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Abstract

We define a two-dimensional statistical depth function and study two im-
portant aspects of it: its robustness and computability. We begin by for-
mally proving that the function is, indeed, a statistical depth function. To
achieve this, we introduce a new notion of symmetry for distributions in
Rp. We study the robustness through the concept of breakdown point. In
terms of computability, we provide an implementable algorithm to calcu-
late the depth contours with temporal complexity Θ(n2) and spatial com-
plexity Θ(n), where n is the size of the data set. As an application of the
proposed depth function, we provide a hypothesis test for the indepen-
dence of two absolutely continuous variables.

Key words : statistical depth, reflections, median, robustness, breakdown
point, band depth, algorithm, computational geometry, hyphotesis test.

Resumen

Definimos una función de profundidad estadística bi-dimensional y estu-
diamos dos aspectos importantes de la misma: la robustez y la computabil-
idad. Comenzamos probando formalmente que la función es, de hecho,
una función de profundidad estadística. Para conseguirlo , introducimos
una nueva noción de simetría para distribuciones en Rp. Estudiamos la
robustez a través del concepto de breakdown point. En cuanto a la com-
putabilidad, proporcionamos un algoritmo implementable para calcular
los contornos de profundidad con complejidad temporal Θ(n2) y comple-
jidad espacial Θ(n), siendo n el tamaño del conjunto de datos. Como apli-
cación de la función de profundidad propuesta, proporcionamos un con-
traste de hipótesis para la independencia de dos variables absolutamente
continuas.

Palabras clave : profundidad estadística, reflexiones, mediana, robustez,
breakdown point, profundidad de la banda, algoritmo, geometría com-
putacional, test de hipótesis.
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Reflexiones

En esta apartado me gustaría sintetizar las observaciones que tengo del tra-
bajo realizado. En primer lugar considero que este TFG me ha servido para
darme cuenta de que las matemáticas son complejas. Me explico. En mi
época de instituto pensaba que las matemáticas eran básicamente mane-
jar una notación concreta bajo unas reglas. Me llamaba la atención y dis-
frutaba haciendo ejercicios. Me parecía todo muy mecánico, y eso era có-
modo mentalmente. Había seguridad, si practicabas mucho tenías el éxito
asegurado. Un primer aviso, de que la cosa no iba bien, fue cuando me
animaron a participar en las olimpiadas de matemáticas, aquí, en la Facul-
tad de Ciencias de Cantabria, en mis años de bachillerato. Por primera vez
en mi vida no sabía qué es lo que tenía que hacer en aquellos problemas.
Lejos de desanimarme, pensé que con el tiempo y durante los años de uni-
versidad descubriría lo sucedido. Durante el grado he aprendido muchas
matemáticas, desde luego nada que ver que con las del instituto, mucho
menos interesantes, pero en el fondo notaba otro problema oculto. Aquí,
en la universidad, notaba que más que hacer ejercicios y más ejercicios lo
importante era entender y estudiar la teoría. Sin lugar a dudas fue un gran
salto, pero no toda la verdad. Sin embargo, es en este trabajo donde me
he dado cuenta que lo importante en matemáticas es sobretodo pensar, ser
creativo y ser honesto con uno mismo, como cuando dices, ahora sí esta
bien esta demostración. Puedo decir con seguridad que en este trabajo he
dedicado tiempo a concentrarme y pensar durante varias horas seguidas.
Estoy seguro que este entrenamiento, que ha resultado ser la realización de
este TFG, me ayudará en el futuro. Lo que más valoro de este trabajo, por
encima de los detalles técnicos que he aprendido, es la sensación de que tras
su finalización, he mejorado aunque sea un poco, mi nivel en matemáticas.
Finalmente considero que he disfrutado el trabajo y he sacado cosas positi-
vas de él.
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Chapter 1

Introduction

The study of statistical depth functions is an active research field, both for
the multidimensional case [17] and for the functional one [11]. A statisti-
cal depth function informally is a mathematical object that allows ordering
data that are not simple real numbers, where there is a natural order. In
addition, it allows to generalize the idea of quantile and median to dimen-
sions higher than one. The strategy is to study complicated spaces through
R, as if this object were an abstraction of some tool to measure like the
usual tape measure that everyone has at home. These tools allow us to ob-
tain information about the environment and a better understanding of it.
In mathematics as characteristic examples of this strategy we have the in-
ner product that abstracts the notion of angle and the norm that abstracts the
notion of length.

The band depth was introduced in [8] as a functional depth. The proves
of the results that appear there are in [9]. However, its properties when
applied to multivariate spaces are the ones studied there and [1] proves it
suffers from degeneracy for some standard probability model in functional
spaces. Thus, the initial objective of this work is to study the band depth in
the multidimensional case, specifically R2.

We denote by BP p the family of distributions on the Borel sets of Rp. Let
(Ω, σ, P) and (R2,A(R2), P) be two probabilistic spaces where A(R2) is
the borel sigma-algebra for R2. Let us take the independent and identically
distributed random vectors X, Y : Ω −→ R2. The following function BD :
R2 ×BP2 −→ R is called bivariate band depth:
BD((x1, x2), P) = P[{ω ∈ Ω : min(Xi(ω), Yi(ω)) ≤ xi ≤ max(Xi(ω), Yi(ω)),
i = 1, 2}].
Among the properties studied in [9] it is proved the following statement.
Proposition 1.0.1 If P is an absolutely continuous distribution such that its
marginals are symmetric with respect to 0 and the density function of P is
positive in a neighborhood of (0, 0) ∈ R2 then BD(·, P) is uniquely maxi-
mized at (0, 0).
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However, this statement is not correct. In effect, let us take the function:

fP(x) =
1
10

(
I[−1,0]×[0,1](x) + I[0,1]×[−1,0](x)

)
+ (1.1)

+
1

1000

(
I(−1,0)2(x) + I(0,1)2(x)

)
+

399
1000

(
I[−2,−1]2(x) + I[1,2]2(x)

)
,

where

IA(x) :=
{

1 i f x ∈ A
0 i f x /∈ A .

For a visual idea of this function see Figure 1.1 where the regions of the
plane where the function takes positive values are shaded and the number
that appears is the value of the function in that region. It is easy to see that
fP is a density function because it is non-negative and its integral along the
plane is 1. On the other hand, its marginals are symmetric because fP is an
antipodal function, fP(−x) = fP(x) for all x ∈ R2, and it is also positive in
a neighborhood of (0,0).

Figure 1.1: Display of the function provided in the Equation (1.1).

Finally, if we take a glimpse to the next chapter, Proposition 2.3.5, we have
that:

BD((0, 0), P) = 2(( 1
1000 +

399
1000 )

2 + 1
102 ) =

34
100 = .34

BD((1, 1), P) = 2( 2
1000 +

399
1000 +

2
10 )

399
1000 = 239799

500000 = .479598.

Furthermore, [9] shows that the function BD(·) is not affine invariant, that
is, it depends on affine transformations of the data. The affine invariance is
a property that is requested for a multivariate depth function. What, was
mentioned earlier is an objective of this work, both, the previous statement
and this fact are examined in this work.
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On the other hand, it is common to study together with the statistical depth
functions the notions of robustness and computational complexity. See for
example [13], where some well-known multivariate depth functions ap-
pear. A statistical estimator is considered robust if it supports noise well in
the data. That is, for an estimate to be affected by a bad data set, the noise
must necessarily be a significantly large proportion of the data set it in-
tends to study. We study robustness with the breakdown point concept [2].
Today, where massive information and large amounts of data are every-
where, it is becoming increasingly important that computing and statistics
work together. For this, the tools provided by statistics must be efficient
from the point of view of computational complexity. For this reason, in this
work we are concerned with the study of the efficiency of algorithms re-
lated to the world of multivariate statistical depth functions. The study of
algorithms for calculating depth contours is mainly interesting, see [10], in
particular the calculation of the generalized median, as the point with the
greatest depth, and the calculation of the depth of a given arbitrary point
[13]. The mathematical contributions of this TFG are the following:

(i). We give an alternative definition of statistical depth function inspired
by the one that appears in [17]. It simply consists of adding movement by
considering for each fixed distribution P a family of parameterized func-
tions instead of a single static function. We also generalize the bivariate
band depth. We refer to this generalization as the statistical depth by reflec-
tions, and prove that it satisfies the definition of statistical depth function.
For this purpose, we introduce a new notion of symmetry, which we name
the reflective symmetry.

(ii). We demonstrate some theoretical results on the breakdown point of
the statistical depth by reflections. In particular we prove that in favorable
situations it has an acceptable robustness.

(iii). We build an implementable algorithm that calculates the α-depth-
contours with temporal complexity Θ(n2) and spatial complexity Θ(n).

(iv). Finally we give as an application a new hypothesis test for the inde-
pendence of two absolutely continuous random variables. However in this
case we do not give the proof of the fundamental result, we leave it as a
conjecture.

In this work we have made small programs in the languages MATLAB,
Java and R. According to the final degree project regulations, we have in-
cluded them in a separate .zip file that includes several folders. We explain
how they are organized.
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The folder whose name is JavaTFG contains the Java files that implement
the algorithms developed in Chapter 4.

The folder whose name is exampleChapter4 has the files to produce the
plots of the Figure 4.2.

The folder whose name is independenceTest contains the files that allow
to build the Tabla 5.1 and the histogram of Figure 5.1.

We warn the reader that some programs can take a long time to run, as
is the case of distribucion.m inside independenceTest, which on a laptod,
Honor MagicBook 15, took us more than 24 hours. The reason why this
program takes so long is that its mission is to build the Kn distribution
table that is discussed in Chapter 5.
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Chapter 2

Statistical depth

First of all, we give the definition of statistical depth function. We give a
definition similar to the definition [17]. The definition that we use in this
work, although it may be similar to the one that appears in [17], differs in
the following aspects. In the first place, the affine invariance property that
appears there seems too demanding and we think that for certain potential
depth functions, the modification required to satisfy it may imply a high
computational cost. The explanation given for this property in [17] is that
the depth of a point should not depend on the coordinate system, in par-
ticular the scale. At this point we simply do not agree with this necessity
because for example classical statistical parameters such as the mean or the
variance would be considered "bad" from this point of view and we do not
see it that way. Instead our philosophy is as follows. A depth function
intuitively is a tool for studying a multidimensional data set. Let us think
about another type of tool, more traditional and from the "real" world, the
wrenches. The standard definition of the previous reference could infor-
mally say that it is a monkey wrench while the definition that we give below
would be a whole set of wrenches with their different sizes (parameters). For
this reason, our definition depends on a family of parameters that allows
"correcting" the depth function so that it is "affine invariant". The substitu-
tion of that property is Condition (i) of the Definition 2.1.1.

On the other hand, our definition differs quite a bit in how the idea of sym-
metry of a distribution is used. This affects the way we consider the max-
imality at center property that appears in [17]. We think that talking about
symmetry of a distribution is ambiguous and is not even rigorous to be
able to formalize and prove results. Instead we prefer to define a family of
distributions and that the properties that are requested are closed for that
family. In particular, it is possible to define this family of distributions as
the distributions that satisfy a certain property that can be interpreted as
symmetry. In the classical definition [17] the maximality at center is ex-
pressed for any distribution having an unique center with respect to some
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notion of symmetry. If we wanted to formally demonstrate this property
we would have to start by saying: Let P be a distribution with an unique
center with respect to some notion of symmetry [...]. However, since this
is not rigorously defined in our opinion, in order to prove the results that
appear there, they end up saying that since the H − symmetry or halfspace
symmetry [18] is the broadest known notion of symmetry, in the sense of
inclusion, it is the one they should fix. Thus, in Theorem 2.1 of [17] it is
stated that the halfspace depth function [16] is a statistical depth function and
to prove the maximality at center they start by writing: Suppose that P is
H−symmetric about an unique point θ ∈ Rp. We do not like these types
of situations and that is why the adaptation of this property is the Condi-
tion (ii) of the Definition 2.1.1. The Condition (iii) of the Definition 2.1.1 is
also an adaptation to our point of view of the third property that appears
in [17]. We think that the definition we give still preserves the intuition of
what a statistical depth function should be. In this chapter we will prove
that there is a mathematical object that satisfies this definition but not the
standard one. We will call it depth by reflections.

2.1 Formal definition

Definition 2.1.1 Let J be a nonempty set and P ⊆ BP p. The bounded
and non-negative mapping D(·, ·, ·) : Rp × P × J −→ R is called a J -
statistical depth function over P if it satisfies the following conditions:

(i). For all nonsingular real matrix A and b ∈ Rp, there exists a scale-
function A : J −→ J such that: D(x, P, ζ) = D (Ax + b, PAX+b, A(ζ)) ,
where X is a random vector with distribution P ∈ P .

For all P ∈ P , there exists ζ ∈ J such that:
(ii). Exists and is unique: Me(P, ζ) := arg maxx∈Rp D(x, P, ζ).
(iii). Let t ∈ [0, 1] and µ := Me(P, ζ), D(x, P, ζ) ≤ D(µ + t(x− µ), P, ζ), for
all x ∈ Rp

(iv). D(x, P, ζ) −→ 0 as ||x||1 −→ ∞.

From the previous definition it follows that the statistical depth functions
that we have defined have two fundamental attributes, J and P . It is clear
that we are interested in the set P being as large as possible in the sense of
inclusion. As an observation we have that if we take a singleton set J0 =
{ζ0}, we obtain the affine invariance [17]. The objective of this chapter
is to prove that there exists, J and P such that the depth by reflections
(Definition 2.3.1) satisfies the previous definition. In addition, in Theorem
2.3.1 we correct the Statement 1.0.1 we talked about in the introduction and
we gave a counterexample.

1Let us remember that in Rp all the norms are equivalent from the topological point of
view.
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2.2 Reflective symmetry

We introduce the definition of reflective symmetry, Definition 2.2.1 , that
we will use to define a family of distributions P where to apply the Defini-
tion 2.1.1. Other notions of symmetry for multivariate distributions can be
seen in [15] and the references therein. Although it is not the objective of
this work to study the symmetry of the distributions, we can say that our
definition is inspired by the spherical symmetry that appears in [15], that
is, a distribution P ∈ BP p is spherically symmetric about a point µ ∈ Rp if
for any random random vector X in Rp with distribution P and for any or-
thogonal matrix A, X − µ and A(X − µ) are identically distributed, which
is obviously a particular case of our definition.

The reason for introducing this new definition is because the existing sym-
metry notions either assumed too strong hypothesis, as in the case of spher-
ical symmetry, or they did not provide us with enough information to
prove our results. That is why we have decided to give a "tailor-made" sym-
metry for the purposes of this work. In our opinion, mathematics is the
art of drawing inconspicuous conclusions from the weakest possible hy-
potheses. This has been part of the motivation to introduce the following
definition and reject spherical symmetry. We also emphasize that in the
results that we prove under the hypothesis of being reflective symmetric,
we have never proven that they are necessary conditions for those same
results. Therefore, there might be a better notion of symmetry than the one
we introduce below. However, for our work and the proposed objectives
mentioned in the introduction, apart from what we have already said, the
symmetry that we define is useful and convenient from the notational point
of view and to introduce the concepts we need.

Let µ ∈ Rp and β := {v1, v2, ..., vp} be a family of p linearly independent
vectors of Rp. This family is called a base of Rp. We denote by Bp the set
of all bases on Rp. We define a reference to be R := {µ; β} where µ is the
center of the reference. Let us consider any subfamily of p − 1 vectors of
β . We denote it β′ and we take {v0} := β\β′. Some important functions
in linear algebra are reflections. We denote by σ

µ
β′,v0

(·) the reflection with
respect to the hyperplane H := µ+ < β′ > in the direction of v0, where
< β′ >:= {α1v′1 + α2v′2 + ... + αp−1v′p−1 : αi ∈ R, v′i ∈ β′}. So, for any
x ∈ Rp, σ

µ
β′,v0

(x) := 2xH − x where xH := H ∩ L , L := x+ < v0 > .

Definition 2.2.1 P ∈ BP p is reflective symmetric about the point µ ∈ Rp

if it exists a base of Rp, β, such that for any random vector X in Rp with
distribution P and any subfamily of p− 1 vectors of β, β′, we have that X
and σ

µ
β′,v0

(X) are identically distributed.
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If P is reflective symmetric with respect to a reference R, we emphasize it
by making use of the notation PR. In general, this reference is not unique.
On the other hand, although we have defined it this way, intrinsically, for
many of the results that we are going to give, it is more convenient to
call the points by their coordinates in a fixed reference. We will say x =
(x1, x2, ..., xp) in a reference R = {µ; β} if x− µ = x1v1 + x2v2 + ... + xpvp.
Furthermore, since reflections are affine transformations, it is often conve-
nient to think about their matricial interpretation. An idea of this is given
in the following example.

Example. The uniform distribution U in the square [−a, a]2 with a > 0 is re-
flective summetric. We take the canonical reference,Rc := {0; βc}where 0 :=
(0, 0) and βc := {e1, e2} with e1 = (1, 0) and e2 = (0, 1). So, if X = (X, Y) in
Rc we have that σ

µ
e1,e2(X, Y) = (X,−Y) and σ

µ
e2,e1(X, Y) = (−X, Y) and by

definicion of the uniform distribution U it is clear that X, σ
µ
e1,e2(X), σ

µ
e2,e1(X)

are identically distributed.

In what follows we work on R2 unless otherwise stated because it is eas-
ier to do the proofs and also the notation is simpler. Conceptually it is
equivalent to what we would obtain in Rp. Moreover, we are going to con-
centrate on absolutely continuous distributions. On the other hand, as it is
usual in the literature, we characterize absolutely continuous distributions
by their density function, because it is more useful to make calculations and
check that a bivariate distribution is reflective symmetric since a function
f : R2 −→ R is a more manageable mathematical object than its corre-
sponding distribution.

Proposition 2.2.1 Let P ∈ BP2 be an absolutely continuous distribution with
density function f . Then, P = PR for a reference R = {µ; v1, v2} if and only if
f ◦ σ

µ
v2,v1 = f ◦ σ

µ
v1,v2 = f .

Proof. Let P = PR, x ∈ R2 and X a random vector with distribution P.
In the reference R we have that x = (x1, x2) and X = (X1, X2) where
x1, x2, X1, X2 are their coordinates respectively. Let us start with the im-
plication in which P is reflective symmetric with respect to R. So, if we
take the reflection σ

µ
v2,v1(·) we have that X and σ

µ
v2,v1(X) are identically

distributed, i.e, (X1, X2) and (−X1, X2) are identically distributed because
σ

µ
v2,v1(·) =

( −1 0
0 1

)
in the referenceR = {µ; v1, v2}. Consequently, P[(−∞, x1]×

(−∞, x2]] = P[[−x1, ∞)× (−∞, x2]]. Thus,∫ x2
−∞

∫ x1
−∞ f (t1, t2)dt1dt2 =

∫ x2
−∞

∫ ∞
−x1

f (t1, t2)dt1dt2.

Deriving with respect to x2 we obtain,

∂

∂x2
(
∫ x2

−∞

∫ x1

−∞
f (t1, t2)dt1dt2) =

∂

∂x2
(
∫ x2

−∞

∫ ∞

−x1

f (t1, t2)dt1dt2),

then
∫ x1
−∞ f (t1, t2)dt1 =

∫ ∞
−x1

f (t1, t2)dt1 =
∫ ∞
−∞ f (t1, t2)dt1−

∫ −x1
−∞ f (t1, t2)dt1.
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We note that fX2(x2) =
∫ ∞
−∞ f (t1, t2)dt1. In addition, if we derivate with re-

spect to x1, ∂
∂x1

(
∫ x1
−∞ f (t1, t2)dt1) =

∂
∂x1

( fX2(x2))− ∂
∂x1

(
∫ −x1
−∞ f (t1, t2)dt1) and

then, f (x1, x2) = 0− (− f (−x1, x2)) so f (x1, x2) = f (−x1, x2). So, f (x) =
f (σµ

v2,v1(x)). Taking the other reflection σ
µ
v1,v2(·) leads to f (x) = f (σµ

v1,v2(x)).

For the other implication let Γ ∈ A(R2). We prove that P[σ
µ
v2,v1(X) ∈

Γ] = P[X ∈ Γ]. We know that σ
µ
v2,v1(·) is a bijective function and the fol-

lowing equality σ
µ
v2,v1 ◦ σ

µ
v2,v1 = Id because is a reflection, in consecuense

P[σ
µ
v2,v1(X) ∈ Γ] = P[X ∈ σ

µ
v2,v1(Γ)].

On the other hand, P[X ∈ σ
µ
v2,v1(Γ)] =

∫
σ

µ
v2,v1 (Γ)

f . By the change of variables

theorem we have that
∫

σ
µ
v2,v1 (Γ)

f =
∫

Γ
f (σµ

v2,v1(x)) · |det Jac(σµ
v2,v1(x))|dx. In

addition, σ
µ
v2,v1(·) is an affine transformation, so it is of the form Ax + b

where A2 = Id (because the implicit linear application is also a reflection).
Then, Jac(σµ

v2,v1(x)) = A and det(A) = ±1, so, |det Jac(σµ
v2,v1(x))| = 1 and

we have that
∫

Γ
f (σµ

v2,v1(x)) · |det Jac(σµ
v2,v1(x))|dx =

∫
Γ

f (σµ
v2,v1(x)) · 1dx =∫

Γ
f (x)dx. In conclusion, P[σ

µ
v2,v1(X) ∈ Γ] = P[X ∈ Γ]. The other equality

of probabilities, for the case σ
µ
v1,v2 , is equivalent. �

Let an absolutely continuous distribution P ∈ BP2 with density function f
such that the marginals P1, P2 are independent. Then, f (x, y) = f1(x) f1(y)
here f1, f2 are the density function of P1, P2 respectively. If f1, f2 are even
functions, i.e; f1(x) = f1(−x), f2(y) = f2(−y), we have that: f (−x, y) =
f1(−x) f2(y) = f1(x) f2(y) = f (x, y) and f (x,−y) = f1(x) f1(−y) = f1(x) f2(y)
= f (x, y). Then, by the Proposition 2.2.1 P is reflective symmetric. In con-
clusion, it is easy to build symmetric reflective distributions from symmet-
ric real distributions.

2.3 Statistical depth by reflections

We introduce an generalization of the definition of the bivariate band depth
[8] following the style and the geometric intuition of the simplicial depth
[6]. The idea is to give a definition without fixing some coordinates, like
those of the canonical reference, which is how it is done in [8]. We re-
mind the reader that part of our motivation is to solve the problems that
the bivariate band depth has relative to affine invariance and maximality
at center (originally thinking of the standard definition) since the hypothe-
ses that appear in [8] to prove this property are not sufficient as we show
in the introduction. Let us first introduce some notation.
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Let x, y ∈ R2 and a base β = {v1, v2} of R2. We denote the parallelogram
determined by the points x, y in the directions v1, v2 by:

Lv1,v2(x, y) :=


(1− α)x + αy : α ∈ [0, 1], i f x− y ∈ < v1 > ∪ < v2 >

Q + α(x−Q) + γ(y−Q) : α, γ ∈ [0, 1], otherwise,
(2.1)

where Q := r ∩ s with r := x + < v1 > and s := y + < v2 >.

Due to the following trivial proposition we can use the notation Lβ(x, y) to
refer to the set (parallelogram) in (2.1) .

Proposition 2.3.1 The parallelogram does not depend on the order of the elements
of the base β, i.e; Lv1,v2(x, y) = Lv2,v1(x, y) = Lβ(x, y).

Proof. Let Q = r ∩ s, where r := x + < v1 > and s := y + < v2 >,
and Q′ = r′ ∩ s′ where r′ := x + < v2 > and s′ := y + < v1 >.
Firstly, we have that Q = x + t1v1 = y + t2v2 and Q′ = x + t′2v2 =
y + t′1v1. Then, x − y = t2v2 − t1v1 and also x − y = t′1v1 − t′2v2 so,
t2v2 − t1v1 = t′1v1 − t′2v2, i.e, (t2 + t′2)v2 + (−t1 − t′1)v1 = 0. Then t′1 = −t1
and t′2 = −t2 because v1, v2 are linearly independent. Thus, as x + t1v1 =
y + t2v2, adding the term αt1v1 − γt2v2 to both sides of the equality we ob-
tain x+ t1v1− αt1v1−γt2v2 = y+ t2v2− αt1v1−γt2v2, which is equivalent
to x + t1v1 + α(−t1v1) + γ(−t2v2) = y− t1v1 + t1v1− αt1v1 + t2v2− γt2v2,
because in the right side of the equality we add −t1v1 + t1v1 = 0. Rewrit-
ing the previous equality we have that x + t1v1 + α(−t1v1) + γ(−t2v2) =
y − t1v1 + (1 − α)t1v1 + (1 − γ)t2v2 which is identical to the expression
Q + α(x−Q) + γ(y−Q) = Q′ + (1− α)(y−Q′) + (1− γ)(x−Q′). �

Definition 2.3.1 Let (Ω, δ, P) be a probabilistic space, P ∈ BP2, β = {v1, v2}
a base of R2 and X, Y : Ω −→ R2 independent and identically distributed
random vectors with distribution P. The depth by reflections of a point
x ∈ R2 with respect to P and β is:

RD(x, P, β) := P[x ∈ Lβ(X, Y)]. (2.2)

We have enough terminology to prove Condition (i) of Definition 2.1.1 for
the depth by reflections.

Proposition 2.3.2 Let P ∈ BP2 and a base β = {v1, v2}. For all nonsingular
real matrix A and b ∈ Rp, if we take the scale-function A(β) := {Av1, Av2},
then RD(x, P, β) = RD (Ax + b, PAX+b, A(β)) , where X is a random vector
with distribution P.

Proof. Let x ∈ R2, we have to prove the following equality, P[x ∈ Lβ(X, Y)] =
P[Ax + b ∈ LA(β)(AX + b, AY + b)]. Firstly, Ax + b is a bijective function
so, P[x ∈ Lβ(X, Y)] = P[Ax + b ∈ ALβ(X, Y) + b]. Thus, it is enough to
prove that ALβ(X, Y) + b = LA(β)(AX + b, AY + b). Let us fix a ω ∈ Ω,
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If X(ω)− Y(ω) ∈ < v1 > ∪ < v2 >, we can assume without lost of gener-
ality X(ω)−Y(ω) = λv1, so, we have that (AX(ω) + b)− (AY(ω) + b) =
AX(ω)− AY(ω) = A(X(ω)− Y(ω)) = Aλv1 = λAv1 so, (AX(ω) + b)−
(AY(ω) + b) ∈ < Av1 > ∪ < Av2 >. The inverse is also true.

In the other case (second part of (2.1) ) , let Q(ω) = r(ω) ∩ s(ω) where
r(ω) := X(ω) + < v1 >, s(ω) := Y(ω) + < v2 > and Q̂(ω) = r̂(ω) ∩
ŝ(ω) where r̂(ω) = (AX(ω) + b) + < Av1 > and ŝ(ω) = (AY(ω) +
b) + < Av2 >. Let us see that Q̂(ω) = AQ(ω) + b.

In effect, Q(ω) = X(ω) + t1v1 = Y(ω) + t2v2, then A(X(ω) + t1v1) =
A(Y(ω) + t2v2) and by linearity AX(ω) + At1v1 = AY(ω) + At2v2, so,
AX(ω) + t1Av1 = AY(ω) + t2Av2, in conclusion, (AX(ω) + b) + t1Av1 =
(AY(ω) + b) + t2Av2 = Q̂(ω). In addition, as A is a nonsigular matrix then
Q(ω) is the only point that satisfies this condition.

Finally, Q̂(ω) + α(AX(ω) + b− Q̂(ω)) + γ(AY(ω) + b− Q̂(ω)) is equal to

AQ(ω)+ b+ α(AX(ω)+ b− (AQ(ω)+ b))+γ(AY(ω)+ b− (AQ(ω)+ b))

and operating and by the linearity of A is identical to

A(Q(ω) + α(X(ω)−Q(ω)) + γ(Y(ω)−Q(ω))) + b.

Thus, LA(β)(AX(ω) + b, AY(ω) + b) = ALβ(X(ω), Y(ω)) + b. �

We progressively build a family P where to apply Definition 2.1.1 . We de-
note by σ(P) the set of distributions P ∈ BP2 such that there exists a refer-
ence R with P = PR. We prove in the following Proposition 2.3.3 that this
family of distributions is closed under affine transformations. And there-
fore the Condition (i) of Definition 2.1.1 over these distributions makes
sense.

Proposition 2.3.3 Let X : Ω −→ R2 a random vector, A a nonsingular real
matrix and b ∈ R2. Let P be the distribution of X and PAX+b the distribution of
AX + b. If P = PR ∈ σ(P) then PAX+b ∈ σ(P).
Proof. Let R := {µ; v1, v2}. We have to prove that there exists a reference
R′ := {γ; u1, u2} such that AX + b, σ

γ
u1,u2(AX + b), σ

γ
u2,u1(AX + b) are iden-

tically distributed. We prove that AX + b and σ
γ
u1,u2(AX + b) are identically

distributed, the other one proceeds equivalently. Firstly, we have that X
and σ

µ
v1,v2(X) are identically distributed.

Thus, for any Γ ∈ A(R)2, we have P[AX + b ∈ Γ] = P[X ∈ A−1Γ −
A−1b] = P[σ

µ
v1,v2(X) ∈ A−1Γ − A−1b] = P[Aσ

µ
v1,v2(X) + b ∈ Γ], that is,

AX + b and Aσ
µ
v1,v2(X) + b are identically distributed. We prove the equal-

ity Aσ
µ
v1,v2(X) + b = σ

Aµ+b
Av1,Av2

(AX + b), i.e, γ = Aµ + b, u1 = Av1, u2 = Av2.
Let x ∈ R2. We know that σ

µ
v1,v2(·) is a reflection, so, σ

µ
v1,v2(x) − x = λv2
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and M− µ = αv1 for some λ, α ∈ R and where M := (σ
µ
v1,v2(x) + x)/2. The

following properties prove the result.

(i). (Aσ
µ
v1,v2(x) + b) − (Ax + b) = Aσ

µ
v1,v2(x) − Ax = A(σ

µ
v1,v2(x) − x) =

Aλv2 = λAv2 ∈ < Av2 >. So, Aσ
µ
v1,v2(x) + b ∈ r := (Ax + b)+ < Av2 >.

(ii). M̂ :=
(Aσ

µ
v1,v2 (x)+b)+(Ax+b)

2 =
Aσ

µ
v1,v2 (x)+Ax

2 + b =
A(σ

µ
v1,v2 (x)+x)

2 + b =

A
(

σ
µ
v1,v2 (x)+x

2

)
+ b = AM + b.

(iii). M̂ − (Aµ + b) = (AM + b) − (Aµ + b) = A(M − µ) = A(αv1) =
αAv1, so, M̂ = (Aµ + b) + αAv1 ∈ (Aµ + b)+ < Av1 >. Thus, we have
that Aσ

µ
v1,v2(x) + b ∈ s := (Aµ + b)+ < Av1 >.

Consequently, M̂ = r ∩ s, and by definition of σ
Aµ+b
Av1,Av2

(·) and M̂ , we con-

clude that Aσ
µ
v1,v2(x) + b = σ

Aµ+b
Av1,Av2

(Ax + b). �

The following Collorary 2.3.1, is interesting because it justifies that in many
of the results where we have the properties of the distributions σ(P) it will
suffice to concentrate on the canonical referenceRc.

Corollary 2.3.1 Let PR ∈ σ(P) withR = {µ; β} and β = {v1, v2}. By taking a
matrix A such that Av1 = e1 , Av2 = e2, which is the matrix whose columns are
the coordinates of e1 and e2 in the base β respectively, and a b := −Aµ, we have
that RD(x, PR, β) = RD(y, PRc , βc), where y = Ax + b.

Proof. By the proof of Proposition 2.3.3 , we have that PAX+b = PRc . Then,
the result follows from Proposition 2.3.2 . �

We have introduced the notion of statistical depth by reflections, Defini-
tion 2.3.1 from an intrinsic point of view, not mentioning coordinates. This
point of view is more elegant and intuitive but not very useful for proof
that correspond to the properties of Definition 2.1.1 that do not have to
do with the Condition (i) of that definition. For this reason we introduce
Proposicion 2.3.4 .

Proposition 2.3.4 Let P ∈ BP2, andR := {µ; β} a reference, with β = {v1, v2}.
Then RD(x, P, β) = P[min(Xi, Yi) ≤ xi ≤ max(Xi, Yi), i = 1, 2}] , with
x = (x1, x2), X = (X1, X2), Y = (Y1, Y2) in the referenceR.

Proof. Let us fix ω ∈ Ω. If X(ω)− Y(ω) ∈ < v1 > ∪ < v2 > we have that
Lβ

(
X(ω), Y(ω)

)
= (1− α)X(ω)+ αY(ω) for α ∈ [0, 1], so, Lβ

(
X(ω), Y(ω)

)
=(

(1− α)X1(ω)+ αY1(ω), (1− α)X2(ω)+ αY2(ω)
)
. As, X1(ω), X2(ω), Y1(ω),

Y2(ω) are real numbers and α ∈ [0, 1] then,

Lβ

(
X(ω), Y(ω)

)
= {(x1, x2) : x1 ∈ [min(X1(ω), Y1(ω)), max(X1(ω), Y1(ω))],

x2 ∈ [min(X2(ω), Y2(ω)), max(X2(ω), Y2(ω))]}.
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On the other hand, r(ω) := X(ω) + < v1 >= {(x1, x2) ∈ R2 : x2 =
X2(ω)} and s(ω) := Y(ω) + < v2 >= {(x1, x2) ∈ R2 : x1 = Y1(ω)}. Then,
Q(ω) = r(ω) ∩ s(ω) = (Y1(ω), X2(ω)). We compute: X(ω) − Q(ω) =
(X1(ω), X2(ω))− (Y1(ω), X2(ω)) = (X1(ω)−Y1(ω), 0) and Y(ω)−Q(ω) =
(Y1(ω), Y2(ω)) − (Y1(ω), X2(ω)) = (0, Y2(ω) − X2(ω)). Let α, γ ∈ [0, 1]
and for simplicity, let us denote Lβ := Lβ

(
X(ω), Y(ω)

)
, we have that,

Lβ =
(
Y1(ω), X2(ω)) + α(X1(ω)−Y1(ω), 0) + γ(0, Y2(ω)− X2(ω)

)
=
(
αX1(ω) + (1− α)Y1(ω), γY2(ω) + (1− γ)X2(ω)

)
= {(x1, x2) : x1 ∈ [min(X1(ω), Y1(ω)), max(X1(ω), Y1(ω))],

x2 ∈ [min(X2(ω), Y2(ω)), max(X2(ω), Y2(ω))]}.

�
It is easy to see that if in previous Proposition 2.3.4 we take R = Rc then
we obtain the bivariate band depth [8]. We still do not have an easy way to
calculate depth by reflections. The following Proposition 2.3.5 solves that
problem for us for what we need in this work. It is a polynomial function
evaluated on certain probabilities. Especially it will be useful for the main
mathematical results of this work. It will also be important in Chapter 4
when we deal with computational complexity.

Proposition 2.3.5 Let P ∈ BP2 be an absolutely continuous distribution. We
have that:

RD(x, P, β) = 2P[(−∞, x1]× (−∞, x2]]P[[x1, ∞)× [x2, ∞)]

+2P[(−∞, x1]× [x2, ∞)]P[[x1, ∞)× (−∞, x2]]

where x = (x1, x2) in a referenceR with center µ and base β.

Proof. Let ω0 ∈ Ω and X = (X1, X2), Y = (Y1, Y2) in the reference R. We
have that X1(ω0) ≤ Y1(ω0) or X1(ω0) ≥ Y1(ω0), and X2(ω0) ≤ Y2(ω0) or
X2(ω0) ≥ Y2(ω0). Then, Ω = A1 ∪ A2 ∪ A3 ∪ A4 where A1 = {ω ∈ Ω :
X1(ω) ≤ Y1(ω), X2(ω) ≤ Y2(ω)}, A2 = {ω ∈ Ω : X1(ω) ≤ Y1(ω), X2(ω) ≥
Y2(ω)}, A3 = {ω ∈ Ω : X1(ω) ≥ Y1(ω), X2(ω) ≤ Y2(ω)}, A4 = {ω ∈ Ω :
X1(ω) ≥ Y1(ω), X2(ω) ≥ Y2(ω)}.

We define B := {ω ∈ Ω : min(X1(ω), Y1(ω)) ≤ x1, max(X1(ω), Y1(ω)) ≥
x1, min(X2(ω), Y2(ω)) ≤ x2, max(X2(ω), Y2(ω)) ≥ x2}.

B = B ∩Ω = B ∩ (A1 ∪ A2 ∪ A3 ∪ A4) = (B ∩ A1) ∪ (B ∩ A2) ∪ (B ∩ A3) ∪
(B ∩ A4). On the other hand, we have that : (remember that P is abso-
lutely continuous) (B ∩ Ai) ∩ (B ∩ Aj) = B ∩ Ai ∩ Aj ⊆ Ai ∩ Aj where
P[Ai ∩ Aj] = 0 with i, j ∈ {1, 2, 3, 4}. Then, by the Proposition 2.3.4 :
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RD(x, P, β) = P[B] = P[B ∩ A1] + P[B ∩ A2] + P[B ∩ A3] + P[B ∩ A4] and
P[B ∩ A1] = P[{ω ∈ Ω : X1(ω) ≤ x1, X2(ω) ≤ x2, Y1(ω) ≥ x1, X1(ω) ≥
x2}] = P[{ω ∈ Ω : X(ω) ∈ (−∞, x1] × (−∞, x2], Y(ω) ∈ [x1, ∞) ×
[x2, ∞)}] = P[(−∞, x1]× (−∞, x2]]P[[x1, ∞)× [x2, ∞)] because X, Y are in-
dependent and identically distributed. Finally, reasoning with the rest of
the probabilities P[B ∩ Ai] in the same way and adding them up, the result
is obtained. �

We finally build the family of distributions where we will apply Definition
2.1.1. We denote by σ∗(P) the set of distributions P = PR ∈ σ(P) that are
absolutely continuous and whose density functions are locally positive at
the center of the referenceR = {µ; β} , i.e; µ.

We introduce some more notation and also a bit of geometric intuition to
make it easier to understand Theorem 2.3.1. Let (x, y) ∈ R2− {(0, 0)} with
coordinates in the canonical reference Rc. We define the partition of the
plane given by the sets: S1 = [0, x]× [0, y], S2 = [−x, 0]× [0, y], S3 = [0, x]×
[−y, 0], S4 = [−x, 0]× [−y, 0], S5 = [x, ∞)× [y, ∞), S6 = [x, ∞)× (−∞,−y],
S7 = (−∞,−x]× (−∞,−y], S8 = (−∞,−x]× [y, ∞), S9 = [x, ∞)× [0, y],
S10 = [x, ∞)× [−y, 0], S11 = (−∞,−x]× [0, y], S12 = (−∞,−x]× [−y, 0],
S13 = [0, x]× [y, ∞), S14 = [−x, 0]× [y, ∞), S15 = [0, x]× (−∞,−y], S16 =
[−x, 0] × (−∞,−y]. If we take a distribution PRc ∈ σ∗(P) by reflective
symmetry, Definition 2.2.1 , it is clear that: PRc [Si] = z1, i = 1, 2, 3, 4,
PRc [Si] = z2, i = 5, 6, 7, 8, PRc [Si] = z3, i = 9, 10, 11, 12 and PRc [Si] = z4, i =
13, 14, 15, 16, for some z1, z2, z3, z4 ∈ [0, 1] such that z1 + z2 + z3 + z4 = 1/4.
It is wise to have an image in mind for this situation. Figure 2.1 gives an
idea of it. We can see that this is a good trick to calculate the statistical depth
by reflections, Definition 2.3.1, for absolutely continuous distributions (see
Proposition 2.3.5 ).

Figure 2.1: Probabilities z′is with reference Rc. Blue lines to calculate
RD((0, 0), PRc , βc) and red lines to calculate RD((x, y), PRc , βc).
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The following Theorem 2.3.1 proves Condition (ii) of Definition 2.1.1. On
the other hand, this result is that it solves the statement we talked about in
the introduction, Proposition 1.0.1. Indeed, it suffices to consider β = βc,
the canonical base of R2, and observe that BD(x, P) := RD(x, P, βc).

Theorem 2.3.1 If P = PR ∈ σ∗(P), with R = {µ; β}, then the function
Me(P, β) := arg maxx∈R2 RD(x, P, β) is well defined, i.e; it exists and is unique.
In addition, we have that Me(P, β) = µ.

Proof. Firstly, by Corollary 2.3.1 it is enough to prove the result for the case
R = Rc. In the conditions of this corollary, we proof that Me(P, β) := µ,
the center of the referenceR, because we will see that Me(PRc , βc) = 0 and
µ = A−1(0) − A−1b. Given PRc ∈ σ∗(P), let us see that Me(PRc , βc) =
(0, 0) or see that the point (0, 0) is a global maximum. Let (x, y) ∈ R2 −
{(0, 0)}. By symmetry we can take x, y > 0. We consider the sets Si and the
probabilities z′is of Figure 2.1.

By Proposition 2.3.5 we compute: RD((0, 0), PRc , βc) = 4(z1 + z2 + z3 +
z4)

2 and RD((x, y), PRc , βc) = 2z2(4z1 + 2z3 + 2z4 + z2) + 2(2z3 + z2)(2z4 +
z2). So,
RD((0, 0), PRc , βc)−RD((x, y), PRc , βc) = 4(z2

1 + z2
3 + z2

4 + 2z1z3 + 2z1z4) ≥
0. Thus, (0, 0) is a maximum.

Let us see that the function RD(·, PRc , βc) is uniquely maximized at (0, 0).
Let us suppouse for a contradiction that exists a point (x0, y0) 6= (0, 0) such
that RD((x0, y0), PRc , βc) = RD((0, 0), PRc , βc). Thus, z1 = 0, i.e, P[S1] =
P[S2] = P[S3] = P[S4] = 0 and then:

∫ y0

−y0

∫ x0

−x0

fPRc
(x, y)dxdy =

4

∑
i=1

P[Si] = 0. (2.3)

We have that fPRc
is a density function of PRc in (R2,A(R2), PRc), then,

fPRc
≥ 0 and fPRc

is Borel measurable and so on, fPRc
is Lebesgue mea-

surable. In addition , [−x0, x0]× [−y0, y0] ∈ β(R2), and by (2.3) we have
that f = 0 in almost every point of [−x0, x0] × [−y0, y0] except in a set E
of measure zero. However, as P ∈ σ∗(P), there exists an ε > 0 such that
fPRc

> 0 in B((0, 0), ε) ⊂ [−x0, x0]× [−y0, y0]. Denoting by m the Lebesgue
measure, we have that m(B((0, 0), ε)) = πε2 > 0. This leads to a contradic-
tion. �

Proposition 2.3.6 Under the conditions of Theorem 2.3.1 , we have that the max-
imum depth value is exactly 1

4 .

Proof. Let P be a distribution such that P = PRc ∈ σ∗(P) . By Proposition
2.2.1, fPRc

(x, y) = fPRc
(−x, y) = fPRc

(x,−y). Let x, y ≥ 0 without loss of
generality. Therefore,
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RD((0, 0), PRc , βc) = 2
(∫ ∞

0

∫ ∞
0 f (−x,−y)dxdy

)
(
∫ ∞

0

∫ ∞
0 f (x, y)dxdy)+

2(
∫ ∞

0

∫ ∞
0 f (−x, y)dxdy)(

∫ ∞
0

∫ ∞
0 f (x,−y)dxdy) = 4(

∫ ∞
0

∫ ∞
0 f (x, y)dxdy)2.

Since fPRc
is a density function then,

1 =
∫ ∞
−∞

∫ ∞
−∞ f (x, y)dxdy = 4

∫ ∞
0

∫ ∞
0 f (x, y)dxdy.

So,
∫ ∞

0

∫ ∞
0 f (x, y)dxdy = 1

4 and then, RD((0, 0), PRc , βc) =
1
4 . �

As before we introduce a bit of geometric intuition to better understand
the proof of the Theorem 2.3.2. Following the above ideas with the points
0, ty, y ∈ R2 where t ∈ [0, 1] we can build a natural partition of the plane
like in Figure 2.1. So, it is useful to have an image in mind of this situation
as shown in Figure 2.2. In following Theorem 2.3.2 we prove Condition
(ii) of Definition 2.1.1 using a strategy similar to that of Theorem 2.3.1 with
these ideas.

Figure 2.2: Probabilities z′is with referenceRc in the spirit of Figure 2.1.

Theorem 2.3.2 Let P = PR ∈ σ(P), with R = {µ; β} and t ∈ [0, 1], then
RD(x, P, β) ≤ RD(µ + t(x− µ), P, β) for all x ∈ R2.

Proof. It is enough to prove it for the case R = Rc. In effect, in the condi-
tions of Corollary 2.3.1 RD(x, P, β) = RD(y, PRc , βc) where y = Ax + b =
A(x− µ).
Note that, RD(µ + t(x − µ), P, β) = RD(A(µ + t(x − µ)) + b, PRc , βc) =
RD((Aµ+ b)+ At(x−µ), PRc , βc) = RD(tA(x−µ), PRc , βc) = RD(ty, PRc , βc).
Then, RD(x, P, β) ≤ RD(µ + t(x− µ), P, β) if and only if RD(y, PRc , βc) ≤
RD(ty, PRc , βc).
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Given PRc ∈ σ(P), y ∈ R2 , let us see that RD(y, PRc , βc) ≤ RD(ty, PRc , βc).
Following the proof of Theorem 2.3.1 , by Proposition 2.3.5 we compute:

RD(ty, PRc , βc) = 2(4z1 + 2z3 + 2z4 + 2z6 + z2 + 2z9 + z8 + z7 + z5)(z2 +
z5 + z7 + z8)+2(2z3 + 2z9 + z2 + z8 + z5 + z7)(2z4 + 2z6 + z2 + z5 + z7 + z8).

RD(y, PRc , βc) = 2(4z1 + 4z4 + 4z3 + 4z2 + 2z6 + 2z5 + 2z8 + 2z9 + z7)z7
+2(2z8 + 2z9 + z7)(2z6 + 2z5 + z7).

RD(ty, PRc , βc)−RD(y, PRc , βc) = 4z2
2 + 4z2

8 + 4z2
5 + 8z3z4 + 8z1z2 + 8z4z2 +

8z2z9 + 8z4z9 + 8z2z8 + 8z1z8 + 8z3z8 + 8z9z8 + 8z2z5 + 8z1z5 + 8z3z5 + 8z4z5 +
8z2z6+8z5z6 + 8z3z6 + 8z3z2 + 8z4z8 ≥ 0.
So, RD(ty, PRc , βc) ≥ RD(y, PRc , βc). �

Finally, let us see that the depth by reflections 2.3.1 is a statistical depth
function in the sense of Definition 2.1.1. We prove Condition (iv) of Defini-
tion 2.1.1. The proof of the following Proposition 2.3.7 is not original. It is
an adaptation of the third item of Theorem 1 in [9] to the language that we
have been introducing throughout this chapter.

Proposition 2.3.7 Let P ∈ BP2, and a referenceR = {µ; β}, we have the limit
lim||x||∞−→∞ RD(x, P, β) = 0.

Proof. Let x = (x1, x2), X = (X1, X2) and Y = (Y1, Y2) in the reference R.
We take the infinity norm || · ||∞ in this reference. Firstly, let us see that {x ∈
Lβ(X, Y)} ⊂ {||X||∞ ≥ ||x||∞} ∪ {||Y||∞ ≥ ||x||∞}. In effect, let ω ∈ {x ∈
Lβ(X, Y)}, then by Proposition 2.3.4 we have that min(Xi(ω), Yi(ω)) ≤
xi ≤ max(Xi(ω), Yi(ω)), i = 1, 2 so, |xi| ≤ max(|Xi(ω)|, |Yi(ω)|), i =
1, 2. Since ||x||∞ = max(|x1|, |x2|), ||X||∞ = max(|X1|, |X2|) , ||Y||∞ =
max(|Y1|, |Y2|) then the inclusion follows.

Finally, RD(x, P, β) = P[{x ∈ Lβ(X, Y)}] ≤ P[{||X||∞ ≥ ||x||∞}∪{||Y||∞ ≥
||x||∞}] ≤ P[{||X||∞ ≥ ||x||∞}] + P[{||Y||∞ ≥ ||x||∞}].
So, if ||x||∞ −→ ∞ then RD(x, P, β) −→ 0. �

Corollary 2.3.2 (Main result of the chapter). Let P = PR ∈ σ∗(P), with R =
{µ; β}, and β ∈ B2. Then the depth by reflections function,

RD(x, P, β) = P[{x ∈ Lβ(X, Y)}],

is a B2-statistical depth function over σ∗(P).
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Chapter 3

Robustness

In the previous chapter we have proved that depth by reflections is a rea-
sonable statistical depth function for some distributions, for example those
in σ∗(P). In this chapter we study some properties on robustness, on the
concept of breakdown point in particular. For what, we give the formal
definition of the empirical version and we prove some properties for its
limiting breakdown point.

3.1 Sample depth by reflections

We work with absolutely continuous distributions unless otherwise stated.
In this chapter we give the definitions with coordinates directly.
Let us denote a sample by X(n) := {X1, X2, ..., Xn} where X1, X2, ..., Xn are
independent and identically distributed random variables. Let X(n) being
drawn from a distribution P ∈ BP2, a reference R and x = (x1, x2) ∈ R2

with coordinates inR. We denote:

qj := qj(x1, x2) :=
n

∑
i=1

ICj(Xi), j = 1, ..., 4 (3.1)

where

C1 := C1(x1, x2) := [x1, ∞)× [x2, ∞), C2 := (−∞, x1]× [x2, ∞),

C3 := (−∞, x1]× (−∞, x2], C4 := [x1, ∞)× (−∞, x2].

Definition 3.1.1 Let X(n) being drawn from a distribution P ∈ BP2. We
define the sample (or empirical) depth by reflections with respect to a ref-
erenceR = {µ; β} as:

RDn(x, X(n)) := RDn(x, X(n), β) :=
(

n
2

)−1

(q1q3 + q2q4). (3.2)
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In general, we will use the short expressions, qj,Cj and RDn(x, X(n)). In the
following propositions we prove some basic properties on the estimator
that we have just defined. We first prove an immediate consequence of the
Glivenko-Cantelli Theorem, which means that the empirical depth by reflec-
tions, Definition 3.1.1, almost surely approximates the theoretical depth by
reflections. For simplicity we denote by a.s the almost surely convergence.
The Proposition 3.1.1 is an expected and well-studied result for other depth
functions. See for example Remark A.3 of [17].

Proposition 3.1.1 Let X(n) being drawn from an absolutely continuous dis-
tribution P ∈ BP2 and an arbitrary referenceR = {µ, β}, then:

sup
x∈R2
|RDn(x, X(n), β)− RD(x, P, β)| −→a.s 0 as n −→ ∞

Proof. We note that (n
2)
−1 = 2

n(n−1) ≈
2
n if n � 0. Let Pj

n := qj
n , Pj := P[Cj].

We have that: sup
x∈R2
|RDn(x, X(n))−RD(x, P)| = 2 sup

x∈R2
|P1

n P3
n + P2

n P4
n − P1P3−

P2P4| = 2 sup
x∈R2
|P1

n(P3
n − P3) + P3(P1

n − P1) + P2
n(P4

n − P4) + P4(P2
n − P2)| ≤

2
2

∑
j=1

(
sup
x∈R2
|Pj

n| sup
x∈R2
|Pj+2

n − Pj+2|+ sup
x∈R2
|Pj+2| sup

x∈R2
|Pj

n − Pj|
)
.

As by the Glivenko-Cantelli Theorem sup
x∈R2
|Pj

n − Pj| −→a.s 0 and sup
x∈R2
|Pj

n|,

sup
x∈R2
|Pj| are bounded so, the result follows. �

We need a theoretical result that justifies the calculation of a point of R2 that
maximizes the sample depth by reflections, Definition 3.1.1, to approximate
the theoretical deepest point and to be able to introduce the breakdown
point later. We use the notation−→p to indicate convergence in probability.

Proposition 3.1.2 Let X(n) being drawn from a distribution P = PR ∈ σ∗(P)
with R = {µ; β} and let (Mn)n be a sequence of random variables such that
RDn(Mn, X(n)) = maxx∈rv RDn(x, X(n)) with rv = Me(P, β) + αv where, v ∈
S1 (unit circle) and α ≥ 0, then, Mn −→p Me(P, β) as n −→ ∞.

Proof. As P ∈ σ∗(P) we know that Me(P, β) = µ. Let us see that every
subsequence (Mnk)k has a subsequence Mnk j −→a.s µ. By Proposition 3.1.1
with probability 1, for all ε > 0, exists n0 ∈ N such that if n ≥ n0, for all
x ∈ R2, |RDn(x, X(n))− RD(x, P)| < ε. Let k0 ∈N such that nk0 ≥ n0 and
let k ≥ k0. If Mnk = µ the result it is true. We suppose that Mnk 6= µ and let
us see that |RD(Mnk , P)− RD(µ, P)| < 2ε. We have that

|RDn(Mnk , X(n)) − RD(Mnk , P)| < ε, |RDn(µ, X(n)) − RD(µ, P)| < ε and
by definition of Mnk and µ, RDn(Mnk , X(n)) ≥ RDn(µ, X(n)), RD(Mnk , P) <
RD(µ, P). So, as RDn(Mnk , X(n)) < RD(Mnk , P) + ε and RDn(µ, X(n)) >
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RD(µ, P)− ε, we have that:
RD(µ, P)− ε < RDn(µ, X(n)) ≤ RDn(Mnk , X(n)) < RD(Mnk , P) + ε. Thus,
RD(µ, P)− RD(Mnk , P) = |RD(µ, P)− RD(Mnk , P)| < 2ε. In conclusion,
RD(Mnk , P) −→a.s RD(µ, P). We build the subsequence Mnk j as follows:
ε1 = 1, kε1 = min{k0 : ∀k′ ≥ k0, RD(µ, P) − RD(Mnk′ , P) < ε}, Mnk1

:=
Mnkε1

.
ε2 = RD(µ, P)− RD(Mnk1

, P), kε2 = min{k0 > kε1 : ∀k′ ≥ k0, RD(µ, P)−
RD(Mnk′ , P) < ε}, Mnk2

:= Mnkε2
.

Recursively for an arbitrary j:
εj = RD(µ, P)−RD(Mnkj−1

, P), kεj = min{k0 > kεj−1 : ∀k′ ≥ k0, RD(µ, P)−
RD(Mnk′ , P) < ε}, Mnkj

:= Mnkεj
.

We know that Mnk j = µ + αnk j v and by construction of Mnk j we have that :
RD(µ, P) > RD(Mnk j+1 , P) > RD(Mnk j , P).Then, by the Theorem 2.3.2 for
all j, 0 < αnk j+1 < αnk j . Thereby, (αnk j) is a decreasing sequence of real
numbers bounded inferiorly by 0. Thus, αnk j −→a.s 0 implies Mnk j −→a.s µ
then, Mn −→p µ. �

Finally, we prove that the estimator we have defined is unbiased, which is
usually a desirable property.

Proposition 3.1.3 Let X(n) being drawn from an absolutely continuous distribu-
tion P ∈ BP2, then: E[RDn(x, X(n), β)] = RD(x, P, β).

Proof. The expectaction of RDn(x, X(n)), E[RDn(x, X(n))], is equal to
2

n(n−1)E[∑n
i=1 IC1(Xi)∑n

i=1 IC3(Xi)+∑n
i=1 IC2(Xi)∑n

i=1 IC4(Xi)], which is iden-

tical to 2
n(n−1)

(
n(n− 1)P[C1]P[C3] + n(n− 1)P[C2]P[C4]

)
= RD(x, P). �

3.2 Breakdown point of depth by reflections

We have enough tools to define the breakdown point and prove the main
results of the chapter. This concept will give us an idea of how robust is the
estimator defined as sample depth by reflections. We follow the breakdown
point definition in [3] which we reproduce below because we will use it in
the main theorems of this chapter. Let X(n) be a sample of size n, and T a
location estimator, then the breakdown point is:

ε∗
(
T, X(n)) := min

{
m

n + m
: sup

Y(m)

||T
(
X(n) ∪Y(m)

)
− T

(
X(n))|| = +∞

}
(3.3)

where the supremmum is taken over any sample Y(m) of size m.

Example. To familiarize ourselves with the previous concept, let us analyze
the classic example of the sample mean. The breakdown point of the sam-
ple mean Xn is (n + 1)−1 because with only one point we can make tend to
infinity Xn. Thus, ε∗ −→a.s 0.
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The following Lemma 3.2.1 is a technical result that we need for the proofs
of the two theorems in this chapter. We assume that 0 ∈N.

Lemma 3.2.1 The following optimization problem:

(Opt)



max f = y1x2 + y4x1 + y1y3 + y2y4

y1 + y2 + y3 + y4 = m ≤ n
2

x1 + x2 = n even
x2 ≥ n

2
xi, yi, n, m ∈N

Has a maximum value max f = nm.

Proof. We prove it by induction in n . Let n = 2 and m = 1. The space of
solutions is:

(x1, x2) ∈ {(1, 1), (0, 2)}

(y1, y2, y3, y4) ∈ {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}.

It is easy to check that the maximum value is 2 for x1 = 0, x2 = 2 and
y1 = 1, y2 = y3 = y4 = 0. The case, m = 0 is trivial. On then other hand,
we suppose that it is true for n. Let us see that it is true for n + 2. If n = 2k
and n + 2 = 2(k + 1) we have two cases:
1) The case m ≤ k.
2) The case m = k + 1.

1) Let the space of solutions of (Opt)n to be Sn = Sn(x)× Sn(y). We have
that

Sn+2 = (Sn(x) + (1, 1) ∪ {(0, n + 2)})× Sn(y)

Let (xn+2, yn+2) ∈ Sn+2.
1.1) xn+2 = xn +(1, 1) , yn+2 = yn with xn = (x1

n, x2
n) and yn = (y1

n, y2
n, y3

n, y4
n).

We compute fn+2 = y1
n(x2

n + 1) + y4
n(x1

n + 1) + y1
ny3

n + y2
ny4

n = y1
nx2

n + y1
n +

y4
nx1

n + y4
n + y1

ny3
n + y2

ny4
n = fn + y1

n + y4
n. We know that max fn+2 ≤ max fn +

max(y1
n + y4

n) = nm + m < nm + 2m < (n + 2)m.

1.2) xn+2 = (0, n + 2) , yn+2 = yn.

We compute fn+2 = y1
n(n + 2) + y1

ny3
n + y2

ny4
n = ny1

n + 2y1
n + y1

ny3
n + y2

ny4
n.

So, max fn+2 ≤ max(ny1
n + y1

ny3
n + y2

ny4
n)+max 2y1

n = nm+ 2m = (n+ 2)m.

On the other hand, if y1
n = m, y2

n = y3
n = y4

n = 0 , then fn+2 = (n + 2)m, so,
max fn+2 ≥ (n + 2)m . In conclusion, max fn+2 = (n + 2)m.

2) Let n = 2k, mn = k, n + 2 = 2(k + 1) and mn+2 = k + 1. Firstly, the space
of solutions is

Sn+2 = (Sn(x) + (1, 1) ∪ {(0, n + 2)})× (Sk
n(y) + ei ; i = 1, 2, 3, 4)
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Where if y ∈ Sk
n(y) then y1

n + y2
n + y3

n + y4
n = k.

2.1) xn+2 = xn + (1, 1) , yn+2 = yn + e1 (i = 1)

We compute fn+2 = (y1
n + 1)(x2

n + 1) + y4
n(x1

n + 1) + (y1
n + 1)y3

n + y2
ny4

n =
y1

nx2
n + y1

n + x2
n + 1 + x1

ny4
n + y4

n + y1
ny3

n + y3
n + y2

ny4
n = fn + y1

n + y3
n + y4

n +
x2

n + 1. So, max fn+2 ≤ max fn + max(y1
n + y3

n + y4
n) + max x2

n + 1 ≤ nmn +
mn + n + 1 = 2k2 + 2k + k + 1 = 2k2 + 3k + 1 < 2k2 + 4k + 2 = 2(k + 1)2.

The cases xn+2 = xn + (1, 1) , yn+2 = yn + ei with i = 2, 3, 4 are similar.

2.2) xn+2 = (0, n + 2) , yn+2 = yn + e1 (i = 1)

We compute fn+2 = (y1
n + 1)(n + 2) + (y1

n + 1)y3
n + y2

ny4
n = ny1

n + 2y1
n + n +

2+ y1
ny3

n + y3
n + y2

ny4
n. So, max fn+2 ≤ max(ny1

n + y1
ny3

n + y2
ny4

n)+max(2y1
n +

y3
n) + n + 2 = nmn + 2mn + n + 2 = 2k2 + 2k + 2k + 2 = 2(k + 1)2.

On the other hand, if yn = (k, 0, 0, 0), i.e yn+2 = (k + 1, 0, 0, 0), then fn+2 =
(k + 1)(2(k + 1)) = 2(k + 1)2 then max fn+2 ≥ 2(k + 1)2 . In conclusion,
max fn+2 = 2(k + 1)2.

The cases xn+2 = (0, n + 2) , yn+2 = yn + ei with i = 2, 3, 4 are similar.
Thus, the result follows. �

In the following Theorem 3.2.1 we give a lower bound for the asymptotic
breakdown point, (3.3), under the hypothesis of having a sample from a
distribution P ∈ σ∗(P) for an estimator T constructed from the empirical
depth by reflections, Definition 3.1.1.

Theorem 3.2.1 (Main result of the chapter). Let a sample X(n) from a distribution
P ∈ σ∗(P). For any estimator T such that

T
(

X(n)
)
∈
{

Mn : RDn
(

Mn, X(n)) = max
x∈R2

RDn
(
x, X(n))} , (3.4)

the (asymptotic) breakdowm point satisfies:

ε∗
(
T, X(n)) −→a.s λ, λ ≥ 1

7
. (3.5)

Proof. Like in Theorems 2.3.1 and 2.3.2, it is enough to prove it for canonical
reflective symmetry. Let us see that limn ε∗

(
T, X(n)) ≥ 1

7 a.s. For that, let
us suppose for a contradiction that m is smaller than n/6 for any n � 0
such that supY(m) ||T

(
X(n) ∪ Y(m)

)
− T

(
X(n))||∞ = +∞. Then, for any M >

0, there exists Y(n)
M such that ||T

(
X(n) ∪Y(m)

M
)
− T

(
X(n))||∞ > M. Let M :=

max
X∈X(n)

||X||∞. As n � 0 and n −→ ∞ by Proposition 3.1.2 we estimate

T
(
X(n)) = 0, so, exists Y(m) such that ||T

(
X(n) ∪Y(n)

M
)
− 0
)
||∞ = ||T

(
X(n) ∪

Y(m)
M
)
||∞ > M.
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Let QM := T
(
X(n) ∪ Y(m)

M
)
. By the reflective symmetry of X(n) (n � 0)

we can suppose that QM ∈ [0, ∞) × [0, ∞) = C1((0, 0)) without loss of
generality. (Note that QM 6= 0.)

On the other hand, we know that 1
n ∑n

i=1 ICj(Xi) −→a.s
1
4 with j = 1, 2, 3, 4

by the reflective symmetry and by classical asymptotic properties. See also
Proposition 2.3.6. Then, if n � 0 we have that ∑n

i=1 ICj(Xi) =
n
4 . So, by the

Equation 3.1.1 It is easy to see (n
2)RDn

(
0, X(n)) = n2

8 and (n
2)RDn

(
QM, X(n)) =

0 without considering the m new points. It might be helpful to see Figure
3.1.

Figure 3.1: Geometric intuition of the situation of point QM in the plane in
relation to the sample X(n) that is contained in the ball of radius M with the
infinity norm.

If we consider the m points of Y(m)
M and we define:

wi := #{Y ∈ Y(m)
M : Y ∈ Ci(0, 0)}, i = 1, 2, 3, 4,

then, by Equation (3.2) we can compute: (n+m
2 )RDn+m

(
(0, 0), X(n)∪Y(m)

M
)
=(

w1 +
n
4

)
(w3 +

n
4

)
+
(
w2 +

n
4

)(
w4 +

n
4

)
= w1w3 +w1

n
4 +w3

n
4 +

n2

16 +w2w4 +

w2
n
4 +w4

n
4 +

n2

16=
n2

8 +(w1 +w2 +w3 +w4)
n
4 +(w1w3 +w2w4) =

n2

8 + nm
4 +

(w1w3 + w2w4). On the other hand, if we define:

xi := #{X ∈ X(n) : X ∈ Ci(QM)}, i = 1, 2, 3, 4

yi := #{Y ∈ Y(m) : Y ∈ Ci(QM)}, i = 1, 2, 3, 4,

as before, it is possible to prove that: (n+m
2 )RDn+m

(
QM, X(n) ∪ Y(m)

M
)

=
y1x3 + y4x2 + y1y3 + y2y4. Moreover, by (3.4) we remember that :(

n + m
2

)
RDn+m

(
QM, X(n) ∪Y(m)

M
)
≥
(

n + m
2

)
RDn+m

(
(0, 0), X(n) ∪Y(m)

M
)
.

(3.6)
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In addition, y1 + y2 + y3 + y4 = m , x2 + x3 = n x3 ≥ n
2 (QM ∈ C1(0, 0)).

As n� 0 without loss of generality we can assume that n is even. So, if we
consider the optimization problem (O):

(O)



max fn = y1x3 + y4x2 + y1y3 + y2y4

y1 + y2 + y3 + y4 = m ≤ n
2

x2 + x3 = n even
x3 ≥ n

2
xi, yi, n, m ∈N

We have that (n+m
2 )RDn+m

(
QM, X(n) ∪ Y(m)

M
)
≤ max fn because by hypoth-

esis m < n
6 < n

2 . So, by the Lemma 3.2.1 (n+m
2 )RDn+m

(
QM, X(n) ∪ Y(m)

M
)
≤

nm.
Finally, max fn− (n+m

2 )RDn+m
(
(0, 0), X(n)∪Y(m)

M
)
= nm− n2

8 −
nm
4 − (w1w3 +

w2w4) = 3nm
4 −

n2

8 − (w1w3 + w2w4) = n
4

(
3m− n

2

)
− (w1w3 + w2w4) < 0,

because m < n
6 . In conclusion , we have that:

(n+m
2 )RDn+m

(
QM, X(n)∪Y(m)

M
)
≤ max fn < (n+m

2 )RDn+m
(
(0, 0), X(n)∪Y(m)

M
)

which contradicts (3.6). So, m ≥ n
6 and limn ε∗

(
T, X(n)) ≥ 1

7 a.s, because
(n/6)

/
(n + n/6) = 1/7. �

In the general conditions of Theorem 3.2.1 it is not possible to proof that
the limiting breakdown point is greater than 3−

√
5

5 ≈ 1
7 +

1
100 . However, we

have the following result.

Theorem 3.2.2 If X(n) has uniform distribution U [−M, M]2 ∈ σ∗(P) with M >
0, then exists an estimator T0 such that:
(i). ε∗

(
T0, X(n)) −→a.s λ, 1

7 ≤ λ ≤ 3−
√

5
5 .

(ii). T0

(
X(n)

)
∈ {Mn : RDn(Mn, X(n)) = maxx∈R2 RDn(x, X(n))}.

We use symbolic calculator: https://www.dcode.fr/formal-calculator in
the proof.

Proof. Let n � 0, and Y(m) ≥ 0. We take the function fm
(
Y(m)

)
= Q ∈ R2

such that: Q := (Q1, Q2) and Q1 = minY∈Y(m) Y1, Q2 = minY∈Y(m) Y2. Let

Q ≥ 0 . We define Y(m)
Q := f−1

m
(
{Q}

) 1 with m = (5
√

5− 11)n.

We can estimate max
X∈X(n)

||X||∞ −→a.s M, and as we have done previously,

it is possible to check that when n −→ ∞ , then : (n+m
2 )RDn+m

(
Q, X(n) ∪

Y(m)
Q

)
= mn = (5

√
5− 11)n2 for all Q ∈ Γ := {(x, y) ∈ R2 : x > M, y >

M}.
1This is an abuse of notation because in general f is not injective. So certainly it is a

sample of m points such that Y(m)
Q ∈ f−1

m
(
{Q}

)
.
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We define T0(X(n) ∪ Y(m)
Q ) := Q if Q ∈ Γ. Let Q′ ∈ R2. If ||Q′||∞ > M

by Lemma 3.2.1 and by previous optimization problem (O) we have that
(n+m

2 )RDn+m
(
Q′, X(n) ∪Y(m)

Q

)
≤ nm.

Let us see that if ||Q′||∞ ≤ M then (n+m
2 )RDn+m

(
Q′, X(n) ∪Y(m)

Q

)
≤ nm.

Let Q′ ∈ R2 = ∪4
j=1Cj((0, 0)) such that ||Q′||∞ ≤ M. We define:

wi := #{X ∈ X(n) : X ∈ Si}, i = 1, 2, ..., 16.

Si was defined in the caption of Figure 2.1, wi −→a.s U[Si]n with U =
U[−M, M]2 (as n� 0, we have only w1, w2, w3, w4) and we take:

D :=
(

n + m
2

)
RDn+m

(
(0, 0), X(n)∪Y(m)

Q

)
−
(

n + m
2

)
RDn+m

(
Q′, X(n)∪Y(m)

Q

)
We are interested in the minimum of D. As in a previous situations it is
possible to check that: (n� 0)

Case j = 1 (Q′ ∈ C1((0, 0)))

D1 = 2w2
1 + 2w2

3 + 2w2
4 + 4w1w3 + 4w1w4 − 3w1m− w3m− w4m.

Case j = 2 (Q′ ∈ C2((0, 0)))

D2 = 2w2
1 + 2w2

3 + 2w2
4 + 4w1w3 + 4w1w4 + w1m + w3m− w4m.

Case j = 3 (Q′ ∈ C3((0, 0)))

D3 = 2w2
1 + 2w2

3 + 2w2
4 + 4w1w3 + 4w1w4 + w1m + w3m + w4m.

Case j = 4 (Q′ ∈ C4((0, 0)))

D4 = 2w2
1 + 2w2

3 + 2w2
4 + 4w1w3 + 4w1w4 + w1m− w3m + w4m.

So, it is clear that the important case under study is Q′ ∈ C1((0, 0)) because
min D = min D1. On the other hand, let us see that it is enough to study
the points of the segment [0, E] with E = (M, M).

In effect, as n � 0, by standard asymptotic properties we have that almost
surely:

w1 −→ xyn
4 , w2 −→ (1−x)(1−y)n

4 , w3 −→ (1−x)yn
4 , w4 −→ x(1−y)n

4

where x, y ∈ [0, 1]. So, replacing in the previous polynomial D1 we have
that:

D1(x, y) =
n2

8
(

x2y2 + (1− x)2y2 + (1− y)2x2 + 2x2y(1− y) + 2y2x(1− x)

−6(5
√

5− 11)xy− 2(5
√

5− 11)x(1− y)− 2(5
√

5− 11)y(1− x)
)
.
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Thus, D1(x, y) = n2

8 D0(x, y) and min D1(x, y) = n2

8 min D0(x, y).

As D0 is a polynomial, in particular a continuous function and (x, y) ∈
[0, 1]2 which is compact, by the Weierstrass Theorem a global minimum of
D1 exists. If the minimum is in the border, then it is clear that min D1 = nm
in E = (M, M).
If the minimum is in the open subset, then as D1 ∈ C∞ the gradient∇D0(x, y) =
(0, 0). So, it is easy to check,

∂D0

∂x
= 2x− 2xy2 − 2(5

√
5− 11)y− 2(5

√
5− 11) = 0

∂D0

∂y
= 2y− 2x2y− 2(5

√
5− 11)x− 2(5

√
5− 11) = 0.

Then, 0 = ∂D0
∂x −

∂D0
∂y = 2(x − y)(xy + 5

√
5 − 10). As x, y ∈ [0, 1] and

5
√

5− 10 > 0 we have that necessarily x = y. So, we study the points of
the segment [0, E]. If x = y, then we have to study: D0(x) = −x4 + 2(12−
5
√

5)x2 − 4(5
√

5− 11)x.

We solve the problem min
x∈[0,1]

D0(x). If we study D′0 is easy to see that D0

has a unique minimum in (0, 1), and it is possible to check with a symbolic
software that:

x0 := arg min
x∈(0,1)

D0(x) =
1
2
(
1−

√
5(9− 4

√
5)
)

D0(x0) = 67− 30
√

5 < 0.

We study the extreme x = 1, i.e the point E = (M, M) and we have that
D0(1) = 67− 30

√
5 = D0(x0). Thus,

(n+m
2 )RDn+m

(
Q′, X(n) ∪ Y(m)

Q

)
≤ (n+m

2 )RDn+m
(
Q, X(n) ∪ Y(m)

Q

)
, for all Q′ ∈

R2 and for all Q ∈ Γ, so, it is clear that:

RDn+m
(
T0
(
X(m) ∪Y(m)

Q∈Γ

)
, X(m) ∪Y(m)

Q∈Γ

)
= max

Q′∈R2
RDn+m

(
Q′, X(m) ∪Y(m)

Q∈Γ

)
.

Finally, we have that: supY(n) ||T0
(
X(n) ∪Y(m)

)
− T0

(
X(n))||∞ ≥

≥ supQ∈Γ ||T0
(
X(n) ∪Y(m)

Q

)
− T0

(
X(n))︸ ︷︷ ︸
0

||∞ = supQ∈Γ ||Q||∞ = +∞.

Lastly, lim n(5
√

5−11)
n+n(5

√
5−11)

= lim 5
√

5−11
5
√

5−10
= 3−

√
5

5 , so, limn ε∗
(
T0, X(n)) ≤a.s

3−
√

5
5 . �
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To end this chapter, we briefly mention that the breakdown point is known
for some of the most famous depth functions in the bivariate case. It should
be noted here that the treatment of the breakdown point that we have done
in this chapter has been totally personal and therefore may differ consider-
ably from the assumptions or hypotheses used for the results of the other
depth functions, for example when talking about the breakdown point in
general position. In the following table we summarize this information.

Depth function Breakdown point
Halfspace depth [16] 1/3
Simplicial depth [6] < 1/3

Oja depth [12] 0
Spatial depth [14] 1/2

Spherical depth [4] (
√

2− 1)/
√

2
Lens depth [7] (

√
2− 1)/

√
2

Table 3.1: Breakdown point of other depth functions.

In Table 3.1 next to the name of the depth function we put the reference
where these depth functions were introduced. The reader interested in the
references where the results on the breakdown point are proved can look at
the references that appear in [7] and [13]. In particular, the reference [13] is a
paper that is responsible for organizing the results about breakdown point
and computational complexity of several famous depth functions. Specif-
ically, the first four depth functions of Table 3.1 appear in that reference.
The last two can be found in [7].

33



Chapter 4

Computational aspects

Motivation and other comments. In this chapter we focus on the com-
putability part. Let us assume that we are working with data that comes
from an absolutely continuous distribution P ∈ BP2 but not necessarily
reflective symmetric. We focus on R2 because it is where there is more lit-
erature and for larger dimensions the analysis is much more complicated.
Given a sample, the objective is to calculate the sample depth contours ef-
ficiently. On the other hand, in this section we do not follow any refer-
ence. We are not experts in computational geometry, so we do not fol-
low an advanced strategy in this area. We only use strategies from a ba-
sic programming course and data structures. Furthermore, we will follow
a language and notation typical of object-oriented programming (like Java,
in particular) and we use the color blue in the attributes to differentiate
them from local variables and methods. As motivation we are inspired by
the result that appears in [10], which establishes that there is an algorithm
such that it calculates the depth contours with temporal and spatial com-
plexity O(n2) for the famous Tukey or Halfspace depth [16] and it is also
known how to implement it. For simplicity we will work with the canoni-
cal reference Rc = {0, βc} (band depth), so we will write the short version
RD(x, P) := RD(x, P, βc). Moreover, in the case that the sample comes
from a distribution P ∈ σ(P), as we have indicated before with other as-
pects, by Collorary 2.3.1 , there is no loss of generality.

4.1 Previous aspects

In [10] the α-depth-contour of distribution P ∈ BP2 is defined as the set:

RD−1((α, ∞), P) = {x ∈ R2 : RD(x, P) > α)}. (4.1)

We need to discretize the plane. Let us see how to do it.
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Let (X1, Y1), (X2, Y2), ..., (Xn, Yn) a sample from distribution P ∈ BP2. We
take the tuples (X(1), X(2), ..., X(n)) and (Y(1), Y(2), ..., Y(n)) where X(1) ≤ X(2)
≤ ... ≤ X(n) and Y(1) ≤ Y(2) ≤ ... ≤ Y(n). We denote the state space
by S := {R(X(i), Y(j)) ⊆ R2 : 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n − 1} where
R(X(i), Y(j)) := {(x, y) ∈ R2 : X(i) ≤ x ≤ X(i+1), Y(j) ≤ y ≤ Y(j+1)}.
Trivially, if (x, y) ∈ R2\ ∪R∈S R then RDn((x, y), P) = 0. In addition, it is
clear that #S ≤ (n − 1)2 , and for any x, y ∈ Int( R(X′i , Y′j )), we have that
qh(x) = qh(y) for all h = 1, 2, 3, 4 . Int(·) denotes the interior of a set.

If P is an absolutely continuous distribution, then the lines of the border of
R(X′i , Y′j ) are irrelevant, (in the sense that they are sets of probability 0), an
so, by the previous observations, we can concentrate in a one point of each
R(X′i , Y′j ) ∈ S to study the α-depth-contour. Furthermore, we can consider
that the coordinates of the points do not collapse, i.e; there are no collinear
points. Thus, #S is Θ(n2).

Due to the previous comments we have to traverse a space of size on the
order of n2. In each element of the state space S we have to calculate the em-
pirical depth by reflections in the most efficient way possible. We also want
to emphasize that if we had defined empirical depth by reflections Defini-
tion 3.1.1 in Chapter 3 as is normally done in literature, see for example [8]
and [6], that is:

RDn(x, X(n)) =

(
n
2

)−1

∑
1≤i1≤i2≤n

I{x ∈ Lβ(Xi1 , Xi2)}, (4.2)

it is clear that the most obvious algorithm to calculate the α-depth-contours
would have a time cost Θ(n4) because calculating the empirical depth for
each element of the state space S would have a time cost Θ(n2). On the
other hand, the properties tested in the previous chapter should be main-
tained for this other estimator because they are geometrically equivalent.
A few properties of this estimator can be seen in [8].

On the other hand, to build and define our program we begin by describing
the classes, in the sense of object-oriented programming, that compose it.
For this, we give some explanations of the attributes of each class and we
will detail the algorithms that are not obvious from the name of the method.
For example, the "set( )" and "get( )" methods are what the reader expects,
i.e; they are observer methods where in the first case we change the internal
state of the variables of the objects and in the second we obtain the value
that these variables have.

35



Class Point(X1, X2, x1, x2): It defines a point X = (X1, X2) of the sample
X(n) with coordinates X1, X2 whose quadrant is i ∈ {1, 2, 3, 4} defined by
a fixed point (x1, x2) following the notation Ci(x1, x2) from the previous
chapter. The methods it has are "getters" and "setters" for each attribute
in addition to the constructor method that is in charge of calculating the
quadrant i from the point (x1, x2).

Class Center(c1,c2, depth): It defines a representative point (the center) of
each region of the state space S with coordinates c1, c2 and sample depth
by reflections RDn((c1, c2), X(n)), the attribute depth. This class has only
"getters", "setters" methods for each attribute in addition to the constructor.

Class Rectangle(x, y, x0, y0, n): This is the class that contains the important
methods. We will dedicate the next subsection of the chapter to describe
them. Now we explain the attributes that this class has.

stackCol1: Stack of objects Point(X, Y, x0, y0) such that X ∈ x, Y ∈ y whose
quadrant is 1 or 4 ordered in increasing order by the first coordinate.

stackCol2: Stack of objects Point(X, Y, x0, y0) such that X ∈ x, Y ∈ y whose
quadrant is 2 or 3 ordered in decreasing order by the first coordinate.

stackRow1: Stack of objects Point(X, Y, x0, y0) such that X ∈ x, Y ∈ y
whose quadrant is 1 or 2 ordered in increasing order by the second co-
ordinate.

stackRow2: Stack of objects Point(X, Y, x0, y0) such that X ∈ x, Y ∈ y
whose quadrant is 3 or 4 ordered in decreasing order by the second co-
ordinate

ce: Center object. Initially, ce=c0:=Center(x0, y0, sampleDepth( )).

qua1,qua2,qua3,qua4: Natural numbers following the notation qj(x0, y0)

from the previous chapter, with sample X(n) such that X = (X1, X2) ∈ X(n)

with X1 ∈ x (x: List<Double>) and X2 ∈ y (y: List<Double>).

sizeSample: Number of sample points. (sizeSample=parameter n.)

In the following Figure 4.1 we can see a class diagram that summarizes the
structure of the program and the relationships between the classes that we
have just introduced.
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Figure 4.1: Unifield Modeling Language (UML) representation of classes.
The attributes and methods of the classes are observed globally.

4.2 The algorithms (of Rectangle)

At the head of the pseudocodes of the following algorithms is the func-
tionality they have and their time complexity. We understand that they are
easy to follow because they do not have anything exotic and do not deserve
much extra explanation. We would simply like to point out as a summary
that the Rectangle( ) constructor method is in charge of initializing the at-
tributes and that its complexity comes from going through n sample data
and ordering the stacks according to how they have been defined. We also
have a method that is responsible for calculating the empirical depth by
reflections, sampleDepth( ); and a method that is responsible for updat-
ing the center, or representative, for each movement we make in the state
space S, newCenter( ). On the other hand, we have the methods that allow
us to move through S, goNorth( ), goSouth( ), goEast( ), goWest( ) in the
directions they indicate. The reader should think of these methods as the
next( ), previous( ) methods of the classic iterator object in programming.
Finally, we have the method that is responsible for calculating the α-depth-
contour, depthContour(α). We denote by Tour(S,s0) an ordered set of the
form {goNorth( ), goSouth( ), goWest( ), ...} such that starting initially at the
element s0 ∈ S and executing the methods "goDirection( )" of Tour(S,s0) in
the order in which they appear let us go through the state space S.
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Algorithm 1 Constructor method. Initialize the attributes defined above,
the complexity comes from going through the sample size n and ordering
the stacks. Complexity Θ(n log n)

1: procedure RECTANGLE( ) . parameters in Figure 4.1

Algorithm 2 Method that calculates the sample depth. Complexity Θ(1)

1: procedure SAMPLEDEPTH( )
2: double aux = (sizeSample)(sizeSample - 1) / 2 . (sizeSample

2 )

3: return (qua1qua3+qua2qua4)/aux . See Definition 3.1.1

Algorithm 3 Method that calculates the center, or representative of the rect-
angle, which models a region of S. Complexity Θ(1)

1: procedure NEWCENTER( )
2: double depth = SAMPLEDEPTH( )
3: ce.SETDEPTH(depth)
4: double r1=stackCol1.PEEK( ).GETX1( )
5: double r2=stackCol2.PEEK( ).GETX1( )
6: double mean=MEAN(r1,r2)
7: ce.SETCENTER1(mean)
8: r1=stackRow1.PEEK( ).GETX2( )
9: r2=stackRow2.PEEK( ).GETX2( )

10: mean=MEAN(r1,r2)
11: ce.SETCENTER2(mean)

Algorithm 4 Method that allows us to move vertically up through S.
Complexity Θ(1)

1: procedure GONORTH( )
2: if stackRow1.PEEK( ).GETQUA( ) == 1 then
3: qua1=qua1-1;
4: qua4=qua4+1;
5: stackRow1.PEEK( ).SETQUA(4)
6: else
7: qua2=qua2-1;
8: qua3=qua3+1;
9: stackRow1.PEEK( ).SETQUA(3)

10: Point Q =stackRow1.POP( )
11: stackRow2.PUSH(Q)
12: if the stacks are not empty then
13: NEWCENTER( ) . Θ(1)
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Algorithm 5 Method that allows us to move vertically down through S.
Complexity Θ(1)

1: procedure GOSOUTH( )
2: if stackRow2.PEEK( ).GETQUA( ) == 4 then
3: qua4=qua4-1;
4: qua1=qua1+1;
5: stackRow2.PEEK( ).SETQUA(1)
6: else
7: qua3=qua3-1;
8: qua2=qua2+1;
9: stackRow2.PEEK( ).SETQUA(2)

10: Point Q =stackRow2.POP( )
11: stackRow1.PUSH(Q)
12: if the stacks are not empty then
13: NEWCENTER( ) . Θ(1)

Algorithm 6 Method that allows us to move horizontally to the right
throughS.
Complexity Θ(1)

1: procedure GOEAST( )
2: if stackCol1.PEEK( ).GETQUA( ) == 1 then
3: qua1=qua1-1;
4: qua2=qua2+1;
5: stackCol1.PEEK( ).SETQUA(2)
6: else
7: qua4=qua4-1;
8: qua3=qua3+1;
9: stackCol1.PEEK( ).SETQUA(3)

10: Point Q =stackCol1.POP( )
11: stackCol2.PUSH(Q)
12: if the stacks are not empty then
13: NEWCENTER( ) . Θ(1)
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Algorithm 7 Method that allows us to move horizontally to the left through
S.
Complexity Θ(1)

1: procedure GOWEST( )
2: if stackCol2.PEEK( ).GETQUA( ) == 2 then
3: qua2=qua2-1;
4: qua1=qua1+1;
5: stackCol2.PEEK( ).SETQUA(1)
6: else
7: qua3=qua3-1;
8: qua4=qua4+1;
9: stackCol2.PEEK( ).SETQUA(4)

10: Point Q =stackCol2.POP( )
11: stackCol1.PUSH(Q)
12: if the stacks are not empty then
13: NEWCENTER( ) . Θ(1)

Algorithm 8 Method that receives input a positive real number α and re-
turns as output the list of centers of the elements of S such that they have
depth greater than α. Tour(S, s0) is an ordered set. Complexity Θ(n2).

procedure DEPTHCONTOUR(α: double)
α-depth-contour= { } . Empty List
double c1 = 0
double c2 = 0
double depth= 0
Center newC = null
for each GODIRECTION( ) ∈ TOUR(S, s0) do . Θ(n2)

GODIRECTION( )
depth= ce.GETDEPTH( )
if depth > α then

c1=ce.GETCENTER1( )
c2=ce.GETCENTER2( )
newC= new CENTER(c1, c2, depth)
α-depth-contour.ADD(newC)

return α-depth-contour
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For an example, see the Annex.

Theorem 4.2.1 (Main result of the chapter). Let X(n) a sample from an absolutely
continuous distribution P ∈ BP2. It is possible to compute the α-depth-contour
with time-complexity Θ(n2) and space-complexity Θ(n) where n is the sample
size. In addition, the program is easily implementable.

An important observation here is that with the algorithm above we calcu-
late a single depth contour in time O(n2) and space O(n). For the reference
we mentioned at the beginning of Chapter 4 in the case of Halfspace depth,
all depth contours in time and space O(n2) are calculated. We could also
achieve this objective by using an O(n2) space. It would suffice to store the
depth of each point in the state space S (the centers) and store them in a
convenient data structure. Another observation is the fact that since calcu-
lating the convex hull of each depth region supposes a cost O(n log n), it
follows that its calculation does not increase the complexity of the previ-
ous algorithm. On the other hand, it is trivially deduced that the temporal
complexity of the bivariate median with the depth by reflections with the
previous algorithm is Θ(n2). As a final observation, it follows from the
definition that the temporal complexity of the empirical depth calculation,
RDn(x, P), is Θ(n). We put in the Table 4.1 the complexity of other known
depth functions in the bivariate case.

Depth function Depth complexity Median complexity
Halfspace depth [16] O(n log n) O(n log3 n)
Simplicial depth [6] O(n3) O(n4)

Oja depth [12] O(n2) O(n3 log n)
Spatial depth [14] O(n) O(n)

Spherical depth [4] O(n2) O(n2)
Lens depth [7] O(n2) O(n2)

Table 4.1: Time complexity of other depth functions.

As in Chapter 3, in Table 4.1 next to the name of the depth function we
put the reference where these depth functions were introduced. The reader
interested in the references where the results about computational com-
plexity are proved can look at the references that appear in [7] and [13].
In particular, the reference [13] is responsible for organizing the results on
breakdown point and computational complexity of several famous depth
functions. Specifically, the first four depth functions of Table 4.1 appear in
that reference. The last two can be found in [7].
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In Figure 4.2 we show a graphical representation of some α-depth-contours
for the uniform distribution U[0, 1]2. The α-depth-contours are calculated
with our Java program and the graph is made in MATLAB. Moreover, in
Figure 4.2 to the right we represent the convex hull of the calculated α-
depth-contours, that is, the intersection of all convex sets containing each
α-depth-contour.

Example. Let X(1000) a sample from uniform distribution U[0, 1]2. We graphic
the α-depth-contour for different values of α.

(a) α-depth-countors. (b) Convex hulls of α-depth-countors.

Figure 4.2: The α-depth-contours from the example above for
α = 0.1, 0.15, 0.2, 0.25, (blue, magenta, red, yellow).

42



Chapter 5

Independence test for two
absolutely continuous
variables

In this last part of the work we briefly sketch an application of the depth by
reflections in the case of the canonical reference (band depth). We continue
using the notation RD(x, P) := RD(x, P, βc). This application consists of a
hypothesis test to check if two absolutely continuous variables, specifically
with a density function, are independent. In this part of the work we will
not be very rigorous and we will not give proof of the results, because after
several attempts, lack of time and possibly experience, they have become
quite complicated. Here we only explain the intuition, the operation of the
method and some experimental checks.

Let X, Y be two absolutely continuous real random variables, the hypothe-
sis test consists of:

H0 : F(X,Y)(x, y) = FX(x)FY(y) (5.1)

Ha : F(X,Y)(x, y) 6= FX(x)FY(y)

Where F(X,Y) is the joint distribution function and FX, FY the marginal dis-
tribution functions. From Section 2.3.5 we know that,

RD((x, y), P) = 2P[(−∞, x]× (−∞, y]]P[[x, ∞)× [y, ∞)]+

2P[(−∞, x]× [y, ∞)]P[[x, ∞)× (−∞, y]].

Therefore, if we use the hypothesis that the coordinate variables (marginals)
are independent we obtain that,

RD((x, y), P) = 4FX(x)(1− FX(x))FY(y)(1− FY(y)).

This motivates the following test statistic.
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Let X(n) = {(X1, Y1), (X2, Y2), ..., (Xn, Yn)} a simple random sample and we
considerate the empirical depth of (3.2) and RD∗n((x, y), X(n)) := 4j1 j2 j3 j4

n2(n−1)2

where j1 :=
n

∑
i=1

I(−∞,x](Xi), j2 :=
n

∑
i=1

I[x,∞)(Xi), j3 :=
n

∑
i=1

I(−∞,y](Yi) and

j4 :=
n

∑
i=1

I[y,∞)(Yi). We use the statistic,

Tn := T
(

X(n)
)

:=
n

∑
i=1

(RDn((Xi, Yi), P)− RD∗n((Xi, Yi), P))2 (5.2)

We conjecture the following statement: For any absolutely continuous
distributions of X, Y (marginal distributions) if H0 is true it follows that
there exists a distribution parametrized by the sample size n, Kn, such that
Tn ∼ Kn. It can be computationally inspected that regardless of the distri-
butions that have X, Y under the null hypothesis, for example, for a sample
of size n = 30 there is a distribution of the form represented in Figure 5.1 :

Figure 5.1: Histogram that converges to the K30 distribution.
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The most important part of this hypothesis test is that the Kn distribution
does not depend on the distribution of the variables X, Y under the null
hypothesis. Consequently, although it would be much better to have a
formula or an analytical expression to define Kn to calculate the p-values,
P(Kn ≥ T(X(n))|H0), it is enough to empirically construct Kn for each n by
means of Monte Carlo simulations and to tabulate it. This last idea seems
important to us, and it is not at all new or original, since John Napier built
the famous table of logarithms long before the correct analytical expression
(Euler) of this function was provided. However, the intuition and practical
use were equally valid. We believe that in statistics today, with the com-
putational power that exists, we should return to that idea of constructing
tables more, since waiting to develop a precise mathematical theory that
explains each event involves a time and human cost that is not always
practicable. Let us not forget that statistics is a practical discipline. We
have tabulated Kn for n between 30 and 330 to make small examples. It is
included as an additional file located in the folder, independentTest, with
the name spvalues.mat. This table works in conjunction with the file whose
name is sdatos.mat. But with enough time it can be done for larger values
of n. With this, in addition, the complexity of the test is linear in the size
of the data once the table has been constructed for Kn, which is the cost of
the statistic Tn. As it is a non-parametric hypothesis test, it did not seem
reasonable to consider too small samples, say less than 30 because it could
lead to faulty results.

Finally, we compare our test with another that performs the same task.
The most famous is the Hoeffding independence test [5], which curiously
has a philosophy similar to ours, which somehow studies the parameter
∆ =

∫
(F(X,Y) − FX FY)

2dF(X,Y). Although being honest, the idea, or the
inspiration to define our statistic came from the Pearson’s chi square test
studied in the basic statistic course. However, we consider that our hy-
pothesis contrast may be more powerful than Hoeffding since it uses more
complete and global information. We will try to reflect these observations
with the following computational experiments. The strategy to measure
the performance of both tests consists of setting a model for the variables
X, Y first and then carrying out 10, 000 simulations where in each simula-
tion a sample X, Y is calculated from the fixed model and the p-value of
each test computed.

Then, we compared the mean and variance of the p-values of both tests.
In addition, we look at the proportion of rejections obtained in the 10, 000
simulations, that is, the proportion of times that a p-value < .05 is obtained.
The cases in which X, Y are independent, X, Y follow a linear dependence
and finally X, Y follow a quadratic dependence have been investigated. We
use sample size n = 100. The case under the null hypothesis is exemplified
in the first part of Table 5.1 where X follows a normal distribution and Y
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a uniform distribution. There, our test obtains a proportion of rejections
over the nominal level. We consider this is due to not having an analyti-
cal expression of Kn. In the second part of Table 5.1 we represent the case
for X a normal distribution and Y, dependent of X, is X plus an uniform.
Although the results are similar, we obtain a higher rejection rate and the p-
values obtained are smaller in average and with a smaller variance. The last
case studied is represented in the third part of Table 5.1, where X is again
a normal distribution and Y is X to the square plus a uniform. There we
can observe that our test clearly outperforms the Hoeffding independences
test. The explanation can be found in the structure of the statistics, where
ours being wider, informally speaking. The Hoeffding independence test
is based on a parameter whose fundamental ingredient is the cumulative
distribution function F(X,Y)(x, y) = P[(X, Y) ∈ C3(x, y)] (following the no-
tation Ci of Chapter 3), while in our case, the statistic T in its definition
includes the calculations of P[(X, Y) ∈ Ci(x, y)] with i = 1, 2, 3, 4. There-
fore, as C3(x, y) ⊂ ⋃4

i=1 Ci(x, y), we say that T is wider since it studies the
distribution from "more angles".

X ∼ N (0, 1), Y ∼ U (0, 1) ind. ∆ T
Mean of p-values .421752 .384278

Variance of p-values .050028 .072373
Proportion of rejections .052400 .099200

X ∼ N (0, .1), Y ∼ X + U (0, 1) ∆ T
Mean of p-values .035871 .015232

Variance of p-values .006257 .002445
Proportion of rejections .819300 .926100

X ∼ N (0, .3), Y ∼ X2 + U (0, 1) ∆ T
Mean of p-values .184396 .016142

Variance of p-values .028073 .001581
Proportion of rejections .252500 .919200

Table 5.1: Parameters of the p-values in 10000 simulations of samples of
size n = 100 according to the model that appears in the upper left part of
each subtable.
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Annex

The objective of this annex is to visually and didactically show the opera-
tion of the program described in Chapter 4 for a few iterations of a 4-point
data set.

Let X(4) = {(2, 5), (4, 3), (6, 1), (1,−1)}, we execute the previous methods
for some iterations.

S = {R(1,−1), R(1, 1), R(1, 3), R(2,−1), R(2, 1), R(2, 3), R(4,−1), R(4, 1), R(4, 3)}

s0 = R(2, 1). Tour(S, s0) = {goEast(), goSouth(), goWest(), goWest(), goNorth(),

goNorth(), goEast(), goEast()}

Rectangle ({2, 4, 6, 1}, {5, 3, 1,−1}, 3, 2, 4) with (3, 2) the middle point of s0.

Q1 =Point(2, 5, 3, 2), Q2 =Point(4, 3, 3, 2), Q3 =Point(6, 1, 3, 2), Q4 =Point(1,−1, 3, 2).

The graphical representation of the state space S in Figure 5.2.

Figure 5.2: Tour(S, s0), canonical referenceRc

The representation of the points types is in Figure 5.3.
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Figure 5.3: Points, Q1, Q2, Q3, Q4. Attribute qua:=quadrant

In the figures 5.4, 5.5 and 5.6, the situation of the rectangular class attributes
is graphically represented for each iteration indicated. In particular the
situation of the stacks is represented in each figure and above them we
indicate the center of the rectangle for the corresponding iteration.

ce(0) = Center
(
3, 2,

1
3
)
, sizeSample = 4

Figure 5.4: Attributes of Rectangle class. Iteration=0.
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ce(1) = Center
(
5, 2,

1
3
)
, sizeSample = 4

Figure 5.5: Attributes of Rectangle class. Iteration=1.

ce(2) = Center
(
5, 0,

1
6
)
, sizeSample = 4

Figure 5.6: Attributes of Rectangle class. Iteration=2.
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