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Abstract
In a recent paper, Baño-Medina et al. (Configuration and Intercomparison of deep learning neural models for statistical 
downscaling. preprint, 2019) assessed the suitability of deep convolutional neural networks (CNNs) for downscaling of 
temperature and precipitation over Europe using large-scale ‘perfect’ reanalysis predictors. They compared the results 
provided by CNNs with those obtained from a set of standard methods which have been traditionally used for downscaling 
purposes (linear and generalized linear models), concluding that CNNs are well suited for continental-wide applications. 
That analysis is extended here by assessing the suitability of CNNs for downscaling future climate change projections using 
Global Climate Model (GCM) outputs as predictors. This is particularly relevant for this type of “black-box” models, whose 
results cannot be easily explained based on physical reasons and could potentially lead to implausible downscaled projections 
due to uncontrolled extrapolation artifacts. Based on this premise, we analyze in this work the two key assumptions that are 
made in perfect prognosis downscaling: (1) the predictors chosen to build the statistical model should be well reproduced 
by GCMs and (2) the statistical model should be able to reliably extrapolate out of sample (climate change) conditions. As 
a first step to test the suitability of these models, the latter assumption is assessed here by analyzing how the CNNs affect 
the raw GCM climate change signal (defined as the difference, or delta, between future and historical climate). Our results 
show that, as compared to well-established generalized linear models (GLMs), CNNs yield smaller departures from the 
raw GCM outputs for the end of century, resulting in more plausible downscaling results for climate change applications. 
Moreover, as a consequence of the automatic treatment of spatial features, CNNs are also found to provide more spatially 
homogeneous downscaled patterns than GLMs.

Keywords Statistical downscaling · Regional climate change scenarios · Deep learning · Convolutional neural networks 
(CNNs) · Generalized linear models (GLMs)

1 Introduction

As a result of several decades of intense research, a variety 
of statistical downscaling approaches and techniques are 
nowadays available to fill the gap between the coarse reso-
lution outputs provided by Global Climate Models (GCMs) 
and the local or regional information required for impact 

studies—typically at individual locations or over regional 
interpolated grids covering the area of study—(Maraun and 
Widmann 2018). The local predictand(s) of interest (e.g. 
precipitation and temperature) are inferred from GCM out-
puts using statistical models which build on a set of large-
scale atmospheric variables (predictors such as geopotential, 
temperature or humidity) explaining a large fraction of the 
local climate variability. Under the perfect prognosis (PP) 
approach, the different statistical downscaling models (here-
after SDMs) available (linear and generalized linear models, 
analogs, machine learning techniques) are trained based on 
historical observations for both predictands and predictors 
(the latter coming from a reanalysis). A number of inter-
comparison studies have reported the relative merits and 
limitation of state-of-the-art SDMs when ‘perfect’ reanalysis 
predictors are used, based on cross-validation. In particular, 
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the VALUE initiative (pan-European network to validate 
downscaling methods, Maraun et al 2015) conducted the 
largest-to-date intercomparison with over 50 contributing 
SDMs (VALUE Experiment 1, Gutiérrez et al 2019).

In a recent paper, Baño-Medina et al (2019) assessed the 
suitability of deep convolutional neural networks (CNNs) 
for the downscaling of temperature and precipitation over 
Europe using large-scale ‘perfect’ reanalysis predictors. 
To do so, they used the experimental framework defined in 
VALUE (Experiment 1) to compare the results provided by 
CNNs with those obtained from a set of other more classical, 
standard techniques i.e., generalized linear models, conclud-
ing that CNNs are well suited for continental-wide applica-
tions. There have been similar studies over North America 
(Pan et al 2019) and China (Sun and Lan 2020), all show-
ing that CNNs achieve similar or better performance than 
standard SDMs. Moreover, CNNs circumvent the problem of 
feature selection/extraction—which is highly case-dependent 
and becomes a very complex task to accomplish in classical 
downscaling methods—by performing an implicit manipu-
lation of the input space in the internal structure of the net-
work (Baño-Medina 2020).

However, these previous studies do not test the suitabil-
ity and potential limitations of CNNs for climate change 
applications. This is particularly relevant due to the limited 
interpretability offered by these “black-box” models (Baño-
Medina 2020) that may hinder extrapolation analysis. As a 
result, users are reluctant to use this kind of techniques and 
standard SDMs are still the preferred choice to downscale 
climate change scenarios (Gutiérrez et al 2019). Moreover, 
only a few studies have focused on the impact that the two 
key assumptions of perfect prognosis downscaling may have 
for climate change applications: (1) the predictors should 
be well reproduced by GCMs and (2) the statistical model 
should be able to generalize and extrapolate out-of-sample 
(e.g. climate change) conditions. This is crucial to assess 
the credibility of future climate information and avoid mis-
adaptation (Pryor and Schoof 2020). Furthermore, these 
studies are mostly available at national or subnational levels 
(see, e.g., Gutiérrez et al 2013; San-Martín et al 2016; Man-
zanas et al 2015, 2020). At a continental level, there is an 
ongoing experiment aimed at analyzing these assumptions 
in the framework of the VALUE European initiative—now 
encompassed in the EURO-CORDEX collaboration (Jacob 
et al 2020),—but results are not available yet. Details of the 
experimental framework (VALUE Experiment 2, which we 
use in this study) are available at http:// www. value- cost. eu/ 
valid ation.

The present work is a first step to fill this knowledge 
gap by testing for the first time the suitability of CNNs for 
downscaling future climate change projections, extend-
ing the analysis done in Baño-Medina et al (2019) in the 
framework of VALUE (Experiment 2). We analyze the two 

aforementioned perfect prognosis assumptions, which are 
particularly relevant in the case of “black-box” models such 
as CNNs, whose results cannot be easily explained based on 
physical reasons, and could potentially lead to implausible 
downscaled projections due to uncontrolled extrapolation 
artifacts. As a first step to test the suitability of these mod-
els we test potential extrapolation problems by comparing 
the downscaled and raw model signals. Here we explore 
this open problem focusing on both temperature and pre-
cipitation over Europe and compare the downscaled signals 
provided by CNNs with those obtained from a set of stand-
ard, benchmarking SDMs (in particular different variants of 
GLMs). Our results show that, as compared to GLMs, CNNs 
provide more spatially homogeneous downscaled patterns 
which exhibit smaller departures from the raw GCM outputs 
for the end of century.

The paper is organized as follows: In Sect. 2 we describe 
the data, SDMs and indicators used. The results obtained 
are discussed throughout Sect. 3, with a special focus on the 
analysis of the climate change signals projected for the end 
of the century (Sect. 3.3). Finally, the main conclusions are 
presented in Sect. 4.

2  Data and methods

2.1  Data

We use the reference datasets and periods of analysis pro-
posed in VALUE Experiment 2 —an extension of Experi-
ment 1 used in Baño-Medina et al (2019),— which defines a 
comprehensive framework in the context of climate change. 
In particular, we use as predictors the variables shown in 
Table 1 to downscale daily surface temperature and precipi-
tation over Europe, using E-OBS (version 14, at a 0.5◦ spa-
tial resolution, Cornes et al (2018)) as observational dataset.

For the training phase, predictor data covering the domain 
36◦N-72◦ N, 10◦W-32◦ E is taken from the ERA-Interim rea-
nalysis (Dee et al 2011) at a 2 ◦ horizontal resolution for the 
period 1979-2008. For the downscaling phase, we use pre-
dictors from the EC-Earth model (r12i1p1 run) —belonging 
to the Coupled Models Intercomparison Project (Phase 5) 
CMIP5 (Hazeleger et al 2010)—for 1979–2008 (historical 
scenario) and 2071–2100 (RCP8.5 scenario). EC-Earth was 
re-gridded from its native spatial resolution ( 1.12◦ ) to the 
ERA-Interim’s grid (2◦ ) using bilinear interpolation.

Both ERA-Interim and EC-Earth predictor data are avail-
able from the VALUE website (http:// www. value- cost. eu/ 
valid ation) and can be downloaded as netCDF files. E-OBS 
data is available at the ECA&D webpage (https:// www. ecad. 
eu/ downl oad/ ensem bles/ downl oad. php).

http://www.value-cost.eu/validation
http://www.value-cost.eu/validation
http://www.value-cost.eu/validation
http://www.value-cost.eu/validation
https://www.ecad.eu/download/ensembles/download.php
https://www.ecad.eu/download/ensembles/download.php
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2.2  Statistical downscaling methods

We selected for this work the CNN1 and CNN10 models 
presented in Baño-Medina et al (2019) to downscale daily 
precipitation and temperature, respectively. These models 
consist of an input layer (with stacked spatial predictors) 
feeding three layers of convolutions (50:25:1 for precipita-
tion and 50:25:10 for temperature), each formed by 3 × 3 
spatial kernels. The last convolution is fully-connected to the 
output layer (the E-OBS land-gridpoints), using linear trans-
formations, or sigmoidal ones for probability of rain (i.e. the 
parameter p of the Bernouilli distributions). The networks 
are trained to learn daily conditional distributions of precipi-
tation (maximizing the loglikelihood of a mixed Bernouilli-
Gamma distribution) and temperature (minimizing the mean 
square error, MSE), given the predictors; i.e., the network 
is forced to estimate the associated parameters to the men-
tioned distributions. For the case of precipitation, we follow 
a 3-parameter estimation approach which was introduced 
by Williams (1998) for feedforward neural networks, later 
adopted by Cannon (2008) and recently extended to CNNs 
in Baño-Medina et al (2019). In this approach, given a set of 
large-scale atmospheric predictors, the probability of rain, 
p, and the shape and scale parameters of a Gamma distribu-
tion ( � and � , respectively) are simultaneously estimated 
at each site by minimizing the negative log-likelihood of a 
Bernoulli-Gamma distribution. For temperature, we mini-
mize the MSE, which is equivalent to minimize the negative 
log-likelihood of a Gaussian distribution for the conditional 
mean.

The potential of CNN topologies resides in the efficient 
treatment of complex spatial features. In climate downscal-
ing, these models have the capacity to handle high-dimen-
sional predictor spaces, automatically selecting the most 
relevant variables and geographical domains affecting each 
particular site (see Baño-Medina et al 2019; Baño-Medina 
2020, for more details on CNN model interpretability). This 
aspect is crucial since state-of-the-art SD techniques such as 
GLMs are unable to treat this high-dimensionality without 
leading to overfitting, requiring thus some kind of human-
guided feature selection (with the consequent loss of relevant 
information) in most of cases. In fact, to some extent, CNNs 

can be viewed as a natural extension to GLMs entailing an 
intelligent feature selection which allows to maximize the 
predictive capacity of the available predictor fields.

For these reasons, we only consider as benchmark three 
GLMs which have been previously used in Bedia et al (2018) 
and rigorously intercompared in VALUE experiment 1 
(Gutiérrez et al 2019). As noted, regression-based SDMs 
typically undergo feature selection/extraction techniques 
to select a reduced set of optimal predictors. The GLMs 
used in this work differ only in the spatial character of the 
predictors considered. On the one hand, GLM1 (GLM4) 
uses as predictor local information at the closest (four clos-
est) gridpoint(s) to the site’s location. On the other hand, 
GLMPC builds on the leading principal components (PCs, 
(Preisendorfer 1988)) explaining the 95% of the variance of 
the predictor space. The PCs are calculated over the eight 
PRUDENCE regions as described in Gutiérrez et al (2019). 
Based on these three predictor configurations, we build three 
different GLM models at each location; a logistic regression 
to estimate precipitation occurrence, a Gamma-like regres-
sion with logarithmic link to estimate rainfall amount and 
a Gaussian-like regression to estimate surface temperature.

Though regression-based methods have proved successful 
to provide unbiased estimates of the mean, they are known 
to underestimate the local variability, especially for precipi-
tation (Pryor and Schoof 2020). Several approaches have 
been proposed to alleviate this issue, from variance inflation 
(Von Storch 1999) to the inference of daily probability distri-
butions conditioned to the given large-scale predictors (see, 
e.g., Williams 1998; Cannon 2008; Baño-Medina et al 2019). 
Despite challenges still exist (e.g., preservation of temporal 
autocorrelation and/or the spatial fields), these approaches 
have been shown to provide overall good results in terms of 
local variability. For this reason, we design all our models, 
both CNNs and GLMs, such that they estimate conditional 
gaussian (for temperature) and Bernouilli-Gamma (for pre-
cipitation) daily probability distributions. As a consequence, 
both deterministic and stochastic downscaled series can be 
obtained for all the SDMs developed in this study, depending 
on whether we limit the prediction to the estimated mean or 
we perform a sampling from the given daily PDF, respec-
tively. In the case of deterministic precipitation, the binary 

Table 1  List of predictor and 
predictand variables proposed in 
VALUE, and used in this study

Variable Units Levels (hPa) Predictor Predictand

Geopotential m 500, 700, 850 and 1000 ✓

Air temperature ◦C 500, 700, 850 and 1000 ✓

Specific humidity kg/kg 500, 700, 850 and 1000 ✓

Zonal wind velocity m/s 500, 700, 850 and 1000 ✓

Meridional wind velocity m/s 500, 700, 850 and 1000 ✓

Surface temperature ◦C – ✓

Total rainfall mm – ✓
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series (0/1: no rain/rain) is obtained according to the thresh-
old that matches the rainfall frequency in the train period 
to the observed value, whereas rainfall amount is directly 
given as the Gamma’s expectance. For both deterministic 
and stochastic versions, the final predicted precipitation is 
obtained by multiplying the binary occurrence series by the 
continous amount series, the latter according to the con-
ditional Gamma PDFs. For the case of temperature, only 
deterministic implementations of both CNNs and GLMs 
are considered, since the local variability of this variable is 
lower and stochasticity is not really needed.

Table 2 summarizes the dimensionality of the models 
used in this work. Whereas CNN1 and CNN10 models are 
designed over a predictor space of 19 × 22 (latitude-longi-
tude) with the 20 variables listed in Table 1 stacked as inputs 
(or channels, similar to RGB channels in computer vision 
images), GLMs take as inputs the predictor variables at the 
closest gridpoints to each site (20 and 80 for GLM1 and 
GLM4, respectively) or the PCs that explain the 95% of the 
total variance of the predictor space (this depends on the 
PRUDENCE region so we marked it with an ’x’ in Table 2). 
In CNN1/10, the input layer is convolutionally connected to 
a set of 3 hidden layers with 50, 25 and 1/10 feature maps in 
a sequential manner. Padding is applied in the CNN1 model, 
keeping the input resolution constant, whilst CNN10 lack of 
this property, diminishing the spatial resolution throughout 
the hidden layers as a function of the kernel size ( 3 × 3 ). 
The output layer of the CNNs matches the E-OBS land-
gridpoints resulting into 3259 predictand sites for the pre-
cipitation/ temperature model. Due to the nature of the GLM 
optimization and since the predictor spaces do not overlap 
for the sites of interest, GLMs are formulated in single-site 
mode—one model per site,— in contrast with CNNs that 
operate in multi-site mode—all sites are simultaneously 

downscaled from a single precipitation (CNN1) or tem-
perature (CNN10) model. The capacity of DL topologies to 
downscale to multiple sites at a time is commonly referred 
to as multi-task learning, and its benefits include: compu-
tational efficiency, implicit regularization and ability to 
estimate multivariate distributions (see Ruder 2017, for 
a review in multi-task deep learning). On the one hand, 
computational efficiency comes from the fact that a single 
model is trained and used to predict over the test samples. 
On the other hand, multi-task topologies forces the network 
to learn patterns that are useful to downscale at multiple 
sites, sharing knowledge in the hidden layers, and acting 
as a form of inductive bias that prevents the network from 
overfitting. In particular, this regularization property was 
tested for the topologies used in this study in Baño-Medina 
and Gutiérrez (2019), where multi-site CNNs attained better 
results than their equivalent single-site CNNs in terms of 
local reproducibility. However, it has to be noted that none 
of these benefits imply an improvement on the spatial con-
sistency of the downscaled fields, and explicit modeling of 
multivariate distributions—e.g., daily multivariate Gaussian 
distributions—in addition to multi-site networks is needed 
(Cannon 2008).

2.3  Validation indices

We use in this work some of the indicators that have been 
consolidated in the VALUE validation framework (Maraun 
et al 2015). In particular, we consider P02, Mean and P98 
for temperature and R01, SDII and P98 for precipitation (see 
Table 3 for details).

In particular, to assess the performance of the down-
scaled results obtained from EC-Earth in its historical sce-
nario (1979–2008), we compute the biases (with respect to 

Table 2  Dimensions of the 
input (In), output (Out) and 
hidden (H1, H2, and H3) layers 
for the methods considered 
in this study applied at a 
continental scale over Europe

In H1 H2 H3 Out Models

GLM1 20 - - - 1 3259
GLM4 80 - - - 1 3259
GLMPC x - - - 1 3259
CNN1 (19, 22, 20) (19, 22, 50) (19, 22, 25) (19, 22, 1) 3259 1
CNN10 (19, 22, 20) (17, 20, 50) (15, 18, 25) (13, 16, 10) 3259 1

Table 3  List of indicators used 
in this study

 “P” and “T”denote precipitation and temperature, respectively

Code Description Units Variable

R01 Frequency of wet (precip. >= 1 mm/day) days % P
SDII Simple daily intensity index (mean precip. in wet days) mm/day P
P02 2nd percentile ◦C T
Mean Mean ◦C T
P98 98th percentile (for precip., only wet days are considered) ◦ C, mm/day T, P
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E-OBS) for the mentioned indicators. For temperature (pre-
cipitation), absolute (relative, in %) biases are considered. 
Differently, for the case of the downscaled results obtained 
from EC-Earth in the far future, we compute the delta 
change between the RCP (2071-2100) and the historical 
(1979-2008) scenario—for each temperature (precipitation) 
indicator, absolute (relative, in %) differences are given. In 
this regard, note that, although downscaling may be expected 
to modify the raw GCM projections at the local scale (due, 
e.g., to a better modeling of local phenomena such as orog-
raphy), neither the spatial structure nor the magnitude of the 
raw climate change signal should be significantly altered 
over a sufficiently large region (see Manzanas et al 2020, for 
details). With this in mind, we also compute the existing dif-
ferences in the delta changes as projected by the downscaled 
version and by the raw GCM ( deltadown − deltaGCMraw

 ). As 
such, for a particular SDM, large differences would indicate 
a bad extrapolation capability—understood as compatibility 
with the raw GCM projections.

3  Results

In this section we discuss the suitability of the different sta-
tistical methods presented in Sect. 2.2 (with a special interest 
in the CNNs) to generate plausible regional climate change 
scenarios.

3.1  Testing the perfect‑prognosis assumption

We first asess if the predictors used in our SDMs are real-
istically simulated by the EC-Earth. Note that this model 
has been shown to consistently reproduce key large scale 
processes affecting the European climate, in particular 
storm tracks (Lee 2015), which makes it a suitable option 
for downscaling, as proposed in VALUE.

To avoid the potential issues related to the presence of 
systematic biases in the first and second moments of the 
GCM (see, e.g., Vrac and Vaittinada Ayar 2016; Nikulin et al 
2018; Manzanas et al 2019), we used standardized anomalies 
(at a gridbox level) for both EC-Earth and ERA-Interim. 
Moreover, in order to avoid also the possible misrepresenta-
tion of the annual cycle, we have also assessed the effect of 
applying a simple monthly mean bias adjustment (BA) prior 
to standardization. BA consists in adjusting the EC-Earth 
( xGCM ) monthly means towards the corresponding reanalysis 
values ( xREA ), gridbox by gridbox (Eqs. 1, where j refers to 
a particular variable, i = 1, 2, ..., 12 to the month of the year, 
and h and f denote historical and RCP periods, respectively). 
The reader is referred to Gutiérrez et al (2019) for further 
details.

Figure  1 allows to assess the distributional similarity 
between the ERA-Interim’s and EC-Earth’s temporal series 
over the historical period 1979–2008. In particular, it shows 
the results from a Kolmogorov–Smirnov test for standard-
ized (left) and bias adjusted+standardized (right) daily pre-
dictors over the entire year, winter and summer (in columns). 
Red crosses identify those gridpoints where the null hypoth-
esis of the test —ERA-Interim and EC-Earth distributions 
are indistinguishable—can be rejected at a 5% significance 
level. In all cases, colors show the p-values (in the range 
0 − 0.3 ) corresponding to the ERA-Interim vs. raw (with no 
transformation) EC-Earth comparison. For brevity, results 
are only shown for two illustrative variables, temperature at 
1000 hPa (T1000) and specific humidity at 700 hPa (Q700), 
top and bottom row, respectively.

Both T1000 and Q700 present in general low p-values 
(below the significance level of 0.05), reflecting that EC-
Earth and ERA-Interim distributions are significantly dif-
ferent over many regions. This is mainly due to the pres-
ence of systematic biases in EC-Earth, since the situation is 
substantially improved once standardization is carried out, 
regardless BA is applied or not (see the red crosses in both 
panels). If reanalysis and GCM predictors are compared over 
the entire year (annual distributions, left column in each 
panel) there is in general good distributional agreement for 
T1000 and Q700 over the domain (with a few exceptions in 
the Mediterranean for the case of Q700). However, when 
the comparison is undertaken for winter and summer (mid-
dle and right column in each panel, respectively), better 
results are found when BA is applied. These results prove 
that monthly bias adjustment helps to meet the perfect prog-
nosis assumption, yielding better predictors for downscal-
ing. Moreover, though not showed here for brevity, for other 
predictor variables—especially wind velocity components 
in southern Europe and specific humidity at other height 
levels,— BA is crucial to make reanalysis and GCM predic-
tors compatible.

3.2  Downscaling performance in the historical 
period

As explained in the previous section, the SDMs introduced 
in Sect. 2.2 are first trained using ERA-Interim standardized 
predictors and subsequently applied to EC-Earth predictors, 
after bias adjustment and standarization. Figure 2 shows the 
validation results obtained for the indices listed in Table 3 
for the historical period 1979-2008, calculated as relative 
(absolute) biases for precipitation (temperature). Results 

(1)x�i
j,GCMh

= xi
j,GCMh

− x̄i
GCMh

+ x̄i
REA

(2)x�i
j,GCMf

= xi
j,GCMf

− x̄i
GCMh

+ x̄i
REA



 J. Baño-Medina et al.

1 3

are shown for the raw EC-Earth outputs (first row) and for 
the different statistical downscaling methods (GLMs: rows 
2–4 and CNN: row 5), considering E-OBS as the observa-
tional reference in all cases. This figure shows that EC-Earth 
exhibits moderate to large biases for both precipitation and 
temperature over vast parts of Europe, with a tendency to 
overestimate precipitation occurrence (the well-known ‘driz-
zle effect’) and underestimate precipitation intensity and 
extremes (indicating a systematic shrinkage of the distribu-
tion). For temperature, EC-Earth underestimates the mean 
and extremes in the Mediterranean (indicating a systematic 
shift of the distribution) and under/over-estimates the warm/
cold extremes in regions of central and Northern Europe 
(indicating a systematic shrinkage).

All the SDMs considered, largely reduce the biases 
encountered for centered statistics such as R01 (for precipi-
tation) and the mean (for temperature). This is not surpris-
ing as they are designed to minimize the mean errors (w.r.t. 
the E-OBS observations) during the training process. An 
exception to this is precipitation intensity for those methods 
relying on local predictors, which overestimate intensity 
(particularly GLM4). Nevertheless, this problem is allevi-
ated when spatial predictors are used, either PCs in the case 
of GLMPC or convolutions in the CNN.

In the case of precipitation, all SDMs underestimate 
extreme values (P98), which is due to the reduced local vari-
ability explained by large-scale predictors—smaller under-
estimation corresponds to those methods with a presence of 
more informative variables in the predictor set i.e., GLM4 

and CNN (Baño-Medina et al 2019). Figure 2 shows two col-
umns for P98, corresponding to the deterministic (DET.) and 
stochastic (STOCHASTIC) versions described in Sect. 2.2. 
With the exception of the GLMs using local predictors (in 
particular GLM4), a clear improvement is found for the sto-
chastic versions, which yield substantially lower biases.

For temperature, all SDMs yield nearly negligible biases 
in most cases (especially for the mean) and extreme warm 
temperatures (P98). However, the three GLM-based imple-
mentations overestimate P2 in Scandinavia, where the EC-
Earth model exhibits the largest biases. To a great extent, 
this is corrected by the CNN, which points out again the 
benefit of convolutional networks for climate downscaling 
purposes.

In agreement with the results previously found in Baño-
Medina et al (2019), we confirm here that CNNs provide 
overall better results than GLMs. This is due to the inher-
ent capacity of CNNs to automatically extract the important 
spatial features determining the local climate, which allows 
to properly model the complex relationships (both in space 
and in time) that are established between the local- and the 
large-scale and improves the out-of-sample generalization 
capacity, especially for precipitation.

3.3  Future climate projections: raw and downscaled 
signals

A key assumption for the secure application of statistical 
downscaling to produce climate change projections is that 

0.
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Fig. 1  Results from a Kolmogorov-Smirnov (KS) test for standard-
ized (left) and bias adjusted+standardized (right) daily T1000 and 
Q700 (top and bottom row, respectively) over the entire year, win-
ter and summer (in columns). Red crosses identify those gridpoints 
where the null hypothesis of the test—ERA-Interim and EC-Earth 

distributions are indistinguishable—can be rejected at a 5% sig-
nificance level. In all cases, colors show the p-values (in the range 
0 − 0.3 ) corresponding to the ERA-Interim vs. raw (with no transfor-
mation) EC-Earth comparison
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SDMs should be able to generalize and extrapolate to previ-
ously unseen (e.g. climate change) conditions—stationar-
ity assumption. Following the recommendations done by 
Gutiérrez et al (2013), this was partially analyzed in Baño-
Medina et al (2019) using an anomalous warm test period 
in comparison to that observed during training, obtaining 
consistent and unbiased downscaled predictions. However, 
a more robust analysis is needed to assess potential problems 
that may arise in the downscaled climate change signal pro-
duced by the different SDMs (as compared to the one given 
by the raw GCMs).

The first row in Fig. 3 shows the delta changes projected 
by the EC-Earth for 2071–2100 (with respect to the baseline 
period 1979-2008), considering its raw outputs under the 
RCP8.5 scenario. For the precipitation (temperature) indica-
tors, shown in the left (right) panel, relative (absolute) values 
are displayed.

According to this GCM, a decrease in rainfall frequency 
(R01) might be expected over the Mediterranean, whereas 
the intensity (SDII) would increase in mid and northern 
Europe. Extreme precipitation (as represented by P98) 

would increase all over the area of study. Temperature is 
projected to rise significantly all over Europe, up to 5 ◦ C for 
the mean, but reaching even higher increases for extreme 
temperatures (P2 and P98) in northern and southern Europe, 
respectively. We want to remark that the goal here is not 
providing comprehensive climate change scenarios over 
Europe (which should build on multi-model ensembles), 
but to assess the impact that different techniques may have 
on the downscaled projections.

Note that, unless it can be justified by process under-
standing, significant deviations from the the global model’s 
climate change signal over large regions could be an indica-
tor of physically inconsistent and implausible downscaled 
results (Manzanas et al 2020). With this in mind, rows two to 
five in Fig. 3 show the differences between the downscaled 
(not shown) and EC-Earth (first row) delta changes, as given 
by the different SDMs considered (GLM: rows 2–4, CNN: 
row 5). Absolute (relative, in % ) differences are shown for 
the case of temperature (precipitation). White colors repre-
sent regions where the SDMs preserve the climate change 
signal given by EC-Earth, whereas brown/blue or green/red 
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Fig. 2  Biases for the indicators related to precipitation (left) and 
temperature (right) listed in Table  3, as obtained from the raw EC-
Earth simulations (row 1) and the different SDMs considered (GLMs: 

rows 2-4 and CNN: row 5) for the historical period 1979–2008. In all 
cases, the observational reference used is E-OBS
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colors indicate regions where downscaling reduce or enlarge 
it, respectively.

For precipitation, both GLMs and CNN preserve the cli-
mate change signal for frequency (R01). However, GLMs 
(particularly GLM1 and GLMPC) enlarge the mean and 
extreme precipitation signals up to 20% and 40% for SDII 
and P98, respectively. In principle, there is no known physi-
cal mechanisms supporting such changes and could, there-
fore, be attributed to the overestimation of both indicators 
found for GLMs in Sect. 3.2. Nevertheless, the pattern found 
for biases in the historical period (Fig. 2) does not match 
with the climate change signal shown in Fig. 3. Differently, 
the CNN largely preserves the climate change signal given 
by the global model for all the indices considered, posing 

no challenges on the interpretation of the patterns obtained. 
A similar situation is found for temperature, for which CNN 
preserves to a great extent the global model’s climate change 
signal both for the mean and extremes, with GLMs exhibit-
ing some reduction in small regions over central and north-
ern Europe (especially for P2).

In contast to what happens for standard GLMs, the results 
from this work evidence that CNNs provide plausible down-
scaled information (when fed by GCM predictors) for the 
provision of regional-to-local climate change scenarios.
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Fig. 3  The first row shows the delta changes projected by the EC-
Earth for 2071–2100 (with respect to the baseline period 1979–2008), 
considering its raw outputs under the RCP8.5 scenario. Rows two 
to five in Fig.  3 show the differences between the downscaled (not 

shown) and EC-Earth (first row) delta changes, as given by the dif-
ferent SDMs considered (GLM: rows 2–4, CNN: row 5). For the pre-
cipitation (temperature) indicators, shown in the left (right) panel, 
relative (absolute) values are displayed
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4  Conclusions

Recently, Baño-Medina et al (2019) assessed the perfor-
mance of convolutional neural networks (CNNs) for perfect 
prog statistical downscaling over Europe using “perfect” 
reanalysis data as predictors. Their results showed that 
CNNs can efficiently work with continental-sized domains, 
outperforming other well-established statistical models for 
particular forecast aspects. We extend here this work by 
analyzing the suitability of CNNs for downscaling climate 
change, applying the models to predictors from future GCM 
climate projections.

As a first step we assess the performance of CNNs to 
downscale temperature and precipitation from the historical 
scenario of the EC-Earth model. For completeness, we also 
include in the analysis three different implementations of 
generalized linear models (GLMs), which ranked amongst 
the best ones in the VALUE intercomparison experiment 
(Gutiérrez et al 2019). Our results indicate that statistical 
downscaling (and in particular CNNs) allows to reduce 
the systematic errors that are usually present in GCMs for 
the mean and extremes, providing more realistic climate 
information. We found that, as compared to methods based 
on spatial predictors, GLMs based on local predictors are 
more sensitive to the possible inconsistencies that may arise 
between reanalysis and GCM predictor data, yielding higher 
biases, particularly for precipitation amount metrics i.e., 
SDII and P98. This seems reasonable since these inconsist-
encies among datasets are directly fed to the models if no 
manipulation of the predictor space is carried out in the form 
of e.g., convolutional layers, resulting in deficiencies of the 
“perfect-prognosis” condition.

In a second step, we study whether or not CNNs provide 
a suitable alternative for the generation of reliable local to 
regional downscaled climate change scenarios, which, to the 
author’s knowledge, has not yet been explored. We compare 
the downscaled climate change signals produced by CNNs 
with those obtained from the benchmarking GLMs. The suit-
ability of the different methods tested for climate change 
applications is quantified based on the similarity with the 
raw projections given by the EC-Earth (under the RCP8.5 
scenario). GLMs are found to yield local scenarios which 
are not fully consistent with the signals produced by the 
GCM, especially for the case of precipitation. Differently, 
the projections given by CNNs are comparable (to a great 
extent) to the change signals provided by EC-Earth. This 
suggests the adequacy of CNNs for the downscaling of local-
to-regional climate change scenarios building on the good 
generalization properties and stable behaviors under climate 
change conditions.

The results from this work may foster the use of CNNs 
for the generation of realiable climate change information 

on continental-sized domains, which is crucial for the imple-
mentation of adequate mitigation policies. To further cor-
roborate these conclusions, we plan to extend the present 
work to other geographical regions and variables with dif-
ferent climatological properties under the umbrella of the 
international initiative CORDEX-ESD, whose objective 
is to produce high-resolution climate change information 
worldwide.

Appendix: Reproducibility of results

All the data used in this work (E-OBS observations, ERA-
Interim and EC-Earth projections) are publicly available 
and accessible from the User Data Gateway (UDG), a 
THREDDS-based service from the Santander Climate Data 
Service which provides access to a wide catalog of popular 
climate datasets. These datasets can be remotely accessed 
using the open climate4R R framework (Iturbide et al 2019). 
See also https:// github. com/ Santa nderM etGro up/ clima te4R 
for a complete description of the different packages forming 
this framework.

The standard SDMs considered here (different implemen-
tations of GLMs) are built with the downscaleR package 
(Bedia et al 2019), and the convolutional deep models are 
build using downscaleR.keras (https:// github. com/ Santa 
nderM etGro up/ downs caleR. keras), a wrapper that integrates 
keras—the state-of-the-art library in deep learning— within 
climate4R. To validate the predictions/projections, we use 
the set of indices defined in VALUE (see http:// www. value- 
cost. eu for details), which are available in the climate4R.
value package.

The companion Jupyter notebook, accessible from the 
deepDownscaling GitHub repository of the Santander 
Meteorology Group (https:// github. com/ Santa nderM etGro 
up/ DeepD ownsc aling), describes all the steps necessary 
to fully reproduce the results presented in this manuscript, 
which were produced on a machine running under Ubuntu 
18.04.3 LTS (64 bits), with 60 GiB memory and a multi-
core CPU composed of 16 processing units and 32 threads 
Intel(R) Xeon(R) CPU E5-2670 of 2.60 GHz. The compu-
tational times needed to train and predict in both historical 
and RCP8.5 scenarios are described in Table 4 for the sta-
tistical models tested. Note that these times do not entirely 

Table 4  Computational times needed to train and predict on both his-
torical and RCP8.5 scenarios by the GLM and CNN models (in col-
umns) for the case of precipitation (P) and temperature (T)

GLM1 GLM4 GLMPC CNN

P 4h 15min 8h 21min 2h 30min 1h 11min
T 2h 32min 2h 20min 1h 20min 50min

https://github.com/SantanderMetGroup/climate4R
https://github.com/SantanderMetGroup/downscaleR.keras
https://github.com/SantanderMetGroup/downscaleR.keras
http://www.value-cost.eu
http://www.value-cost.eu
https://github.com/SantanderMetGroup/DeepDownscaling
https://github.com/SantanderMetGroup/DeepDownscaling
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depend on the method’s nature—e.g., GLMs are solved 
analytically while CNNs required an iterative optimization 
procedure,—but also on the internal R libraries used to build 
the models, and on its single- or multi-site nature—e.g., only 
one model is trained for the CNNs.—Overall we observe 
that GLMs consume more resources and timing than CNNs, 
in particular for precipitation downscaling. Whilst CNNs 
estimate simultaneously the occurrence and quantity of rain 
through the Bernoulli–Gamma conditional PDFs, two inde-
pendent models are needed for the GLMs, what increases 
considerably the computational times. This is ratified by 
comparing the results obtained for precipitation and tem-
perature GLMs; the latter requiring half of the time used by 
the former (altough still overpassing the CNN). In addition, 
since for the GLMs each site is downscaled with different 
predictor spaces, all data processing, training and prediction 
steps need to be done by chunks of latitudes, leading thus to 
notably longer times than CNNs.
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