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Abstract:  

The nonlinear effects in gearboxes are a key concern to describe accurately their dynamic 

behavior. This task is difficult for complex gear systems such as planetary gearboxes. The main 

aim of this work is provide responses to overcome this difficulty especially in non-stationary 

operating regimes by investigating a back-to-back planetary gearbox in steady conditions and 

in run up regime. 

The nonlinear Hertzian contact of teeth pair is modeled in stationary and non-stationary run-up 

regime. Then it is incorporated to a torsional model of the planetary gearbox through the 

different mesh stiffness functions.   

In addition, motor torque and external load variation are taken into account. The nonlinear 

equations of motion of the back-to-back planetary gearbox are computed through the Newmark-

β algorithm combined with the method of Newton-Raphson. An experimental validation of the 

proposed numerical model is done through a test bench for both stationary and run-up regimes. 

The vibration characteristics are extracted and correlated to speed and torque. Time frequency 

analysis is implemented to characterize the transient regime during run-up. 

Keys words: planetary gear, non-linearity, run up regime, stationary condition 
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Nomenclature  

αm The operating pressure angle 

F The external applied force 

G Shear modulus 

sh Shear factor 

Ii The inertia 

Ai Area moment 

Si The cross section of tooth 

ν The Poisson ratio 

E Young’s modulus 

W Tooth width 

Sb The slip at breakdown 

Tb the torque at breakdown,  

a1 and b1 Motor constant properties 

fs Sun rotational frequency 

Zs Sun teeth number 

Zr Ring teeth number 

s The proportional drop in the speed  

Notation  

HS Hertzian Stiffness 

BS Bending Stiffness 

FFS Fillet Foundation Stiffness 

TE Transmission Error 

FEM Finite Element Method 
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1-Introduction: 

Planetary gears are operated in several fields such as wind turbine and hybrid automotive where 

the performance of the whole system particularly depends on the split unit [1-3]. Many 

researchers proposed numerical models of planetary gears in order to ameliorate its dynamic 

behavior [4-13] and to have a better understanding of the vibratory signature, allowing the 

development of more efficient fault detection and diagnostic techniques [14-18]. 

The variable speed and load are the main non-stationary conditions in which planetary gears 

are usually running. These conditions externally excite the planetary gearbox [19]. For this, 

machinery dynamic behaviour for varying speed conditions is a very attractive research topic. 

Chaari et al., [20] studied planetary gearbox dynamic behaviour running under variable loading 

which induce variability in the motor speed. Obtained results are presented by using the STFT 

(Short Time Fourier Transform). Zimroz et al. [21] proposed an automatic time-frequency 

segmentation algorithm to highlight effects of load and speed varying conditions on planetary 

gearbox dynamics. Vicuña and Chaari [22] carried out running experiments of planetary 

gearbox under sinusoidal variable load to which the input speed is sensitive. They correlated 

these measurements with numerical results obtained from a dynamic model in which the gear 

mesh stiffness depends on the input speed. Lopatinskaia et al., [23, 24] proposed to analyze the 

vibration signal in the angle domain. Meltzer and Ivanov [25, 26] processed signals of a three-

stage planetary gearbox test bench through time quefrency techniques to detect tooth defects 

during start up and run down. Zimroz et al., [27] investigated the variable input wind power 

effect on gearbox vibrations of a wind turbine. They presented the STFT of the gearbox to show 

the frequency modulations. Viadero et al. [28] numerically studied the behavior of an offshore 

wind turbine gearbox which is subject to fast run-up and emergency run-down. During start up, 

the gear mesh stiffness between gears is modeled with sinusoidal functions where meshing 

period decreases in time. Hammami et al., [29-30] studied the planetary gearbox dynamic 

behavior during start up and stop regimes [29] and under variable speed [30]. The gear mesh 

stiffness sun-planets and planets-ring are modeled with rectangular waves respecting the 

meshing phase between planets. In these works [29, 30], the meshing period is decreasing when 

speed is increasing. 

These cited works on time varying speed gearbox used linear gear mesh stiffness to model the 

teeth gear contacts which are the main internal excitations. 

In general, the teeth contact are modeled by the gear mesh stiffness functions which are 

computed by considering only the teeth HS or considering both HS, BS of tooth and FFS. 
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In many researchers’ works, the nonlinear contact between teeth is taken into account. In fact, 

Zhou et al., [31] investigated the nonlinear dynamic effects of backlash, friction and load of 

gear-rotor-bearing system through a lateral-torsional model and they highlighted the quasi-

periodic behavior due to these effects. The sixteen d-o-f responses are computed by using 

Runge-Kutta algorithm. In addition, Chen et al., [32] computed the non-linear vibration 

response of a face gearbox which is excited by the mesh stiffness, backlash and stiffness of 

supports. They also used Runge-Kutta algorithm to compute the non-linear equation of motion. 

Fernandez et al., [33] used the hertzian contact theory and the FEM method to compute the load 

TE and the mesh stiffness function of spur gear.  

The modeling of the non-linear planetary gear system is extensively studied nowadays. Guo et 

al. [34] examined the stability and the nonlinear behavior of wind turbine planetary gearbox by 

using the FEM and lumped parameters methods in which the corresponding dynamic response 

is computed with the help of the extended harmonic balance method. They correlated the 

analytical and the numerical results to those obtained experimentally. Zhao and Ji [35] have 

concluded that the external excitation and the mesh stiffness are the main significant factors 

which have influence on the nonlinear dynamic behavior of wind turbine gearbox which is 

computed by the numerical integration method. Guo and Parker [36] showed that the non-

linearity caused by bearing clearance can decrease the resonances in helicopter gear sets. Also, 

the dynamic behavior of spur planetary gear in different backlashes is investigated by Liu et al., 

[37] through a lumped-parameter model which considered the nonlinearity introduced by the 

gravity effect and bearing oil film. They used Newmark integration to calculate the dynamic 

responses. Nevertheless, dynamic models of planetary gears should include a non-linear mesh 

stiffness function and gear contact loss nonlinearity [38-41]. The influence of nonlinear jumps 

and the chaotic motions on dynamic behavior of planetary gearbox is studied by Ambarisha and 

Parker [42] who correlated their analytical results with FEM results.  

Most nonlinear cited models are exploited under stationary operation where the speed is 

constant and used Runge-Kutta method or Newmark integration to compute the nonlinear 

dynamic response. Although, Bouchaala et al., [43] investigated the effect of nonlinear Hertzian 

gear contact on the vibration behavior of one-stage spur gearbox in acyclism regime, their work 

presents only a theoretical contribution without any experimental validation.  

In the concrete conditions, the contact between teeth in planetary gearbox needs to be 

considered in the dynamic models especially when the gearbox is running in the non-stationary 

conditions. Thus, the non-linear hertzian contact between teeth is a basic condition to refine the 

gear dynamic analysis and to allow a better diagnosis when the driven speed or the applied 
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loads are variable. The aim of this work is to check the influence of considering non-linear (HS) 

between mating teeth on the vibration behavior of planetary gearbox. A corresponding 

nonlinear model is developed to study this effect. Using Newmark-Newton Raphson integration 

method, the dynamic response is computed under two regimes: stationary conditions and 

variable speed conditions and the example of run-up regime will be studied in this case. 

Numerical results are compared to those obtained from experience through a planetary gearbox 

test bench. 

2- Test bench description: 

The test bench is configured in a two-spur identical planetary gear with 3 planets (Fig. 1).  

The two gear sets are linked in a back-to-back configuration through a rigid shaft and a hollow 

shaft respectively called sun's shaft and carrier shafts. This special configuration allows 

minimizing costs and improving energy efficiency. The test gear set is the main planetary gear 

set in which output power from test carrier is reintroduced to the input test sun with the help of 

the reaction gear set [47]. Moreover, an external torque can mechanically be applied to the 

reaction ring gear by adding masses on the arm. 
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(a) 

 

(b) 

Fig. 1 (a) Planetary gearbox test bench (b) instrumentation layout 
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The driving electric motor is connected to the reaction gear with a rigid shaft and it is 

controlled by a variable frequency converter which is configured with “STARTER” software. 

Four accelerometers are fixed on each ring. In addition, an optic tachometer recorded the 

instantaneous angular velocity of the hollow shaft. The signals coming from accelerometers 

and tachometer are acquired by an acquisition LMS SCADAS 316 system. 

Additional key parameters of this test bench are illustrated in table 1. Further details about the 

test bench can be found in [44-46]. 

 

Table 1 Basic dimensions of planetary gear 
  Ring Planet (3) Sun Carrier 

Number of teeth 65 24 16 - 

Mass (Kg) 28.1 1.225 0.485 3.643 

Moment of inertia (Kgm2) 697767 · 10−6 2045 · 10−6 356 · 10−6 21502 · 10−6 

Base diameters (m) 0.2494 0.0921 0.0614 0.1728 

Tip diameters (m) 0.2579 0.1006 0.0699 0.1813 

Module (mm) 4.23  

Pressure angle (rad) 0.4621  

 

3-Modelling of gear mesh-stiffness: 

The gear mesh stiffness of both sun-planets and ring-planets are modeled by putting in series 

the different stiffness (figure 2): BS “Kb”, the FFS “Kf” and the HS “Kh”. 

 

 

 

Fig. 2 Nonlinear mesh stiffness sun-planet 1 and ring-planet 1 
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Where i=r,t (r for the reaction gear set and t for the test gear set), i=s, r (s for the sun gear and r 

for the ring gear) and k=1..3 (planet order). The variable mesh stiffness Ki(t) can be quantified 

based on the procedure given by Velex and Flamand [40]. The mesh period is defined by: 
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1-3-Bending deflection 
 
Based on the results obtained by Cornell [48], the bending deflection δb is expressed as: 
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ei is the considered segment width of the tooth which is supposed segmented uniform cantilever 

beam. di is the distance between the considered segment and the cross point between the tooth 

symmetric line and the line of action. 

E′, Ii and Ai are defined as following : 
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The corresponding (BS) can be obtained by: 

𝑘௕ =
ி
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                                                                                                                                     (7) 

 

2-3-Fillet foundation deflection 
 
It is modeled according to Muskhelishvili theory [49]: 
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Where Sf is the dedendum surface of the tooth and uf is the distance between the dedendum 

circle and the crossing point between the tooth symmetric line and the line of action. 

L*, M*, P*and Q* are polynomial functions defined by Sainsot et al. [50]. 
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hfi = rf/rint, rf and f are respectively the radius of the dedendum circle and the dedendum angular 

pitch of the tooth. 

The (FFS) can be deduced by: 

𝐾௙ =
ி

ఋ೑
                                                                                                                                   (10) 

3-3-Contact deflection 

The following equation presents the Hertzian elastic deformation in the line contact derived by 

Harsha [51]: 

𝛿௛ =
ସ.଴ହிబ

బ.వమఱ

ଵ଴ఱ௟೐೑೑
బ.ఴఱ                                                                                                                          (11) 

Where leff is the length of contact between teeth. The deflection contact force is indicated by: 

𝐹௛ = 56065.703𝑙௘௙௙
଴.ଽଶ𝛿௛

ଵ.଴଼                                                                                                     (12) 

Thus, the non-linear deflection stiffness is given by: 

𝐾௛ =
ி೓

ఋ೓
= 56065.703𝑙௘௙௙

଴.ଽଶ𝛿௛
଴.଴଼                                                                                            (13) 

4-Numerical model: 

A torsional model corresponding to the test bench is developed [47] and it is shown in Fig.3. 

This paper assumes that all planetary gears component has a rotational rigid motion. 

The model consisted of two similar planetary gear sets called reaction gear and test gear 

respectively. The reaction ring is located near the motor, it is characterized as a free ring. 

Two rigid shafts were used to link the inner parts (suns and carriers) and a rigid housing was 

used to link the external parts (ring). The sun reaction gear is connected to input shaft and the 

free ring is connected to a rigid arm and extorted by the external torque. 

The mass and inertia of each components were denoted mc, Ic, ms, Is, mr, Ir, mp1, Ip1, mp2, Ip2, 

mp3, Ip3 for the carrier, the sun, the ring and the three planets respectively. 

The planets were linked to the reaction ring by the ring planets mesh stiffness Krr1 Krr2 and Krr3 

and to the reaction sun by the sun planets mesh stiffness Ksr1, Ksr2 and Ksr3 respectively. The 

same functions were used in the test gear. They are Krt1 Krt2 and Krt3ring planets mesh stiffness 

and Kst1, Kst2 and Kst3 sun planets mesh stiffness. 

The sun's shaft and the carrier's shaft are respectively modeled by a torsional stiffness kst and 

kct. 
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Fig. 3 Planetary gear torsional model 

The corresponding equation of motion is: 

𝑀𝑞̈ + 𝐶𝑞̇ + 𝐾௖𝑞 + 𝐹௡௟ = 𝐹௘௫௧(𝑡)                                                                                           (14) 

Only the rotational movements were considered.  

𝑞 = {𝜃௖௥ 𝜃௥௥ 𝜃௦௥ 𝜃௣ଵ௥ 𝜃௣ଶ௥ 𝜃௣ଷ௥ 𝜃௖௧ 𝜃௥௧ 𝜃௦௧ 𝜃௣ଵ௧ 𝜃௣ଶ௧ 𝜃௣ଷ௧}                (15) 

q is the d-o-f vector of the system, M denotes the mass matrix. 
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൨                                                                                                                       (16) 
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The damping matrix "C" is defined as: 

𝐶 = 𝛼𝑀 + 𝛽𝐾                                                                                                                        (21) 

and are two constants. 

The external torque vector 𝐹௘௫௧ is expressed as: 

𝐹௘௫௧ = {0 0 𝐶௠(𝑡) 0 0 0 0 0 𝐶௥(𝑡) 0 0 0}                                            (22) 

The nonlinear force induced by the HS and expressed as following: 

𝐹௡௟ = {𝑋}𝐾௜(𝑡){𝑋}
்{𝑞} = {𝑋}𝐾௜(𝑡)𝛿                                                                                    (23) 

This force is defined as: 

𝐹௡௟ = {𝐹௡௟,௥ 𝐹௡௟,௧}்                                                                                                              (24) 

𝐹௡௟,௝(𝑡) = {0 𝐹௥௝(𝑡) 𝐹௦௝(𝑡) 𝐹௣ଵ௝(𝑡) 𝐹௣ଶ௝(𝑡) 𝐹௣ଷ௝(𝑡)}்                                           (25) 

𝐹௥௝(𝑡) = −∑ 𝐾௥௜௝
௡
௜ୀଵ (𝑡)𝛿௥௜

௝
(𝑡){𝑟ଵ௜ 𝑟ଶ௜ 𝑟ଷ௜}்                                                                     (26) 

𝐹௦௝(𝑡) = −∑ 𝐾௦௜௝
௡
௜ୀଵ (𝑡)𝛿௦௜

௝
(𝑡){𝑠ଵ௜ 𝑠ଶ௜ 𝑠ଷ௜}்                                                                    (27) 
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𝐹௜௝(𝑡) = −𝐾௥௜௝(𝑡)𝛿௥௜
௝ (𝑡){𝑟ସ௜ 𝑟ହ௜ 𝑟଺௜}்−𝐾௦௜௝(𝑡)𝛿௦௜

௝
(𝑡){𝑠ସ௜ 𝑠ହ௜ 𝑠଺௜}் , avec i=1..3       (28) 

 

The tooth deflection components are highlighted in table 2. 

Table 2 Tooth deflection components 

Coefficients si Coefficients ri 

s1i=s2i=s3i=-rbr r1i=r2i=r3i=-rbp 

s4i=s5i=s6i=rbs r4i=r5i=r6i=rbp 

 

With: 

{𝑋} = {𝑟௕௖௥ 𝑟௕௥௥ 𝑟௕௦௥ 𝑟௕௣ଵ௥ 𝑟௕௣ଶ௥ 𝑟௕௣ଷ௥ 𝑟௕௖௧ 𝑟௕௥௧ 𝑟௕௦௧ 𝑟௕௣ଵ௧ 𝑟௕௣ଶ௧ 𝑟௕௣ଷ௧}்        (29) 

The TE “δ” is defined by Velex and Flamand [26]: 

𝛿௥௜
௥ = 𝑟௕௥௥𝜃௥௥ + 𝑟௕௜௥𝜃௜௥                                                                                                           (30) 

𝛿௥௜
௧ = 𝑟௕௥௧𝜃௥௧ + 𝑟௕௜௧𝜃௜௧                                                                                                            (31) 

𝛿௦௜
௥ = 𝑟௕௦௥𝜃௦௥ + 𝑟௕௜௥𝜃௜௥                                                                                                           (32) 

𝛿௦௜
௧ = 𝑟௕௦௧𝜃௦௧ + 𝑟௕௜௧𝜃௜௧                                                                                                            (33) 

 

Characteristics of the mechanical transmissions are shown on table 3. 

 

Table 3 Model parameters. 

Torsional Shaft Stiffness (Nm/rd) 

Sun 3.73 · 104 

Carrier 8.38 · 105 

Gear Mesh stiffness[N/m] 
Sun-planets 3.5.108 

Planets-ring 4.5.108 

 

The equation of motion is computed using the classical Newton Raphson method coupled with 

the implicit Newmark algorithm. 

Before applying the Newmark method, we need firstly to compute the initial value 

correspondent to 0 0 0, ,X X X  .Then, the equation of motion (14) is transformed to an 

approximated version (t= tn+1): 

𝑀{𝑞̈}௡ାଵ + 𝐶{𝑞̇}௡ାଵ + 𝐾௖{𝑞}௡ାଵ + 𝐹௡௟{𝑋}௡ାଵ = {𝐹௘௫௧(𝑡)}௡ାଵ                                            (34) 

Firstly, the initial displacement, velocity and acceleration are introduced: 
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𝑑଴ = 𝑞(0), 𝑣଴ = 𝑞̇(0) , 𝑎଴ = 𝑞̈(0)   

{𝑋}௜ାଵ = {𝑋}௜ + ∆𝑡൛𝑋̇ൟ
௜
+ 𝑏∆𝑡ଶ ቂቀ

ଵ

ଶ௕
− 1ቁ ൛𝑋̈ൟ

௜
+ ൛𝑋̈ൟ

௜ାଵ
ቃ                                                   (35) 

൛𝑋̇ൟ
௜ାଵ

= ൛𝑋̇ൟ
௜
+ ∆𝑡(1 − 𝑎)൛𝑋̈ൟ

௜
+ 𝑎∆𝑡൛𝑋̈ൟ

௜ାଵ
                                                                       (36) 

 

t denotes the time step which is chosen as 10-4 second. 

Extracting ൛𝑋̈ൟ
௜ାଵ

from equation (35): 

൛𝑋̈ൟ
௜ାଵ

=
ଵ

௕∆௧మ
ቂ{𝑋}௜ାଵ − {𝑋}௜ − ∆𝑡൛𝑋̇ൟ

௜
ቃ − ቀ

ଵ

ଶ௔
{𝑋}௜ − 1ቁ ൛𝑋̈ൟ

௜
                                             (37) 

(37) and (38) gives: 

[𝐾ഥ]{𝑋}௜ାଵ = {𝐹ത}௜ାଵ                                                                                                                (38) 

Where  

{𝐹ത}௜ାଵ = {𝐹}௜ାଵ + [𝑀] ቀ
ଵ

௕∆௧మ
{𝑋}௜ +

ଵ

௕∆௧
൛𝑋̇ൟ

௜
+ ൬ቀ

ଵ

ଶ௕
− 1ቁ൰ ൛𝑋̈ൟ

௜
ቁ + [𝐶] ቀ

ଵ௔

௕∆௧
{𝑋}௜ +

ቀ
௔

௕
− 1ቁ ൛𝑋̇ൟ

௜
+ ቀ

∆௧

ଶ
ቁ ቀ

௕

௔
− 1ቁ ൛𝑋̈ൟ

௜
ቁ                                                                                         (39) 

So, the residue is computed as follows: 

𝑅 = [𝐾ഥ]{𝑋}௜ାଵ + 𝐹௡௟ − {𝐹ത}௜ାଵ                                                                                              (40) 

To ensure the convergence of the Newton Raphson method coupled with the implicit Newmark 

algorithm, R should be higher than ε (R> ε). ε is a small predefined value. 

If this criterion is not verified, the residue R is defined at the k+1 iteration by a Taylor 

expansion: 

𝑅௜ାଵ
௞ାଵ = 𝑅௜ାଵ

௞ +
డோ

డ௤
ቚ
௜ାଵ

௞

∆𝑞                                                                                                       (41) 

𝑅௜ାଵ
௞ାଵ

 must be zero, so ∆𝑞 is defined as: 

∆𝑞 = ൬
డோ

డ௤
ቚ
௜ାଵ

௞

൰
ିଵ

൫−𝑅௜ାଵ
௞ ൯                                                                                                      (42) 

 

{𝑋}௜ାଵ, ൛𝑋̇ൟ
௜ାଵ

 and ൛𝑋̈ൟ
௜ାଵ

are identified at the k+1 iteration when Δq was computed.  

5-Results: 

The presented results are obtained in two operating conditions: steady condition then the run 

up condition regime. 

Using the Euler method, fig. 4 shows the measured speed evolution of the electrical motor. Two 

distinguished distinct regimes A and B are shown. (A) is a stationary regime while (B) is a non-
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stationary one, specifically a run-up regime which is characterized by the input shaft speed 

increase as shown in Figure 4. 

Fig. 5 displays the measured driving torque during the run-up regime. 

 

Fig. 4 Speed evolution of electrical motor 

 

Fig. 5 Driven system mechanical characteristic 

The input torque and the speed evolution presented in the two previous figures are induced in 

the numerical model in order to get the same running conditions. 

Fig. 6 displays the acceleration on the fixed ring. The signal can be divided into two parts 

similarly to the evolution of the speed signal: part (B) presents run up régime, during this regime 

we can notice that the vibration is increasing. This phenomenon is due to the increasing of the 

accelerating torque. 

A B 

A B 
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(a) 

       

(b) 

Fig. 6 Accelerations of the fixed ring (a) numerical result (b) experimental result 

In part B while the speed is increasing (fig. 6), the acceleration signal time series have some 

amplitude modulations which are explained by crossing of the rotation frequency of motor with 

one of natural frequencies. 

Fig. 7 shows the computed (HS) functions of the ring-planet1 and sun-planet1 respectively. 

The amplitude of HS is variable. The (HS) evolution is sensitive to the input torque applied to 

the planetary gear transmission. Thus, the mean value of this stiffness starts constant before 

acquiring its maximum in the run-up regime. 
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(b) 

Fig. 7 (HS) evolution (a) sun-planet 1 (b) fixed ring-planet 1 

According to equation (1), the (HS) of both sun-planets and planets-ring contacts is coupled to 

the (BS) and (FFS). Two (HS) behaviors of both sun-planets and planets-ring contacts are 

observed: in zone A, the mean and the period of fluctuation of (HS) is constant whereas the 

mean is increasing during run up (zone B) and the period of fluctuation is decreasing. In fact, 

the mean of (HS) of sun-planet 1 contact and ring-planet 1 contact are respectively increasing 

from 1.13x109 N.m to 1.234x109 N.m and from 2.102x109 N.m to 2.243x109 N.m. 

A B 
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This coupling allows computing of the gear mesh stiffness. Fig. 8 displays the gear mesh 

stiffness evolutions of sun-planet 1 and ring-planet 1 in which the mean evolutions are not the 

same in both regimes. 
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(b) 

Fig. 8 Mesh stiffness evolution, (a) sun-planet 1 (b) fixed ring-planet 1 

 

 

24.5 24.6 24.7 24.8 24.9 25 25.1 25.2 25.3 25.4 25.5
Time [s]

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2
108

Meshing stiffness
Mean of meshing stiffness

X: 24.5
Y: 4.493e+08

X: 25.5
Y: 4.496e+08

0 5 10 15 20 25 30 35
Time [s]

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2
108

Meshing stiffness
Mean of meshing stiffness

X: 11.6
Y: 4.461e+08

X: 36
Y: 4.522e+08

 M
es

hi
ng

 s
ti

ff
ne

ss
 [

N
/m

]

A B 



20 
 

The gear mesh stiffness is steady in zone A in both sun-planets and planets-ring contacts 

whereas its mean values are increasing during run up. 

To prove the influence of run-up regime on gear teeth, the (TE) and the inter mesh forces were 

carried out for all gear functions. The (TE) time evolution function matched to the ring-planet1 

is presented in fig. 9. The (TE) attains a maximum value in the period (B). Nevertheless, they 

are constant during the first period (A). 

The dynamic forces on teeth are computed according to the following equation: 

( ) ( ) ( )d eF t K t t  (38) 

Fig. 10 shows the meshing force between the ring and planet1. An overload behavior on teeth 

is observed during the run-up regime and it can cause defects [52]. 

 

Fig. 9 (TE) function between the fixed ring and planets 1 

 

Fig. 10 Fixed ring-planet 1 meshing force 

Fig. 11 displays a time-frequency map of the test ring acceleration with numerical simulation 

and experimental test. The two obtained behavior in time responses are also presented in both 

numerical and experimental results. From this figure, two different behaviors corresponding to 

the two parts A and B are shown. In part A, vertical lines appear, these lines show the stationary 
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regime, during which the speed is constant. In part B, the sloping lines show the mesh frequency 

with its harmonics increasing.  

 

(a) 

 

(b) 

Fig. 11 STFT of acceleration of the fixed ring (a) numerical result (b) experimental result 

 

6-Conclusion: 

This paper examined the non-linear dynamic behavior of a back-to-back planetary gearbox 

transmission during stationary condition and then the run up regime. The objective was to 

characterize the dynamic behavior for such regimes when Hertzian contact between mating 

teeth is considered. To compute the mesh stiffness function which is the main excitation source 

of the transmission, bending, fillet foundation and Hertzian stiffness are put in parallel.  

A torsional model combining the nonlinear mesh stiffness functions modeled in the different 

mesh zones and the non-stationary regime has been developed. The system’s equation of motion 

is computed by using Newmark-β algorithm combined with Newton-Raphson technique. An 

experimental setup was used to validate numerical results. The main obtained results are listed 

as follows: 

A 

B 

A 

B 
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In the stationary condition, the mean of the Hertzian stiffness and the gear mesh stiffness are 

constant and the vibration level is steady. For the run-up regime, the mean value of the Hertzian 

stiffness and the gear mesh stiffness is increasing and the period of fluctuation is decreasing. 

The increasing acceleration torque and the variable gear mesh stiffness cause higher vibration 

levels, especially when the rotation frequency of motor cross with one of natural frequencies. 

The sensitivity inter-teeth dynamic force and transmission error to the run-up transient regime 

were also investigated showing an increase of the amplitude.  

Seen the time varying frequency components, time frequency analysis was used to highlight 

the variation of gear mesh frequency and its harmonics during run-up regime. Experimental 

results confirmed the numerical ones. Future works will be dedicated to gear defect modeling 

and its influence on the nonlinear dynamic response of the planetary transmission. 
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