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Abstract 15 

Climate change affects natural systems, leading to increased acceleration of global water cycle 16 

and substantial impacts on the productivity of tropical rivers and the several ecosystem functions 17 

they provide. However, the anticipated impacts of climate change in terms of frequency and 18 

intensity of extreme events (e.g., droughts and floods) on hydrological systems across regions 19 

could be substantially different. This study therefore aims to assess the impacts of climate 20 

change on the streamflow of a large river basin located in central Australia (Cooper creek-Bulloo 21 

River Basin). Modified version of the hydrological model Hydrologiska Byråns 22 

Vattenbalansavdelning (HBV) was used in this study to generate daily streamflow. This model 23 

was first calibrated (2001-2010) and then validated for two independent periods (1993-1997 and 24 

2011-2015). The model depicted a good performance in simulating observed streamflow. 25 

Climate projection data from multiple general circulation models, including (ACCESS1.0, 26 

CanESM2, CESM1-CAM5, CNRM-CM5, GFDL-ESM2M, HadGEM2-CC, MIROC5, 27 
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NorESM1-M, ACCESS1-0, ACCESS1-3, CCSM4, CNRM-CM5, CSIRO-Mk3.6, GFDL-CM3, 28 

GFDL-ESM2M, HadGEM2, MIROC5, MPI-ESM-LR, and NorESM1-M) in various forms (raw, 29 

statistically downscaled, dynamically downscaled, and bias adjusted) were considered in this 30 

study. Results showed that three high resolution dynamically downscaled and bias adjusted 31 

models (ACCESS1-3, CNRM-CM5, and MPI-ESM-LR) from Terrestrial Ecosystem Research 32 

Network (TERN) dataset v1.0.2 have better performance than other models considered, that is, in 33 

terms of capturing observed precipitation over the basin. Future climate projections of ensemble 34 

of these three models forced with RCP 4.5 and RCP 8.5 emission scenarios were then used to 35 

generate streamflow for 2050s (2040-2069) and 2080s (2070-2099). Results of the study 36 

indicated that mean annual precipitation was projected to decrease by up to -8% in 2050s and 37 

temperature was projected to increase by up to 4.66 °C in 2080s under the average and extreme 38 

emission scenarios, respectively. Mean annual, mean seasonal (December-February, March-39 

May, June-August, September-November), and mean monthly streamflow were projected to 40 

decrease under different emission scenarios in 2050s and 2080s. These results indicate decreased 41 

water availability in the future as well as water cycle intensification. These changes in 42 

streamflow might have impacts on agriculture, natural ecosystem, and could lead to water 43 

restrictions. The outcome of this study can directly feed into frameworks for sustainable 44 

management of water resources and support adaptation strategies that rely on science and policy 45 

to improve water resources allocation in the region. 46 

Keywords; Droughts, hydrological impacts, water scarcity, water management, central 47 

Australia, TERN dataset version 1.0.2 48 

1.   Introduction 49 

Global climate is changing and the vulnerabilities of hydro-ecological, freshwater, and 50 

agricultural systems to its impacts are expected to vary across regions due to the contributions of 51 
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several atmospheric processes and human actions (Ndehedehe et al., 2021; Zhang et al., 2008; 52 

Hailey et al., 2020).  Generally, the evidence of climate change impacts on environmental 53 

systems, including groundwater variability, surface water, and productivity of wetland 54 

ecosystems, among others, is growing (Ndehedehe et al., 2021; Ward et al., 2013; van Dijk et al., 55 

2013). But its impacts on water resources, including key hydrologic metrics such as intensity, 56 

frequency, and magnitude will vary substantially at regional and local scales (Troin et al., 2015). 57 

As with several other regions, Australia has different and highly variable freshwater habitats and 58 

climatic regimes, making it more susceptible to climate change (Head et al., 2014). For instance, 59 

the influence of large-scale processes such as the El-Ni˜no-Southern Oscillation on both rainfall 60 

and land water storage has been documented (Ndehedehe et al., 2021; Kiem et al., 2016; van 61 

Dijk et al., 2013), emphasizing the vulnerability of the region to changes in global climate. 62 

Furthermore, Australia has experience more warming from 1910-2011 (0.9°C) (CSIRO 2012) 63 

than the global average warming (0.7°C) (Cleugh et al., 2012) and is fast becoming a global 64 

climatic hotspot, given the impacts of several multi-scale climatic processes. Most parts of 65 

Australia are arid and even more vulnerable to small variations in precipitation, e.g., 66 

precipitation deficit in streamflow is up to 2.2 times in east, south, and southwest Australia 67 

(Head et al., 2014; van Dijk et al., 2013). These factors and conditions warrant the assessment of 68 

region-specific hydrological response to climate change impacts. 69 

 70 

Key methodologies used to assess hydrological implications of climate change on water 71 

management require the combination of hydrological models with output of General Circulation 72 

Models (GCMs), which are based on different climate change scenarios (Luo et al., 2019; Guo et 73 

al., 2020; Troin et al., 2015). Notably, hydrological modeling is dependent on accurate 74 

information of essential variables such as precipitation. This is because it is considered as a 75 
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crucial input for hydrological applications (Masih et al., 2010; Price et al., 2014; Wang et al., 76 

2015; Camici et al., 2018), particularly in arid river basins (Pilgrim et al., 1988). Arguably, the 77 

poor skills and large uncertainties of global hydrological and climate models have been linked to 78 

limited gauged observations of precipitation and poor representation of surface water balance, 79 

among other factors (Ndehedehe, 2019; van Dijk et al., 2014). Reliable information on 80 

precipitation inputs is thus crucial to understand streamflow regimes and for accurate estimation 81 

of future climate scenarios (Troin et al., 2015; Alnahit et al., 2020). 82 

However, the native resolution of GCMs is considerably coarse, making them more 83 

suitable for continental or global scale studies (Di Virgilio et al., 2020). In addition, the use of 84 

such models is restricted in region-specific studies or at localized scales (e.g. at a catchment 85 

scale). This is because information about climate processes at a finer scale is not provided by the 86 

coarse resolution GCMs (Duffy et al., 2003; Li et al., 2010), especially precipitation (Wood et 87 

al., 2004). The need for comprehensive catchment-scale assessment of the impacts of climate 88 

change on streamflow was recently reported by Eccles et al., (2021). They highlighted the non-89 

linearity of these impacts, emphasizing the need for such assessment to increase preparedness in 90 

the advent of future extreme events. Furthermore, different methods have been employed to 91 

resolve this scale gap and to transform the climatic patterns simulated at coarser scale to local 92 

scale. Statistical downscaling and dynamical downscaling are two widely used approaches for 93 

this purpose. In the statistical downscaling, transformation of climate projections from a coarse 94 

scale to fine scale is achieved by means of transfer functions (trained) that play the role of 95 

connectivity between two spatial resolutions (Li et al., 2010). In dynamical downscaling 96 

however, a GCM is driven by a higher-resolution regional climate model (RCM), and the RCM 97 

is provided with boundary conditions of GCM gap (Hagemann et al., 2009; Maraun et al., 2010). 98 
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A key advantage of statistical downscaling is its lower computational requirement (Li et al., 99 

2010) and dynamical downscaling is considered as an approach that is physically consistent in 100 

overcoming the scale gap. As a result of this, and their higher resolution, an improved simulation 101 

of climate variables could be achieved (Hagemann et al., 2009; Maraun et al., 2010). 102 

Importantly, these methods have benefits and shortcomings and have been comprehensively 103 

detailed by Fowler et al., 2007 and Wilby et al., 2009.  104 

This study aims to evaluate the impacts of climate change on the streamflow of a large 105 

river basin (Cooper creek-Bulloo River Basin) in Australia. To achieve this, a hydrological 106 

model will be calibrated and validated and then will be used for the streamflow projection. 107 

Selection of climate model outputs for future hydro-climatological projections is considered as 108 

one of the most important and critical step in climate change impact studies. Therefore, different 109 

GCMs with varying characteristics will be considered in this study including raw, statistically 110 

downscaled, dynamically downscaled, and bias adjusted. Best performing (in term of simulating 111 

observed precipitation) models will be selected and ensemble of best performing GCMs will then 112 

be used for future hydro-climatological projections. Apart from providing insight to hydrological 113 

changes, this study might be useful for management of river ecosystem and water resources in 114 

the region. An important outcome of this study is its inherent potential to support adaptation 115 

strategies that rely on science and policy to improve water resources allocation. 116 

2.   Materials and Methods 117 

2.1.   Study area 118 

We consider in this work the Cullyamurra Water Hole station as representative of the 119 

Cooper creek-Bulloo River Basin (one of the largest in the state of Queensland), which is located 120 

(140.843°E, 27.701°S). The Cooper creek-Bulloo River Basin has a drainage area of 232846 km2 121 
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and a mean elevation of 452 m (Fig. 1). There are more than 10,000 lacustrine/palustrine 122 

wetlands in the region. Climatic zones in the basin are desert, grassland, and subtropical. 123 

Different wetlands (aquatic ecosystem) including arid and semi-arid lakes, arid swamps, coastal 124 

and sub-coastal tree swamps, coastal grass-sedge wetlands, and semi-arid swamps are present in 125 

the basin. It is also a home to more than three thousand wildlife species including native, 126 

introduced, wetland indicator species, and rare or threatened species (Department of 127 

Environment and Science, Queensland, 2016). The basin is dominated by scattered shrubs and 128 

grasses, other land cover across the basin consists of mines and quarries, lakes and dams, salt 129 

lakes, rain fed cropping, rain fed pasture, wetlands, closed tussock grassland, open hummock 130 

grassland, open tussock grassland, dense shrubland, open shrubland, closed forest, open forest, 131 

open woodland, woodland, and urban areas (Lymburner et al., 2015) (Fig. 1). Scattered shrubs 132 

and grasses are more prominent in low elevation areas in the basin. However, their presence is 133 

almost negligible in the northern areas of the basin with high elevation. Open tussock grassland, 134 

open woodland, and woodland are more dominant in the areas of higher elevation, and sparsely 135 

located in the low to medium elevation areas. The central region of the basin which presents 136 

intermediate medium elevation is dominated by open hummock grassland, rain fed cropping, 137 

open shrubland, and wetlands. Areas with highest elevation are dominated by woodlands. Six 138 

Hydrologic Soil Groups (HSGs) are present in the basin with moderate to high runoff potential 139 

i.e. HSG-B, HSG-C, HSG-D, HSG-B/D, HSG-C/D, and HSG-D/D. These HSGs are comprised 140 

of different soil texture classes, i.e. sandy load, loamy sand, clay loam, silty clay loam, sandy 141 

clay loam, loam, silty loam, silt, clay, silty clay, and sandy clay (Ross et al., 2018).   142 

2.2.   Experimental setup 143 

2.2.1.   Observed and projected data 144 
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On the one hand, observed daily precipitation, temperature, and evapotranspiration data 145 

for ninety eight stations in the basin for the period 1986-2015 was extracted from the high 146 

resolution  (∼ 5 km) SILO climate dataset (http://www.longpaddock.qld.gov.au/silo, Jeffrey et 147 

al., 2001) and was averaged over the basin. These high-resolution data have been interpolated 148 

from the superior quality measurements provided by the Australian Bureau of Meteorology. 149 

On the other hand, several GCMs which provide global future climate projections of 150 

different climate variables such as precipitation and temperature were considered for this study. 151 

Out of forty different Coupled Model Inter-comparison Project (CMIP5) coarse resolution 152 

GCMs, eight GCMs, which presented the best performance over Australia had been identified 153 

previously by the Australian government, details can be found in (the interested reader is referred 154 

to (CSIRO and BoM, 2015) and (https://www.climatechangeinaustralia.gov.au/en/support-and-155 

guidance/faqs/eight-climate-models-data/ for further details). Description of these eight models 156 

is summarized in table SI. 157 

Besides, the eleven CMIP5 GCMs listed in table SII (ACCESS1-0, ACCESS1-3, 158 

CCSM4, CNRM-CM5, CSIRO-Mk3.6, GFDL-CM3, GFDL-ESM2M, HadGEM2, MIROC5, 159 

MPI-ESM-LR, and NorESM1-M) were selected to be used over Queensland. These models were 160 

dynamically downscaled using the Commonwealth Scientific and Industrial Research 161 

Organization (CSIRO) regional climate model Conformal Cubic Atmospheric Model (CCAM) 162 

for two representative concentration pathways (RCP 4.5 and RCP 8.5), representing average and 163 

extreme greenhouse gas emission scenarios (Syktus et al., 2020). The resulting high resolution 164 

(∼10 km) daily dataset, is called Terrestrial Ecosystem Research Network (TERN) version 1.0.2. 165 

In addition, another version of this dataset, which is bias-corrected is also available. These 166 
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datasets could be accessed from the Queensland Future Climate Dashboard 167 

(www.longpaddock.qld.gov.au/qld-future-climate/).  168 

2.2.2.   Hydrological model, its setup and development 169 

The Hydrologiska Byråns Vattenbalansavdelning (HBV) model (Bergström 1976; 170 

Lindström et al. 1997) is a conceptual hydrological model. A slightly modified version of HBV 171 

known as HBV-light (Seibert & Vis 2012) was used in this study to simulate streamflow. It has 172 

snow, soil, response, and routing routines. Water flowing through a basin is represented by the 173 

model in following ways: Precipitation is first processed by the model with respect to threshold 174 

temperature and then it is simulated accordingly. In the next phase, soil routine is employed by 175 

the model where precipitation is processed according to the water content of soil box. Then 176 

response routine becomes active and groundwater recharge adds up to groundwater box (upper) 177 

and percolation is initiated to the groundwater box (lower). Streamflow is then simulated and in 178 

the routing routine, transport of generated streamflow is represented along the stream network by 179 

the application of a triangular weighing function. HBV-light uses temperature, precipitation, and 180 

potential evaporation values as driving variables. For further details on the model, interested 181 

readers are referred to (Bergström 1976; Lindström et al. 1997; Seibert & Vis 2012). 182 

In order to calibrate the model on a daily time scale, a period of ten years (2001-2010) of 183 

data was selected, leaving the year 2000 as spin-up. This particular period was chosen for 184 

calibration since it includes different (e.g. nearly normal and extreme) streamflow episodes. For 185 

validation, two independent time periods were considered: 1993-1997 and 2011-2015. These two 186 

periods were also selected for encompassing different streamflow characteristics. For 187 

comprehensiveness, the HBV-light model was calibrated against different objective functions 188 

(efficiency metrics). In particular we have used the Nash-Sutcliffe efficiency (NSE); (Nash & 189 
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Sutcliffe 1970), Kling Gupta Efficiency (KGE) (Gupta et al., 2009), Lindström measure 190 

(Lindström et al. 1997) (hereafter Lm), and Coefficient of determination (R2). These objective 191 

functions have a perfect value of 1, i.e. if a value of 1 is achieved for any of these objective 192 

functions it will refer to a perfect match between observed and modeled streamflow. The model 193 

was calibrated using Genetic Algorithm Protocol (GAP; Seibert 2000) and Powell correction. In 194 

order to achieve the best performance in simulating observed streamflow, a two-step calibration 195 

procedure was adopted. In the first step the model was calibrated against the four individual 196 

objective functions (NSE, KGE, Lm, and R2) by giving a weightage of hundred percent to each 197 

of them. In the second step, it was calibrated against different combinations of the four objective 198 

functions i.e. NSE+KGE, NSE+Lm, NSE+R2, KGE+Lm, KGE+R2, and R2+Lm by giving a 199 

fifty percent weightage to each objective function in each particular combination. 200 

2.2.3.   Selection of GCMs for future climate projections  201 

Precipitation is an essential and critical input for hydrological modeling. Since the ability 202 

of the different GCMs to reliably reproduce observed precipitation is highly location-dependent 203 

(Vaze et al., 2011; Tuo et al., 2016), it is important to select the best performing GCMs for the 204 

target region being studied. To this end, five ensembles of different GCMs were considered. The 205 

first ensemble consisted of eight GCMs (section 2.2.1) in their raw form (native coarse 206 

resolution) and was referred to as AU-GCMs Raw. The second ensemble included the same 207 

models but statistically downscaled through bias correction (Delta method) and was referred to 208 

as AU-GCMs BC. The third ensemble consisted of the same eight models, but bias corrected 209 

with Quantile Mapping method and was referred to as AU-GCMs QM. The fourth ensemble 210 

consisted of eleven dynamically downscaled GCMs (section 2.2.1) and was referred to as QLD-211 
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GCMs. Finally, the fifth ensemble of models included these same eleven models but was also 212 

bias adjusted other than being dynamically downscaled and was referred to as QLD-GCMs BA.  213 

Performance of these five ensembles to capture observed precipitation was evaluated 214 

using several efficiency metrics including, Mean Error (ME), Mean Absolute Error (MAE), Root 215 

Mean Square Error (RMSE), Relative Absolute Error (RAE), Relative Volume Error (RVE), 216 

Index of Agreement measure (IoAd), KGE, and Percent Bias (PBIAS). Out of the five ensembles 217 

the one with the lowest ME, MAE, RMSE, RAE, RVE, PBIAS and highest IoAd and KGE was 218 

selected for further analysis. Note that previous studies suggested that GCMs with weak 219 

performance should not be included in the final ensemble to be used for future climate 220 

projections (see, e.g., Basharin et al. (2016) and Perkins et al. (2007)). Once the selection of the 221 

best performing ensemble was done, all the contributing GCMs were individually examined in 222 

terms of certain metrics (by giving them a threshold value). Only those models falling within the 223 

limits of these (threshold) values were finally selected to form the definitive ensemble. The 224 

limits considered for ME were -2 and 2, less than 1.2 for RAE, between -0.1 to 0.1 for RVE, 0.53 225 

for IoAd, above 0.32 for KGE, and between -10 to 10 for PBIAS. The definitive ensemble was 226 

built by simply averaging the selected models. Before the use of this ensemble as future climate 227 

projections dataset in this study, another comparison (based on mean annual, daily, monthly, 25th 
228 

percentile, median, and 75th percentile precipitation) was also made between this final ensemble 229 

and the initial one, which was selected out of the five ensembles considered. Climate projections 230 

from the final ensemble were then used as inputs to the HBV-light model in order to produce 231 

streamflow projections for two future periods i.e. 2050s (2040-2069) and 2080s (2070-2099). 232 

Note that the methodological approach adopted in this study to select the best performing climate 233 
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models is subjective as there is no globally agreed criteria for this task (Smith and Chandler, 234 

2010).  235 

3.   Results and Discussion 236 

3.1.   Model calibration and validation 237 

The sensitivity of the HBV-light’s performance during calibration and validation periods 238 

to different objective functions and their combinations was first assessed. The model was 239 

calibrated against different objective functions in a way that maximum value (closer to 1) was 240 

achieved for each objective function and each combination of objective functions (Section 2.2.2). 241 

Values of up to 0.89 and 0.66 were achieved for these objective functions and their combinations 242 

during calibration and validation periods respectively. We found out that it does not necessarily 243 

mean that higher value of an objective function leads to better performance of the model. For 244 

instance, when the model was calibrated against R2 as an objective function, a value of 0.89 was 245 

achieved and a value of 0.78 was achieved when the model was calibrated against NSE as an 246 

objective function. However, the difference between mean daily observed and modeled 247 

streamflow was less in case of NSE, implying a better performance of model in capturing 248 

observed streamflow (Fig. 2). In addition it was also found that if a model is calibrated against an 249 

objective function or combination of objective functions e.g. R2+Lm and a low difference in 250 

observed and modeled streamflow was obtained during calibration period, it does not imply that 251 

it will depict the lower difference in observed and modeled streamflow during validation period 252 

as well (Fig. 2). Other than the differences in mean daily streamflow (observed vs. modeled) 253 

during the calibration period, model’s ability to capture extreme streamflow values is also a 254 

major factor which has to be considered. Finally it was found out that if a model is calibrated 255 

against NSE as an objective function, a good agreement between different characteristics of 256 
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streamflow (observed vs. modeled) during calibration and both validation periods was depicted 257 

(Fig. 3). These results however are subjective and might be different depending on the region of 258 

study and other factors.  259 

3.2.   Selection of future climate projections of GCMs 260 

From the results obtained based on the methodology described in section 2.2.3, it was 261 

found that AU-GCMs Raw and QLD-GCMs considerably overestimated the mean annual 262 

precipitation by up to 41% and 53%, respectively. On the contrary, AU-GCMs BC and AU-263 

GCMs QM substantially underestimated mean annual precipitation by up to 59% and 18%. 264 

Finally, QLD-GCMs BA provided the best results with an overestimation of mean annual 265 

precipitation by only up to 8%. However, besides PBIAS, several other metrics were employed 266 

to further assess the performance of the different ensemble GCMs. Results for all the other 267 

metrics, including MAE, ME, RMSE, RAE, RVE, IoAd, and KGE also suggested a better 268 

performance of QLD-GCMs BA. At this point, the eleven GCMs conforming the QLD-GCMs 269 

BA ensemble were individually evaluated in terms of capturing the historic precipitation based 270 

on different threshold values assigned to different metrics (see section 2.2.3). Based on these 271 

criteria, three GCMs ACCESS 1-3, CNRM-CM5, and MPI-ESM-LR were selected for the final 272 

ensemble, which is referred to as 3QLD-GCMs BA hereafter. Fig. 5 shows that mean monthly 273 

precipitation simulated by these three models captures observed precipitation fairly well. 274 

Moreover, as shown by Fig. 6, as compared with the total ensemble of eleven GCMs, these three 275 

GCMs also exhibit lower difference with respect to observed precipitation beyond mean monthly 276 

values.  277 

To the best of our knowledge this is the first time that Queensland climate projection data 278 

of 11 GCMs have been evaluated for hydrological applications in comparison with 8 GCMs 279 
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selected by Australian Government.  This approach could be used in future for the whole state of 280 

Queensland and would be beneficial for better understanding of climate change impacts on the 281 

streamflow characteristics and water resources management of Queensland’s catchments. 282 

3.3.   Projected changes in precipitation, temperature, and streamflow 283 

For the assessment of climate change and its associated effects in the hydrology, a 284 

baseline period of 1986-2015 was used, and the future changes in precipitation, temperature, and 285 

streamflow over CCCWH were computed for 2050s (2040-2069) and (2070-2099) 2080s under 286 

the RCP 4.5 and the RCP 8.5 emission scenarios. For simplicity, the period 2050s (2080s) was 287 

referred to as the P1 (P2) in the following.  288 

Mean annual precipitation was projected to decrease in P1 by -8% and to decrease only 289 

slightly in P2 under the RCP 4.5 emission scenario. Under the RCP 8.5, mean annual 290 

precipitation was projected to decrease slightly in P1 and to increase by 6% in P2. Mean annual 291 

temperature was projected to increase by 1.95 °C and 2.42 °C in P1and P2 respectively under the 292 

RCP 4.5 emission scenario. For the RCP 8.5 emission scenario, mean annual temperature was 293 

projected to increase by 2.67 °C and 4.66 °C in P1 and P2, respectively. Mean annual streamflow 294 

was projected to decrease by up to -32% in P1 and up to -28% in P2 under the RCP 4.5 emission 295 

scenario. Under the RCP 8.5 emission scenario, mean annual streamflow was projected to 296 

decrease by up to -31% in P1 and -20% in P2. Overall projected changes in mean annual 297 

streamflow were in line with decreasing (increasing) precipitation (temperature) variability under 298 

both emission scenarios.  299 

At a seasonal scale, streamflow was projected to decrease by -33% and -27% for DJF in 300 

P1 under the RCP 4.5 and RCP 8.5 emission scenarios respectively. A decrease of -24% and -301 

13% was projected for December-January-February (DJF) of P2 under the RCP 4.5 and RCP 8.5 302 
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emission scenarios respectively. A decrease of -33% and -43% in streamflow was projected for 303 

MAM in P1 under the RCP 4.5 and RCP 8.5 emission scenarios respectively, while streamflow 304 

was projected to reduce by -52% and -46% for the same season in P2 under the RCP 4.5 and 305 

RCP 8.5 emission scenarios respectively. For June-July-August (JJA) in P1, streamflow was 306 

projected to decrease by -16% and -31% under the RCP 4.5 and RCP 8.5 emission scenarios 307 

respectively, and a decrease of -26% and -19% was projected for the same season in P1 under the 308 

respective emission scenarios. Streamflow was projected to decrease by -29% for September-309 

October-November (SON) in P1 under the RCP 4.5 and RCP 8.5 emission scenarios, and the 310 

decrease of -7% and 8% was projected for SON in P2 under the RCP 4.5 and RCP 8.5 emission 311 

scenarios respectively. 312 

On a monthly scale, maximum decrease of -76% in July streamflow and a maximum 313 

increase of 35% in October streamflow was projected for P1 under the extreme emission 314 

scenario i.e. RCP 8.5 (Fig. 7). July streamflow was projected to undergo a maximum decrease of 315 

-81% under the RCP 4.5 emission scenario in P2 and an increase of 48% was projected in 316 

October streamflow in the same period under the RCP 8.5 emission scenario. Overall mean 317 

monthly streamflow was projected to decrease by -29% and -36% in P1 under the RCP 4.5 and 318 

RCP 8.5 emission scenarios respectively and mean monthly streamflow was projected to 319 

decrease by -33% and -29% in P2 under the RCP 4.5 and RCP 8.5 emission scenarios 320 

respectively.  321 

3.4.   Discussion 322 

Different sources of uncertainties are attributed to the process of assessing climate change 323 

impacts on streamflow characteristics. Large sources of uncertainties are related to the 324 

hydrological models and General Circulation Models (GCMs) among others (Vettter et al., 325 
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2017). To reduce hydrological model related uncertainties, the hydrological model setup and 326 

development was considered. It is crucial for a hydrological model that is being used for 327 

assessing changes in future streamflow, to represent observed streamflow with an acceptable 328 

accuracy. The goal here was to calibrate and validate the HBV-light model in such a way that 329 

modeled streamflow could show sensitivity to both mean and extreme observed events. To 330 

achieve this, we have considered a range of objective functions and their combinations i.e. NSE, 331 

KGE, Lm, R2, NSE+KGE, NSE+Lm, NSE+R2, KGE+Lm, KGE+R2, and R2+Lm. The 332 

sensitivity of model’s performance during calibration and validation periods to these objective 333 

functions and their combinations was assessed. Results showed that it does not necessarily mean 334 

that if the model is calibrated against an objective function with a higher value, it will be a better 335 

representative of observed streamflow. For example, when the model was calibrated against R2 336 

as an objective function, a high value of 0.89 was achieved during the calibration period and a 337 

value of 0.78 was achieved for the same period when the model was calibrated against NSE as an 338 

objective function. However, the difference between mean daily observed and modeled 339 

streamflow was less in case of NSE, implying a better performance of model in capturing 340 

observed streamflow (Fig. 2). Additionally,, it was also observed that if a model was calibrated 341 

against an objective function or a combination of objective functions e.g., R2+Lm and a low 342 

difference in observed and modeled streamflow was obtained during calibration period, it does 343 

not imply that it will depict the lower difference in observed and modeled streamflow during all 344 

validation periods as well (Fig. 2). For instance, the difference between observed and modeled 345 

mean daily streamflow was less when the model was calibrated against R2+Lm during 346 

calibration and second validation period, however the difference in observed and modeled 347 

streamflow was substantial during first validation period (Fig. 2). Our results also point out the 348 
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importance of considering two independent periods for validation. Our aim was to achieve the 349 

performance of the model, which was fairly acceptable during calibration and both validation 350 

periods. Along with the differences in mean daily streamflow (observed and modeled) during 351 

calibration and validation periods, model’s ability in capturing other characteristics of observed 352 

streamflow e.g. high and low streamflow was also considered. Finally, it was found out that if a 353 

model was calibrated against NSE as an objective function, a good agreement between different 354 

characteristics of streamflow (observed and modeled) during calibration and both validation 355 

periods was achieved (Figs. 3 and 4).  356 

To reduce the uncertainties related to the choice of GCM, this study used 19 different 357 

GCMs, namely ACCESS1.0, CanESM2, CESM1-CAM5, CNRM-CM5, GFDL-ESM2M, 358 

HadGEM2-CC, MIROC5, NorESM1-M, ACCESS1-0, ACCESS1-3, CCSM4, CNRM-CM5, 359 

CSIRO-Mk3.6, GFDL-CM3, GFDL-ESM2M, HadGEM2, MIROC5, MPI-ESM-LR, and 360 

NorESM1-M. Climate projections from the first eight models were considered in their different 361 

forms including raw, as well as statistically downscaled through Delta and Quantile Mapping 362 

bias correction methods. The rest of the models were considered in their two forms; dynamically 363 

downscaled and dynamically downscaled with bias adjustments. To use the projections of a 364 

climate model for projecting future streamflow, it is imperative to see how that model replicates 365 

the observed precipitation over a recent historical period, since this variable plays a key role in 366 

climate change impacts on streamflow studies. After employing multiple statistics, we found that 367 

three GCMs (ACCESS1-3, CNRM-CM5, and MPI-ESM-LR), which were dynamically 368 

downscaled and subsequently bias adjusted, exhibited a better performance in capturing observed 369 

precipitation patterns over our target region (Figs. 4 and 5).  370 
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Our study reflects multiple sources of uncertainty that could arise in selection of future 371 

climate projections. We have considered raw GCMs, statistically downscaled GCMs, 372 

dynamically downscaled GCMs, bias adjusted GCMs. Other than this we employed extensive 373 

statistical metrics (Mean Error (ME), Mean Absolute Error (MAE), Root Mean Square Error 374 

(RMSE), Relative Absolute Error (RAE), Relative Volume Error (RVE), Index of Agreement 375 

measure (IoAd), KGE, and Percent Bias (PBIAS), mean annual, daily, monthly, 25th percentile, 376 

median, and 75th percentile modeled and observed precipitation) to measure the models’ 377 

performance against observed climate data. Our methodology here is not only improved but 378 

comprehensive in the sense that we have considered a range of uncertainties and after going 379 

through strict assessment, we have finally selected the best performing models that are able to 380 

capture observed variability for precipitation, which is a key variable to reliably project 381 

streamflow in a hydrological impact study. 382 

Our results indicated an overall decrease in annual precipitation in the P1 and P2 under 383 

the RCP 4.5 and RCP 8.5 emission scenarios. However, there was an exception that mean annual 384 

precipitation was projected to increase in P2 under the RCP 8.5 emission scenario. Results of this 385 

study also indicated an increase in mean annual temperature in P1 and P2 under RCP 4.5 and 386 

RCP 8.5 emission scenarios. Mean annual streamflow was also projected to decrease, which is in 387 

line with decreasing precipitation and rising temperature. However, streamflow was also 388 

projected to decrease in P2 under the RCP 8.5 emission scenario, in which the precipitation was 389 

projected to increase. This relationship between climate variables and streamflow might be 390 

attributed to different factors. For the said scenario and period an exceptional increase in 391 

temperature was also projected. For instance, an increase of 2.42 °C was projected for the same 392 

period under the RCP 4.5 emission scenario, however, it was 4.66 °C under the extreme emission 393 

Jo
urn

al 
Pre-

pro
of



18 

 

scenario. High temperature may lead to more evapotranspiration, resulting in reduced streamflow 394 

and net precipitation (water availability). Furthermore, changes in climatic variables such as 395 

precipitation have a strong impact on streamflow and are typically amplified in streamflow by 396 

few times, and even an insignificant variation of climate variables could lead to substantial 397 

changes in streamflow (Chiew et al., 2009; Hattermann et al., 2011; Reshmidevi et al., 2018). 398 

Response of streamflow to meteorological conditions, however, is highly nonlinear (Van Dijk et 399 

al., 2013) because different climate variables e.g. temperature and precipitation might have 400 

opposite impacts on streamflow. In different regions of Australia, a change of 1% in mean 401 

annual precipitation might amplify streamflow by up to 3.5% (Chiew, 2006) and in some 402 

instances by up to 4.1% (van Dijk et al., 2013). Depending on some regions within Australia 403 

(e.g. southwest Western Australia), changes between 0-40% in precipitation could lead to 404 

changes in streamflow in the range of 10-80% (Barria et al., 2015). Streamflow is also sensitive 405 

to changes in temperature e.g. an increase of up to 1.0 °C in maximum temperature could lead to 406 

a change of up to 5% in annual streamflow and this change could be even higher in different 407 

seasons in a range of -10 to 50% (Zhang et al., 2019) and a temperature changes between 0 to 3 408 

°C could lead to a change of up to 80% in streamflow (Barria et al., 2015).  409 

Our results indicated an overall decrease in mean annual, seasonal, and monthly 410 

streamflow. Different studies (Charles et al., 2010; Al-Safi & Sarukkalige, 2018) reported 411 

decreasing future streamflow trends in different regions of Australia. Our results are in line with 412 

these previous findings. Reduced streamflow might trigger drought-like conditions in future and 413 

could have adverse environmental and ecological implications. A considerable reduction in 414 

projected streamflow e.g. in the (dry period) autumn and winter might result in the loss of 415 

resilience as well as the hydrological connectivity (Petrone et al., 2010) and depletion of 416 
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groundwater resources. Droughts are key constraints to flow connectivity and disruption of the 417 

physical processes that sustains aquatic biodiversity (Ndehedehe et al., 2020; Ward et al., 2013). 418 

Projected decrease in streamflow of Cooper Creek-Bulloo River Basin is also an indication 419 

towards water scarcity, which might have substantial impacts on agriculture (ABS, 2011), 420 

restricted water use, and bushfires (van Dijk et al., 2013). The variability in flow regimes 421 

(magnitude, duration, frequency) as well as the timing and rates of change of flow have 422 

important implications on the productivity of wetland ecosystems (Ndehedehe et al., 2020). In 423 

articulating how this underpin ecosystem services, fish populations, for instance, benefit from 424 

increased sustained flows, which helps in facilitating fish migration to more extensive, 425 

productive floodplain areas (e.g., (Ndehedehe et al., 2021b; Thompson et al., 2016). This comes 426 

with apparent benefits to the ecological communities supported by freshwater habitats and who 427 

rely on wetlands that persist from floodplain inundation to generate numerous cultural, 428 

recreational and economic values through commercial fisheries and other human uses of these 429 

habitats (Ndehedehe et al., 2020). With projected decrease in river flows as shown in this study 430 

for the Cooper creek-Bulloo River Basin, declines in the productivity of freshwater habitats and 431 

the higher order organisms that depend on them as well as reductions in the opportunities for 432 

local communities is likely. Furthermore, while changes in stream flow regimes could be climate 433 

driven through frequent droughts caused by large-scale climate variability indices like the 434 

ENSO, increasing human water needs for agriculture and domestic use are increasingly 435 

exacerbating stream flow reduction and depletion of hydrological stores such as groundwater 436 

(Ndehedehe et al., 2021). This is the case in the Murray Darlin Basin (MDB) in Australia where 437 

the expansion of irrigated agriculture has been particularly rapid, and the need for surface water 438 

is increasing due to both climate change and increasing human needs. Recently, the eco-439 
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hydrological impacts of water infrastructure development in the MDB shows pronounced 440 

impacts during dry climatic phases (Karimi et al., 2021). Under a drying climate scenario 441 

accompanied by substantial flow alteration, the impact on aquatic ecosystems, including water 442 

holes is ultimately inevitable. 443 

4.   Conclusions 444 

This study evaluated the impacts of climate change on the streamflow of the Cooper 445 

creek-Bulloo River Basin under the two greenhouse gas emission scenarios, namely RCP 4.5 and 446 

RCP 8.5. The hydrological model HBV-light was calibrated and validated at a daily time scale in 447 

order to accurately project future streamflow. In order to reduce the uncertainties related to the 448 

choice of climate model in future streamflow projections, the performance of nineteen different 449 

GCMs from the fifth phase of the Global Model Inter-comparison Project (CMIP5) to reproduce 450 

precipitation over the target region was assessed. The three-best performing GCMs namely 451 

ACCESS1-3, CNRM-CM5, and MPI-ESM-LR were selected to build an ensemble of future 452 

precipitation and temperature projections which were used to feed the HBV-light model. Other 453 

main findings of this study are detailed in what follows. 454 

Mean annual precipitation (temperature) is projected to decrease (increase) in 2050s and 455 

2080s under both RCP 4.5 and RCP 8.5 emission scenarios. As a result, mean annual streamflow 456 

is projected to decrease in both future periods under the two RCPs. More in detail, the highest 457 

decrease in streamflow is expected to occur in MAM, with a reduction of up to -44%. Moreover, 458 

streamflow peak is expected to shift from February to January in the future.  459 

Reduction in streamflow is an indication for a depletion in water reserves and a decreased 460 

water availability in future, which ultimately impacts agricultural activities, reservoir operations, 461 

and ecosystem. From a water management perspective, findings from this study (reduction in 462 
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future streamflow) might help decision and policy makers in proactive and sustainable water 463 

resources management. 464 
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 677 

Figure 1. (Left) Hydro-meteorological stations considered along the target basin. (Right): Land 678 

cover. 679 

 680 

 681 
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 682 

Figure 2. Differences between mean daily streamflow in mm (observed and simulated) with 683 

hydrological model being calibrated and validated against different objective functions and their 684 

combinations. Calibration period is from 2001-2010, Validation 1 period is from 1993-1997, and 685 

validation 2 period is from 2011-2015. 686 
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 687 

Figure 3. Observed and simulated mean daily streamflow during (a) calibration period (b) 688 

validation 1 period (c) validation 2 period. 689 
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 690 

Figure 4. Long term mean monthly precipitation (mm/month), observed (x-axis) and modeled 691 

with ensemble of 3 best-perfroming GCMs (y-axis). 692 Jo
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 693 

Figure 5. Performance of finally selected ensemble of 3 GCMs as compared to the ensemble of 694 

eleven GCMs in capturing different characteristics of observed precipitation (unit is mm). 695 

 696 

Figure 6. Projected mean monthly streamflow under the RCP 4.5 and RCP 8.5 emission 697 

scenarios for 2040-2069 and 2070-2099 (P1 and P2 respectively), as compared to the historical 698 

observed values for the period (1986-2015). 699 

 700 
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 701 

Table SI. Eight CMIP5 GCMs for climate projections for Australia. 702 

Model Institute, Country Atmosphere resolution (°) 
ACCESS1.0 CSIRO-BOM, Australia 1.9×1.2 
CanESM2 CCCMA, Canada 2.8×2.8 
CESM1-CAM5 NSF-DOE-NCAR, USA 1.2×0. 
CNRM-CM5 CNRM-CERFACS, France 1.4×1.4 
GFDL-ESM2M NOAA, GFDL, USA 2.5×2.0 
HadGEM2-CC MOHC, UK 1.9×1.2 
MIROC5 JAMSTEC, Japan 1.4×1.4 
NorESM1-M NCC, Norway 2.5×1.9 
 703 

Table SII. Eleven CMIP5 GCMs for climate projections for Queensland. 704 

Model Institute, Country Atmosphere resolution (°) 
ACCESS1-0 CSIRO & BoM, Australia 1.9×1.2 
ACCESS1-3 CSIRO & BoM, Australia 1.9×1.2 
CCSM4 NCAR, USA 1.25×0.9424 
CNRM-CM5 CNRM & CERFACS, France 1.4×1.4 
CSIRO-Mk3.6 CSIRO & Qld Govt, Australia 1.875×1.8653 
GFDL-CM3 GFDL NOAA, USA 2.5×2.0 
GFDL-ESM2M GFDL NOAA, USA 2.5×2.0 
HadGEM2 MOHC, UK 1.9×1.2 
MIROC5 AORI Japan, Japan 1.4×1.4 
MPI-ESM-LR Max Planck Institute, Germany 1.875×1.8653 
NorESM1-M NCC, Norway 2.5×1.9 
 705 
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