

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Modeling and Performance Estimation of Robotic
Systems using ROS: Application to drone-based

Services

Javier Merino
Dpt. TEISA

University of Cantabria
Santander, Spain

javierm@teisa.unican.es

Raul Gomez
Dpt. TEISA

University of Cantabria
Santander, Spain

raulgv@teisa.unican.es

Eugenio Villar
Dpt. TEISA

University of Cantabria
Santander, Spain

villar@teisa.unican.es

Hector Posadas

Dpt. TEISA
University of Cantabria

Santander, Spain
posadash@teisa.unican.es

Abstract —Smart Robots are an integral part of the 4th
Industrial Revolution. Its integration as essential components in
robot-based services is not straightforward. Each robot is a
cyber-physical system (CPS) where a mechanical part operates
under the control of a digital board(s). Modeling and simulation
of such devices has specificities to be taken into account. Model-
Driven Design (MDD) has proven to be a powerful System
Engineering methodology able to cope with the complexity of
services built as a system of CPSs (CPSoS). In this paper, a
methodology is proposed to seamlessly integrate robots into a
MDD framework so that the whole service can be simulated and
its performance, analyzed. Although the methodology is valid
for robots in general, it has been assessed on a drone-based
service.

Keywords—component, formatting, style, styling, insert (key
words)

I. INTRODUCTION
Autonomous, intelligent robots are an essential technology

in the 4th Industrial Revolution [1]. Beyond the traditional
automatized production line, the number and complexity of
robot-based services inside, but also outside industrial
factories is increasing dramatically. Unmanned Aerial
Vehicles (UAV) or simply, drones, are an example of robots
with an increasing number of applications opening the way to
a large number of new business models. So, a market of USD
45.8 billion by 2025, at a CAGR of 15.5% since 2019, has
been forecasted for business using drones [2].

Robot-based services are Cyber-Physical Systems (CPS)
in which the functionality has to behave correctly in close
interaction with the physical-world inside which it operates.
In the case of robots, this interaction is two-fold. On one side,
as any other CPS, the digital part has to accommodate its
behavior to the timing constraints of the physical world. On
the other side, the robot itself is a mechanical CPS and, at the
same time, an integral part of the system. In the general case,
the robot-based service will be a complex, distributed, Cyber-
Physical System of Systems (CPSoS) where a large amount of
SW has to be executed by a large number of interconnected
computational devices of many kinds. Devices running from
small embedded systems in the edge to large computing
facilities in the cloud as well as other computing devices in
between (the fog) [3].

There is always a high cost associated to the deployment
of robot-based services. These services may involve
expensive robots in close interaction among them and with a
distributed computing and communication infrastructure. In
many cases, the robots carry expensive payload required by its
mission. The impact of any design fault detected on field may
be very expensive and time-consuming. Consequently,
simulation is a key technology in the verification of robot
applications. The large variety of possible robots makes very
difficult the availability of models. When the characteristics
of the robot are relevant to its behavior and performance, a
model of the robot may be required for simulation and
analysis. This may imply a large effort in modeling the robot
as an electro-mechanical device [4]. Most of these simulators
are based on multi-agent simulation as underlying simulation
technology [5]. When the electro-mechanical part is relevant,
multi-physics simulation based on finite elements is required
[6]. The initial modeling effort can be avoided for those robots
with common characteristics that make possible to share
similar simulation models, like UAVs. So, there are several
commercial and open-source UAV simulators available
[7][8].

Most robotic applications make use of the Robot
Operating System (ROS) [9]. ROS is a widely used standard
in the robotic domain. Actually, it is not an operating system
but a middleware. ROS includes a collection of tools, libraries,
and conventions that aim to simplify the task of creating
complex and robust robot behavior across a wide variety of
robotic platforms. Nevertheless, as a consequence of the large
variety of robots with completely different features, ROS only
brings the mechanisms to create nodes and define the
communication infrastructure among them. The concrete
messages (orders and status to and from the robot) are
different from robot to robot so that the control code
developed for a robot has to be changed completely when a
new robot is used, thus, strongly limiting the reusability of the
code.

The most widely used communication protocol for drones
is MAVLink. MAVLink is a lightweight messaging protocol
for communicating with drones (and between onboard drone
components) [10]. ROS includes a package providing a
communication driver for autopilots with the MAVLink
communication protocol called MAVROS[11].

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Model-Driven Design (MDD) has proven to be a powerful
SW engineering methodology for robotic systems [12][13].
MDD can provide the SW engineering methodology required
by the modeling and design of the robot-based service. Its
application in robotics requires the integration of the robot and
its characteristics as an additional actor in the system. In many
cases, the modeling and design framework is Matlab/Simulink
[12][14]. Matlab/Simulink provides the advantage of
combining SW modeling and simulation in a single step.

UML is by far the language most widely used to support
MDD. In order to capture the required semantics in this
domain a large number of Domain-Specific Languages (DSL)
has been proposed [13]. A robotic DSL may facilitate the
modeling of robotic-based services, but it makes difficult the
interoperability among design frameworks, reduces the
integration in the framework of third-party tools and limits
reusability. Being focused on robot-based systems, the DSL
may not support efficiently SW (system) engineering.
Particularly, when the SW engineering framework uses its
own profile(s) with contradictory semantics.

S3D is a general-purpose, Model-Driven, Single-Source
System Modeling & Design Framework where all the relevant
information about the system is captured in the same model in
order to support the different design steps from the initial
functional system architecture until the SW stack to be
compiled to each computing resource in the decided HW
implementation [15]. S3D makes use of fundamental
computational paradigms allowing a domain-independent
modeling. Consequently, it can be applied to services on the
Internet of Things (IoT) where several domains interact each
other and a holistic modeling and analysis approach is
required. S3D makes use of a reduced subset of the
UML/MARTE standard profile for Real-Time and Embedded
systems [16]. Only when a specific concept is absolutely
necessary in a specific domain, a minimal extension to the
S3D MARTE subset is made. An important result from this
work is that modeling, simulation and performance analysis of
robot-based services do not require any domain-specific
extension of the S3D/MARTE profile.

In order to facilitate the coding and improve reusability of
ROS code, an S3D interface allowing the development of
drone-independent control code, is proposed.

Performance analysis of the application code on each
computing resource can make use of native simulation
technology to estimate non-functional characteristics as
execution time and energy. Using native simulation to
estimate the performance of middleware is cumbersome as the
technique has to be applied to the whole code in the
corresponding library. In some cases, when the source-code is
not available, it is just impossible. A performance estimation
methodology for the ROS infrastructure is proposed. The
complete modeling and performance analysis methodology is
exercised on a delivery service among buildings using rovers
and drones.

II. STATE OF THE ART
As commented above, Matlab/Simulink is a widely used

modeling, simulation and design framework combining MDD
and simulation. The Robotics System Toolbox™ from
Mathworks provides tools and algorithms to design, simulate,
and test manipulators, mobile robots, and humanoid robots.
For humanoid robots and manipulators, this toolbox includes

algorithms for collision checking, trajectory generation,
forward and reverse kinematics, and dynamics using a rigid-
body tree representation. In the case of mobile robots, it
includes algorithms for mapping, locating, path planning, path
tracking, and motion control. The toolbox provides reference
examples of common industrial robotics applications [17].
The Toolbox can operate in conjunction with
Matlab/Simulink and the ROS Toolbox [18], thus supporting
MDD, simulation and code generation of robot-based
services. Using Matlab/Simulink brings all the advantages of
this SW modeling and design framework but also all its
limitations. Among them, scalability, simulation speed and
implementation efficiency. Moreover, performance analysis
and design-space exploration are difficult. A similar approach
is represented by SimCenter AmeSim [19]. It can also provide
a very precise modeling and simulation of robots. In both
cases, simulation accuracy comes at the cost of a smaller
simulation speed.

In [13] a comprehensive overview and analysis of existing
MDD approaches in robotics has been made. Almost all the
proposals define their own DSL. The need for a common
modeling language (ML) is highlighted by some works but,
the solution proposed is a new ML [20]. In few cases, the ML
is shared by some groups. Acceptance is not the only problem
for a DSL. If it captures all the semantics needed by a certain
domain, e.g. robotics, it will be weak in supporting SW
(system) engineering at large. MDD based on UML and/or
DSLs put the focus on the system architecture and the code
generation, usually on a general-purpose computer. As a
consequence, very few MDD frameworks support simulation
and performance analysis on distributed, heterogeneous
platforms. From the large list of MDD approaches for robotic
systems in [13], only 10% address simulation. In most cases,
the simulation is functional, and no performance analysis is
made. Nevertheless, this is a serious limitation for two main
reasons. On the one hand, the development of robotic systems
requires simulation in order to avoid detecting design failures
very late, at the prototyping stage with the corresponding high
cost. On the other hand, a robot is an edge device and
therefore, subject of resource-constrained design. Therefore,
performance analysis and optimization are key design
activities.

S3D support system simulation and performance analysis
using native simulation [21]. Native simulation technology
brings enough flexibility to seamlessly enable system
simulation at different abstraction levels. Based on it, a multi-
level simulation framework for robot-based services able to
simulate the system at a very high, pure functional level at the
earliest stages of the design cycle, has been proposed. Using
the same infrastructure, simulation can be enriched with more
accurate models for the execution times of the functional
components once the code has been developed. The ROS
infrastructure should be included. Finally, this code can be
simulated against realistic models of the robots using
simulators such as Ardupilot. Although it is possible to
annotate the C++ code in order to estimate its performance in
terms of execution time and energy, estimation of the impact
of the underlying ROS infrastructure using native simulation
is much more difficult as it would require cross-compiling and
annotating the complete ROS library. Moreover, this would
lead to higher simulation times with a small impact in
accuracy. Being an external library, it would bring few
optimization alternatives. Nevertheless, if precise

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

performance estimation is required (e.g., for design constraint
validation or design-space exploration), it is necessary to take
these execution times into account. As the percentage of ROS
code in the application code is small, even a rough estimation
of the ROS code performance would improve accuracy.

III. MODELING OF ROBOT-BASED SERVICES

A. S3D Model of Robot-based Services
The goal of the modeling methodology proposed is to

enable the integration of robots into the S3D system model-
driven design framework. Therefore, the focus is put on the
service being analyzed but taking into account the fact that
part of the system functionality and performance strongly
depends on the behavior of robots as mechatronic devices. In
Fig. 1, a delivery service for parcels among hospitals in a city
is shown:

Fig. 1. The system and its environment.

The system receives orders from requesters for certain
goods. Provided it is a valid request and the good is in the
store, the system has to select and control the movement of
Unmanned Terrestrial Rovers (UTR) and Unmanned Aerial
Vehicles (UAV) in a fleet to take the parcel from the store and
send it to the final destination. UTRs oversee taking the parcel
to the drone port and from the destination drone port bring it
to the requester. The drones are in charge of moving the
parcels among drone ports. All the process is under the
supervision of the provider who is informed of the service and
its status at any time.

In Fig. 2, the functional architecture of the system is
shown:

Fig. 2. The system’s functional architecture.

The system is composed of five different functional
components. The Delivery_Central, in charge of managing

and following the requests, selecting the appropriate rover and
drone, asking the Route_Generator for the best path to be
followed by rovers and drones and send it to them. The
Rover_Control and Drone_Control components are in charge
of controlling the robots stablishing a dialog with them using
ROS. The Precision_Landing component takes the control of
the drone when it is close to the drone port in order to ensure
that the drone takes and delivers the good in perfect shape to
and from the right position.

In S3D, each component may be associated to different
models in order to cover the simulation and performance
analysis tasks during the different stages along the system
design process. So, during system requirement analysis and
partitioning, models with a minimal functionality associated
to constant execution times and energy consumptions are
needed. After component development, the full code is
available and then, the complete behavior of the system can
be simulated. Moreover, components might be in different
languages. A property in the generalization of the component
will provide the programming language used and the path
where the corresponding file is:

$language=C++
$path=C:/projects/C4D/UC3/Demo2/Files

‘Rover_Control’ is not a ‘pure’ C++ component as it
makes use of ROS functions and therefore, it needs the ROS
library to be compiled. The C++ implementation of ROS is
called ‘roscpp’. In order to let the simulation model generator
(mSSYN) to know that the ROS infrastructure has to be
integrated as part of the model, it is enough to identify the
programming language used as ‘roscpp’:

$language=roscpp
$path=C:/projects/C4D/UC3/Demo2/Files

Therefore, no modification to S3D is required due to the
fact that in robot-based systems using ROS, the ROS library
has to be included.

In S3D, Provided/Required interfaces are explicitly
declared in the model with the list of methods they include.
So, mSSYN, will connect the two component instances and
linked them through the corresponding interfaces. As an
example, the interface in the ‘Get_Path’ port will link the
services required by the ‘Delivery_Central’ with the interface
in the ‘Get_Route’ port of the ‘Route_Generator’ component
providing them (Fig. 2). Based on the properties in the port
and the interface, different models of computation and
communication (MoCC) are supported. Contrarily, ROS
follows a publish/subscribe MoCC that cannot be
implemented in the same way as the rest of S3D service/client
methods. The way decided to handle this difference and
enable mSSYN to automatically generate the model is quite
simple: just let the interfaces empty. In that case, mSSYN does
nothing but launching the ROS master process because there
is a ROS node in the system, and the master will be in charge
of deploying the infrastructure to enable ROS communication
methods.

Components in the verification environment can also be
associated to different functional files. This also affects the
models for the drones, i.e., the autopilot and the model of the
aerodynamics. Therefore, integrating an external executable
into the simulation framework may be required for some
external aerodynamics simulators (e.g., Gazebo, SimCenter

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

AmeSim …), while others are included in the drone software
(e.g., ArduCopter+SITL).

B. Common control interface for drones
ROS does not provide a unified way to use a flight controller
such as Ardupilot, PX4, Paparazzi or DJI. Although it defines
how to register a node, to what topic to publish and subscribe
and how to publish a message in a particular topic, the content
of the messages is different from one robot to another. As a
consequence, the ‘roscpp’ code to control a robot (i.e. a
Paparazzi drone) is different than the code to control another
robot (i.e. a DJI) even when the orders are the same (i.e. take
off, go to a GPS position, etc.). S3D targets pure platform
independent modeling so that a particular code can be mapped
to different execution units. In order to overcome this
problem, an interface class that allows the user to perform the
basic functions of a drone is proposed. This class is inherited
by all the drone controllers, establishing a unique frame and
unifying the control operations of the above-mentioned
controllers. Each of the drone control classes should
implement the interface functions according to its particular
functionality. This solution could be applied to any family of
robots sharing similar actions.

The C++ interface proposed has been developed for the
Ardupilot, Px4, Paparazzi and DJI drones but could be
extended to any other. The interface has differentiated two
function groups, the GPS operation group and the non-GPS
operation group as shown in Fig. 3.

GPS operations depend on aircraft positioning and require
an operational positioning system, while non-GPS operations
do not require operational positioning.

The developed interface is the following:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

class I_RosDron {
public:
 virtual ~I_RosDron() {}

 //Advanced features
 virtual void uc_drone_gps_fly(float height) = 0;
 virtual void uc_drone_return_ground() = 0;
 virtual void uc_drone_gps_go(double lat, double lon, double alt) = 0;

 //Mode no GPS
 virtual void uc_drone_joystick(double x, double y, double z, double r) = 0;
 virtual void uc_drone_stabilize_fly() = 0;
 virtual void uc_drone_alt-hold_fly() = 0;
 virtual void uc_drone_land_ground() = 0;
};

Fig. 3. The multi-drone interface.

As with the ROS interfaces in the model, this one has not
to be described in each port of the component as it does not
require an implicit connection among the component
instances as the usual, client-server, S3D interfaces.

For a better understanding of the interface, let us provide
an example of its usage. Consider a drone initialized as a
pointer to an object of one of the above-mentioned drone
control modules named “drone”.

To perform the first takeoff after the vehicle is connected,
the "drone->uc_drone_gps_fly();" statement would be used.
This function, like the rest of this interface, will remain
blocked until the drone is taken off the ground and there rises
to the altitude designated in each case by the controller.

Immediately afterwards the drone can be sent to a GPS
position using the following statement: "drone-
>uc_drone_gps_go(43.4747386, -3.7986268, 50);". This

instruction receives as parameters the coordinates in north
latitude in degrees, east longitude in degrees, and the absolute
height in meters from sea level. To use this function, it is
essential to use the uc_drone_gps_fly function in advance, as
it will change the flight mode of the aircraft if necessary.

At the end of the flight mission, the instruction "drone-
>uc_drone_return_ground()" can be used, which will cause
the drone to return to the starting point and land safely.

The following functions do not require an orientation
system, but a transition between modes (GPS/noGPS) can be
performed during the flight.

To start a flight in fully manual mode (stabilized only) the
"drone->uc_drone_stabilize_fly();" statement can be
executed. Furthermore, to start a flight with height hold
(stabilized and maintaining height) the instruction "drone-
>uc_drone_alt-hold_fly();" can be executed. This instruction
is equivalent to the previous one, but if the throttle is
maintained at 50% the height is automatically maintained.

These two modes above require data from a joystick
controller. This requires that the controller update function is
sent at least once before running the instructions above. This
function is named "drone->uc_drone_joystick(0,0,500,0);",
where the arguments are pitch, roll, throttle, and yaw. Throttle
takes values between 0 and 1000 while the rest take values
between -1000 and 1000.

To land safely without GPS the instruction "drone-
>uc_drone_land_ground()" can be used, which will
automatically descend the aircraft until it touches ground.

This set of instructions has been chosen because it allows
to perform almost any drone mission. Although not all the
functions of the drone can be accessed, the generated code is
independent of the flight controller so that only drone-specific
commands have to be isolated from the drone-independent
code.

This interface is useful when multiple drones are used.
Different flight controllers have different procedures. Even,
DJI uses a distinct approach in its different drones to
determine the status of the aircraft, which is published in the
"/dji_sdk/flight_status" topic. Next, these procedures and their
equivalent in the proposed interface are described.

Paparazzi UAV integrates a ROS communication module
named “pprzros”. It only publishes on the topic
“/pprzros/to_ros” and receives publications from the topic
“/pprzros/from_ros”. To use this controller, the developer has
to work with a predefined data structure containing all the
required drone control fields, both for sending and receiving
data. In this case, the data of all drones that are flying goes
through the same “pprzros” and broadcasted to all the ROS
modules they listen to.

For Ardupilot and PX4 controllers, the MAVROS control
module has been used. Nevertheless, even between these two
controllers differences exists in the way they operate. For
example, in PX4 the auto-control mode is called "offboard",
while the same mode in ArduPilot is called "guided". To
perform a flight in guided mode, the operation is divided into
3 fundamental parts: takeoff, mission and landing.

For taking off in PX4 it is enough to order arming engines
and indicate the first reference point, while ArduPilot needs to
be armed first and then sending the “takeoff” command. In

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

DJI and Paparazzi UAV controllers the common interface
must assemble and take off the aircraft in the same way as
ArduPilot and PX4, respectively. If using the proposed
common interface, the developer will not have to create a
complex sequence with its utility limited to a particular drone:
only by executing the "uc_drone_gps_fly()" function, the
necessary tasks for the drone to be in the air will be performed.

Landing in PX4 requires activating the "auto.land" mode,
while in ArduPilot the serial equivalent mode is named
"LAND". Paparazzi UAV and DJI have specific modes of
landing that are activated by changing a particular value.
Using our approach, running the "uc_drone_land_ground()"
function would get the same result in each case.

When sending mission coordinates, ArduPilot and PX4
behave almost the same, since the only difference is that PX4
requires a constant refreshment of the mission, while
ArduPilot only requires receiving the command once, moving
to the destination until instructed otherwise or until it reaches
the target. Using the proposed "uc_drone_gps_go()" function
of the interface, the executed code will block until the drone
has reached the destination.

For manual control, some flight controllers have several
modes available. The most interesting modes are the stabilized
mode, which allows a manual flight with few iterations, and
the height lock, which allows to keep the drone at a fixed
height while manually directing the drone. In these cases, a 4-
axis flight control is used: x-axis for pitch, y-axis for roll, z-
axis for throttle and r-axis for yaw. Using the
"uc_drone_joystick()" function of the interface the criteria and
data types are unified so it can be transparent to the developer.

This interface allows the user to only have to develop with
a standardized drone and not the actual drone model to be
implemented, allowing to change the model later or even use
multiple different drone models. An additional advantage is a
strong reduction in the lines of code to be written.

Next, real code of our approach and the original autopilot
control instructions are compared. Arducopter is used as the
autopilot for the following examples.

Using our proposal, the source code of a flight mission that
sends the drone to three GPS coordinates and lands it at the
last point, is the following:

1
2
3
4
5

drone->uc_drone_gps_fly(float height);
drone->uc_drone_gps_go(46.0828, -103.899, 940);
drone->uc_drone_gps_go(46.0828, -103.820, 940);
drone->uc_drone_gps_go(46.0820, -103.822, 920);
drone->uc_drone_land_ground();

Fig. 4. Drone-independent mission code.

This same program would require 60 lines of code for
Ardupilot, increasing 12 times the original size:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

mavros_msgs::CommandTOL cmdTOL{};
mavros_msgs::CommandBool cmdBool;
mavros_msgs::SetMode mode;
geographic_msgs::GeoPoseStamped pose;
double vel;
mode.request.custom_mode="GUIDED";
ros::Rate r(10);
do{
 ros::spinOnce();
 while(state.mode!=mode.request.custom_mode){
 set_mode_client.call(mode);
 r.sleep();
 ros::spinOnce();
 }
 cmdBool.request.value=true;

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

 while(state.mode==mode.request.custom_mode && !state.armed){
 arming_client.call(cmdBool);
 r.sleep();
 ros::spinOnce();
 }
 cmdTOL.request.altitude=2;
 while(state.mode==mode.request.custom_mode && state.armed &&
state.system_status!=4){
 takeoff_client.call(cmdTOL);
 r.sleep(); ros::spinOnce();
 } while(std::abs(2-altRel)>0.25) ros::spinOnce();
} while(state.mode!=mode.request.custom_mode || !state.armed ||
state.system_status!=4);
double lat[] = {46.0828,46.0828,46.0820};
double lon[] = {-103.899,-103.820,-103.822};
double alt[] = {940,940,920};
for(int i=0;i<3;i++){
 pose.pose.position.latitude = lat[i];
 pose.pose.position.longitude = lon[i];
 pose.pose.position.altitude = alt[i];
 global_pos_pub.publish(pose);
 ros::spinOnce();
 r.sleep();
 do{
 ros::spinOnce();
 r.sleep();
 vel=(std::abs(motion.twist.linear.x)+std::abs(motion.twist.linear.y)+
std::abs(motion.twist.linear.z))*0.2+vel*0.8;
 } while(vel<1.5 && state.mode!="GUIDED"); //Wait_start_motion
 ros::spinOnce();
vel=(std::abs(motion.twist.linear.x)+std::abs(motion.twist.linear.y)+std::abs(
motion.twist.linear.z))*0.2+vel*0.8;
 } while(vel>1.5 && state.mode!="GUIDED"); //Wait_stop_motion
}
mode.request.custom_mode="LAND";
do{
 ros::spinOnce();
 r.sleep();
 while(state.mode!=mode.request.custom_mode){
 set_mode_client.call(mode);
 ros::spinOnce();
 r.sleep();
 }while(state.mode==mode.request.custom_mode &&
state.armed)ros::spinOnce();
} while(state.mode!=mode.request.custom_mode || state.armed);

Fig. 5. Ardupilot code implementing the mission in Fig. 4.

This simplification is possible because the flight controller
procedures are large and complex, meaning that many of them
can be reduced into a simple function. As an example,
Ardupilot requires 3 steps to initialize and takeoff the drone,
while by using the proposed interface, it can be done in a
single step. As an example of the code inside a method of the
proposed interface, the code in Fig. 6 corresponds to the
procedure for initiating the GPS-guided flight of a drone with
an Ardupilot controller, equivalent to the “uc_drone_gps_fly”
function:

uc_drone_gps_fly(float height)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

mavros_msgs::CommandTOL cmdTOL{};
mavros_msgs::CommandBool cmdBool;
mavros_msgs::SetMode mode;
mode.request.custom_mode="GUIDED";
ros::Rate r(10);
do{
 ros::spinOnce();
 while(state.mode!=mode.request.custom_mode){
 set_mode_client.call(mode);
 r.sleep();
 ros::spinOnce();
 }
 cmdBool.request.value=true;
 while(state.mode==mode.request.custom_mode &&!state.armed){
 arming_client.call(cmdBool);
 r.sleep();
 ros::spinOnce();
 }
 cmdTOL.request.altitude=height;
 while(state.mode==mode.request.custom_mode && state.armed &&
state.system_status!=4){
 takeoff_client.call(cmdTOL);
 r.sleep();
 ros::spinOnce();

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

25
26
27
28

 }
 while(state.system_status==4&& (relAlt<height) ros::spinOnce();
}while(state.mode!=mode.request.custom_mode ||!state.armed ||
state.system_status!=4);

Fig. 6. Implementation of the uc_drone_gps_fly() function.

In lines 1-3 the necessary message structures are defined
and in line 4 the guided flight mode is indicated. In line 5, a
frequency of 10Hz has been defined to be used when looping
to send and receive messages. Then, a loop is started from line
6 to line 27, repeating as long as the drone is not flying in
guided mode. Lines 7, 11, 17 and 24 correspond to the ROS
statement used to update the values of subscriptions. In the
loop of line 8 the mode is changed (line 9), continuing with
the execution when this change is confirmed.

In lines 13-18 the drone is armed, looping if the drone
status remains unarmed. On line 19 taking off is requested.
The operation will be completed when the drone state changes
to 4. Finally, in line 26 there is a waiting loop, which is
responsible for waiting while the expected height is reached.

Eventually, if the flight mode is changed or the drone is
disarmed, the loop will exit to start over.

IV. PERFORMANCE ANALYSIS OF ROBOT-BASED SERVICES

A. C++ and ‘roscpp’ code
Functional code in S3D (e.g. C++) can be associated to

constant execution times and energy using the ‘uc_add_times”
function, or be simulated using native simulation which would
provide much more accurate estimation of performance
figures.

When dealing with ‘roscpp’ code, the C++ code is
managed exactly the same way but each time a ROS function
is found, the methodology in the next section is applied. Recall
that doing nothing would correspond to an estimated time and
energy of ‘0’ which, in fact, would imply a certain error. The
goal of the methodology proposed is to decrease this error.

B. ROS methods
The proposed method consists in adding a predefined

workload each time a ROS function is called. These
workloads have been estimated for each function using
POSIX process clocks, measuring the time elapsed by the
function itself and all the involved ROS threads running in
background on a certain node, in a sufficiently large sample.
These times are influenced by two main factors: the
processor’s frequency and its architecture. Measures have
been performed on a PC (Intel i5-3470 x86_64) and on an
embedded platform (Raspberry Pi 4, with an ARM Cortex-
A72 ARMv8). For frequency scaling, first assumption was to
consider a model with an ideal, lineal relationship between
core frequency and elapsed time to compute a certain load.
However, error measured using this model was unacceptable.
For a more precise estimation, times have been obtained at two
different frequencies for each processor:

• Intel: 1600MHz and 3000MHz
• ARM: 600MHz and 1500MHz

This set of architectures and frequency combinations
allows us to cover a large set of scenarios. If nodes run on a
PC/Server it will likely be an Intel, and in the case of
embedded platforms, ARM is the dominant processor.

Among the complete set of ROS library functions, the
most frequently used, have been analyzed. The proposed
technique could be applied to the rest of functions as well.

Service calls have not been considered as the corresponding
execution time is negligible with respect the service execution
time itself. Regarding its execution time behavior, ROS
functions can be divided in two main groups: functions whose
execution time has a dependency with an external variable ‘x’
and functions which exhibit an execution time which only
depends on frequency F.

1) Dependent functions
These functions show an elapsed time which can be

mathematically expressed using linear dependency with the
‘x’ variable:

#Time (ns) = A·x+B

Both factors A and B show a linear dependency with
frequency F:

A = a·f(MHz)+b
B = c·f(MHz)+d

As a consequence, the final equation is:

#Time (ns) = (a·f(MHz)+b)·x+(c·f(MHz)+d) (1)

Let us measure these parameters for the two dependent
functions.

a) Publish
Sending messages from a publisher to a subscriber node is

carried out calling the “ros::Publisher::publish” function. As
described in [22], publishing is performed as point-to-point
communication between the publisher and each subscriber.
Thus, publishing elapsed time is directly proportional with the
number of subscribers on a specific topic. Results are shown
in Fig. 3. This lineal behavior is observed for all the scenarios.

Fig. 7. Observed execution time for the ‘publish’ ROS function.

From the equations shown in Fig. 3, the following
expressions are obtained, being nSubs the number of
subscribers to a certain topic:

#Time_Publish(Intel) =
(-7, 78·f(MHz)+51020)·nSubs +
(1,959·f(MHz)+197717) ns

#Time_Publish(ARM) =
(-22,656·f(MHz)+85844)·nSubs +
(-128,46·f(MHz)+254162) ns

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

It is worth mentioning that this results would degrade its
accuracy outside the range of frequencies considered in each
CPU. Additionally, several tests were made varying publish
rate, message size and buffers size. However, no meaningful
change was detected on the obtained results.

b) Sleep
ROS sleep functions are called from two main classes:

ros::Rate and ros::Duration. The first performs a sleep of a
certain period given a rate or frequency in hertzs, while the
second receives a duration in seconds. These functions
operate by polling, checking if the current wall-clock time has
reached the desired value. Thus, there is a direct dependency
between the sleeping time and the load generated on the
processor. Internally, the sleep function of ros::Rate calls the
sleep function of ros::Duration after converting rate to
seconds, so the load has been assumed to be the same for both
of them after being verified experimentally.

Fig. 8. Observed execution time for the ‘sleep’ ROS function.

From the equations shown in Fig. 4, the following
expressions are obtained, being T the SleepTime time in
microseconds:

#Time_Sleep (Intel)=
(-0,33·f(MHz)+2,0925) ·T +
(-1,498·f(MHz)+22697) ns

#Time_Sleep (ARM) =
(-0,996·f(MHz)+2,1587)·nSubs +
(-27,51·f(MHz)+57231) ns

2) Non-dependent functions
In these functions, equation (1) is still valid but without

dependency from any ‘x’ factor (a=b=0):

#Time (ns) = c·f(MHz)+d (2)

The following are the functions under this behavior.

a) Spin
Messages published on a topic are received by the

subscriber through a callback function, which is sent as an
argument during the subscription. When a message is
received, the callback function is not called directly, but rather
the request it is queued until ros::spinOnce function is called.

This allows, for instance, receiving messages at a desired rate
so the node processing capacity is not exceeded.

Although this function is not dependent on external
factors, it has been observed that the first time it is called by a
node it takes longer. Results are shown in Table 1.

TABLE I. EXECUTION TIMES FOR THE ‘SPIN’ FUNCTION.

b) Initialization and registration

This set is mainly formed by those functions, which are
usually called one single time at node’s creation. Since no
dependency has been detected, best estimation consists in
averaging the times obtained for a large set of executions.

TABLE II. EXECUTION TIMES FOR INITIALIZATION AND
REGISTRATION FUNCTIONS.

Function

Avg. time(ns)
Intel

@1600MHz

Avg. time (ns)
Intel

@3000MHz

Avg. Time (ns)
ARM

@600MHz

Avg. time (ns)
ARM

@1500MHz

init 433,923 30,0054 18,795,260 16,195,670

NodeHandle 4,137,052 2,322,393 5,583,100 4,885,054

serviceClient 58,706 47,143 78,275 68,099

advertise 316,862 195,434 591,091 525,178

suscribe 1,078,574 731,497 1,445,835 1,360,615

advertiseServer 142,290 121,073 189,720 24,403

V. EXPERIMENTAL RESULTS
In this section, performance simulation results are

presented. The application example used consists in a last mile
drone-based delivery service, described above. The drone’s
autopilot is Arducopter and receives orders from the drone
controller, which is a ROS node modelled using ‘roscpp’. A
MAVROS node has been instantiated to establish
communication between the drone controller and the
Arducopter.

In our case, we are interested in performance estimation of
the drone controller ROS node. To verify the correctness of
the ROS annotation, the simulated code has not been
dynamically analyzed using native simulation techniques, so
the ROS function calls are the only load considered. In this
way we can directly handle the ROS impact without the
interference from the rest of code.

The use case has first been simulated using the
methodology described in Section I. These estimated
execution times are now compared with the actual figures
measured on the target, by dynamically measuring and
accumulating the real processor time of the ROS functions
with POSIX clocks. TABLE III presents the results obtained.
As expected, there is a relevant error in the estimated time.
This error is caused by several factors related with the global,
high-level approximation to the problem. As the host where
the measures are taken is an Intel CPU, the error is lower when
the target is also an Intel. Since the error is lower than 100%
in all scenarios the total error on a complete, annotated

Processor
Avg. time of the first

execution (ns)
Avg. time of the rest of

executions (ns)

Intel @ 1600MHz 21,500 6,377

Intel @ 3000MHz 20,380 6,270

ARM @ 600MHz 54,381 21,860

ARM @ 1500MHz 24,403 9,048

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

example is reduced as the alternative of not considering any
(i.e., ROS execution time considered negligible) would imply
a 100% error.

TABLE III. ESTIMATED VS REAL EXECUTION TIMES OF THE ROS
INFRASTRUCTURE.

 TIME (ns)

 FREQUENCY ESTIMATED MEASURED DIFF (%)

INTEL
1600 485,873,399 582,581,163 16.60

3000 318,626,359 461,462,380 30.95

ARM
600 521,466,358 904,953,908 42.38

1500 233,965,058 398,265,784 41.25

This impact will depend on the percentage of ROS code in a
given application. If ROS code (rc) where 0% of the total
application code (tac), the error in the estimation (tae) would
be that of native simulation (nse, typically in the range 10-
25%). If ROS code where 100% of the application code (ac)
the error would be that of the proposed methodology (ree, in
the range 15-45%). In general, the error would be in between
both extremes following the equation:

tae = %ns.nse + %rc.ree

The following table brings these figures to the use case
used in the paper:

TABLE IV. IMPACT OF THE ERROR IN THE ROS EXECUTION TIME.

FREQUENCY

Total
Application

(tac)(ms)

%ROS
code

(%rc)

Impact of
ROS

estimation
error (%)

Impact of
no

estimation Improvement

INTEL
1600 22,875 2.55 0.42 2.55 83.5%

3000 22,018 2.10 0.65 2.10 69.0%

ARM
600 213,446 0.42 0.18 0.42 57.1%

1500 87,688 0.45 0.19 0.45 57.8%

As shown, the impact of the error in the estimation of the ROS
execution time is small and, in any case, smaller than doing
nothing by considering that the execution time of the ROS
code is 0. The methodology achieves an improvement in the
ROS execution time estimation which can be as high as 83%
when the percentage of ROS code is small.

VI. CONCLUSIONS
In this paper, MDD is proposed for modeling, simulation

and performance analysis of SW intensive robot-based
services. A first interesting result is that if the MDD modeling
methodology is general enough, no extension is needed being
enough to identify which components make use of ROS. In
that case, the ROS infrastructure can be automatically
integrated in the system. For certain kind of robots with many
similar functions, like drones, a common list of methods can
be defined so that the same code is valid for all of them just
by associating the functions with the appropriate code. An
additional advantage of the common language is a strong
reduction in the programming effort which can be reduced
around 10 times.

A methodology for rough estimation of execution time of
the ROS code has been proposed. Although the error can be
as high as 45%, the impact is small as the ROS code will be
only a fraction of the total executable. In any case, an
improvement over not annotating any execution time for ROS

is achieved and this improvement is higher when it is more
needed, that is, when the percentage of ROS code is higher.

VII. ACKNOWLEDGMENT
This work has been partially funded by the EU and the

Spanish MICINN through the ECSEL Comp4Drones project
and the TEC2017-86722-C4-3-R PLATINO project
respectively.

VIII. REFERENCES
[1] G. C. Fernandez, S. M. Gutierrez, E. S. Ruiz, F. M. Perez and M. C.

Gil: "Robotics, the New Industrial Revolution" in IEEE Technology
and Society Magazine, V.31, N.2, pp. 51-58, Summer 2012.

[2] Unmanned Aerial Vehicle (UAV) Market. MarketsandMarkets. 2020.
[3] C. Wöbker, A. Seitz, H. Mueller and B. Bruegge: "Fogernetes:

Deployment and management of fog computing applications," proc. of
NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management
Symposium, 2018, pp. 1-7.

[4] N. R. Ramli, S. Razali and M. Osman: "An overview of simulation
software for non-experts to perform multi-robot experiments", proc. of
the 2015 International Symposium on Agents, Multi-Agent Systems and
Robotics (ISAMSR), IEEE, 2015, pp. 77-82.

[5] S. Abar, G. K. Theodoropoulos, P. Lemarinier and G. M.P. O’Hare:
“Agent Based Modelling and Simulation tools: A review of the state-
of-art software”, Computer Science Review, V.24, 2017, pp.13-33.

[6] https://www.autodesk.com/products/simulation.
[7] A. I. Hentati, L. Krichen, M. Fourati and L. C. Fourati. Simulation

Tools, Environments and Frameworks for UAV Systems Performance
Analysis. Proceedings of the 14th International Wireless
Communications & Mobile Computing Conference (IWCMC),
Limassol, 2018, pp. 1495-1500, doi: 10.1109/IWCMC.2018.8450505.

[8] E. Ebeid, M. Skriver, K. H. Terkildsen, K. Jensen, U. P. Schultz, A
survey of Open-Source UAV flight controllers and flight simulators,
Microprocessors and Microsystems, V.61, 2018, pp.11-20.

[9] ros.org.
[10] https://mavlink.io/en.
[11] http://wiki.ros.org/mavros.
[12] J.-A. Maxa, M. S. B. Mahmoud & N. Larrieu: “Model Driven

Development for Embedded Software: Application to
Communications for Drone Swarm”, ISTE Press – Elsevier, March
2018.

[13] E. A. Silva, E. Valentin, J. R. H. Carvalho and R.S. Barreto: “A survey
of Model Driven Engineering in robotics”, Journal of Computer
Languages, V.62, 2021.

[14] P. G. G. Queiroz and R. Braga; “A Critical Embedded System Product
Line Model-based Approach”, in proc. of the International Conference
on Software Engineering & Knowledge Engineering, SEKE, 2014.

[15] https://es.mathworks.com/products/ros.html.
[16] https://www.mathworks.com/products/robotics.html.
[17] https://www.plm.automation.siemens.com/global/en/products/simcent

er/simcenter-amesim.html.
[18] S. Dhouib, S. Kchir, S. Stinckwich, T. Ziadi and M. Ziane: “RobotML,

a Domain-Specific Language to Design, Simulate and Deploy Robotic
Applications”, in: I. Noda, N. Ando, D. Brugali and J.J. Kuffner (Eds.):
“Simulation, Modeling, and Programming for Autonomous Robots.
SIMPAR 2012”, Lecture Notes in Computer Science, V.7628,
Springer, 2012.

[19] F. Herrera, J. Medina, E. Villar: "Modeling Hardware/Software
Embedded Systems with UML/MARTE: A Single-Source Design
approach", in Soonhoi Ha and Jürgen Teich (Eds): "Handbook of
Hardware/Software Codesign", Springer. 2017.

[20] B. Selic and S. Gerard: “Modeling and Analysis of Real-Time and
Embedded Systems with UML and MARTE: Developing Cyber-
Physical Systems”, Elsevier, 2013.

[21] O. Bringmann, W. Ecker, A. Gerstlauer, et al., “The Next Generation
of Virtual Prototyping: Ultra-fast Yet Accurate Simulation of HW/SW
Systems”, Proc. of DATE 2015.

 [22] http://wiki.ros.org/Master.

https://www.autodesk.com/products/simulation
https://es.mathworks.com/products/ros.html
https://www.mathworks.com/products/robotics.html
https://www.plm.automation.siemens.com/global/en/products/simcenter/simcenter-amesim.html
https://www.plm.automation.siemens.com/global/en/products/simcenter/simcenter-amesim.html
http://wiki.ros.org/Master

	I. Introduction
	II. State of the art
	III. Modeling of robot-based services
	A. S3D Model of Robot-based Services
	B. Common control interface for drones

	IV. Performance analysis of robot-based services
	A. C++ and ‘roscpp’ code
	B. ROS methods
	1) Dependent functions
	a) Publish
	b) Sleep

	2) Non-dependent functions
	a) Spin
	b) Initialization and registration

	V. Experimental results
	VI. Conclusions
	VII. Acknowledgment
	VIII. References

