 

Italy 7,039 49,5 7,173 50.5 14,212 8.2 

Malta 59 2.4 2,458 97.6 2,518 1.4 

Portugal 701 40.3 1,038 59.7 1,739 1.0 

Slovenia 80 100.0 0 0.0 80 0.0 

Spain 17,656 50.9 17,005 49.1 34,661 19.9 

Total 79,102 45.5 94,936 54.5 174,038 100.0 

Source: EUMOFA using EUROSTAT data. 
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Table 2. Sample descriptive statistics (period 2008-2017) 
Variable N Mean SD Min. Max. 

Y = Cultured sea bass and sea bream production (tons) 591 3,776 8,430 2 58,931 

LAB = Labor (number of employees) 591 77 175 1 1,150 

CAP = Capital (total assets, mill. USD) 591 34.6 82.8 0.3 692.0 

YEAR = Time trend (year) 591 2,012.49 2.64 2,008 2,017 

WEST = Firms located in the West Mediterranean Sea (dummy) 591 0.26 0.44 0 1 

EAST = Firms located in the East Mediterranean Sea (dummy) 591 0.42 0.49 0 1 

ORG = Production type (dummy) 591 0.29 0.45 0 1 

AGE = Firm’s experience (years) 591 16.71 7.72 0 41 

SIZE = Firm’s size (inverse of annual revenues, 1/mill. USD) 591 0.78 4.16 0 83.33 
Source: authors’ elaboration using EUMOFA and ORBIS databases. 
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Table 3. Maximum Likelihood estimates of the SPF and inefficiency effects models for cultured sea 

bass and sea bream in the Mediterranean Sea 
Variable Parameter Cobb-Douglas 

production function 

Translog 

production function 

Coefficient t-ratio Coefficient t-ratio 

Stochastic frontier model      

Constant 0 6.5436 0.30 22.1466 1.08 

YEAR 1 − 0.28 −0.0096 0.92 

Ln(LAB) 2 0.3032*** 5.94 1.4366*** 5.65 

Ln(CAP) 3 ***  −  

Ln(LAB)2 4   ***  

Ln(CAP)2 5   ***  

Ln(LAB)  Ln(CAP) 6   −***  

Inefficiency effects model      

Constant  −63.1363 0.70 −18.8925 0.21 

YEAR   0.71  0.23 

WEST  −1.1670*** 3.28 −1.0588*** 3.04 

EAST  −** 2.21 −** 2.27 

ORG  −0.0702 0.26 −0.1894 0.64 

AGE  −0.0292 1.40 −0.0321 1.47 

SIZE  0.1059*** 5.44 0.1046*** 5.71 

Variance parameters      

Sigma u u
2 0.8212*** 4.47 0.8526*** 4.50 

Sigma v v
2 0.2209*** 11.27 0.1851*** 10.46 

Lambda  3.7169*** 19.83 4.6050*** 24.29 

Log-likelihood  −397.47  −  

Likelihood ratio test (Wald chi-square)  1,599.92***  4,275.35***  

Number of observations  591  591  

Number of firms  73  73  

LR test: all j,k = 0  38.82***    

Notes: The Battese and Coelli’s (1993, 1995) model has been used to estimate both production functions. t-ratios based on 

cluster-robust standard errors.  = u
2/v

2. LR = Likelihood-ratio test. 
***Significance at the 1% level. **Significance at the 5% level. *Significance at the 10% level. 
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Table 4. Distribution of firms’ average estimates of TE values in decile range 
TE value Frequency % Cumulative % 

Below 0.60 1 1.4 1.4 

0.60 – 0.70 3 4.1 5.5 

0.70 – 0.80 4 5.5 11.0 

0.80 – 0.90 20 27.4 38.4 

Over 0.90 45 61.6 100.0 

Total 73 100.0 - 

Note: TE values obtained with the translog production function. 
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Table 5. Distribution of firms’ average estimates of TE values by country 
Country Number 

of firms 

TE distribution by country 

Mean Min. Max. Range 

Croatia 7 0.820 0.670 0.946 0.276 

Cyprus 3 0.991 0.964 1.026 0.063 

France 3 0.888 0.864 0.922 0.058 

Greece 27 0.936 0.750 1.004 0.254 

Italy 15 0.843 0.594 0.988 0.394 

Slovenia 2 0.830 0.750 0.910 0.160 

Spain 16 0.929 0.812 1.00 0.191 

All countries 73 0.891 0.594 1.026 0.432 

Note: TE values obtained with the translog production function. 
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Figure 1. Annual evolution of firms’ average estimates of TE values 

Note: TE values obtained with the translog production function. 
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