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Tsunami wave interaction with coastal regions is responsible for very important human and
economic losses. In order to properly design coastal defenses against these natural catastrophes,
new numerical models need to be developed that complement existing laboratory measurements
and field data. The use of numerical models based on the Navier-Stokes equations appears as
a reasonable approach due to their ability to evaluate complex flow patterns around coastal
structures without the inherent limitations of the classical depth-averaged models. In the present
study, a Navier-Stokes-based model, IH-3VOF, is applied to study the interaction of tsunami
waves with porous and impermeable structures. IH-3VOF is able to simulate wave flowwithin the
porous structures bymeans of the volume-averaged Reynolds-averagedNavier-Stokes (VARANS)
equations. The equations solved by the model and their numerical implementation are presented
here. A numerical analysis of the interaction of a tsunami wave with both an impermeable and
porous vertical breakwater is carried out. The wave-induced three-dimensional wave pattern is
analysed from the simulations. The role paid by the porous media is also investigated. Finally,
flow around the breakwater is analyzed identifying different flow behaviors in the vicinity of the
breakwater and in the far field of the structure.

1. Introduction

The interaction of tsunami waves with the coast has become of great interest in the last years
due to the devastating effects observed in the last large events: The Indian Ocean and Japan
tsunamis. Tsunami wave effects leaded to huge human loses and turned out to be expensive
in natural resources. Moreover, the economic impact of derived effects is huge, and coastal
areas affected by the tsunami wave attack need much time and a lot of economical resources
to be recovered. Most of the existing coastal defenses are designed to deal with wave storms
but not with tsunami wave attack. Tsunami waves differ significantly in nature from storm
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waves, because they are characterized by longer wave lengths and they show a clear transient
effect. Traditional designs for coastal structures are not valid to provide the required protec-
tion, and new defenses are studied in order to protect the coast.

Several approaches have been followed in the literature to study tsunami wave action
on coastal structures, see [1] for a review of the state-of-the-art. The lack of knowledge in the
interpretation of many of the factors present in the tsunami wave interaction has motivated
their study by means of physical tests, especially small-scale model tests. Formulations
derived from these experimentations are, in most of the cases, semiempirical in nature with
their form based on physical considerations. Moreover, scale factors are present in formu-
lations, and their role for dissipation mechanisms due to wave breaking, turbulence and
generation of eddies in the fluid region as well as turbulence and friction within the porous
material, is still unsolved.

The use of numerical models in the study of tsunami wave propagation is quite
popular by means of the depth averaged nonlinear shallow water (NSW) equations (i.e.,
COMCOD, [2–4]). NSW set of equations has revealed, as a powerful tool, to be used in large
domain areas, where the long wave approach is still valid. In the vicinity of coastal structures,
the inherent assumptions of NSW equations are violated because of the relevance of the
vertical flow component and the nonhydrostatic behavior of the wave induced pressure.

In the last decade, the use of the Navier-Stokes (NS) equations applied to coastal
engineering processes has become more popular. The increment of the computational
resources and the improvement of the numerical aspects mainly related with the boundary
conditions hasmade possible to overcome the inherent limitations of classical depth averaged
models. NS models are free of the simplifications behind wave theories, and they are able to
deal with the flow complexity derived from the wave interaction with coastal structures.
Two-dimensional Reynolds-averaged Navier-Stokes (RANS) models [5–7] have revealed
that structural functionality and stability can be studied with a high degree of accuracy, even
in the presence of granular material layers. Volume-averaged Reynolds-averaged Navier-
Stokes (VARANS) equations have been solved to characterize wave induced flows within
porous structures. Moreover, tsunami wave transformation has been studied [8] showing a
high degree of accuracy in reproducing nonlinear flow characteristics.

Recently, VARANS equations have been extended to three-dimensional problems
[8, 9] showing a high degree of accuracy in predicting magnitudes related to the functionality
and the stability of coastal porous structures. Wave transformation processes around coastal
structures, such as wave reflection, wave penetration through porous structures, wave
diffraction, run-up, and wave breaking can be now analyzed in three-dimensional problems.
The model presented in [9], called IH3-VOF, appears to be suitable to be used in the
analysis of tsunami wave induced flow around coastal structures, even in the presence of
porous media and a two-phase flow. In the present paper, an analysis of tsunami wave
interacting with coastal structures is done. The specific case of vertical walls is chosen as
a first attempt to deal with more complex breakwater configurations. Both impermeable and
porous breakwaters are studied, in order to identify tsunami-induced hydrodynamic.

The work is organized as follows. The mathematical model followed by IH-3VOF
is presented first. A detailed description of the numerical implementation and the tsunami
wave generation by the numerical model is described in Section 3. Next, numerical simula-
tions are shown and described, studying the more relevant tsunami wave induced processes
around vertical porous and impermeable walls. Finally, conclusions about the work are
drawn.
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2. Mathematical Modeling

IH-3VOF makes use of the volume-averaged Reynolds-averaged Navier–Stokes (VARANS)
equations to solve for the pressure and velocity fields of the flow. These equations derive
from the Reynolds-averaged Navier-Stokes (RANS) equations, by application of a volume-
averaging procedure. This additional averaging of the equations eliminates the requirement
of a complete geometrical description of the flow domain and therefore allows to use the
equations to solve porous media flow.

In the present section, the main results of the mathematical model are presented. For a
complete description see [10] or [9].

2.1. Volume-Averaging

Volume-averaging is a filtering operation, mathematically defined as

〈a〉f =
1
Vf

∫
Vf

adV, (2.1)

where 〈〉f is the volume-averaging operator, a is the variable to be averaged, and Vf is the
averaging volume, the volume within which the operation is carried out. This operator is
applied to the original RANS equations to obtain the VARANS equations.

It must be noted that the f superscript indicates that the volume average is calculated
only on the fluid part of the averaging volume. The so-calculated average receives the name
of intrinsic average. The total averaging volume V presents the same size at every point.
However, the fluid part of the averaging volume Vf presents a variable size, depending on
the amount of solids within the averaging volume. Calculating the intrinsic volume average,
a coherent metric for the momentum is kept.

The drawback of the intrinsic averaged variables is that they contain information on
two different variations, the variations of the variable of interest itself and the variation of the
size of Vf . This way, a gradient of an intrinsic averaged variable may be due only to variations
of Vf and not to the variable itself. To overcome this issue extended averaged magnitudes are
introduced.

Extended averages magnitudes are defined to verify the following equation:

〈a〉fVf =
∫
Vf

adV = 〈a〉V, (2.2)

where V is the complete averaging volume and 〈a〉 is the extended averaged variable. As
V is constant all over the domain, all the variations are accounted by the extended averaged
variable. The relation between the intrinsic and extended averages can be done by means of
the porosity. The porosity is the ratio between the volume of fluid contained in the porous
solid volume and the total volume of the porous body itself. Mathematically,

φ =
Vf

V
. (2.3)
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Introducing this last relation in (2.2),

〈a〉 = φ〈a〉f , (2.4)

the equation relating intrinsic and extended averages is obtained. This relation is used to
transform the equations in the following pages from their intrinsic averaged form to the
extended averaged one.

An important theorem is to be presented for the reader to completely understand the
volume averaging process. It is the theorem for the local volume average of a gradient. A
complete derivation and proof can be found in [11]. It states that the local volume averaged
of a gradient is equal to the gradient of the volume averaged variable plus the integral of the
flux of the variable divided by the averaging volume. Mathematically,

〈
∂

∂xi
a

〉f

=
∂

∂xi
〈a〉f + 1

Vf

∫
∂Vf

adS, (2.5)

where a is the variable which gradient is to be volume averaged, ∂Vf is the solid part of the
surface enclosing the averaging volume, and dS is a surface differential element. In the next
section, the theorem is applied.

2.2. Model Equations

In the present section, the model equations are presented. They consists of the volume-
averaged mass and momentum conservation equations as well as the volume-averaged
turbulence equations and the porous media closure models for all of them.

2.2.1. Mass Conservation

The volume-averaged expression of mass conservation is shown in the following equation:

∂

∂xi

〈−ui〉
φ

= 0. (2.6)

This equation expresses that when dealing with volume-averaged magnitudes, the
divergence-free field is not the velocity, but instead the field obtained by dividing the volume-
averaged velocity by the porosity field.

2.2.2. Momentum Conservation

The final expression momentum conservation equations are presented as follows:

∂

∂t

〈−
ui

〉
+
〈−
uj

〉 ∂

∂xj

1
φ

〈−
ui

〉
= − φ

ρ

∂

∂xi

1
φ

〈−
p
〉
+ φgi + φ

∂

∂xi

(
ν

∂

∂xj

1
φ

〈−
ui

〉)

− φ
∂

∂xj

〈
u′
iu

′
j

〉f
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− φ
∂

∂xj

〈
u′′
i u

′′
j

〉f − 1
V

∫
∂Vs

1
ρ

(〈−
p
〉f

+ p′′
)
ndA

+
1
V

∫
∂Vs

ν

(
∂

∂xj

1
φ

〈−
ui

〉
+

∂

∂xj
u′′
i

)
ndA.

(2.7)

The first line of (2.7) is the expression of theNavier-Stokes with the averaged variables.
The second one shows the volume-averaged Reynolds stresses that appear due to turbulence.
Finally the third and fourth lines contain the terms that appear due to the volume average
process. It must be noted that in the case of volume-averaging a solid-free domain, both
integrals vanish, remaining only the effect of the nonresolved subgrid velocities. These
integrals introduce the forces exerted by the solid objects against the fluid in the form of
pressure and tangential forces.

2.2.3. Turbulence Modeling

Volume-averaging affects all the model equations, including the turbulence model. In this
case a k-ε model is volume-averaged in order to provide a closure for the turbulent terms in
the simulations.

The volume-averaged k equations is presented as follows:

ρ

[
∂

∂t
〈k〉 +

〈−
uj

〉 ∂

∂xj

1
φ
〈k〉

]
= φ

〈
τ̃ij
〉f〈

Sij

〉f − ρ〈ε〉 + φ
∂

∂xj

[(
μ +

〈
μT

〉
φσk

)
∂

∂xj

1
φ
〈k〉

]
+ φ[CT]k,

(2.8)

where the production term can be developed as

〈τ̃ij〉f
〈
Sij

〉f =
[
2
〈
μT

〉f〈
Sij

〉f − 2
3
ρ〈k〉fδij

]〈
Sij

〉f =
[
2
φ

〈
μT

〉〈
Sij

〉f − 2
3
ρ

φ
〈k〉δij

]〈
Sij

〉f
, (2.9)

being the intrinsic average of the rate of strain tensor:

〈
Sij

〉f =

〈
1
2

⎛
⎝∂

−
ui

∂xj
+
∂
−
uj

∂xi

⎞
⎠
〉f

=
1
2

(
∂

∂xj

1
φ

〈−
ui

〉
+

∂

∂xi

1
φ

〈−
uj

〉)
, (2.10)

the extended average of the turbulent viscosity is expressed as

〈
μT

〉
= ρCμ

〈k〉2
〈ε〉 , (2.11)

and [CT]k are the terms of (2.8) that will be modeled with a closure model.
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Volume-averaging the ε equation

ρ

[
∂

∂t
〈ε〉 +

〈−
uj

〉 ∂

∂xj

1
φ
〈ε〉
]
= φCε1

〈ε〉
〈k〉

〈
τ̃ij
〉f〈

Sij

〉f − Cε2ρ
〈ε〉2
〈k〉

+ φ
∂

∂xj

[(
μ +

〈
μT

〉
φσε

)
∂

∂xj

1
φ
〈ε〉
]
+ φ[CT]ε,

(2.12)

where 〈τ̃ij〉f , 〈Sij〉f , and 〈μT〉 are expressed as per (2.9), (2.10), and (2.11), and [CT]ε are the
terms that will be modeled with the closure model.

2.2.4. Porous Media Closure

Volume-averaging the momentum conservation equations eliminates the need of a detailed
description of the porous medium geometry in order to carry out simulations. This
simplification on the initial requirements, however, introduces new terms in the equations
that need to be modeled. These new terms conform the last line of (2.7).

These terms that represent the effect introduced in the flow by the solid matrix are
modeled with the Forchheimer model. This model consists of three terms: a linear term
introducing viscous effects: a nonlinear term, proportional to the square of the velocity, taking
into account turbulent effects and other non linear interactions; an inertia term that accounts
for the added mass effect. Mathematically, it can be written as follows:

[CT] = a
〈−
ui

〉
+ b
〈−
ui

〉∣∣∣〈−
ui

〉∣∣∣ + c
∂

∂t

〈−
ui

〉
. (2.13)

[CT] makes reference to all these closure terms. a, b, and c are constants that depend
on flow and porous medium characteristic and must be determined empirically. In the state-
of-the-art chapter the relation of this coefficients with porous media characteristic is given.

Engelund’s [12] formulas are used for the Forchheimer model. The closure terms for
the k-ε equations are modeled by means of the closure model presented in [13]

[CT]k = ε∞

[CT]ε = Cε2
ε2∞
k∞

,
(2.14)

ε∞ and k∞ being

k∞ = 3.7
(
1 − φ

)
φ3/2

∑
i

〈−
ui

〉2

ε∞ = 39.0
(
1 − φ

)5/2
φ2

(∑
i

〈−
ui

〉2
)3/2

1
D50

,

(2.15)

where φ is the porosity and D50 the mean pore size.
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3. Numerical Implementation

In coastal engineering problems, free surface gravity waves are present in almost every
application. All the interactions and generated dynamics are conditioned by the free surface
evolution; hence, it is a key aspect of a coastal engineering model. In order to deal with free
surface flows in IH3VOF, a free surface tracking algorithm is needed. Among all the possible
methods, the volume of fluid one [14]was chosen. It is used together with the volume tracking
algorithm presented in [15].

The main reason for choosing the volume of fluid method is that it allows the
representation of very complex free surface geometries in a very neat form. It can also be
used to consider all the interfaces between an arbitrary number of fluids in the computational
domain by adding little complexity to the algorithm. Moreover, the equation describing the
evolution of the free surface is a simple transport equation that shares operators with the
Navier–Stokes equations, simplifying its implementation. Its performance highly depends
on the volume tracking algorithm used. The one presented in [15] represents the interface
as a piecewise linear polynomial in every cell, allowing a very accurate capture of the
free surface geometry. This accurate representation is also used to quantify the mass and
momentum fluxes across cell faces, what drastically reduces the numerical diffusion of the
free surface. The choice of this volume tracking method configures a very robust and accurate
representation of the free surface. The main drawback being the computational cost that is a
bit high in comparison with other tracking methods.

In order to maintain the performance of the model within the limits that engineering
practice demands, an explicit method in time for the integration of the momentum equations
is required. For this reason, a fractional two-step method [16] was chosen. This method
consists in solving the equations in two different steps. First, a prediction of the new time step
velocity is obtained. The prediction obtained is nondivergence free velocity field that must be
corrected. This step is called predictor. Then, the pressure field is solved imposingthat the new
time step velocity field must be solenoidal. This second step is called projection because the
equation linking the pressures and predicted velocities is obtained by a projection procedure.
Obviously, as the partial differential equation representing the coupling of velocity and
pressure is elliptical, it is implicit in space. Consequently, a system of equations must be
solved.

Turbulence is modeled with a first-order accurate explicit scheme in time and space.
This makes the solution for the turbulent variables less accurate of what it could be achieved
with implicit or semiimplicit schemes. This choice is made mainly for three reasons. The first
one is that due to the size of the domains where coastal engineering problems are solved,
boundary layers and small scale details of the flow cannot be solved for. This already implies
a reduction on the quality of the solutions, independently of the numerical schemes used.
Second reason is that turbulence is not the key dynamics of coastal engineering problems.
It has been already said that free surface evolution is the most important dynamics and
therefore is the one that must concentrate the biggest efforts. Final reason is that explicit
schemes are computationally cheaper than implicit ones and having chosen a slower free
surface tracking method, turbulence must be solved with a faster method.

Assuming the solution for time n is known, all the methods enumerated in previous
paragraphs are implemented into a general algorithm that is described as follows.

(1) The flow domain for time n+ 1 is calculated by means of the VOF method. It makes
use of time n velocities. The new flow domain is represented by means of time n+1
cell densities, ρn+1.
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(2) Turbulence equations are solved over the new domain with time n velocities.
Turbulent viscosity is calculated previous to predictor step.

(3) Velocity is calculated at an intermediate time ∗ (u∗) as a prediction of the new time
velocity (un+1). The predictor step accumulates the momentum contribution of all
the terms in the Navier-Stokes equations but the new time pressure gradient term.

(4) The increment of pressure gradient at time n + 1 is calculated in order to convert u∗

into a solenoidal velocity field.
(5) With the time n + 1 pressure gradients, the pressure for time n + 1 is calculated. The

new pressure gradients are also applied to the predicted velocities (u∗) to obtain
the new time velocities (un+1).

(6) The process is carried out until the required final time is reached.

3.1. Free Surface Modeling

The main characteristic of free surface flows is that one of the boundaries, that receives the
name of free surface, is not fixed. It moves with the flow. This moving boundary appears
as a result of having more than one fluid in the solution domain. Free surface modeling
makes part of multiphase flowmodeling. Therefore, in addition to the problem of integrating
the Navier-Stokes equations, free surface flows present the problem of determining the real
domain occupied by every one of the fluids present in the problem.

In a general case, no mathematical expression can be assumed to represent the free
surface. Moreover, in complex flows, the free surface may be split in different multiconnected
surfaces. Therefore, its numerical treatment as an analytical surface by means of an equation
ruling its behavior is very complicated. To avoid this complication, different methods have
been developed by different authors. Among them the volume of fluid [14] method is chosen
to be implemented in IH3VOF. The volume of fluid method is a numerical technique for
tracking the free surface.

It is based on tracking mass fluxes trough volume fractions across the mesh cells. In
order to do this, a volume fraction function is defined for every material (phase) at every
mesh cell. This function is defined as the volume of fluid k contained in the cell divided by
the cell volume:

ξk =
Vk

Vc
. (3.1)

By means of this volume fraction, the density of a cell can be directly calculated as

ρc = ξkρk, (3.2)

where ρc is the cell density and ρk is the density of fluid k. Einstein notation of summation
over repeated indices is used.

That is, the cell density is calculated as a weighted mean, where the contribution of
every phase is directly proportional to its volume fraction at that particular cell. This pro-
cedure is used for every other fluid property, for instance viscosity:

νc = ξkνk. (3.3)

But it can be applied to any other fluid property just by replacing it by viscosity in (3.3).
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To obtain now the evolution equation for the volume fraction, (3.2) is introduced in
the mass conservation equation to obtain

∂

∂t

(
ξkρk

)
+

∂

∂xi

(
ξkρk

〈−
ui

〉f
)

= 0, (3.4)

a system of k equations, one per fluid. It has been said that in coastal engineering application
fluids are supposed to be incompressible, then ρk is a constant that can be taken out from last
equation. Expressing the equation on extended volume average magnitudes

∂

∂t
ξk +

∂

∂xi

⎛
⎜⎝ξk

〈−
ui

〉
φ

⎞
⎟⎠ = 0, (3.5)

the expression to implement numerically is obtained.
All the equations and methods explained to treat the free surface in the flow are also

used to study two-phase flows. The VOF technique can track several fluids, reconstructing
all the interfaces between them. Assigning afterwards to every cell of the domain the fluid
characteristics obtained by combining the values of the different fluids in the cell, using as the
weight the relative volume occupied by each phase, the flow equations can be solved. Then,
every fluid phase is moved and tracked independently, and cell properties are reconstructed
for a new time step.

3.2. Time Discretization

It has already been pointed out that an explicit in time numerical scheme is required.
A backward step in time derivative will be used. Then, time discretization can be written as

∂

∂t

〈−
ui

〉∣∣∣∣
n+1

+

〈−
uj

〉
1 + γ

∂

∂xj

1
φ

〈−
ui

〉
∣∣∣∣∣∣∣

n

= − φ(
1 + γ

)
ρ

∂

∂xi

1
φ

〈−
p
〉∣∣∣∣∣

n+1

+
φ

1 + γ
gi

∣∣∣∣
n

+
φ(

1 + γ
)
ρ

∂

∂xi

((
μ +

〈
μt

〉
φ

)
∂

∂xj

1
φ

〈−
ui

〉)∣∣∣∣∣
n

− 2
3

φ(
1 + γ

)
ρ

∂

∂xi

ρ

φ
〈k〉

∣∣∣∣∣
n

− α

1 + γ

〈−
ui

〉∣∣∣∣
n

− β

1 + γ

〈−
ui

〉∣∣∣〈−
ui

〉∣∣∣
∣∣∣∣
n

.

(3.6)

The pressure gradient term can be split into two contributions, one at time n and an-
other at time n + 1:

∂

∂xi

1
φ

〈−
p
〉∣∣∣∣

n+1

=
∂

∂xi

1
φ

〈−
p
〉∣∣∣∣

n

+
∂

∂xi

1
φ
Δ
〈−
p
〉∣∣∣∣

n+1

. (3.7)
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This decomposition expresses the pressure gradient at final time as the pressure gradient at
initial time plus a pressure variation. This pressure increment is generated by the forces acting
at time n. Hence, the variation is the flow response to the external actions. This variation is
the variable resolved and not the total pressure.

Finally, the time derivative can be developed as a function of three time instants: the
current time (superscript n), the intermediate time used for the two-step projection methods
(superscript ∗) and the new time (superscript n + 1). The expression then results in

∂

∂t

〈−
ui

〉∣∣∣∣
n+1

≈

〈−
ui

〉∣∣∣n+1 − 〈−
ui

〉∣∣∣n
Δt

=

〈−
ui

〉∣∣∣n+1 − 〈−
ui

〉∣∣∣∗ + 〈−
ui

〉∣∣∣∗ − 〈−
ui

〉∣∣∣n
Δt

=

〈−
ui

〉∣∣∣n+1 − 〈−
ui

〉∣∣∣∗
Δt

+

〈−
ui

〉∣∣∣∗ − 〈−
ui

〉∣∣∣n
Δt

.

(3.8)

Introducing expressions (3.7) and (3.8) into (3.6), the complete numerical scheme is
obtained:

〈−
ui

〉∣∣∣n+1 − 〈−
ui

〉∣∣∣∗
Δt

+

〈−
ui

〉∣∣∣∗ − 〈−
ui

〉∣∣∣n
Δt

+

〈−
uj

〉
1 + γ

∂

∂xj

1
φ

〈−
ui

〉
∣∣∣∣∣∣∣

n

= − φ(
1 + γ

)
ρ

∂

∂xi

1
φ

〈−
p
〉∣∣∣∣∣

n

− φ(
1 + γ

)
ρ

∂

∂xi

1
φ
Δ
〈−
p
〉∣∣∣∣∣

n+1

+
φ

1 + γ
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∣∣∣∣
n

+
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)
ρ

∂
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〈
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〉
φ

)
∂

∂xj

1
φ

〈−
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〉)∣∣∣∣∣
n

− 2
3

φ(
1 + γ

)
ρ

∂

∂xi

ρ

φ
〈k〉

∣∣∣∣∣
n

− α
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n
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〉∣∣∣
∣∣∣∣
n

.

(3.9)

This complete scheme is to be solved with a fractional method where the complete
scheme is split in different steps that are solved in sequence instead of simultaneously. In this
case, there are two different steps, predictor and projector. Predictor step is completely explicit
and is expressed as

〈−
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+
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It can readily be seen that 〈−ui〉|∗ is an explicit function of time n terms only.
The rest of the terms are collected for the projector step
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, (3.11)

where time ∗ values are known and an implicit relation is expressed between time n + 1
velocities and pressures. This expression must be projected onto a solenoidal field by taking
the divergence of the expression, resulting in the equation used for the projection step, yielding
a well-known Poisson-type equation

∂

∂xi

〈−
ui

〉∣∣∣∗
Δt

=
∂

∂xi

⎡
⎣ φ(

1 + γ
)
ρ

∂

∂xi

1
φ
Δ
〈−
p
〉∣∣∣∣∣

n+1
⎤
⎦. (3.12)

Equation (3.12) states the implicit relation that exists between pressure and velocity in the
Navier-Stokes equations. This implicitness cannot be avoided because both variables are
strongly coupled. Time n + 1 pressure turns the u∗ velocity field into the solenoidal time
n + 1 velocity field. This relation is obtained by rearranging terms in (3.11), obtaining

〈−
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. (3.13)

3.3. Predictor Step

Making use of the finite volume method, the spatial discretization of the predictor steps
results in
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3.4. Projection Step

The same procedure is now carried out on the projection step equations to obtain its finite
volume spatial discretization. Integrating the left hand side of (3.11) in first place
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and then the right hand side
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the final expression can be constructed
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where the pressure gradient term is calculated the same way shear stresses were, face
velocities are interpolated with a Rhie-Chow scheme, and the rest of face values are linearly
interpolated. Once (3.17) is solved, the pressure increments at the new time-step are obtained.
These increments are added to the previous time-step pressure solution obtaining the
pressure solution for time n + 1.

The divergence theorem can also be used to approximate the value of a divergence or
gradient in the center of a cell, because a divergence term can be treated also in the general
way, so

∫∫∫
V

∇αdV =

{
(∇α)CVc∫∫

∂V αf �ndS,
(3.18)

and then the gradient at the centroid can be expressed as

(∇α)C =

∫∫
∂V αf �ndS

Vc
. (3.19)
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With the updated pressures, the new pressure gradients at cell centers are calculated
by means of (3.19), interpolating time n + 1 pressure values to cell faces. At this point, all
the terms needed to obtain the new time-step velocities have been calculated. New time-step
velocities are then obtained by substitution in (3.13).

3.5. Turbulence Model

Abackward step in time discretization will be used as in all the previous equations, providing
an explicit scheme for both the k and the ε equations. The spatial discretization is performed
by means of the finite volume technique. The numerical scheme for the turbulent kinetic
energy is then
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and for the ε equation
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(3.21)

3.6. Boundary Conditions

The model makes use of the no-slip boundary condition at solid boundaries, imposing a
zero velocity at the fluid. The only exception is the inflow and outflow boundaries in which
the velocity profile is specified. In Section 3.6.1, the wave generation inflow condition is
presented.

At solid boundaries where the no-slip boundary condition for the velocity holds, the
flow solution is forced to match the law of the wall:

U = uτ

[
1
κ
ln
(
uτy

ν

)
+ B

]
. (3.22)
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In the law of the wall equation, U is the velocity in the first node over the surface, uτ is the
friction velocity, κ is the Kármán constant, y is the distance between the node and the surface,
ν is the kinematic viscosity, and B is the constant of the law of the wall that takes an exact
value of 5.0.

Once the friction velocity has been obtained by solving this transcendental equation,
the values of k and ε to be applied at the surface are given by expression (3.23):

k =
u2
τ√
Cμ

ε =
u3
τ

κy
. (3.23)

3.6.1. Wave Generation

Essentially, surface gravity waves generation is a boundary condition that introduces a time-
dependent mass and momentum flux through one of the domain faces. The flux varies in
time because the velocities and the area through which the flow enters the domain vary in
time. Therefore, the surface gravity wave generation boundary condition does not only affect
velocities but also requires to impose conditions on the free surface elevation, represented in
the model by means of the VOF function.

In the present study where only tsunami waves are considered, solitary wave is the
only wave theory used. Solitary waves are modelled by means of Boussinesq equations
(obtained from [17]) that are presented as follows:
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where η is the free surface elevation respect to mean level, H is the wave height, h is the
water depth, C is wale celerity, g is the gravity acceleration, u is the horizontal component
of velocity, v is the vertical component, and z is the depth of the point in which the speed is
being calculated with respect to the bottom.

The variation of the area through which the flow enters the domain is represented in
the model by a variation of the VOF function values at the faces of the wave inflow boundary.
Figure 1 shows in a simplified bidimensional case two different time instants of the wave
generation process. The generated wave travels from left to right. This fact is simulated in the
figure moving the generation boundary (red line) from right to left.

At time t0, every cell position is compared with the free surface elevation. Free surface
elevation is obtained from (3.24). Those cell faces that lie completely below the free surface
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t1 t0

Completely filled cell, VOF = 1
Partially filled cell, 0 < VOF < 1
Completely void cell, VOF = 0

Figure 1: VOF boundary condition.

elevation are given a VOF value of 1.0 (blue dots). If the cells lie completely above the free
surface level, VOF is set to 0.0 (yellow dots). Cell faces that are cut by the free surface receive
a VOF value equal to the relation of the wet surface of the cell face and the total surface of
that face (purple dots).

At a later time instant t1, the free surface position has changed, and, therefore, VOF
function values at the faces of the inflow boundary must be updated to reflect the current
time conditions. It can be observed in Figure 1 that as the free surface elevation raises at
the inflow boundary, there are more full cells (blue dots), because the free surface elevation
raises over more cells and less void cells (yellow dots). The position of the partially filled cell
(purple dot) has changed, because the intersection point between the free surface and the
inflow boundary has changed.

Having set the VOF values at the boundary, velocity values are calculated according
to (3.26) and (3.27) and applied to the boundary faces.

Once the VOF function values and the velocity values have been calculated, the initial
problem has been transformed into the imposition of Dirichlet conditions on the VOF and the
velocity variables, which is a direct task.

4. Results

The model IH3-VOF has been used to study tsunami wave interaction with vertical
impermeable and porous coastal structures. The model results have been previously
validated using laboratory experiments as presented in [8, 10]. In this section, only numerical
results are presented.

4.1. Numerical Simulations

The numerical simulations are carried out in a numerical wave basin (see Figure 2) 17.8m
long, 8.6m wide, and 0.8m high. The structure is located 11.0m away from the wavemaker.
The structure is 0.5m long, 4.0m wide, and 0.5m high. The dimensions of the structure are
given considering the length is measured in the wave propagation direction, the longest
direction of the flume, the width is measured in the horizontal orthogonal direction, and
height in the vertical direction. The structure is located against the left wall, following the
direction of wave propagation, of the wave basin.

An orthogonal mesh is used for both the impervious and porous structure investiga-
tions. The mesh discretization in the longitudinal direction (X direction) is variable. At the
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Wavemaker 8.5 m

4.5 m

4.8 m

17.8 m

8.6 m
X
Y

Z

Figure 2: Bodies to define mesh geometry for the impervious structure case.

wavemaker (in Figure 2 left end of the fuchsia body), Δx = 4 cm. From that point, Δx is
reduced until reaching a point 2.0m away from the structure (left limit of the cyan body),
where Δx = 2.0 cm. The area around the structure (cyan body) is meshed with a Δx = 2 cm
resolution until a point that is 2.0m downstream the structure (right limit of the cyan body).
From that point, it grows linearly again until it reaches Δx = 4 cm at the end of the flume
(right end of the green body). The most interesting processes occur around the structure and,
therefore, in order to study them into more details, the finer discretization is used in this
area. In the spanwise (Y direction) direction, the discretization is homogeneous all along the
flume and is Δy = 2 cm. In the vertical direction, very important to model the free surface
processes correctly, Δz = 0.75 cm. Mesh dimensions have been calculated to have at least 6
cells to represent the wave height.

The mesh built this way contains about 12.000.000 elements, which takes 950MB of
disk space. In order to run the simulations there is a need to make use of the parallel capabil-
ities of IH-3VOF. Depending on the supercomputer used to run the simulations, the optimal
number of cells per processing task ranges from 15.000 cells/core to 50.000 cells/core. The
wave basin simulations have been run making use of 200 processor cores. The total simulated
time for all the different cases has been 20 s. The simulations take around 72 h to complete and
generate an output data of 500GB.

Numerical simulations have been carried out to reproduce and compare the results
with the laboratory experiments. A k-ε turbulence model is used for all the numerical
simulations. The pore-based Reynolds number expected in the simulations is high, very
similar to the narrow flume case. Therefore, the flow inside the porous medium is expected
to be fully turbulent. For this reason and also because of the good agreement found in the
narrow flume experiments, the porous medium parameters are taken equal to the crused
rock values obtained in the previous chapter (α = 10.000, β = 3.0 and c = 0.34). The no-
slip boundary condition is used for all the solid boundaries at which a wall function for the
turbulence model is also imposed. An atmospheric boundary condition (p = 0) is used for
the top face of the mesh. Water properties used are ρ = 1000 kg/m3 and μ = 1 · 10−3 m2/s. Air
properties used are ρ = 1.20 kg/m3 and μ = 1 · 10−5 m2/s.

4.2. Flow Description

The left-hand column of Figures 3 and 4 shows different snapshots of the solution obtained
with the numerical model, where the red color indicates higher elevation than the blue one.
A solitary wave of heightH = 9 cm has been generated in a water depth of h = 40 cm. At time
t = 6.0 s, the wave approaches the structure, but no disturbance due to reflection is observed
so far. At the next time step, t = 7.0 s, the wave that impacts against the structure induces a
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Time: 6 s

Time: 7 s

Time: 8 s

Time: 9 s

(a)

Time: 6 s

Time: 7 s

Time: 8 s

Time: 9 s

(b)

Figure 3: Snapshots at different times of the solitary wave interacting with the impermeable structure (a)
and the porous one (b).

free surface elevation raise over the seaward face of the structure, while the rest of the wave
continues to propagate. Maximum height reached by the wave against the structure face is
located at the wall.

At time t = 8.0 s, it can be clearly seen that two waves have been generated in the
interaction. The first one is formed by the original wave (near the left wall) and the diffracted
wave that propagates to the shadow area in the leeward side of the structure. The second
one is the reflected wave that propagates back to the wavemaker. It can be observed that the
reflected wave height is higher near the wall where the confinement conditions configure a
bidimensional-like reflection. The three-dimensional structure of the reflectedwave generates
also the diffraction of these waves.

Time t = 9.0 s panel shows the moment in which the diffracted wave generated at the
structure head corner reaches the side wall of the basin. It can be seen that the red intensity
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Time: 10 s

Time: 11 s

Time: 13 s

Time: 15 s

(a)

Time: 10 s

Time: 11 s

Time: 13 s

Time: 15 s

(b)

Figure 4: Snapshots at different times of the solitary wave interacting with the impermeable structure (a)
and the porous one (b).

of both waves is reduced due to wave diffraction effects. It is also very important to note the
wave radiation produced by the structure head. Time t = 10.0 s illustrates the propagation
of the waves radiated from the structure head. Moreover, it shows the impact of the wave
against the basin end wall. At that point, it can be observed, the high three-dimensional
structure of the wave. Indeed the spanwise propagating component of the wave generates
a high point at the right end corner of the basin on time t = 11.0 s. At that time instant, it can
be observed that wave diffraction has generated a spreading of the original reflected wave
that makes it occupy almost all the basin width.

The last two time instants t = 13.0 s and t = 15.0 s show the propagation of the waves
reflected back from the end wall and the wavemaker. It can be seen that free surface patterns
are very complicated and that waves are propagating in every direction inside the basin.



Journal of Applied Mathematics 19

At this point, it is very difficult to separate the effect of the different processes taking place at
the basin.

The right hand column of Figures 3 and 4 presents different snapshots showing the
interaction of the solitary wave of height H = 9 cm and water depth h = 40 cm, with the
porous structure. There are very small differences between this case and the impermeable
structure. At time t = 6.0 s, the solitary wave reaches the position of the structure. At time
t = 7.0 s, the free surface elevation rises at the seaward face of the structure. The elevation
presents a smoother free surface gradient than the one found for the impermeable structure.

The reflected wave at time t = 8.0 s has a smaller wave height in the porous structure
case than in the solid structure one. The diffracted wave crest is slightly larger for the solid
structure than for the porous one. This can be observed at time t = 9.0 s at which the
diffracted wave reaches the right wall of the wave basin. The most important difference at
the diffracted wave appears in the last time instants, t = 13.0 s and t = 15.0 s, where the
dissipation produced by the porous medium results in a smaller free surface elevation for the
porous body experiments than for the solid structure case. Wave radiation can be observed at
different time instants of the experiment (t = 9.0 s, t = 10.0 s, and t = 11.0 s).

5. Discussion

In order to provide new insights about the interaction of a tsunami wave with a vertical
structure, new plots are presented here. Both impermeable and porous vertical walls are
compared.

Figures 5 to 7 present free surface elevation isolines comparing the different wave
patterns developed in the interaction of a solitary wave with a porous or an impermeable
structure. The upper part of the panels shows the impermeable structure isolines, and the
lower part shows the porous ones. Free surface elevation is normalized by the incident wave
height to simplify the interpretation and comparison of the results. Isolines are drawn at 0.25
intervals.

Time t = 7.0 s panel (see Figure 5) shows the moment in which the incident wave splits
into a reflected and an incident wave. The free surface elevation pattern around the structure
is quite different in both cases. In the solid body case, the free surface elevation in the seaward
face of the structure reaches twice the incident wave height. In addition, the wave height in
front of the structure head is slightly higher than the incident wave height.

In contrast, in the porous structure experiment, the wave height in front of the
structure is slightly smaller than the incident wave height. The free surface elevation at the
seaward face of the structure only reaches one and a half times the incident wave height.
Free surface gradients are smoother in the porous structure case except inside of the porous
structure, where the gradient is very high (15 cm of elevation difference in 50 cm). This free
surface elevation gradient is responsible for the flow within the porous structure.

At time t = 7.5 s (see Figure 6), the differences in the reflection and diffraction
processes for both structures can be clearly seen. In the solid structure case, the free surface
elevation gradient between the transmitted wave and the shadow area leeward of the
structure is more important than in the porous medium case. This gradient is responsible
for the trough that appears around the structure head in the impermeable case. The higher
gradient also generates a more important diffraction as it can be observed at times t = 8.0 s
and t = 8.5 s.

Wave reflection patterns are also different. While the reflected wave in the impermea-
ble structure case presents a wave height equal to the incident wave height, in the porous
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Figure 5: Free surface elevation isolines for the impermeable and porous structure under the action of the
solitary wave of heightH = 9 cm and water depth h = 40 cm, part I.

medium case it is only slightly higher than half the incident wave height. It is quite
important to note also the pronounced three-dimensional structure of the wave reflected
in the impermeable structure. Free surface gradients in the spanwise direction are more
important in this case. Within the porous medium, free surface gradients have been reduced
and are similar to the gradients outside the porous medium.

At time t = 8.0 s (see Figure 7), the depression located around the impermeable
structure head has been entrained by the reflected wave and has moved to the seaward face
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Figure 6: Free surface elevation isolines for the impermeable and porous structure under the action of the
solitary wave case of heightH = 9 cm and water depth h = 40 cm, part II.

of the structure. This depression does not exist in the impermeable structure simulation,
in which the free surface gradients within the porous medium have almost completely
dissipated. The shape of the diffracted wave crest is slightly different in both cases. In the
solid structure case, the wave front is orthogonal to the structure, while in the porous case, it
is not. This effect is produced by the porous medium drag that forces the wave front to bend
towards the porous medium (by means of wave refraction).

The difference in wave diffraction induced by the porous medium presence can be
clearly seen at time t = 8.5 s (see Figure 6). In the impermeable structure case, the 0.25 isoline
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Figure 7: Free surface elevation isolines for the impermeable and porous structure under the action of the
solitary wave case of heightH = 9 cm and water depth h = 40 cm, part III.

is sticked to the leeward side of the structure, while a depression is present in the seaward
side. In the porous simulation, the 0.25 isoline is not in touch with the structure anymore.
Free surface elevation, however, is lower in the leeward face of the porous structure, but
no depression is found in the seaward face. This clearly shows that the differences in wave
diffraction are due to the link between the leeward and seaward faces that is established by
the porous structure.

Time t = 9.0 s shows how the depression in the seaward face of the structure grows
as the reflected wave travels back to the wavemaker position. In the porous structure case,
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this “suction” deforms the diffraction tail towards the structure. At t = 9.5 s, it is shown how
the initial highest free surface gradient present in the impermeable structure case produces a
higher wave height at the right wall of the basin. It is also important to note how the wave
height along the left wall of the wave basin has decreased from its initial value. Initially, the
incident wave height extended for half of the basin width. However, at the last time step,
there is only a small portion of the wave that keeps the incident wave height.

One of the main advantages of using the IH-3VOF model is that the NS equations
resolve the vertical structure of the flow velocity. The importance of the structure analysis
relies on the fact that the associated flow processes induced by a tsunami wave, such as
potential bed erosion around the breakwater head, can be detected. As a preliminary step,
an analysis of the wave induced flow around the breakwater head is carried out.

Numerical results are presented in Figures 8 and 9. In both, horizontal velocity module
is represented using isocontours for the impermeable and the porous structure simulations. In
Figures 8 and 9, horizontal velocity is presented at two levels, the upper part at z = 0.02m and
the lower one at z = 0.2m, in order to study vertical variations of the flow. Only snapshots
corresponding to t = 7.0 s and 7.5 s are presented, because the vertical flow structure was
more relevant for those time instants, which correspond to the wave crest passing around the
breakwater head.

As shown in Figure 8, the tsunami wave induces an important increment of the
velocities around the structure head at both breakwaters. Velocities are observed to be around
30% higher at the head than the ones predicted by the model at the wave crest. The increment
is similar in both impermeable and porous cases. However, the velocity increment affects
to a slightly smaller area in the case of the porous structure, as a result of the mass flow
percolating the porous vertical wall. It is also important to note the vertical structure of the
flow, as it can be identified analyzing differences between horizontal velocity near the bottom
and at middepth (see Figure 8). The vertical structure of the flow can be clearly observed on
the upper wall of the domain, where the velocity near the bottom is almost a 20% smaller
than at middepth.

At the breakwater head, as a result of the disturbance introduced in the flow by the
structure, the numerical results at both levels show similar flow patterns, as shown in the
lower and upper figure panels in Figure 9, revealing a quasi-uniform flow in depth. This
increase in near-bottom velocity around the breakwater head is responsible for the initiation
of erosion processes that reduce structural stability.

The wave reflection is also visible in the velocity analysis. Due to the wave mass and
energy transmission through the porous wall, the model predicts lower velocity values at the
seaward side of the porous breakwater. At time t = 7.5 s (see Figure 9), differences can be
found for the flow horizontal velocity in front of the breakwater. The reflected wave at the
wall is lower in the porous wall, due to transmission, inducing lower velocities.

6. Conclusions

In this work, a numerical analysis of the interaction of a tsunami wave with a vertical
structure has been performed. Both an impermeable and porous structure has been
considered in order to analyse the difference in the breakwater typology on the wave induced
hydrodynamics. The use of a Navier-Stokes model, called IH-3VOF [9], has been considered
in order to describe the nonlinear interaction of the tsunami wave with a vertical breakwater.
The model is also able to calculate the three-dimensional wave induced patterns in the
vicinity of the breakwater considering also the turbulent magnitudes. Moreover, the ability of
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Figure 8:Velocitymodule isolines for the impermeable and porous structure under the action of the solitary
wave case of height H = 9 cm and water depth h = 40 cm. Data in m/s. Upper figure slice at plane
z = 0.02m. Lower figure slice at plane z = 0.2m, part I.

the model to evaluate wave flow within the porous media by means of the volume-averaged
Reynolds-averaged Navier-Stokes equations (VARANS) is used here, to describe different
tsunami wave transformation processes in the near field. The model, previously validated by
[8, 9], has been described in detail, paying special attention to the numerical scheme used in
both time and spatial discretization.

Numerical experiments have been presented in terms of free surface evolution and
wave induced velocities. First, free surface evolution has been investigated showing larger
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Figure 9:Velocitymodule isolines for the impermeable and porous structure under the action of the solitary
wave case of height H = 9 cm and water depth h = 40 cm. Data in m/s. Upper figure slice at plane
z = 0.02m. Lower figure slice at plane z = 0.2m, part II.

differences between the two studied typologies. Reflected wave at the breakwater has been
detected to be lower in the porous breakwater, due to the wave transmission and the energy
dissipation through the porous media. Diffracted wave has been also analyzed, identifying
clearly three-dimensional wave patterns. However, differences between the two studied
typologies are not as large as the observed for the reflected wave. It has been also noted
that high three-dimensional wave features have appeared at the breakwater head, with lower
run-up than in the breakwater trunk.



26 Journal of Applied Mathematics

Similar conclusions can be drawn from the analysis of the velocity field. The wave
induced pattern around the breakwater is highly affected by the presence of the porous
media. At the breakwater head, similar flow characteristic has been detected. The flow clearly
increases at the breakwater head at both typologies due to the existence of a flow separation
and a fully three-dimensional wave pattern. However, due to the flow percolation through
the porous breakwater, lower velocities are observed for the porous vertical wall. The flow
has been detected to be close to uniform in depth at the breakwater head. This difference
in the vertical structure of the flow, departing from the theoretical profile of the wave, is
of great importance when considering the stability of the foundation of the structure. The
accurate determination of the erosion velocities allows a proper design of the structure’s foot
protection and therefore improves the overall stability of the structure.

A more evident three-dimensional flow structure has been observed in the flow far
from the head. The influence of the porous structure is detected as a decrement in the
velocity magnitude. Residual motions after the tsunami wave have also been observed at
both breakwaters, being lower in magnitudes the ones for the porous structure.

The IH-3VOF model presented here is revealed as a very promising tool to study the
interaction of a tsunami wave with coastal structures. In this work, a simplified configuration
of a vertical breakwater has been performed. Results shown here present IH-3VOFmodel as a
promising tool to be used in the future with more complex configurations, such as traditional
rubble-mound breakwaters.
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