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Abstract

Climate change affects natural systems, leadingdeeased acceleration of global water cycle
and substantial impacts on the productivity of icaprivers and the several ecosystem functions
they provide. However, the anticipated impacts lohate change in terms of frequency and
intensity of extreme events (e.g., droughts andd¥) on hydrological systems across regions
could be substantially different. This study theref aims to assess the impacts of climate
change on the streamflow of a large river basiatied in central Australia (Cooper creek-Bulloo
River Basin). Modified version of the hydrologicamodel Hydrologiska Byrans
Vattenbalansavdelning (HBV) was used in this sttalgenerate daily streamflow. This model
was first calibrated (2001-2010) and then validdtedwo independent periods (1993-1997 and
2011-2015). The model depicted a good performamcesimulating observed streamflow.
Climate projection data from multiple general clation models, including (ACCESS1.0,

CanESM2, CESM1-CAM5, CNRM-CM5, GFDL-ESM2M, HadGEMZ, MIROCS5,
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NorESM1-M, ACCESS1-0, ACCESS1-3, CCSM4, CNRM-CM%IR0O-Mk3.6, GFDL-CMS,
GFDL-ESM2M, HadGEM2, MIROC5, MPI-ESM-LR, and NorESM/) in various forms (raw,
statistically downscaleddynamically downscaled, and bias adjusted) wergsidered in this
study. Results showed that three high resolutionadycally downscaled and bias adjusted
models (ACCESS1-3, CNRM-CM5, and MPI-ESM-LR) fronerflestrial Ecosystem Research
Network (TERN) dataset v1.0.2 have better perforreahan other models considered, that is, in
terms of capturing observed precipitation overlihein. Future climate projections of ensemble
of these three models forced with RCP 4.5 and RGReghission scenarios were then used to
generate streamflow for 2050s (2040-2069) and 2020§50-2099). Results of the study
indicated that mean annual precipitation was ptegeto decrease by up to -8% in 2050s and
temperature was projected to increase by up to 4C6@& 2080s under the average and extreme
emission scenarios, respectively. Mean annual, nssmsonal (December-February, March-
May, June-August, September-November), and meanthtyostreamflow were projected to
decrease under different emission scenarios in2@66 2080s. These results indicate decreased
water availability in the future as well as wateycle intensification. These changes in
streamflow might have impacts on agriculture, ratwecosystem, and could lead to water
restrictions. The outcome of this study can disedded into frameworks for sustainable
management of water resources and support adapsitategies that rely on science and policy
to improve water resources allocation in the region

Keywords; Droughts, hydrological impacts, water scarcitytevananagement, central
Australia, TERN dataset version 1.0.2

1. Introduction
Global climate is changing and the vulnerabilitedshydro-ecological, freshwater, and

agricultural systems to its impacts are expectedaty across regions due to the contributions of
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several atmospheric processes and human actioreh@ddhe et al., 2021; Zhang et al., 2008;
Hailey et al., 2020). Generally, the evidence lnihate change impacts on environmental
systems, including groundwater variability, surfaweater, and productivity of wetland
ecosystems, among others, is growing (Ndehededle 021; Ward et al., 2013; van Dijk et al.,
2013). But its impacts on water resources, inclgdiey hydrologic metrics such as intensity,
frequency, and magnitude will vary substantiallyeggional and local scales (Troin et al., 2015).
As with several other regions, Australia has ddfgrand highly variable freshwater habitats and
climatic regimes, making it more susceptible tonelie change (Head et al., 2014). For instance,
the influence of large-scale processes such aglthEno-Southern Oscillation on both rainfall
and land water storage has been documented (Ndehedeal., 2021; Kiem et al., 2016; van
Dijk et al.,, 2013), emphasizing the vulnerability the region to changes in global climate.
Furthermore, Australia has experience more warnfiiogn 1910-2011 (0.9°C) (CSIRO 2012)
than the global average warming (0.7°C) (Cleuglalgt2012) and is fast becoming a global
climatic hotspot, given the impacts of several isdale climatic processes. Most parts of
Australia are arid and even more vulnerable to lkmafiations in precipitation, e.g.,
precipitation deficit in streamflow is up to 2.2neés in east, south, and southwest Australia
(Head et al., 2014; van Dijk et al., 2013). Thesetdrs and conditions warrant the assessment of

region-specific hydrological response to climataraye impacts.

Key methodologies used to assess hydrological aaptins of climate change on water
management require the combination of hydrologiatiels with output of General Circulation
Models (GCMs), which are based on different clinatange scenarios (Luo et al., 2019; Guo et
al., 2020; Troin et al., 2015). Notably, hydrolagdicmodeling is dependent on accurate

information of essential variables such as preafjph. This is because it is considered as a
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crucial input for hydrological applications (Masgt al., 2010; Price et al., 2014; Wang et al.,
2015; Camici et al., 2018), particularly in arigder basins (Pilgrim et al., 1988). Arguably, the
poor skills and large uncertainties of global hydgical and climate models have been linked to
limited gauged observations of precipitation andrpepresentation of surface water balance,
among other factors (Ndehedehe, 2019; van Dijk let 2014). Reliable information on

precipitation inputs is thus crucial to understatr@amflow regimes and for accurate estimation

of future climate scenarios (Troin et al., 2015n&hit et al., 2020).

However, the native resolution of GCMs is consibgracoarse, making them more
suitable for continental or global scale studies \{(Dgilio et al., 2020). In addition, the use of
such models is restricted in region-specific steidie at localized scales (e.g. at a catchment
scale). This is because information about climategsses at a finer scale is not provided by the
coarse resolution GCMs (Duffy et al., 2003; Li &t 2010), especially precipitation (Wood et
al., 2004). The need for comprehensive catchmalesassessment of the impacts of climate
change on streamflow was recently reported by Boeteal., (2021). They highlighted the non-
linearity of these impacts, emphasizing the needtich assessment to increase preparedness in
the advent of future extreme events. Furthermoifégrent methods have been employed to
resolve this scale gap and to transform the clengditterns simulated at coarser scale to local
scale. Statistical downscaling and dynamical dowairsg are two widely used approaches for
this purpose. In the statistical downscaling, tfamsation of climate projections from a coarse
scale to fine scale is achieved by means of trarfsfections (trained) that play the role of
connectivity between two spatial resolutions (Li at, 2010). In dynamical downscaling
however, a GCM is driven by a higher-resolutioniaagl climate model (RCM), and the RCM

is provided with boundary conditions of GCM gap @gdmann et al., 2009; Maraun et al., 2010).
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A key advantage of statistical downscaling is a&ér computational requirement (Li et al.,
2010) and dynamical downscaling is considered aapgmoach that is physically consistent in
overcoming the scale gap. As a result of this,taed higher resolution, an improved simulation
of climate variables could be achieved (Hagemannalet 2009; Maraun et al., 2010).
Importantly, these methods have benefits and shiwittgs and have been comprehensively

detailed by Fowler et al., 2007 and Wilby et ab0Q.

This study aims to evaluate the impacts of clinchtenge on the streamflow of a large
river basin (Cooper creek-Bulloo River Basin) insialia. To achieve this, a hydrological
model will be calibrated and validated and thenl w# used for the streamflow projection.
Selection of climate model outputs for future hydlionatological projections is considered as
one of the most important and critical step in elienchange impact studies. Therefore, different
GCMs with varying characteristics will be considgrie this study including raw, statistically
downscaled, dynamically downscaled, and bias asfju®est performing (in term of simulating
observed precipitation) models will be selected amsemble of best performing GCMs will then
be used for future hydro-climatological projectioApart from providing insight to hydrological
changes, this study might be useful for managermknver ecosystem and water resources in
the region. An important outcome of this studyts inherent potential to support adaptation

strategies that rely on science and policy to impneater resources allocation.

2. Materialsand Methods
2.1. Sudy area

We consider in this work the Cullyamurra Water Hetation as representative of the
Cooper creek-Bulloo River Basin (one of the largeshe state of Queensland), which is located

(140.843°E, 27.701°S). The Cooper creek-Bulloo RRa&sin has a drainage area of 232846 km
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and a mean elevation of 452 m (Fig. 1). There aogenthan 10,000 lacustrine/palustrine
wetlands in the region. Climatic zones in the basie desert, grassland, and subtropical.
Different wetlands (aquatic ecosystem) includinigl @and semi-arid lakes, arid swamps, coastal
and sub-coastal tree swamps, coastal grass-sedigmdgs and semi-arid swamps are present in
the basin. It is also a home to more than threeisdwod wildlife species including native,
introduced, wetland indicator species, and rare tlueatened species (Department of
Environment and Science, Queensland, 2016). Thiea mslominated by scattered shrubs and
grasses, other land cover across the basin comdisténes and quarries, lakes and dams, salt
lakes, rain fed cropping, rain fed pasture, wettardosed tussock grassland, open hummock
grassland, open tussock grassland, dense shruldped,shrubland, closed forest, open forest,
open woodland, woodland, and urban areas (Lymbwhat., 2015) (Fig. 1). Scattered shrubs
and grasses are more prominent in low elevatioasaire the basin. However, their presence is
almost negligible in the northern areas of therbasth high elevation. Open tussock grassland,
open woodland, and woodland are more dominantamatikas of higher elevation, and sparsely
located in the low to medium elevation areas. Téetral region of the basin which presents
intermediate medium elevation is dominated by opemmock grassland, rain fed cropping,
open shrubland, and wetlands. Areas with highestagion are dominated by woodlands. Six
Hydrologic Soil Groups (HSGs) are present in theibavith moderate to high runoff potential
i.e. HSG-B, HSG-C, HSG-D, HSG-B/D, HSG-C/D, and HB®. These HSGs are comprised
of different soil texture classes, i.e. sandy ldadmy sand, clay loam, silty clay loam, sandy

clay loam, loam, silty loam, silt, clay, silty clagnd sandy clay (Ross et al., 2018).

2.2. Experimental setup
2.2.1. Observed and projected data
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On the one hand, observed daily precipitation, enafpire, and evapotranspiration data
for ninety eight stations in the basin for the pdril986-2015 was extracted from the high

resolution ¢ 5 km) SILO climate dataset (http://www.longpaddagd gov.au/silo, Jeffrey et

al., 2001) and was averaged over the basin. Thigberésolution data have been interpolated

from the superior quality measurements providethbyAustralian Bureau of Meteorology.

On the other hand, several GCMs which provide dldbire climate projections of
different climate variables such as precipitationl &emperature were considered for this study.
Out of forty different Coupled Model Inter-compamis Project (CMIP5) coarse resolution
GCMs, eight GCMs, which presented the best perfoomaver Australia had been identified
previously by the Australian government, details ba found in (the interested reader is referred

to (CSIRO and BoM, 2015) and (https://www.climataebeinaustralia.gov.au/en/support-and-

guidance/fags/eight-climate-models-data/ for furttietails). Description of these eight models

is summarized in table SlI.

Besides, the eleven CMIP5 GCMs listed in table QCCESS1-0, ACCESS1-3,
CCSM4, CNRM-CM5, CSIRO-Mk3.6, GFDL-CM3, GFDL-ESM2MjadGEM2, MIROCS,
MPI-ESM-LR, and NorESM1-M) were selected to be useer Queensland. These models were
dynamically downscaled using the Commonwealth Sifienand Industrial Research
Organization (CSIRO) regional climate model Confarr@ubic Atmospheric Model (CCAM)
for two representative concentration pathways (R@Pand RCP 8.5), representing average and
extreme greenhouse gas emission scenarios (Sykals 2020). The resulting high resolution
(~10 km) daily dataset, is called Terrestrial EcosysResearch Network (TERN) version 1.0.2.

In addition, another version of this dataset, whighbias-corrected is also available. These
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datasets could be accessed from the Queensland reFuDlimate Dashboard

(www.longpaddock.gld.gov.au/qgld-future-climate/).

2.2.2. Hydrological mode, its setup and devel opment

The Hydrologiska Byrans Vattenbalansavdelning (HBWpdel (Bergstrom 1976;
Lindstrom et al. 1997) is a conceptual hydrologitaldel. A slightly modified version of HBV
known as HBV-light (Seibert & Vis 2012) was usedtis study to simulate streamflow. It has
snow, soil, response, and routing routines. Watsvihg through a basin is represented by the
model in following ways: Precipitation is first pressed by the model with respect to threshold
temperature and then it is simulated accordingiythe next phase, soil routine is employed by
the model where precipitation is processed accgrtlinthe water content of soil box. Then
response routine becomes active and groundwateange adds up to groundwater box (upper)
and percolation is initiated to the groundwater Bloxwer). Streamflow is then simulated and in
the routing routine, transport of generated stréamis represented along the stream network by
the application of a triangular weighing functi&fBV-light uses temperature, precipitation, and
potential evaporation values as driving variables: further details on the model, interested

readers are referred to (Bergstrom 1976; Lindstebal. 1997; Seibert & Vis 2012).

In order to calibrate the model on a daily timelesca period of ten years (2001-2010) of
data was selected, leaving the year 2000 as spifFois particular period was chosen for
calibration since it includes different (e.g. ngartbrmal and extreme) streamflow episodes. For
validation, two independent time periods were adasd: 1993-1997 and 2011-2015. These two
periods were also selected for encompassing differgreamflow characteristics. For
comprehensiveness, the HBV-light model was caldoragainst different objective functions

(efficiency metrics). In particular we have useé tHash-Sutcliffe efficiency (NSE); (Nash &
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Sutcliffe 1970), Kling Gupta Efficiency (KGE) (Guptet al., 2009), Lindstrétm measure

(Lindstrom et al. 1997) (hereafter Lm), and Coédint of determination (R2). These objective

functions have a perfect value of 1, i.e. if a wabf 1 is achieved for any of these objective
functions it will refer to a perfect match betwesserved and modeled streamflow. The model
was calibrated using Genetic Algorithm Protocol @Aeibert 2000) and Powell correction. In

order to achieve the best performance in simulativgerved streamflow, a two-step calibration
procedure was adopted. In the first step the maa@al calibrated against the four individual

objective functions (NSE, KGE, Lm, and R2) by giyia weightage of hundred percent to each
of them. In the second step, it was calibratedresgalifferent combinations of the four objective

functions i.e. NSE+KGE, NSE+Lm, NSE+R2, KGE+Lm, K&, and R2+Lm by giving a

fifty percent weightage to each objective functioreach particular combination.

2.2.3. Sdection of GCMs for future climate projections

Precipitation is an essential and critical inputhgdrological modeling. Since the ability
of the different GCMs to reliably reproduce obseryeecipitation is highly location-dependent
(Vaze et al., 2011; Tuo et al., 2016), it is impattto select the best performing GCMs for the
target region being studied. To this end, five emdes of different GCMs were considered. The
first ensemble consisted of eight GCMs (section.13.2n their raw form (native coarse
resolution) and was referred to as AU-GCMs Raw. $heond ensemble included the same
models but statistically downscaled through biasemtion (Delta method) and was referred to
as AU-GCMs BC. The third ensemble consisted ofgaime eight models, but bias corrected
with Quantile Mapping method and was referred tcABsGCMs QM. The fourth ensemble

consisted of eleven dynamically downscaled GCMsti@e 2.2.1) and was referred to as QLD-
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GCMs. Finally, the fifth ensemble of models inclddiaese same eleven models but was also

bias adjusted other than being dynamically dowrstahd was referred to as QLD-GCMs BA.

Performance of these five ensembles to capturenadx$erecipitation was evaluated
using several efficiency metrics including, Meamde(ME), Mean Absolute Error (MAE), Root
Mean Square Error (RMSE), Relative Absolute Erf@AE), Relative Volume Error (RVE),
Index of Agreement measure (loAd), KGE, and Pergams (PBIAS). Out of the five ensembles
the one with the lowest ME, MAE, RMSE, RAE, RVE, IRB and highest loAd and KGE was
selected for further analysis. Note that previotsdies suggested that GCMs with weak
performance should not be included in the finaleemsle to be used for future climate
projections (see, e.g., Basharin et al. (2016)Radins et al. (2007)). Once the selection of the
best performing ensemble was done, all the contnguGCMs were individually examined in
terms of certain metrics (by giving them a thredhalue). Only those models falling within the
limits of these (threshold) values were finallyes#éd to form the definitive ensemble. The
limits considered for ME were -2 and 2, less thahfér RAE, between -0.1 to 0.1 for RVE, 0.53
for loAd, above 0.32 for KGE, and between -10 tofdOPBIAS. The definitive ensemble was
built by simply averaging the selected models. Bethe use of this ensemble as future climate
projections dataset in this study, another compar{based on mean annual, daily, monthly! 25
percentile, median, and ®ercentile precipitation) was also made betweenfihal ensemble
and the initial one, which was selected out offthe ensembles considered. Climate projections
from the final ensemble were then used as inputheoHBV-light model in order to produce
streamflow projections for two future periods i2050s (2040-2069) and 2080s (2070-2099).

Note that the methodological approach adoptedigstiudy to select the best performing climate

10
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models is subjective as there is no globally agreédria for this task (Smith and Chandler,

2010).

3. Resultsand Discussion

3.1. Modd calibration and validation

The sensitivity of the HBV-light's performance dugi calibration and validation periods
to different objective functions and their combioas was first assessed. The model was
calibrated against different objective functionsainvay that maximum value (closer to 1) was
achieved for each objective function and each coatlon of objective functions (Section 2.2.2).
Values of up to 0.89 and 0.66 were achieved fasahabjective functions and their combinations
during calibration and validation periods respeaiiy We found out that it does not necessarily
mean that higher value of an objective functiordéeto better performance of the model. For
instance, when the model was calibrated againsgisRéh objective function, a value of 0.89 was
achieved and a value of 0.78 was achieved whemtakel was calibrated against NSE as an
objective function. However, the difference betwesman daily observed and modeled
streamflow was less in case of NSE, implying adregierformance of model in capturing
observed streamflow (Fig. 2). In addition it wascalound that if a model is calibrated against an
objective function or combination of objective ftioos e.g. R2+Lm and a low difference in
observed and modeled streamflow was obtained deafigration period, it does not imply that
it will depict the lower difference in observed amdbdeled streamflow during validation period
as well (Fig. 2). Other than the differences in medaily streamflow (observed vs. modeled)
during the calibration period, model’'s ability tapture extreme streamflow values is also a
major factor which has to be considered. Finallwés found out that if a model is calibrated

against NSE as an objective function, a good ageeernetween different characteristics of

11
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streamflow (observed vs. modeled) during calibratmd both validation periods was depicted
(Fig. 3). These results however are subjectiveraigit be different depending on the region of

study and other factors.

3.2. Sdlection of future climate projections of GCMs

From the results obtained based on the methoddleggribed in section 2.2.3, it was
found that AU-GCMs Raw and QLD-GCMs considerablye@stimated the mean annual
precipitation by up to 41% and 53%, respectivelyn ®e contrary, AU-GCMs BC and AU-
GCMs QM substantially underestimated mean annuatipitation by up to 59% and 18%.
Finally, QLD-GCMs BA provided the best results widm overestimation of mean annual
precipitation by only up to 8%. However, besidedAB several other metrics were employed
to further assess the performance of the diffem#emble GCMs. Results for all the other
metrics, including MAE, ME, RMSE, RAE, RVE, loAdnd KGE also suggested a better
performance of QLD-GCMs BA. At this point, the edavGCMs conforming the QLD-GCMs
BA ensemble were individually evaluated in termscapturing the historic precipitation based
on different threshold values assigned to diffenetrics (see section 2.2.3). Based on these
criteria, three GCMs ACCESS 1-3, CNRM-CM5, and NBFSM-LR were selected for the final
ensemble, which is referred to as 3QLD-GCMs BA aBez. Fig. 5 shows that mean monthly
precipitation simulated by these three models c¢aptwbserved precipitation fairly well.
Moreover, as shown by Fig. 6, as compared withtdbs ensemble of eleven GCMs, these three
GCMs also exhibit lower difference with respecbtiserved precipitation beyond mean monthly

values.

To the best of our knowledge this is the first tithat Queensland climate projection data

of 11 GCMs have been evaluated for hydrologicalliepfions in comparison with 8 GCMs

12



280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

selected by Australian Government. This approachdcbe used in future for the whole state of
Queensland and would be beneficial for better wtdading of climate change impacts on the

streamflow characteristics and water resources ganant of Queensland’s catchments.

3.3. Projected changes in precipitation, temperature, and streamflow

For the assessment of climate change and its assdceffects in the hydrology, a
baseline period of 1986-2015 was used, and thedutuianges in precipitation, temperature, and
streamflow over CCCWH were computed for 2050s (2Bd69) and (2070-2099) 2080s under
the RCP 4.5 and the RCP 8.5 emission scenariossifaplicity, the period 2050s (2080s) was

referred to as the P1 (P2) in the following.

Mean annual precipitation was projected to decr@as¥l by -8% and to decrease only
slightly in P2 under the RCP 4.5 emission scenadoder the RCP 8.5, mean annual
precipitation was projected to decrease slightli?inand to increase by 6% in P2. Mean annual
temperature was projected to increase by 1.95 t2at? °Gn Pland P2 respectively under the
RCP 4.5 emission scenario. For the RCP 8.5 emissienario, mean annual temperature was
projected to increase by 2.67 °C and 4.66 °C imfd P2, respectively. Mean annual streamflow
was projected to decrease by up to -32% in P1 artd 28% in P2 under the RCP 4.5 emission
scenario. Under the RCP 8.5 emission scenario, naeawial streamflow was projected to
decrease by up to -31% in P1 and -20% in P2. Qverajected changes in mean annual
streamflow were in line with decreasing (increaimgecipitation (temperature) variability under

both emission scenarios.

At a seasonal scale, streamflow was projected toedse by -33% and -27% for DJF in
P1 under the RCP 4.5 and RCP 8.5 emission scenasgpsctively. A decrease of -24% and -

13% was projected for December-January-Februarf)(BP2 under the RCP 4.5 and RCP 8.5
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emission scenarios respectively. A decrease of -888-43% in streamflow was projected for
MAM in P1 under the RCP 4.5 and RCP 8.5 emissi@ma&gos respectively, while streamflow
was projected to reduce by -52% and -46% for tmeesseason in P2 under the RCP 4.5 and
RCP 8.5 emission scenarios respectively. For JulyeAlgust (JJA) in P1, streamflow was
projected to decrease by -16% and -31% under the RS and RCP 8.5 emission scenarios
respectively, and a decrease of -26% and -19% vegsgbed for the same season in P1 under the
respective emission scenarios. Streamflow was gtexjeto decrease by -29% for September-
October-November (SON) in P1 under the RCP 4.5R@8& 8.5 emission scenarios, and the
decrease of -7% and 8% was projected for SON inriR2r the RCP 4.5 and RCP 8.5 emission

scenarios respectively.

On a monthly scale, maximum decrease of -76% ig Streamflow and a maximum
increase of 35% in October streamflow was projedwdP1l under the extreme emission
scenario i.e. RCP 8.5 (Fig. 7). July streamflow wagected to undergo a maximum decrease of
-81% under the RCP 4.5 emission scenario in P2 amndhcrease of 48% was projected in
October streamflow in the same period under the BE&Pemission scenario. Overall mean
monthly streamflow was projected to decrease b9e-29d -36% in P1 under the RCP 4.5 and
RCP 8.5 emission scenarios respectively and meanthiyostreamflow was projected to
decrease by -33% and -29% in P2 under the RCP dAd5 RCP 8.5 emission scenarios

respectively.

3.4. Discussion

Different sources of uncertainties are attributethe process of assessing climate change
impacts on streamflow characteristics. Large sa@uroé uncertainties are related to the

hydrological models and General Circulation Mod@®BCMs) among others (Vettter et al.,
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2017). To reduce hydrological model related undoatitss, the hydrological model setup and
development was considered. It is crucial for arblical model that is being used for
assessing changes in future streamflow, to represeserved streamflow with an acceptable
accuracy. The goal here was to calibrate and ualittee HBV-light model in such a way that
modeled streamflow could show sensitivity to botleam and extreme observed events. To
achieve this, we have considered a range of obgf@iinctions and their combinations i.e. NSE,
KGE, Lm, R2, NSE+KGE, NSE+Lm, NSE+R2, KGE+Lm, KGExRand R2+Lm. The
sensitivity of model’'s performance during caliboatiand validation periods to these objective
functions and their combinations was assessed.liRes$iowed that it does not necessarily mean
that if the model is calibrated against an objecfinction with a higher value, it will be a better
representative of observed streamflow. For exanwhen the model was calibrated against R2
as an objective function, a high value of 0.89 wekieved during the calibration period and a
value of 0.78 was achieved for the same period whemodel was calibrated against NSE as an
objective function. However, the difference betwesmean daily observed and modeled
streamflow was less in case of NSE, implying adrefterformance of model in capturing
observed streamflow (Fig. 2). Additionally,, it walso observed that if a model was calibrated
against an objective function or a combination bjeotive functions e.g., R2+Lm and a low
difference in observed and modeled streamflow wWaained during calibration period, it does
not imply that it will depict the lower differenée observed and modeled streamflow during all
validation periods as well (Fig. 2). For instanttee difference between observed and modeled
mean daily streamflow was less when the model waltbrated against R2+Lm during
calibration and second validation period, howeves tlifference in observed and modeled

streamflow was substantial during first validatjperiod (Fig. 2). Our results also point out the
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importance of considering two independent periadsvalidation. Our aim was to achieve the
performance of the model, which was fairly acceletaturing calibration and both validation
periods. Along with the differences in mean dailseamflow (observed and modeled) during
calibration and validation periods, model’s abilitycapturing other characteristics of observed
streamflow e.g. high and low streamflow was alsostered. Finally, it was found out that if a
model was calibrated against NSE as an objectinetifon, a good agreement between different
characteristics of streamflow (observed and modetkaing calibration and both validation

periods was achieved (Figs. 3 and 4).

To reduce the uncertainties related to the chofc@@M, this study used 19 different
GCMs, namely ACCESS1.0, CanESM2, CESM1-CAM5, CNRMEC GFDL-ESM2M,
HadGEM2-CC, MIROC5, NorESM1-MACCESSL-0, ACCESS1-3, CCSMV4, CNRM-CM5,
CYRO-Mk3.6, GFDL-CM3, GFDL-ESM2M, HadGEM2, MIROC5, MPI-ESM-LR, and
NorESM1-M. Climate projections from the first eight models ev@onsidered in their different
forms including raw, as well as statistically dowaled through Delta and Quantile Mapping
bias correction methods. The rest of thadlels were considered in their two forms; dynamically
downscaled and dynamically downscaled with biasisid)ents. To use the projections of a
climate model for projecting future streamflowjdtimperative to see how that model replicates
the observed precipitatiasver a recent historical period, since this vaggtlys a key role in
climate change impacts on streamflow studies. Adteploying multiple statistics, we found that
three GCMs (ACCESS1-3, CNRM-CM5, and MPI-ESM-LR)high were dynamically
downscaled and subsequently bias adjusted, exthigibetter performance in capturing observed

precipitation patterns over our target region (Ffgand 5).
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Our study reflects multiple sources of uncertaitmgt could arise in selection of future
climate projections. We have considered raw GCMmstistically downscaled GCMs,
dynamically downscaled GCMs, bias adjusted GCM#&eOthan this we employed extensive
statistical metrics (Mean Error (ME), Mean Absollgor (MAE), Root Mean Square Error
(RMSE), Relative Absolute Error (RAE), Relative Vole Error (RVE), Index of Agreement
measure (IoAd), KGE, and Percent Bias (PBIAS), maamual, daily, monthly, Z5percentile,
median, and 75 percentile modeled and observed precipitation)nmeasure the models’
performance against observed climate data. Our adetbgy here is not only improved but
comprehensive in the sense that we have considemratige of uncertainties and after going
through strict assessment, we have finally seletttecbest performing models that are able to
capture observed variability for precipitation, watiis a key variable to reliably project

streamflow in a hydrological impact study.

Our results indicated an overall decrease in anpredipitation in the P1 and P2 under
the RCP 4.5 and RCP 8.5 emission scenarios. Howehere was an exception that mean annual
precipitation was projected to increase in P2 utideiRCP 8.5 emission scenario. Results of this
study also indicated an increase in mean annugbdeature in P1 and P2 under RCP 4.5 and
RCP 8.5 emission scenarios. Mean annual streaniiasvalso projected to decrease, which is in
line with decreasing precipitation and rising tenapare. However, streamflow was also
projected to decrease in P2 under the RCP 8.5 immissenario, in which the precipitation was
projected to increase. This relationship betweematk variables and streamflow might be
attributed to different factors. For the said scenand period an exceptional increase in
temperature was also projected. For instance, @ease of 2.42 °C was projected for the same

period under the RCP 4.5 emission scenario, howéweas 4.66 °C under the extreme emission
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scenario. High temperature may lead to more evapspiration, resulting in reduced streamflow
and net precipitation (water availabilityyurthermore, changes in climatic variables such as
precipitation have a strong impact on streamflow are typically amplified in streamflow by

few times, and even an insignificant variation tifmate variables could lead to substantial
changes in streamflow (Chiew et al., 2009; Hattermat al., 2011; Reshmidevi et al., 2018).
Response of streamflow to meteorological conditidrasvever, is highly nonlinear (Van Dijk et

al., 2013) because different climate variables &egperature and precipitation might have
opposite impacts on streamflow. In different regiasf Australia, a change of 1% in mean
annual precipitation might amplify streamflow by op 3.5% (Chiew, 2006) and in some
instances by up to 4.1% (van Dijk et al., 2013)p&w&ling on some regions within Australia
(e.g. southwest Western Australia), changes betw®d% in precipitation could lead to

changes in streamflow in the range of 10-80% (Bagtial., 2015). Streamflow is also sensitive
to changes in temperature e.g. an increase of 4®tBC in maximum temperature could lead to
a change of up to 5% in annual streamflow and ¢henge could be even higher in different
seasons in a range of -10 to 50% (Zhang et al9)28id a temperature changes between 0 to 3

°C could lead to a change of up to 80% in stream{Barria et al., 2015).

Our results indicated an overall decrease in meamual, seasonal, and monthly
streamflow. Different studies (Charles et al., 2080-Safi & Sarukkalige, 2018) reported
decreasing future streamflow trends in differemgfions of Australia. Our results are in line with
these previous findings. Reduced streamflow migbgér drought-like conditions in future and
could have adverse environmental and ecologicalicadpns. A considerable reduction in
projected streamflow e.g. in the (dry period) autuend winter might result in the loss of

resilience as well as the hydrological connectiviBetrone et al.,, 2010) and depletion of
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groundwater resources. Droughts are key constranti®w connectivity and disruption of the
physical processes that sustains aquatic biodiygiiddehedehe et al., 2020; Ward et al., 2013).
Projected decrease in streamflow of Cooper Credlo8LRiver Basin is also an indication
towards water scarcity, which might have substantigacts on agriculture (ABS, 2011),
restricted water use, and bushfires (van Dijk et 2013). The variability in flow regimes
(magnitude, duration, frequency) as well as theingmand rates of change of flow have
important implications on the productivity of wetth ecosystems (Ndehedehe et al., 2020). In
articulating how this underpin ecosystem servids$, populations, for instance, benefit from
increased sustained flows, which helps in faciligat fish migration to more extensive,
productive floodplain areas (e.g., (Ndehedehe.eR@P1b; Thompson et al., 2016). This comes
with apparent benefits to the ecological commusiiapported by freshwater habitats and who
rely on wetlands that persist from floodplain inatidn to generate numerous cultural,
recreational and economic values through commefisiaéries and other human uses of these
habitats (Ndehedehe et al., 2020). With projecedeahse in river flows as shown in this study
for the Cooper creek-Bulloo River Basin, declineshe productivity of freshwater habitats and
the higher order organisms that depend on themedisas reductions in the opportunities for
local communities is likely. Furthermore, while olgas in stream flow regimes could be climate
driven through frequent droughts caused by largdesclimate variability indices like the
ENSO, increasing human water needs for agriculamed domestic use are increasingly
exacerbating stream flow reduction and depletiorhyafrological stores such as groundwater
(Ndehedehe et al., 2021). This is the case in theay Darlin Basin (MDB) in Australia where
the expansion of irrigated agriculture has beetiquaarly rapid, and the need for surface water

is increasing due to both climate change and isangahuman needs. Recently, the eco-
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hydrological impacts of water infrastructure deyslent in the MDB shows pronounced
impacts during dry climatic phases (Karimi et &021). Under a drying climate scenario
accompanied by substantial flow alteration, thednotpon aquatic ecosystems, including water

holes is ultimately inevitable.

4. Conclusions

This study evaluated the impacts of climate chaogehe streamflow of the Cooper
creek-Bulloo River Basin under the two greenhouseamission scenarios, namely RCP 4.5 and
RCP 8.5. The hydrological model HBV-light was cedited and validated at a daily time scale in
order to accurately project future streamflow. ldey to reduce the uncertainties related to the
choice of climate model in future streamflow projeas, the performance of nineteen different
GCMs from the fifth phase of the Global Model Intemparison Project (CMIP5) to reproduce
precipitation over the target region was asses$d. three-best performing GCMs namely
ACCESS1-3, CNRM-CM5, and MPI-ESM-LR were selectedbtild an ensemble of future
precipitation and temperature projections whichemesed to feed the HBV-light model. Other

main findings of this study are detailed in whdldws.

Mean annual precipitation (temperature) is progdtedecrease (increase) in 2050s and
2080s under both RCP 4.5 and RCP 8.5 emission isggnAs a result, mean annual streamflow
is projected to decrease in both future periodseutige two RCPs. More in detail, the highest
decrease in streamflow is expected to occur in MAh a reduction of up to -44%. Moreover,

streamflow peak is expected to shift from Febrdaryanuary in the future.

Reduction in streamflow is an indication for a dgjan in water reserves and a decreased
water availability in future, which ultimately impts agricultural activities, reservoir operations,

and ecosystem. From a water management perspeftigdargs from this study (reduction in
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future streamflow) might help decision and policykears in proactive and sustainable water

resources management.
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683  Figure 2. Differences between mean daily streamflownm (observed and simulated) with
684  hydrological model being calibrated and validatgdiast different objective functions and their
685 combinations. Calibration period is from 2001-20¥8Jidation 1 period is from 1993-1997, and
686  validation 2 period is from 2011-2015.
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694  Figure 5. Performance of finally selected enserob@ GCMs as compared to the ensemble of
695 eleven GCMs in capturing different characteristitsbserved precipitation (unit is mm).
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697 Figure 6. Projected mean monthly streamflow under RCP 4.5 and RCP 8.5 emission
698  scenarios for 2040-2069 and 2070-2099 (P1 and $§&cévely), as compared to the historical
699  observed values for the period (1986-2015).

700

31



701

702  Table SI. Eight CMIP5 GCMs for climate projectidios Australia.

Model Institute, Country Atmosphere resolution (°)
ACCESS1.0 CSIRO-BOM, Australia 1.9%x1.2
CanESM2 CCCMA, Canada 2.8x2.8

CESM1-CAMS NSF-DOE-NCAR, USA 1.2x0.
CNRM-CM5 CNRM-CERFACS, Francel.4x1.4

GFDL-ESM2M NOAA, GFDL, USA 2.5x2.0
HadGEM2-CC MOHC, UK 1.9x1.2
MIROC5 JAMSTEC, Japan 1.4x1.4
NorESM1-M NCC, Norway 2.5x1.9

703

704  Table Sll. Eleven CMIP5 GCMs for climate projectdior Queensland.

Model Institute, Country Atmosphere resolution (°)
ACCESS1-0 CSIRO & BoM, Australia 1.9x1.2
ACCESS1-3 CSIRO & BoM, Australia 1.9x1.2
CCsm4 NCAR, USA 1.25%0.9424
CNRM-CM5 CNRM & CERFACS, France 1.4x1.4
CSIRO-Mk3.6 CSIRO & Qld Govt, Australia 1.875x%1.8653
GFDL-CM3 GFDL NOAA, USA 2.5x2.0
GFDL-ESM2M GFDL NOAA, USA 2.5x2.0
HadGEM2 MOHC, UK 1.9x1.2
MIROC5 AORI Japan, Japan 1.4x1.4
MPI-ESM-LR Max Planck Institute, Germany 1.875x%1.8653

NorESM1-M NCC, Norway 2.5x1.9
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