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A B S T R A C T

This paper presents a dynamic positioning control scheme for concrete caissons in an attempt to automate part
of the manoeuvres which usually require a complex deploy of personnel and equipment for port infrastructures
development. The aim of this paper is to propose a control scheme, which is able to provide a reduction in
costs and an improvement in security for the dynamic positioning manoeuvres . To do so, a dual loop controller
is developed and the unscented Kalman filter is applied for states and perturbances estimation. Furthermore,
a control allocation algorithm is proposed based on anchoring lines and winches. Finally, some simulations
are performed to verify the effectiveness of the proposed approach.
1. Introduction

Over the last few decades, the use of concrete caissons in port
infrastructures has been developed greatly by means of the use of
lightweight (floating) caissons and the improvements of the technology
required for their manufacture (Cejuela et al., 2018). The process of
port infrastructure construction involves different kinds of manoeuvres,
one is the foundation manoeuvre. In the final phase of this manoeuvre,
where the positioning and sinking of the caisson takes place, various
teams take part in and must be coordinated to execute the positioning
with accuracy. Currently, this manoeuvre is carried out by coordinating
of both land-based (i.e. winches and windlasses) and marine equipment
(i.e. tugs and auxiliary boats), and in most cases, the coordination
is carried out by specialized personnel directly on the caisson. This
manoeuvre is not performed without risk and accidents are common
for many reasons: failure of coordination between teams, unexpected
environmental loads, anchorage or malfunctioning of mooring lines, as
well as human failure. Accidents may result in an inaccurate anchoring
of the caisson, or even human damage, leading to economic losses and
high risk for the personnel involved in the anchoring manoeuvres.
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For all of the reasons cited above, any attempt to provide an auto-
matic process for port infrastructure caisson construction can give as a
result a significant reduction in costs and an improvement in security.
In this paper, it is proposed a control scheme for the dynamic position-
ing (DP) of the caisson with the aim of decreasing costs and improving
security. We focus on this DP manoeuvre, which requires a complex
deploy of personnel and equipment as previously indicated. Within
the vessels or floating structures DP design, the existing literature
ranges from the application from PID and classical control techniques
to modern techniques such as adaptive sliding, backsteeping, fuzzy or
optimal control approaches (Xu and Liu, 2016; Xia et al., 2018; Fang
and Lee, 2016; Xia et al., 2019; Zhao et al., 2019; Cheng-Du et al.,
2013; Xu et al., 2014). A complete study of previous DP approaches
can be found in Sorensen (2011) (and references therein). Furthermore,
in the DP applications for vessels, different kind of methods have been
applied for the states and the disturbances estimation including among
others: the Kalman filter, the unscented Kalman filter (UKF) or particle
filter (Chen et al., 2018; Jayasiri et al., 2017; Xu et al., 2013).
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Fig. 1. Proposed control scheme for DP system (the variables pointed out in the figure are related to the sections below).
Table 1
Approximated model and controller Laplace transfer functions.

Linear approximation Controller Parameter Criteria
(reference, integral term, Lead compensation term)

Surge 𝐺𝑥 = 𝑎𝑥
𝑠2

𝐺𝑟𝑥 =
𝐾𝑋𝑟𝑒𝑓

(𝑇𝑋𝑟𝑒𝑓 𝑠+1)
, 𝐺𝑖𝑥 = 1

(𝑇𝑖𝑥𝑠)
, 𝐺𝑐𝑥 = 𝐾𝑥 (𝑠+𝑧𝑥 )

𝑠+𝑝𝑥
𝑝𝑥 > 10𝑧𝑥

Sway 𝐺𝑦 =
𝑎𝑦
𝑠2

𝐺𝑟𝑦 =
𝐾𝑌𝑟𝑒𝑓

(𝑇𝑌𝑟𝑒𝑓 𝑠+1)
, 𝐺𝑟𝑦 =

1
(𝑇𝑖𝑦𝑠)

, 𝐺𝑐𝑦 =
𝐾𝑦 (𝑠+𝑧𝑦 )
𝑠+𝑝𝑦

𝑝𝑦 > 10𝑧𝑦

Heading 𝐺𝜓 = 𝑎𝜓
𝑠(𝑏𝜓 𝑠+1)

𝐺𝑟𝜓 =
𝐾𝑁𝑟𝑒𝑓

(𝑇𝑁𝑟𝑒𝑓 𝑠+1)
, 𝐺𝑟𝜓 = 1

(𝑇𝑖𝜓 𝑠)
, 𝐺𝑐𝜓 = 𝐾𝜓 (𝑠+𝑧𝜓 )

𝑠+𝑝𝜓
𝑝𝜓 > 10𝑧𝜓
As far as the control allocation system is concerned, the con-
trol methods applied in the contributions cited above are based on
thrusters. The control allocation methods for different types of thruster
configurations can be found in Fossen and Johansen (2006) and Fossen
and Perez (2009) for marine vehicles and in Johansen and Fossen
(2013) a more general frame work for control allocation algorithms
is presented. Moreover, DP control applications of moored vessels are
also based on thrusters as it is shown in the contributions published
by Aamo and Fossen (1999), Berntsen et al. (2008), Chen et al.
(2013), where the mooring system is modeled by means of finite
elements (Aamo and Fossen, 2001). Notwithstanding all the contri-
butions cited above regarding to the DP control with an allocation
system based on thrusters, specific contributions related to DP control
of anchored caissons without thrusters are not found in the literature. In
the allocation systems based on rotatable thrusters for marine vehicles,
it is possible to control the thrust direction and its magnitude, this
means that it is controlled the direction of the forces provoked in the
vehicle. Furthermore, in the allocation systems with fixed thrusters, the
thrust direction does not change with respect to the local coordinated
system of the vehicle. However, in the allocation system for caissons
of this work based on mooring lines, not only is the direction of the
forces in the caisson not controlled but the direction of the forces also
varies as a function of the relative position between the caisson and the
anchoring points. This introduces instability to the system and makes
it more difficult to control. [,belowfloat=15pt,abovecaption=13pt]

For all the reasons commented above, it is proposed a DP control
scheme as shown in Fig. 1. A dual loop controller is developed with the
UKF for states and disturbances estimation, which reduces errors in sta-
tionary state and provides stability to the caisson motion. Additionally,
it is proposed an algorithm, easy to implement and computationally
cheap, for the control allocation module of the DP control scheme.
Our approach differs from the usual approach previously reported in
the literature, whereby there are no thrusters and it is considered
eight lines and winches distributed over the caisson as indicated in
Appendix A.
2

Table 2
Weight distribution of the caisson.

Value Description

𝑚(𝑘𝑔) 6366000 Total mass
𝐿𝑒𝑛𝑔ℎ𝑡𝐶(𝑚) 33.69 Length of the caisson.
𝑊 𝑖𝑑𝑡ℎ𝐶(𝑚) 19.6 Width of the caisson.
𝐻𝑒𝑖𝑔ℎ𝑡𝐶(𝑚) 17.3 Height of the caisson.
𝐷𝑙(𝑚) 14 Depth of the mooring point, see Fig. 15.
𝐿𝑙(𝑚) 60 Length of the line, see Fig. 15.
𝐿𝑐1(𝑚) 𝐻𝑒𝑖𝑔ℎ𝑡𝐶 −𝐷 +𝐷𝑙 Height from the mooring point to the winche.
𝐿𝑐2(𝑚)

√

𝐿2
𝑙 − 𝐿

2
𝑐1 Distance from the mooring point to the winche.

𝐶𝑜𝑔 (𝑚) −2.474 Position of the center of gravity in the 𝑍 axis.
𝐶𝑜𝑏(𝑚) −4,875 Position of the center of buoyancy in the 𝑍 axis.
𝐷 9.75 Draft.
𝐼𝑥𝑥 (kg m2) 464290000 Inertia roll
𝐼𝑦𝑦 (kg m2) 865050000 Inertia pitch
𝐼𝑧𝑧 (kg m2) 865050000 Inertia yaw

• The application of the UKF filter for the estimation of anchored
caisson states and waves perturbances.

• The application of a dual loop controller based on classical theory
dynamic for DP control of anchored caissons without thrusters.

• The proposition of a control allocation system for anchored cais-
sons based on eight mooring lines and winches without thrusters.

This paper is organized as follows. Section 2 discusses the dynamic
model of the caisson with environmental disturbances and actuators
models. Sections 3 and 4 develop the UKF-based nonlinear filter and the
dual loop controller, respectively. Section 5 discusses the control allo-
cation system. Section 6 presents de simulation results. The conclusions
are drawn in Section 7.
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Fig. 2. Dual loop controller for the surge degree of freedom.

2. The model

2.1. Hydrodynamic model

The dynamic model of the caisson, object of study of this paper is
represented by the following equation (Armesto et al., 2015):

(𝑀 + 𝐴∞)𝑧𝑐 (𝑡) + ∫ 𝐾(𝑡 − 𝜏)𝑧𝑐 (𝜏)𝑑𝜏 + 𝐶𝑧𝑐 (𝑡) = 𝐹𝑎(𝑡) + 𝐹𝑤(𝑡) (1)

where 𝑧𝑐 (𝑡) = [𝑥, 𝑦, 𝑧, 𝜙, 𝜃, 𝜓]𝑇 are the position and the Euler angles of
the caisson, 𝑀 is the mass of the caisson, 𝐴∞ is the added mass at infi-
nite frequency, 𝐾 is the function of delay and fluid memory effects, 𝐶 is
the hydrostatic restoration coefficient and 𝐹𝑎 = [𝑋𝑎, 𝑌𝑎, 𝑍𝑎, 𝐾𝑎,𝑀𝑎, 𝑁𝑎]
the actuators forces and moments and 𝐹𝑤 = [𝑋𝑤, 𝑌𝑤, 𝑍𝑤, 𝐾𝑤,𝑀𝑤, 𝑁𝑤]
are the forces and moments induced by waves. The caisson’s coordinate
system is located in the center of gravity and is considered inertial, for
more details of the caisson main features see Appendix A.

2.2. Waves model

Similar to the hydrodynamic model, the wave excitation model is
also based in potential flow theory, broadly used in literature (Journee,
2001). Using a commercial Boundary Elements Method, the wave
diffraction problem is solved, and the first order wave forces vector
𝐹 (𝜔𝑖, 𝜙𝑘) is obtained for different wave angular frequencies 𝜔𝑖 and
different wave headings 𝜙𝑘. In an analogous way, the second order
wave forces quadratic transfer function 𝑄𝑇𝐹𝑑𝑖𝑓 (𝜔𝑖, 𝜔𝑗 , 𝜙𝑘) is obtained.
Then, for any sea state represented with 𝑛𝐶 components of specific
angular frequency 𝜔𝑖, height 𝐻𝑖, heading 𝜙𝑖 and phase 𝜑𝑖, the wave
forces are computed in the time domain as shown in Eqs. (2) and (3).

𝐹1𝑠𝑡 = 0.5
𝑛𝐶
∑

𝑖=1
|𝐹 (𝜔𝑖, 𝜙𝑖 + 𝛾)|𝐻𝑖𝑐𝑜𝑠(−𝜔𝑖𝑡+𝜑𝑖+𝐹 (𝜔𝑖, 𝜙𝑖+𝛾)+𝑘𝑥,𝑖𝑥+𝑘𝑦,𝑖𝑦) (2)

𝐹2𝑛𝑑 = 0.25
𝑛𝐶
∑

𝑖=1

𝑛𝐶
∑

𝑗=1
𝐻𝑖𝐻𝑗 |𝑄𝑇𝐹𝑑𝑖𝑓 (𝜔𝑖, 𝜔𝑗 , 0.5(𝜙𝑖 + 𝜙𝑗 ) + 𝛾)|×

𝑐𝑜𝑠(−(𝜔𝑖 − 𝜔𝑗 𝑡 + (𝜑𝑖 − 𝜑𝑗 )+

𝑄𝐹𝑇 𝑑𝑖𝑓 (𝜔𝑖, 𝜔𝑗 , 0.5(𝜙𝑖 + 𝜙𝑗 ) + 𝛾) + (𝐾𝑥,𝑖 −𝐾𝑥,𝑗 )𝑥 + (𝐾𝑦,𝑖 −𝐾𝑦,𝑗 )𝑦))
(3)

The total forces induced to the caisson are 𝐹𝑤(𝑡) = 𝐹1𝑠𝑡 + 𝐹2𝑛𝑑 .

2.3. Actuators model

The actuators of this work are made up by 8 turrets with 8 winches
and 8 mooring lines, see Appendix A for details.

The winches are modeled by:

𝑇𝑤 = 𝑑𝑖𝑎𝑔(𝐾𝑤1, 𝐾𝑤2, 𝐾𝑤3, 𝐾𝑤4, 𝐾𝑤5, 𝐾𝑤6, 𝐾𝑤7, 𝐾𝑤8)𝑇 (4)

where 𝐾𝑤𝑖(𝑖 = 1…8) are the gains of the winches assembled in the
caisson, and 𝑇 are the tensions for each of the eight lines provided by
the allocation system, see algorithm 1 in Section 5.

Moreover, the forces and moments components acting on the center
of gravity of the caisson due to the winches are modeled by following
the next procedure:

Firstly, it is calculated the position of the caisson referred to the
inertial coordinate axe of the initial position of the caisson by doing:

𝑃 = 𝑇 𝑇 𝑇 (5)
3

𝑡ℎ ℎ1 ℎ2 ℎ
where

𝑇ℎ1 =

⎡

⎢

⎢

⎢

⎣

𝑐𝜓𝑐𝜃 −𝑠𝜓𝑐𝜙 + 𝑐𝜓𝑠𝜃𝑠𝜙 𝑠𝜓𝑠𝜙 + 𝑐𝜓𝑐𝜙𝑠𝜃 𝑥
𝑠𝜃 𝑐𝜓𝑐𝜙 + 𝑠𝜙𝑠𝜃𝑠𝜙 −𝑐𝜓𝑠𝜙 + 𝑠𝜃𝑠𝜓𝑐𝜙 𝑦
𝑠𝜃 𝑐𝜃𝑐𝜙 𝑐𝜃𝑐𝜙 𝑧
0 0 0 1

⎤

⎥

⎥

⎥

⎦

𝑇ℎ2 =

⎡

⎢

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 1 𝐷 + 𝐶𝑜𝑔
0 0 0 1

⎤

⎥

⎥

⎥

⎦

(6)

𝑇ℎ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
1
1
1

𝑃𝑇 1
1
1
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑇

𝑃𝑇 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−(𝐿𝑒𝑛𝑔𝑡ℎ𝐶∕2) (𝑊 𝑖𝑑𝑡ℎ𝐶∕3) −𝐻𝑒𝑖𝑔ℎ𝑡𝐶
(𝐿𝑒𝑛𝑔𝑡ℎ𝐶∕2) (𝑊 𝑖𝑑𝑡ℎ𝐶∕3) −𝐻𝑒𝑖𝑔ℎ𝑡𝐶
−(𝐿𝑒𝑛𝑔𝑡ℎ𝐶∕2) −(𝑊 𝑖𝑑𝑡ℎ𝐶∕3) −𝐻𝑒𝑖𝑔ℎ𝑡𝐶
(𝐿𝑒𝑛𝑔𝑡ℎ𝐶∕2) −(𝑊 𝑖𝑑𝑡ℎ𝐶∕3) −𝐻𝑒𝑖𝑔ℎ𝑡𝐶
−(𝐿𝑒𝑛𝑔𝑡ℎ𝐶∕4) (𝑊 𝑖𝑑𝑡ℎ𝐶∕2) −𝐻𝑒𝑖𝑔ℎ𝑡𝐶
(𝐿𝑒𝑛𝑔𝑡ℎ𝐶∕4) (𝑊 𝑖𝑑𝑡ℎ𝐶∕2) −𝐻𝑒𝑖𝑔ℎ𝑡𝐶
−(𝐿𝑒𝑛𝑔𝑡ℎ𝐶∕4) −(𝑊 𝑖𝑑𝑡ℎ𝐶∕2) −𝐻𝑒𝑖𝑔ℎ𝑡𝐶
(𝐿𝑒𝑛𝑔𝑡ℎ𝐶∕4) −(𝑊 𝑖𝑑𝑡ℎ𝐶∕2) −𝐻𝑒𝑖𝑔ℎ𝑡𝐶

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(7)

where 𝑠⋅ = 𝑠𝑖𝑛(⋅), 𝑐⋅ = 𝑐𝑜𝑠(⋅) and 𝑃𝑇 describes the position of the
caisson’s turrets refereed to the coordinate system of the caisson and
𝑇ℎ2 includes features of the caisson, see Appendix A for the dimensions.
Note that the matrix 𝑇ℎ1 includes a rotation matrix so that the caisson
rotates with respect to the center of gravity and the caisson’s surge,
sway and yaw components provided by the model defined in Eq. (1).

Undo the coordinate system change that was rotated with respect
to the center of gravity.

𝑃𝑡𝑛ℎ = 𝑇ℎ3𝑃𝑡ℎ (8)

where

𝑇ℎ3 =

⎡

⎢

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 1 −(𝐷 + 𝐶𝑜𝑔)
0 0 0 1

⎤

⎥

⎥

⎥

⎦

(9)

being 𝐷 the draft of the caisson and 𝐶𝑜𝑔 the position of the center of
gravity in the 𝑍 axis, see Appendix A.

Calculate the new position of the mooring points with respect to the
caisson’s coordinate system:

𝑃𝑛𝑎 =𝑀1𝑀2𝑃𝑎 (10)

where

𝑀1 =

⎡

⎢

⎢

⎢

⎣

1 0 0 −𝑥
0 1 0 −𝑦
0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎥

⎦

𝑀2 =

⎡

⎢

⎢

⎢

⎣

𝑐𝑜𝑠(−𝜓) 𝑠𝑖𝑛(−𝜓) 0 0
𝑠𝑖𝑛(−𝜓) 𝑐𝑜𝑠(−𝜓) 0 0

0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎥

⎦

(11)

𝑃𝑎 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−(𝐿𝑐2 + 𝐿𝑒𝑛𝑔𝑡ℎ𝐶∕2) (𝑊 𝑖𝑑𝑡ℎ𝐶∕3) 𝐷𝑙 −𝐷
(𝐿𝑐2 + 𝐿𝑒𝑛𝑔𝑡ℎ𝐶∕2) (𝑊 𝑖𝑑𝑡ℎ𝐶∕3) 𝐷𝑙 −𝐷
−(𝐿𝑐2 + 𝐿𝑒𝑛𝑔𝑡ℎ𝐶∕2) −(𝑊 𝑖𝑑𝑡ℎ𝐶∕3) 𝐷𝑙 −𝐷
(𝐿𝑐2 + 𝐿𝑒𝑛𝑔𝑡ℎ𝐶∕2) −(𝑊 𝑖𝑑𝑡ℎ𝐶∕3) 𝐷𝑙 −𝐷

−(𝐿𝑒𝑛𝑔𝑡ℎ𝐶∕4) +(𝐿𝑐2 +𝑊 𝑖𝑑𝑡ℎ𝐶∕2) 𝐷𝑙 −𝐷
(𝐿𝑒𝑛𝑔𝑡ℎ𝐶∕4) +(𝐿𝑐2 +𝑊 𝑖𝑑𝑡ℎ𝐶∕2) 𝐷𝑙 −𝐷
−(𝐿𝑒𝑛𝑔𝑡ℎ𝐶∕4) −(𝐿𝑐2 +𝑊 𝑖𝑑𝑡ℎ𝐶∕2) 𝐷𝑙 −𝐷
(𝐿𝑒𝑛𝑔𝑡ℎ𝐶∕4) −(𝐿𝑐2 +𝑊 𝑖𝑑𝑡ℎ𝐶∕2) 𝐷𝑙 −𝐷

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑇

(12)

Note that the matrix 𝑃𝑎 represents the position of the mooring points,
see Appendix A and Table 2 for details on the dimensions.

Form the forces and moments director vectors from the caisson’s
coordinates system in each turret (eight turrets, see Appendix A for
more details):

𝑉𝑑 = 𝑃𝑎 − 𝑃𝑡𝑛ℎ (13)

𝑉𝑑 =
𝑉𝑑

√

𝑉 𝑇
𝑑 𝑉𝑑

(14)

Calculate the force components in each line of the caisson:

𝐹𝑙 = [𝑇𝑤 ⋅ [111]]𝑇 ⋅ 𝑉𝑑 (15)
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Fig. 3. Root locus of the linear approximations for the surge, sway and yaw degrees of freedom (top of the figure), linear approximations and lead compensation controller for
surge, sway and yaw degrees of freedom (bottom of the figure).
Fig. 4. Histogram and probability density function of the residuals obtained with the
UKF filter.

Calculate the total forces:

𝐹𝑡 =
8
∑

𝑖=1
𝐹𝑙(1..3, 𝑖) (16)

In order to calculate the moments, form vectors from the center of
gravity to each turret

𝑀𝑐 = 𝑃𝑡𝑛ℎ −
⎡

⎢

⎢

0
0

⎤

⎥

⎥

[11111111] (17)
4

⎣
−(𝐷 + 𝐶𝑜𝑔)⎦
where the matrix 𝑃𝑡𝑛ℎ was previously calculated in Eq. (5).
Obtain the moments in each turret by doing the next cross product:

𝑀𝑙𝑡 =𝑀𝑐 × 𝐹𝑙 (18)

Finally, the total Moments are:

𝑀𝑡 =
8
∑

𝑖=1
𝑀𝑙𝑡(1..3, 𝑖) (19)

Then, the forces and moments provoked by each of the turret in the
center of gravity of the caisson is a vector defined by

𝐹𝑎(𝑡) = [𝐹𝑡,−𝑀𝑡] (20)

Note that the forces and moments obtained in Eq. (20) are applied
to Eq. (1).

3. Non linear filtering

The model in Eq. (1) is non linear, that is why the estimation
of the states of the system constitutes a non linear filtering problem.
This problem can be solved using the EKF, but it is well known that
this filter is not robust with respect to the parameter uncertainty
and can produce unstable filters if the assumptions of local linearity
are violated (Sorenson, 1985; Uhlmann, 1992). To avoid these draw-
backs, Julier and Uhlmann (1997) proposed the UKF, which has the
following advantages: it can capture the mean and covariance with
subsequent accuracy up to third order (Taylor series expansion) for
any non-linearity and is robust to parameter uncertainty (Ristic et al.,
2004).

In order to estimate the states of the model object of study of this
paper (equation (1)) with the UKF filter, it is necessary to formulate
an augmented discrete state space model as follows (Fossen and Perez,
2009):
[

𝑥𝑤(𝑘+1)
]

= ℎ ⋅
[

𝐴𝑤6×6

][

𝑥𝑤(𝑘)
]

+
[

𝑥𝑤(𝑘)
]

+ 𝑔(𝑘)(𝑧𝑐(𝑘), 𝐹𝑎(𝑘)) +𝑤(𝑘) (21)

𝑧𝑐(𝑘+1) 06×6 𝑧𝑐(𝑘) 𝑧𝑐(𝑘)
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Fig. 5. First and second order wave forces and moments applied to the caisson.
Fig. 6. Initial position of the caisson (x = 0, y = 0, blue) and final position (x = 4,
y = 3 ,pink), 3GDL UKF control with waves. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

𝑦𝑓 (𝑘) =
[

06×6 06×6
𝐶216×6 𝐶226×6

][

𝑥𝑤(𝑘)
𝑧𝑐(𝑘)

]

+ 𝑛(𝑘) (22)

where

𝐴𝑤6×6
=
[

𝐴11
𝑤 𝐴21

𝑤
𝐼3×3 03×3

]

(23)

𝐴11
𝑤 =

⎡

⎢

⎢

−2𝜁𝑥𝑤𝑥 0 0
0 −2𝜁𝑦𝑤𝑦 0

⎤

⎥

⎥

𝐴21
𝑤 =

⎡

⎢

⎢

−𝑤2
𝑥 0 0

0 −𝑤2
𝑦 0

2

⎤

⎥

⎥

(24)
5

⎣
0 0 −2𝜁𝜓𝑤𝜓⎦ ⎣

0 0 −𝑤𝜓⎦
Fig. 7. 3GDL UKF control results with waves, position (x, y) and heading.

𝐶216×6 = 𝐶226×6 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

(25)
⎣

0 0 0 0 0 1
⎦
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Fig. 8. 3GDL UKF control results with waves, position (x, y).

Fig. 9. 3GDL UKF control results with waves, forces and moments induced in the
center of gravity of the caisson.

where 𝜁𝑖(𝑖 = 𝑥, 𝑦, 𝜓) are the wave relative damping ratio for each
degree of freedom and 𝑤𝑖(𝑖 = 𝑥, 𝑦, 𝜓) are the wave natural frequencies
for each degree of freedom. 𝑥𝑤(𝑘) = [𝜂𝑇𝑤(𝑘), 𝜁

𝑇
𝑤(𝑘)]

𝑇 is a measurement
vector of the 1st order wave effects in surge, sway and yaw; where
𝜁𝑇𝑤 = [𝜁𝑥, 𝜁𝑦, 𝜁𝜓 ] is a vector of internal states of the waves and 𝜂𝑇𝑤 =
[𝑤𝑥, 𝑤𝑦, 𝑤𝜓 ]. 𝑔(𝑘)(𝑧𝑐(𝑘), 𝐹𝑎(𝑘)) is a discrete function of the non linear
model defined in (1) which gives as a result a vector of 12 components
([0, 0, 0, 0, 0, 0, 𝑧𝑐(𝑘)]𝑇 ), 𝑦𝑓 (𝑘) = [𝑦𝑓𝑥(𝑘), 𝑦𝑓𝑦(𝑘), 𝑦𝑓𝜓(𝑘)]𝑇 are the outputs of
the model, 𝑤(𝑘) ∼ 𝑁(0, 𝑄) is the process noise vector and 𝑛(𝑘) ∼ 𝑁(0, 𝑅)
is the measurement noise vector. 𝑘 ∈ N, and N is the set of natural
numbers. The sub-index 𝑘, is assigned to a continuous time instant 𝑡(𝑘).

In this way, the UKF filter uses a wave model of matrices (23) and
(24), which facilitates the estimation of the low frequency components
and the wave frequency components of the position (𝑥(𝑘), 𝑦(𝑘)) and the
6

Fig. 10. 3GDL UKF control results with waves, speeds and angular speeds in the center
of gravity of the caisson.

heading (𝜓(𝑘)) measurements. Note that the second order wave effects
re not estimated with the UKF filter, the integral term of the controller
esigned in the next section will compensate those effects.

The UKF uses the so-called unscented transformation. That is, if
e have the random variable 𝑥𝑓 = [𝑥𝑤, 𝑧𝑐 ]𝑇 and a static mapping

𝑦𝑓 = ℎ(𝑥𝑓 )) as previously indicated, one can specifically choose 2𝑁 +1
oints 𝜒𝑖 (called sigma points) and weighting coefficients 𝑊𝑖, such that
he weighted sample mean and covariance obtained from these points
pproximate the mean and covariance of 𝑥𝑓 , that is (�̄�𝑓 , 𝑃𝑥𝑓 ). Then, we
an transform the sigma points using ℎ(⋅) to obtain a set of sigma points

for 𝑦𝑓 , and estimate the mean and covariance of 𝑦𝑓 , namely, (�̄�𝑓 , 𝑃𝑦𝑓 )
sing the weighted averages of the transformed sigma points. In order
o do this, the matrix 𝜒 is made up by 2𝐿 + 1 sigma vectors 𝜒𝑖 with
heir corresponding weights 𝑊𝑖 in the following way:

𝜒0 = �̄�𝑓
𝜒𝑖 = �̄�𝑓 + (

√

(𝐿 + 𝜆)𝑃𝑥𝑓 )𝑖 𝑖 = 1,… , 𝐿

𝜒𝑖 = �̄�𝑓 − (
√

(𝐿 + 𝜆)𝑃𝑥𝑓 )𝑖−𝐿 𝑖 = 𝐿 + 1,… , 2𝐿

𝑊 (𝑚)
0 = 𝜆∕(𝐿 + 𝜆)

𝑊 (𝑐)
0 = 𝜆∕(𝐿 + 𝜆) + (1 − 𝛼

2
+ 𝛽)

𝑊 (𝑚)
𝑖 = 𝑊 𝑐

𝑖 = 1∕(2(𝐿 + 𝜆)) 𝑖 = 1,… , 2𝐿

(26)

here 𝜆 = 𝛼2(𝐿 + 𝜅) − 𝐿 is a scaling parameter, 𝛼 determines the
pread of sigma points around the mean �̄�𝑓 (normally a small positive
alue 1e-3), 𝐿 is the dimension of 𝑥𝑓 , 𝑃𝑥𝑓 is the covariance of 𝑥𝑓 , 𝜅
s a secondary scaling parameter and 𝛽, it is used to incorporate prior
nowledge of the 𝑥𝑓 distribution (for Gaussian distributions, 𝛽 = 2 is
ptimal).

The standard UKF algorithm is developed through the following
teps:

1. Initialize the mean and covariance by:

�̂�𝑓 (0) = 𝐸[𝑥𝑓 (0)]

𝑃(0) = 𝐸[(𝑥𝑓 (0) − �̂�𝑓 (0))(𝑥𝑓 (0) − �̂�𝑓 (0))𝑇 ]

�̂�𝑎𝑓 (0) = 𝐸[𝑥𝑎] = [�̂�𝑇𝑓 (0) 0 0]𝑇

𝑃 𝑎(0) = 𝐸[(𝑥𝑎(0) − �̂�
𝑎
0)(𝑥

𝑎
(0) − �̂�

𝑎
(0))

𝑇 ] =
⎡

⎢

⎢

𝑃0 0 0
0 𝑃𝑤 0

⎤

⎥

⎥

(27)
⎣
0 0 𝑃𝑛⎦
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Fig. 11. 3GDL UKF control results with waves, tensions applied in each of the winches.
Fig. 12. 3GDL control results with waves, position (x, y).

For 𝑘 ∈ {1,… ,∞}
2. Establish a set of sigma points 𝜒𝑎(𝑘−1) and weights 𝑊𝑘−1 applying

the Eqs. (26).
3. Propagate the transformed points through the process model

𝜒
𝑥𝑓
(𝑘|𝑘−1) = 𝑓 (𝜒

𝑥𝑓
(𝑘−1), 𝜒

𝑣
(𝑘−1), 𝐹𝑎(𝑘), 𝑘) (28)

4. Estimate the mean of the states, based on the weights and the
propagated sigma points,

𝑥𝑓 (𝑘|𝑘−1) =
2𝐿
∑

𝑖=0
𝑊 (𝑚)
𝑖 𝜒

𝑥𝑓
(𝑖,𝑘|𝑘−1) (29)

5. Estimate the covariance of the states,

𝑃(𝑘|𝑘−1) =
2𝐿
∑

𝑖=0
𝑊 (𝑐)
𝑖 [𝜒

𝑥𝑓
(𝑖,𝑘|𝑘−1) − �̂�𝑓 (𝑘|𝑘−1)] ⋅ (30)

[𝜒𝑥(𝑖,𝑘|𝑘−1) − �̂�𝑓 (𝑘|𝑘−1)]
𝑇 +𝑄
7

6. Transform the sigma points through output equations for the
measurement sigma points

𝑌(𝑘|𝑘−1) = ℎ(𝜒
𝑥𝑓
(𝑘−1), 𝜒

𝑛
(𝑘−1)) (31)

7. Estimate the mean of the measurements prediction,

�̂�𝑓 (𝑘|𝑘−1) =
2𝐿
∑

𝑖=0
𝑊 (𝑚)
𝑖 𝑌(𝑖,𝑘|𝑘−1) (32)

8. Calculate the covariance,

𝑃𝑦𝑓 (𝑘|𝑘−1) =
2𝐿
∑

𝑖=0
𝑊 (𝑐)
𝑖 [𝑌(𝑖,𝑘|𝑘−1) − �̂�𝑓 (𝑘|𝑘−1)] ⋅ (33)

[𝑌(𝑖,𝑘|𝑘−1) − �̂�𝑓 (𝑘|𝑘−1)]𝑇 + 𝑅

𝑃𝑥𝑦(𝑘|𝑘−1) =
2𝐿
∑

𝑖=0
𝑊 (𝑐)
𝑖 [𝜒(𝑖,𝑘|𝑘−1) − �̂�𝑓 (𝑘|𝑘−1)] ⋅ (34)

[𝑌(𝑖,𝑘|𝑘−1) − �̂�𝑓 (𝑘|𝑘−1)]𝑇

9. Update the estimates of the states and the covariance using new
measurements,

𝐾(𝑘) = 𝑃𝑥𝑦(𝑘|𝑘−1)𝑃
−1
(𝑦(𝑘|𝑘−1))

�̂�𝑓 (𝑘) = �̂�𝑓 (𝑘|𝑘−1) +𝐾(𝑘)(𝑦𝑓 (𝑘) − �̂�𝑓 (𝑘|𝑘−1))

𝑃(𝑘) = 𝑃(𝑘|𝑘−1) −𝐾(𝑘)𝑃𝑦𝑓 (𝑘|𝑘−1)𝐾
𝑇
(𝑘)

(35)

where, 𝑥𝑎 = [𝑥𝑇𝑓𝑤
𝑇 𝑛𝑇 ]𝑇 , 𝜒𝑎 = [(𝜒𝑥𝑓 )𝑇 (𝜒𝑤)𝑇 (𝜒𝑛)𝑇 ]𝑇 , 𝑊𝑖 are the weights

calculated in (26), 𝑄 is the covariance matrix of the process noise and
𝑅 is the measurement noise covariance matrix.

In the implementation of the UKF, the Cholesky factorization (Press
et al., 1992) is used in order to calculate the square root of the co-
variance matrix because it provides numerical stability and efficiency.
The tuning of the UKF is done through the entries of the state and
measurement noise, using the same criterion as with the standard
Kalman filter tuning (Fossen and Perez, 2009). That is, if we believe
the model is accurate, we lower the covariance of the state noise, which
reduces the influence of noise on the estimates. However, if the model
is believed to be uncertain, we need to increase the state covariance so
the filter uses innovations (𝑦𝑓 (𝑘) − �̂�𝑓 (𝑘|𝑘−1)) to correct the predictions
made with the uncertain model this reduces bias and increase noise in
the estimates.
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Fig. 13. 3GDL control results with waves, tensions applied in each of the winches.
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The covariance matrix 𝑅 of the UKF is due to sensors noise, which
is uncorrelated, then 𝑅 is chosen diagonal,

𝑅 = 𝑑𝑖𝑎𝑔(𝜎21 , 𝜎
2
2 ,… , 𝜎2𝑛𝑣 ) (36)

where, 𝜎2𝑖 is the measurement noise covariance of the measured vari-
able 𝑖 and 𝑛𝑣 is the number of variables. 𝑛𝑣 = 3 for the model indicated
in (22). The states covariance matrix 𝑄 of the UKF, is also chosen
iagonal,

= 𝑑𝑖𝑎𝑔(𝑄1, 𝑄2,… , 𝑄𝑛𝑠 ) (37)

here 𝑄𝑖 is the state covariance of the variable 𝑖 and 𝑛𝑠 is the number
f states. 𝑛𝑠 = 12 for the model indicated in (21). The values of the
matrix are chosen, assuming that the uncertainty is small, since the
odel of (1) is accurate.

. The controller

In this section, we propose a three degrees of freedom controller
ased in classical methods for the loop indicated in Fig. 1, which
enerates a control vector of forces and moments, 𝐹𝑐 (𝑡) = [𝑋𝑐 , 𝑌𝑐 , 𝑁𝑐 ] in
rder to follow a reference vector 𝑟𝑒𝑓 (𝑡) = [𝑥𝑟𝑒𝑓 , 𝑦𝑟𝑒𝑓 , 𝜓𝑟𝑒𝑓 ]. Fig. 2 shows

the structure of the dual loop controller for the surge degree of freedom,
which includes an integral term for decreasing errors due to external
disturbances and a lead compensation term in order to provide stability
to the caisson behavior. The same control structure is applied for the
rest degrees of freedom to be controlled: sway and yaw. It must be
noted that the reference is applied through a first order system so that
smooth motion of the caisson can be assured, this improve the safety
of the operation which is part of the aim of this paper as commented
before.

Since the design of the indicated controller is based on classical
linear theory, we obtain an approximated linear model of the non
linear one defined in Eq. (1). The approximated model is a set of
transfers functions of the degrees of freedom to be controlled: surge,
sway and yaw. The transfer function parameters were estimated using
least squares with individual trails. Note that aim of the approximated
model is just to the design the controller, which it is applied to the non
linear model defined in Eq. (1).

The Laplace transfer function of the approximated model and the
controller for each degree of freedom are found in Table 1. By means
of the root locus theory the lead compensation controller indicated in
8

Fig. 2 is designed.
5. Control allocation

The actuators of the DP system indicated in Fig. 1 are made up
of eight anchor lines, see Appendix A for details relative to the lines
configuration. Therefore, the actuators system is over-actuated since
only three degrees of freedom are controlled: surge, sway and yaw. This
makes the actuators system redundant as it is well known. Moreover,
it must be noted that the mooring lines distribution of this work (see
Fig. 15) provokes coupling among the different axes of the coordinate
system fixed to the center of gravity, which means that the corrections
made in one of the degrees of freedom to control its motion have an
impact in the rest of them. Additionally, the forces induced in the
caisson by the different mooring lines are not constant and vary with
the relative position and attitude of the eyebolts distributed on the top
of the caisson with respect to the anchor points in the seabed.

In this section, it is established how the control forces and mo-
ments 𝐹𝑐(𝑡) = [𝑋𝑐 , 𝑌𝑐 , 𝑁𝑐 ] generated by the controller are equally dis-
tributed over the anchor lines by generating a vector of tensions 𝑇 (𝑡) =
𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇5, 𝑇6, 𝑇7, 𝑇8]𝑇 . The developed control allocation module
s presented in Algorithm 1, which matrices are defined in Eq. (38).
his algorithm has the advantage that is easy to implement and com-
utationally cheap.

𝐴1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0
1 0 0
0 0 0
1 0 0
0 0 0
0 0 0
0 0 0
0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝐴2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0
0 0 0
1 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝐴3 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 1 0
0 0 0
0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝐴4 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝐴5 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0
0 0 1
0 0 1
0 0 0
0 0 1
0 0 0
0 1 0
0 1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝐴6 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 1
0 0 0
0 0 0
0 0 1
0 0 0
0 0 1
0 1 1
0 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(38)
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Algorithm 1: Control allocation module.
Initialize 𝑇𝑚𝑎𝑥 = 10 and 𝑛𝑙 = 8;
Load the control signals [𝑋, 𝑌 ,𝑁];
for k (∈ 1,… ,∞) do

if 𝑋 > 0 then
𝑓12 = 𝐴1;

else
if 𝑋 < 0 then
𝑓12 = 𝐴2;

end if
end if
if 𝑌 > 0 then
𝑓34 = 𝐴3;

else
if 𝑌 < 0 then
𝑓34 = 𝐴4;

end if
end if
if 𝑁 > 0 then
𝑓56 = 𝐴5;

else
if 𝑁 < 0 then
𝑓56 = 𝐴6;

end if
end if
Add the contributions of all of the axis 𝑆 = [𝑓12 + 𝑓34 + 𝑓56]𝑇 ;
Adjust the gain 𝑆 = 𝑆∕2;
Calculate the tensions of the 𝑛𝑙 lines 𝑇 = 𝑆 ∗ 𝑎𝑏𝑠([𝑦𝑓𝑋 , 𝑦𝑓𝑌 , 𝑦𝑓𝑁 ]);
for j (∈ 1,… , 𝑛𝑙) do
if 𝑇 (𝑗) > 𝑇𝑚𝑎𝑥 then

𝑇 (𝑗) = 𝑇𝑚𝑎𝑥;
end if
end

end
𝑇𝑚𝑎𝑥 maximum value of the tension, 𝑛𝑙 number of anchor lines.

6. Simulation results

The simulations of this section follow the logic and rationale as
the theory previously presented in this article: including the non linear
hydrodynamical model, the dual loop controller, the UKF filter and the
control allocation. For the evaluation of the proposed control scheme
for DP system (Fig. 1), we simulate a case of study for the caisson
indicated in Appendix A under external perturbances induced by waves.
The simulations here presented were run in Matlab and a time step of
0.1s was used. The simulation scheme followed in this article is sum up
as follows:

• Based on the theory presented in Section 4, the controller is
designed by root locus analysis.

• The DP control scheme of Fig. 1 with the controller previously
designed is implemented. The statistical properties and the per-
formance of the UKF filter are verified. The simulations are run
to establish a comparison between the DP control scheme with a
first order network filter and with the UKF filter.

The next subsections develops these bullet points.

6.1. Controller design simulations

Fig. 3 depicts an analysis, which compares the root locus of the
linear approximation (top of the figure) to the one with the inclusion
of the lead compensation controller (bottom of the figure). As far as
the surge and sway degrees of freedom are concern, their root locus
9

Fig. 14. Spanish FEDER/Ministry of Science, Innovation and Universities — State
Research Agency.

branches are on the imaginary axis, which may produce unstable be-
havior. However, when the lead compensation controller is introduced
in the system, the branches are out of the imaginary axis and tends to
a break-in point. This is due to the criteria established for the position
of the poles and the zeros of the controller, see Table 1. This means
that for positive values of the lead compensation controller gain 𝐾𝑖(𝑖 =
𝑥, 𝑦, 𝜓), the behavior of the caisson is going to be stable, this values are
chosen based on previous knowledge of the caisson dynamics. It must
be noted that for dimensions of the caisson, the forces and moments due
to caisson motion are high and therefore the gain values 𝐾𝑖(𝑖 = 𝑥, 𝑦, 𝜓)
are high too.

6.2. DP simulations

The reference vector was set to 𝑟𝑒𝑓 = [𝑥𝑟𝑒𝑓 , 𝑦𝑟𝑒𝑓 , 𝜓𝑟𝑒𝑓 ] = [4, 3, 5],
the UKF matrices were tuned by doing 𝑄 = 10−4𝐼12, 𝑅 = 0.04𝐼3, 𝑃 =
0.001𝐼12. The wave parameters used were: height of 1 m, a period of
8 s and direction of 0 degrees in x axis. Fig. 5 depicts the wave forces
and moments induced to the caisson with the cited wave parameters.

Fig. 4 shows the statistical properties of the UKF filter by drawing
the histogram of the residuals for the surge, sway and yaw degrees
of freedom. The histogram is drawn following the expression (Lloyd,
1998):

𝑓 = 𝑁ℎ∕(𝑁𝑊ℎ) (39)

where 𝑁ℎ is the number of measurements of the bar, 𝑊ℎ is the
width of the bar and 𝑁 is the total number of measurements. Next,
the corresponding Gaussian probability distribution is drawn over the
histogram to check if the parameter distribution is Gaussian or normal.
Fig. 4 exhibits a normal distribution of the residuals, which confirms
that it is possible to apply the UKF filter to the application proposed
on this work.

Figs. 6 to 11 present the results of the proposed control scheme. It
is shown how the system is able to compensate the second order wave
effects thanks to the integral term added in the dual loop as shown in
Fig. 2, since the system is able to follow the reference with no stationary
state error (see Fig. 7). Moreover, the UKF is able to filter the first
order wave effects as can be seen in Fig. 7, see the zoomed part of
the figure for the surge degree of freedom where the waves provoke
a higher incidence in the caisson motion. The results of the system in
the x-plane, y-plane indicate a low oscillation despite the disturbances
(see Fig. 8) when controlling the caisson from a starting point to a final
point as indicated in Fig. 6.

Additionally, simulations have been carried out with the same
controller and disturbances as in the previous case but using a first
order network as a filter. Comparing the results obtained in Fig. 8
with the UKF to those of Fig. 12 with the first order network, a higher
deviation can be appreciated in the path described by the caisson with
respect to the reference path (a line between the initial and final point)
when the first order network is used. Moreover, if Fig. 11 is compared
with Fig. 13, a greater control effort is observed when applying the first
order network as a filter, due to the abruptly changes and saturations
that occur in the tensions applied to some of the lines. This means that
the inclusion of the UKF filter increases the safety of the operation and
the life expectancy of the actuators, which constitutes one of the aims
of this work.



Ocean Engineering 235 (2021) 109055E.R. Herrero et al.
Fig. 15. Mooring lines distribution of the caisson (left plant view, right lateral view).
7. Conclusions and further research

In this paper, we propose a control scheme, which includes a dual
loop controller, a non linear filter based on the UKF and a control
allocation system for DP operations. The simulations were performed
to verify the effectiveness of the approach. The results show no error
in stationary states thanks to the integral term added in the dual loop
controller, which is able to compensate second order wave effects.
Moreover, the low oscillation in the caisson’s trajectory means that
the controller compensate first order wave effects too. Finally, it is
compared the results given by the dual loop controller with a first order
network to the ones given by the dual loop controller with the UKF.
We conclude that the controller with the UKF provides a reduction
in the deviation from the reference path and also a reduction in the
control effort. Therefore, a longer life expectancy of the actuators and
an improvement in safety of the operation is expected. In subsequent
research, an in-scale model a caisson is going to be developed in order
to perform trials in a model basin with the implementation of the
control scheme proposed in this article.
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Appendix A. Caisson main features

The caisson is shown in figure and its lines distribution in Fig. 15.
The main data of the caisson including the moments of inertia, the
center of gravity and center of buoyancy are found in Table 2.
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