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Abstract

This thesis deals with some of the most common problems that arise from the
use of the data from the operations support system of a public transport operator,
especially when combining information from different subsystems. It presents a
flexible methodology to improve the definitions of bus runs and boarding events,
ameliorating the distortions that stem from the simultaneous use of data from the
automated vehicle location, automated fare control, and scheduling subsystems.
Then, for the quite common case of a system that only registers the access of the
passengers to the buses, the trips they carried out and which ride did they choose
to materialize them are inferred. To this end, a trip chaining model is defined, in-
corporating several enhancements from the available literature, and making use of
the previously obtained enhanced accounts of passengers’ validations and vehicles
movements.

Firstly, the definition of each distinct vehicle run and boarding event carried
out in the transport system is improved, integrating the information provided by
stop-level events from its automated vehicle location and fare collection systems,
and scheduling subsystem information at the initial stop of planned runs, if avail-
able. The data are structured; and then corrected and completed utilizing several
criteria, which include identifying and combining all entries that are linked to the
same call of a bus to a stop, and applying a probabilistic approach based on the
distributions of travel and dwell times to both event filtering and the reconstruc-
tion of incompletely or wrongly registered runs, following a procedure akin to dead
reckoning, utilizing as the initial fix the longest sequence of calls compatible with
the configuration of the route the vehicle should be following.

In turn the origin and destination stops of the trips performed by transit users
are deduced, as well as which runs offered by the public transport system they rode
to do so. The trip chaining model implemented to do so benefits from the improved
definitions of bus runs and boarding events and includes several contributions from
the state of the art to better identify the end of each ride, find the last destination
of the last ride of each day, and detect short activities that may be incorrectly be
labeled as transfers.
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Finally, the passenger trips thus obtained are aggregated and expanded to
provide origin-destination matrices for different periods of the year and days of
the week, considering the mobility patterns in the city.

A case study is discussed with one year of records from the automated vehicle
location, fare collection, and scheduling subsystems in Santander City, Spain, em-
ploying captures from different interactive web visualization tools that has been
developed for this work.

This document has been written using LATEX. Its figures were created with
TikZ, PGFPlots, Gimp, Inkscape, QGIS, and several tools developed for this work,
based on Bokeh (a Python library).

Part of the work of this research has been submitted as the article ‘Integration
of automated vehicle location, fare control, and schedule data for improved public
transport trip definition’ (Juan Benavente, Borja Alonso, Andrés Rodŕıguez and
José Luis Moura) to a noted journal and is currently under review.
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Some of these words are described to establish their interpretation within this
document.

activity Task or pursuit that motivates a person to move from one place to an-
other. i, xii, 1, 4, 5, 7, 8, 14–16, 18, 53–55, 59–63, 65, 66, 76, 82, 97, 102,
110

day The threshold between one day and the next occurrs at the moment of least
activity in the city, just before daily services such as transportation resume.
For instance, in Santander it occurs around 06:00. 5, 7, 15, 16, 51, 55, 56,
60, 64, 68, 71, 78, 81–84, 90, 95, 97, 102, 146–148

journey A sequence of trips starting and ending at home [1]. 53, 54

PostgreSQL Popular open-source object-relational database system that uses an
extended version of the structured query language (SQL) language [2]. 6, 76

ride Movement of a passenger on a single vehicle from boarding to alighting. i,
3–5, 8, 14–17, 53–56, 58, 60–68, 80–84, 96, 97, 99, 100, 102, 109, 110

run Movement of a transit vehicle through a predefined sequence of stopping
points [3]. i, xi, xii, 2–8, 10, 12, 13, 15, 16, 18, 19, 21, 22, 27, 31, 34–37,
39–41, 43, 45–49, 51–53, 56, 58, 60, 66–68, 71, 73, 75–82, 87–91, 94, 95, 100,
109–111

subroute One of the sequences of stops that describe the runs offered in an IPTS.
In the case of ‘linear’ routes, with two termini, there will also be two sub-
routes that their vehicles will alternately follow; while circle routes with a
single terminus are implemented in pairs, running in opposite directions,
presenting a single subroute each. 36
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tap-in The SC transaction made when boarding a public transport vehicle [4].
12, 14, 16, 23, 61, 66, 80

tap-out The SC transaction made when alighting a public transport vehicle [4].
12, 14, 18

trajectory Consecutive AVL records that present the same values for the columns
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trip Movement of a traveler through the public transport system under analysis.
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start of another, respectively. i, ii, xi, 4, 5, 7, 8, 11, 14–17, 19, 53–56, 58,
60–69, 80–85, 96, 97, 99, 100, 102, 106, 108–111
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AFC “automated fare control”. The collection of components that automate the
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GNSS global navigation satellite system 10, 11
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NFC “near field communication”. Short range communications standard based
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to work as a smart card (SC). xiii

OD origin-destination 3–5, 8, 12, 13, 18, 66, 69, 85, 100, 102, 108, 111, 124–129

SC “smart card”. A card with an embedded integrated circuit chip. It can
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through near field communication (NFC). [6]. xiii, 5, 8, 11–14, 17, 22, 54–56,
60, 63–66, 68, 73, 80, 82, 84, 99, 102, 110, 111
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Chapter 1

Introduction

1.1 Motivation
Technological and social development provided the background that made pos-

sible and could make use of what is likely to be the first modern public transport
system, in the 17th century in Paris. It offered five routes, fixed schedules, and
variable fares according to traveled distance [8]. Even though this early example
probably only lasted a few years, as history continued, the pressure from increas-
ingly larger populations who lived in denser urban areas and the concentration
of activities stimulated the creation of mass transit systems, progressively more
complex and with greater capacity, making use of new technologies as they were
developed. In turn, public transportation changes the accessibility between loca-
tions in the territory, with great social and economic repercussions.

One important milestone for transit systems occurred during the decade of
the 1970s. The increasing travel demand could not be satisfied with just more
and better installations and vehicles: the systems had become so complex it was
extremely difficult to manage them efficiently. The answer was the creation in
Japan of the first intelligent public transportation systems (IPTSs), making use of
the computing and communication technologies available at the time to maintain
a high quality of service.

These IPTSs coordinate and rely on multiple subsystems, that deal with dif-
ferent aspects of the service: inform users and workers according to their needs,
ticketing, scheduling, keeping track of the vehicles, maintenance, customer satis-
faction, communications, emergencies management, etc.

Even though IPTSs were created to solve an operational problem (the daily
management of the service), the progress of sensing, communications and data sci-
ence opened more possibilities. Increasingly larger volumes of valuable information
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CHAPTER 1. INTRODUCTION

Figure 1.1: Error sources when working with IPTS data [3]

were being generated, which could be retrieved progressively closer to real-time;
while data storage and processing became cheaper and more potent.

Thus, besides improved operational responses, these technologies allow to use,
at very little extra cost, a by-product of already existing systems to generate useful
output for tactical or strategic decisions.

However, several obstacles must be cleared to make use of IPTS data. Service
planning and short-term vehicle locations may be available online (an example
is the Open Data portal of Santander City [9]), but for longer periods the col-
laboration of the transit authority may be necessary. This cooperation becomes
essential in the case of ticketing data, due to passenger privacy requirements and
the reticence of businesses to share sensitive financial information.

Once the data is available, multiple opportunities for research and development
arise, being the integration of data from different subsystems to create better
models one of them [10, 11]. However, as fig. 1.1 shows, a series of common
problems arise: some related to each separate source, others to the fusion process:

• Planning information (lower left):

– If the schedule was obtained for a source that follows the general transit
feed specification (GTFS), only individual runs will be directly avail-
able, and not the configuration of the route they are following.
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• Automated fare control (AFC) (lower right):

– Records with wrong or missing information: boarding location, number
of validations, alighting time or place (if available), etc.

• Automated vehicle location (AVL) (upper center):

– Multiple entries for the same event (for instance, the driver may open
its doors more than once during a call to allow a last-moment passenger
to get on the vehicle).

– The id of some events or elements may be set improperly or change
during a lapse when it should not (e.g., a route with different configu-
rations, and the vehicle not reflecting the change between two of them
at the proper time, or the value that should be usable to tell different
runs apart not changing accordingly to the vehicle progress).

– Some events may not be timestamped.

• Planning and AFC:

– No information to match passenger rides to the scheduled vehicle runs
that were boarded.

• Planning and AVL:

– Inconsistencies or missing values that prevent from matching programmed
and materialized rides.

• AFC and AVL:

– Contradictory or absent records may prevent from matching validations
or payments to the vehicle runs that were boarded.

• Planning, AFC, and AVL:

– It not unusual for AVL data to show a different number of runs than the
one that was planned. In this case, AFC information may be considered
to identify runs that carried passengers and thus are extremely likely to
have occurred.

The method described in this work originated from the necessity to create a
representation of the public transportation supply and demand using boardings-
only AFC and AVL stop-level data, and the planned (and sometimes recorded)
starting times of the runs from an IPTSs where the aforementioned problems made
the available dataset initially too fragmented, incomplete, and inaccurate for its
intended use (obtaining public transport OD matrices).
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1.2 Objectives
Two of the most relevant features for the analysis of a public transit network

are the definition of the vehicle runs as they are actually carried out during day-to-
day operations, and the rides passengers materialize as they travel between activity
locations. The former can usually be defined by one of a previously established
set of routes, and the arrival and departure times from each of the pre-defined
stop locations; while the latter require knowing where and when users got on and
alighted from a bus, and the runs that define the movements of that bus in-between.

The datasets which are useful to build these models may, in most cases, be
obtained from the IPTSs. However, as discussed in page 2, several obstacles impede
the full benefit that could be gained from these sources. This is the main motivator
behind this work, which can be broken down in a series of goals:

• Analyze published research on these topics:

– The use of IPTS data, looking for encountered obstacles and ways to
solve them.

– Models of call dwell time and travel time between stops of public buses
as they perform their runs.

– Trip chaining models, aiming to build one including several of the en-
hancements proposed by researchers.

• Create a methodology to enhance the definition of the runs provided by the
AVL records of an IPTS, making use of AFC, planning information, and
probabilistic models of vehicle travel and dwell times to produce a repre-
sentation closer to reality, reducing the impact of the issues described in
page 2.

• Building upon these improved runs, correct AFC entries that are linked to
an incorrect stop or route.

• Implement a trip chaining model to processes the aforementioned runs and
trips, applying several modifications from the state of the art to better its
output.

• Aggregate and expand the results from the trip chaining model, calculating
daily OD matrices during different periods of the year in the city.

• Analyze the case study of Santander (Spain, 173 957 inhabitants), with data
that encompass the AVL and AFC events of one year, and the schedule of
where and when each planned run should begin.
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1.3 Thesis contribution
The main contribution of this research is the development of a methodology to

obtain a better definition of the bus runs and passenger rides and trips; combining
AVL, AFC, planning information (if available), and probability distributions of bus
travel times between stops, and the dwell times during the subsequent calls. It aims
to be suitable in situations with different information availability, completeness and
reliability. Particularly, scheduled run beginnings may be known or not, optionally
including which vehicle had been initially assigned to the task. Other noteworthy
aspects of this work are:

• Vehicle runs that have taken place are identified, providing for each call
arrival and departure times, as well as identifying the raw data sources that
were utilized to make the determination (table 3.10).

• Each cluster of ticketing events is assigned to the corresponding visit of a
vehicle, correcting the automatically logged stop and route if necessary (sec-
tion 3.4).

• Distinction between runs that are part of the planned timetable, and those
that respond to operational decisions (section 3.3.6).

• Detection and treatment of instances where the id of a vehicle changes during
a run (section 3.3.4).

• As the analysis of the case study shows (page 96), this methodology is robust
against missing and erroneous data.

• Specific treatment for particularly problematic termini (page 40).

• A trip chains model has been implemented, using several enhancements pro-
posed in the state of the art to better infer the alighting stop, to solve the
problem of the last ride of the last chain of the day, and to better discern
when between an alighting and the next boarding an activity or a transfer
took place (section 3.5.3). It also considers the case of multiple passengers
boarding a vehicle tapping-in the same SC; and the possibility that users may
stay inside the bus as it visits a terminus and begins a new run, sometimes
with a different configuration of the route.

• Frequent activity nodes, within a region of space and a time window, have
been identified. They are used to further infer the destinations of trips, that
would not have been fully defined otherwise; and to analyze the mobility
patterns in the city.

• The rides obtained from the trip chaining model have been aggregated to
provide OD matrices for different periods of the year.

5



CHAPTER 1. INTRODUCTION

• Several software tools developed to implement the methodology, and to vi-
sualize its results, amounting to over 15 000 lines of code. The vast majority
is written for the SQL version of PostgreSQL 12 and its procedural language
PL/pgSQL, while the rest is Python 3.8.

1.4 Thesis outline
This introduction is followed in page 9 by a literature review, which covers

the three main topics of this work: IPTSs, and the exploitation of their data; the
modeling of the time public buses spend as they cover a route, divided in the travel
time between consecutive stops and the dwell time during each call; and the trip
chaining models.

After that, the methodology followed in this work will be presented (page 19).
It begins stipulating the required input data (section 3.1).

In turn, it details how the AFC records are treated (section 3.2.1), making use
in the first place of the available features of the table to group in ‘boarding groups’
those entries that should, in the absence of error, allow to classify then according
to which run did the users board; and then refining this grouping applying other
criteria (limit how long a call can be, and utilizing AVL data).

Then, the preprocessing of the AVL dataset is explained in section 3.2.2. Its
initial part also consists in condensing in a single event all entries related to the
same call; and it also identifies those rows that are part of unfeasible vehicle
travel legs, evaluating if the incoherence can be solved assuming that the dwell
time recorded by the AVL is incorrect, and filtering out the rows that define that
leg otherwise. Remaining AVL entries are classified in trajectories (consecutive
calls that share the same parameters that would allow, in the absence of error, to
identify each run that has taken place).

After the preparation of the planning data in section 3.2.3, section 3.3.1, studies
these trajectories as atemporal sequences of bus stops, and divided in fragments of
the ‘template’ sequences of stops that full, perfectly defined runs of a route should
follow.

Then, section 3.3.2 implements the distribution models for the travel times and
dwell times, which are used to identify AVL fragments and AFC ‘boarding groups’
likely to be part of the same run.

In turn, section 3.3.3 describes how vehicle runs are put together, beginning
with AVL fragments of the ‘templates’ that describe the routes that are offered
by the IPTS, processed from longest (more likely to be correct) to shortest (more
probable to originate from some of the issues described in page 2). This is accom-
plished through a process not unlike dead reckoning: using the earliest and latest
known events of the incomplete run that is being assembled, prediction intervals
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are computed (making use of the distributions of the travel and dwell times dis-
tributions) for increasingly further away AVL and AFC events that should have
been registered by the IPTS. If one is found, it is used as the new fix in the current
direction; while unknown intermediate calls are approximated to their most likely
arrival and departure times (as also are those in the ‘head’ or ‘tail’ of a run, if no
reliable IPTS entry could be found in the corresponding terminus). The behav-
ior of the methodology can be adapted to deal with, as it is not uncommon when
working with IPTS data, termini where the AVL entries are particularly unreliable.

Next, in section 3.3.4, an optional step is provided to deal with the issue of
vehicles that change their ids during a run.

Section 3.3.5 then shows how to link these inferred runs with the planning of
the services, if available. This new information is utilized, to improve the definition
of the runs found by the methodology.

The inferred runs obtained thus far are filtered in section 3.3.6. If more than
one alternative is found at the same time for a vehicle, the one backed by the most
evidence from the IPTS is kept; while in other cases a threshold is established to
tell those runs that happened from those that just appeared in the databases due
to some error.

To conclude the part of the methodology that improves the IPTS data, sec-
tion 3.4 checks that the ‘boarding groups’ deducted from the AFC are compatible
with the runs that have been defined. If not, the information provided by the IPTS
is progressively disregarded (first, only the bus stop where the event happened, and
if that is not enough also the route the traveler supposedly got on), until a match
is found or the ‘boarding group’ is deemed a probable error.

Then, the following section of the methodology (3.5) details the trip chaining
model that has been implemented, starting with an introduction and an example
sections 3.5.1 and 3.5.2.

After that, the different improvements that have been added to it are described,
such as the use of ‘generalized time’ [12] to better choose the most likely alighting
stop, or establishing an upper limit on how long a trip may last (sections 3.5.3.1
and 3.5.3.3).

Other enhancement worth mentioning is the use in 3.5.3.2.1 of Density-based
spatial clustering of application with noise (DBSCAN) to find likely destinations
for those trips that could not be completely defined with the ‘first origin of the
same day’ and ‘first origin of the next day’ approaches.

Two other improvements are defined, to deal with one of the issues of trip
chaining models: how to tell apart short activities from transfers. To this end, two
additional criteria have been formulated.
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On one hand, if while building up a trip, it is detected that the user could have
reached earlier an inferred alighting point (directly, or getting off at a close stop)
by staying longer on a previous ride, the program concludes that an intermediate
activity has occurred, and ‘cuts’ the trip downstream said ride, between the alight-
ing and subsequent boarding that show the greater leeway, considering when they
happen, and the time the traveler needs to walk from the former to the latter.

On the other, if after a trip has been completely defined it is deemed too
circuitous (3.5.3.4.2, [13]), it is divided in two, following a reasoning similar to the
previous point to decide where.

The methodology concludes in section 3.6, explaining how OD matrices are
created, aggregating the trips obtained by the previous step, and applying an
expansion factor to take into account SC entries for which a trip could not be
inferred, and those users that paid with cash and thus cannot be tracked.

Then, the case study of Santander (chapter 4) is presented, describing the
dataset and the peculiarities that have been encountered during the step-by-step
application of the methodology, and the values adopted by its parameters.

Chapter 5 contains a discussion of the different results that have been ob-
tained from the case study, verifying the behavior of the different programs. It is
worth highlighting the study from section 5.2, that corroborates the design deci-
sions pertaining who termini data is treated; and section 5.3, which shows that
the methodology succeeds at improving the definition of the AVL runs, with an
increasing resistance to bogus data as more good information is available.

Finally, chapter 6 shows the conclusions of this thesis, and lays out future lines
or research.
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Chapter 2

Literature review

2.1 Intelligent Public Transport Systems
IPTSs are composed by a series of hardware and software elements that func-

tion together to provide the means to identify, regulate, and manage the available
elements of an urban public transit network in real time (infrastructure, vehicles,
users, etc.) [14]. They were made possible by combining on-board-computers and
the increasing capabilities of communication technologies during the decade of the
1970s, where the common answer at the time, which consisted in more investment
in physical infrastructures and vehicles, could not cope with the growing travel de-
mand. Initially, their purpose was solely to monitor and control operations, but as
real-time communication and location technologies have become more available,
the approach has been shifting from large periodicity, asynchronous acquisition
methods to real-time systems, making IPTSs useful tools to attain a reliable mo-
bility, sustainable both economically and environmentally [15, 16].

They are built upon various sub-systems that oversee different tasks such as pro-
viding information to travelers or workers, managing incidents and special events,
locating the vehicles, scheduling, ticketing, passenger counting, geographic infor-
mation, payrolls, maintenance, weather, customer satisfaction, or communications.
If successfully implemented, they increase the quality of service, decrease operat-
ing costs, improve the decision-making process, and facilitate fleet management
[17]. Four key aspects characterize the information they provide [10]: spatial and
temporal detail, coverage (all events or only exceptional ones), representativeness
(fleet penetration and data recovery rate), and quality.

Stop-level records, which can be stored in the IPTS at a fairly low incremental
cost, have allowed to better estimate previously utilized performance indicators
and usage metrics (e.g., travel times) [18], and also to assess previously nigh im-
possible to quantify attributes due to data scarcity, such as those related to service
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reliability [19]. However, they may require a significant effort to attain meaning-
ful conclusions [20]. Also, adequate visualization tools are needed to be able to
comprehend the vast amount of output that can be generated. [21].

Setting aside those cases where fixed timetables are not available (e.g., bus
routes in Jinan, China, with high uncertainty in travel times, multiple agencies, and
a departure schedule that changes according to on-site observed demand, where a
study employed artificial neural networks for improved real-time bus arrival esti-
mation based on AFC and historical vehicle location information [22]), the data
that describe transit services (i.e. routes, their schedules, and where the stops
are) are published in advance. The most widespread tool to do so is the static
component of the GTFS [23].

However, even though an extension has been proposed [24], this format can-
not yet represent some real-time changes, such as defining additional runs. Also,
transportation agencies may not keep a compilation of these files through time,
though in some cases they can be obtained from a third party (for example OVapi
[25], Transitland [26], or OpenMobilityData [27]). And finally, GTFS data may
not be accurate enough for some applications, such as accessibility measurement
([28]).

Some of the available vehicle location technologies are [29]:

• Global navigation satellite system (GNSS), which relies on a constellation of
satellites providing signals from space that transmit positioning and timing
data which can be used by receivers mounted on the vehicles to determine
their location [30] through trilateration, typically within a 5 m radius under
open sky. Factors such as satellite geometry, signal blockage, and atmo-
spheric conditions [31] worsen its accuracy.

• Signpost tracking systems, that rely on short-range communications (optical,
magnetic, radio, etc.) between the vehicle and series of known signposts to
infer the location of the vehicle. They require fixed routes and continuous
maintenance, providing the position of a vehicle with an error between 1 m
and 20 m.

• Ground based radio systems, where the receiver on the vehicle utilizes the
signals broadcast by one or more antennas to deduce its location, within a
30 m to 400 m radius, due to interference from other radio transmissions.

• Dead-reckoning, which is the process of calculating the location of a moving
object combining an initial known position (the fix), and a registry of traveled
distances and directions (e.g., from a wheel rotation monitor and an on-board
compass). Its precision is strongly dependent on the contact between the road
and the wheel, and decreases as the vehicle travels away from the fix.
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GNSSs are widely the most employed location method in public transportation,
being global positioning system (GPS), owned by the U.S. government, the preva-
lent alternative. Besides other applications such as identifying headway irregular-
ities [32], implementing more intelligent vehicle priority strategies [33], and fleet
management and operations [34]; GNSS location information is used to initially
estimate and finally identify the arrival of the vehicle to each point of interest.

Arrival time predictions can be communicated to passengers and drivers, and
employed to make better operational decisions. They require to link a vehicle’s
real-time state data with the schedule it is following and the historical records
representative of the same situation (working day or holiday, season, time of the
day...); and can be carried out following different approaches: artificial intelli-
gence, Kalman filtering, support vector machines, regression analysis, time series
modeling, etc. [35].

Since requiring to register a state where the bus is completely still next to
a stop to assert that a visit is happening could require too frequent updates,
with their associated network traffic; the actual arrival event is usually equated
with the vehicle being detected inside a relatively small region that encloses the
stop, while its velocity is lower than a threshold [36]. This event is stored in
the AVL database, including besides its timestamp and bus stop identifier other
possibly useful information obtained from on-board sensors (e.g., dwell time, route
identification, door opening and close times, etc.).

AFC systems have as main purpose to improve the revenue collection process,
but they also provide valuable data, especially when enriched with the user tracking
and characterization possibilities of SC technology.

In essence, SCs consist in a micro-chip embedded in a plastic card. They rely
on an external power source (utilizing metal connectors on the surface of the card
or contactless technology) to update its storage and, if necessary, to locally execute
small programs, while enforcing defined security constraints. [37].

As consequence of their widespread use, mobile phones are adopting the roles
of SCs, including those related to public transport, through mobile applications or
their own near-field-communication capabilities [38]. Still, this change confronts
obstacles such as the need to attain a minimum return on previous investments,
fraud risk, the requirement of being able to work while the phone is off or uncer-
tainty due to future technological changes [39, 40].

This information can be useful at the operational, tactical, and strategic levels
of public transport management, with multiple applications [41] such as passenger
behavior modeling [42, 43, 44], event-based multi agent simulation [45], vehicle
load profiles [46], quality of service assessment [47], constructing transit origin-
destination matrices [48, 49], or estimation of passengers’ excess trip time [50].
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Obstacles to fully benefit from this source of information are the reluctance of
farebox manufacturers to ease communications with other on-board devices to
prevent fraud, the disinclination of the operator to share business-sensitive de-
tails [51], and that a validation may not be required to exit the system (tap-in
only configuration). For instance, in a study with data from Guangzhou (China)
[52] researchers decided to develop a methodology to extract bus boarding and
alighting information from access-only raw SC data that does not identify the stop
where it happened, combining the identification of runs direction, boarding cluster,
boarding stop, and alighting stop (utilizing a series of criteria that build upon the
trip chaining model).

Another example is the use of data from a tap-in, tap-out public transport
network in Singapore [53] where researchers explore the reasons why AFC may
provide incorrect information, and propose how to identify these erroneous entries
and their source.

Scientists from Brisbane (Australia) and Hong Kong (China) have published a
review in the field of transit OD estimation using SC data [54], where AFC data
cleansing is identified as the first obstacle to solve, identifying sources and types of
errors, and classifying boarding stop estimation problems based on which features
are available in the SC data.

The subsystems that contribute to an IPTS often fail to properly capture in-
formation that would be useful for later analysis, because they usually have other
goals: to support tactical planning and emergency response in the case of AVL, and
manage concessions for AFC. Consequently, a series of issues commonly arise, re-
lated to internal problems of each dataset or inconsistencies between them. Those
within the scope of this work are [3]:

• Erroneous AFC records, which can be caused by malfunctions, atypical trav-
eler behavior, emergency route detours or mishandling of the equipment by
drivers and operators [11].

• Wrong AVL entries due to system failures, incorrect driver operations or
termini-specific issues.

• Multiple records for the same AVL event, possibly with different attributes
(timestamp, vehicle, or route identification).

• Lost AVL or AFC events.

• Inconsistent or missing information for the same element along different ta-
bles. For instance, this hampers matching passenger rides with materialized
and planned runs.

• Uncertainty regarding whether a programmed run actually took place.
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In some cases, these problems can be so severe that researchers have developed
methodologies that model public transport features indirectly, instead of using a
more immediate, but error-prone alternative (e.g., utilizing AVL instead of AFC or
automated passenger counter records to estimate public transport demand [55]).

There are many published examples of the combined application of multiple
automated collection data systems on the different aspects of urban transit man-
agement and planning. Among those that utilize AVL and AFC data, some note-
worthy examples are:

• Space-temporal load profiles of urban transit vehicles during a month in The
Hague (Netherlands), fully integrating GTFS records as a third data source
with AVL and AFC check-in and check-out information [3].

• Offline processing of automated train tracking and magnetic card-based fare
collection systems in San Francisco Bay Area (USA) [56].

• Estimation of OD matrices and path choice models for rail passengers of the
Chicago Transit Authority [19].

• Metro and bus OD matrices, speed profiles of vehicles and quality service
indicators, etc. for the Transantiago public transport system in Santiago de
Chile [57].

• “Driver assisted bus interviews”: if SC records are correctly linked with AVL
information, they can function as revealed preference surveys [58].

• Tracking SCs along metro and bus to identify transfer behavior in Shenzhen
(China), making use of bus AFC records that only show card id and sweeping
time [59].

Each run performed by a bus in a IPTS can be conceptualized as a path that
starts at a first stop, continues as the bus calls at midway stops, and ends at a final
one. From a spatiotemporal perspective, it can be regarded as a concatenation of
sections [60], where each of them encompasses the time between arrivals at two
(non-necessarily consecutive) stops; or as a series of calls at consecutive stops and
traveling the links between them [61]. In the latter case, dwelling time at each stop
depends on the number and characteristics (special needs and payment mode) of
alighting and boarding passengers, how long door operations take, etc. [62]; while
link travel times are affected by the available infrastructure, service management,
traffic flows, driver behavior, weather, etc. [63].

Several probability distributions are proposed in the existing literature to char-
acterize the variability of link travel times [61] such as shifted log-normal, log-
normal, normal [63], gamma, Weibull, Burr Type XII [64], generalized extreme
value [65], etc. Numerous real-life studies [66, 61, 67, 68] choose the former, which
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shows a probability density of zero when the value of the random variable falls be-
low a threshold (which would be the free-flow link travel time) and can adequately
fit asymmetric, positively skewed data; and that for many links is the function
that most likely describes how travel times are distributed.

A study conducted on GPS data from taxis during the morning peaks of 5 week-
days in Wuhan (China) [69] found that link travel times may be best represented
by log-normal, gamma or normal distributions (on 50 %, 30 %, and 20 % of the
analyzed links, respectively) and opted, to avoid computationally intractable cal-
culations, to assume that travel times along a path can be approximated by normal
distributions.

Regarding dwell times, the majority of works suggest that, due to their non-
negative nature and possible skewness, the log-normal distribution is likely to be
the best alternative (e.g., a study of 18 months of data from a bus route in New
Jersey, USA [70]; 6000 records from a one-day study in Changzhou, China; or an
analysis of 1-month data from public buses in Jinan, China [71]).

Other possible distributions are normal, used by commercial traffic micro-
simulation software such as Aimsun [72] or Vissim [73], and also chosen in some
scientific work (e.g., to characterize 1-day data from a bus stop in Chennai City,
India [74]); Wakeby, which outperformed the log-normal distribution in a study
with 3 months of data from 4 stops in Auckland, New Zealand [75]; or Erlang,
proposed in a study that analyzed 435 records from 12 bus stops in Shanghai,
China [76].

2.2 Transit destination estimation
SC tap-in and tap-out events can provide the time and location of the boarding

and subsequent alighting of a user from a public transport system, but the latter
is not available in many cases. The most prevalent methods to infer these missing
alighting events are based on deep learning, and trip chaining models.

Deep learning models, though complex, can take into account very comprehen-
sive factors, and can infer individual passengers trips. However, they require large
datasets and are more appropriate for entry-exit systems [77]. For instance, a work
with 120 days of data from the Beijing Metro Airport Line (China) [78] manages to
provide short-term predictions (15 min, 30 min, and 60 min) of passenger volumes.

On the other hand, trip chaining models also provide individual trips, and the
core algorithm is comparatively simple. They can be applied utilizing only AFC
data; though several improvements regarding alighting stop selection, and telling
activities and transfers between rides apart, rely on AVL information.

A trip chaining model [79] has been chosen for this work and is explained in
detail in section 3.5.1. Besides an estimation of where and when each ride ends,
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it also identifies which boardings and alightings respectively follow or precede an
activity (signaling its end or beginning), and which just delimit different rides of
the same trip.

Multiple studies have been carried out utilizing these models, being the aim
of many of them to improve its performance or applicability [47]. For instance,
a study with 2 months of data from Gatineau (Canada) transit authority [80]
proposes as a possible destination for the last trip of each day the stop of the
first boarding of that same day, or of the next one; and utilizes historical records
in those remaining cases that could not be matched to a likely alighting stop,
searching for similar regular rides (same initial stop, route, and around the same
time).

In a study based on data from 5 days from 4 bus routes in Guangzhou (China)
[52], scientists firstly had to preprocess the AFC data to deal with missing boarding
stop and route direction information. Then, they managed to detect when and
where the user got off for parts of the available data, inferring the alighting stop
by applying their trip chaining model to the first applicable of three levels of
selection criteria: later same day, use a transaction from the peak hour period
(more likely to reflect a regular pattern), or the closest to the terminal station.

A thesis from the University of Queensland [4] utilizes data from Brisbane
(Australia) to study the assumptions of these models and the sensibility of their
parameters; model trip purpose in a multi-modal system; and propose utilizing as
the destination of the last trip of the day, instead of directly the location of the
first boarding of said day, the call of its last ride closest to that first boarding.

Research from the University of Chile with 2 weeks of data from Transantiago
[12], the public transport system authority in Santiago (Chile), points out the un-
realistic user behavior that stems from always choosing as the alighting point of
the previous run the closest stop to the next boarding; and formulates an alter-
native criterion based on a minimizing a ‘generalized time’, which has the effect
of favoring choices that tend to maximize the time the user has for non-travel
related pursuits, but penalizing walking in favor of continuing on the bus to a
parameter-controlled degree.

The analysis of 6 days of data from the Chicago Transit Authority [81] led
scientists to suggest an improvement to the reasoning behind destination detection
in multi-modal systems. If a user starts the day riding a train, followed by two
different rides on the same bus route, and at last takes a train again; the ‘mirrored’
bus routes support utilizing the later train ride to infer the destination of the
former.

It can be difficult for the trip chaining model to tell apart ‘short activities’
bound to a location from transfers during a trip, especially if fare policies reward
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users that hasten their next ride, and frequencies and routing alternatives provide
them a greater opportunity to do so. These ‘short activities’ are not the same
as incidental or opportunistic actions, which the user would indifferently perform
during any transfer of a trip (for instance, buying a magazine at a station during
the trip home would be an incidental action, while hopping to the city center to
pick a parcel and quickly board another bus would be a ‘short activity’). Thus,
many studies propose ways to tackle this issue.

Some researchers opt to fine-tune the maximum span between tap-ins part of
the same trip, which they conclude is linked to the size of the IPTS: 90 min in a case
where the operator manages a fleet of over 1000 buses ([82], with 10 % of observed
tap-ins during a transfer being 72 min or longer apart); 30 min for Bardford and
Southport (United Kingdom, populations of 500 000 and 90 000, respectively).

In other cases, the distinction between transfer or activity is made considering
the gap from the alighting to the next boarding. This is the case in a study with
2 weeks of data from New York City Transit (USA), that sets a threshold of 18 min;
or in the aforementioned work in Santiago de Chile ([12], 30 min). The analysis of
data from 1 week period from Seoul (South Korea) shows that more than 80 % of
transfers occur in less than 10 min [83].

Some works use more complex criteria. For instance, in a paper that utilizes
bus data from a 1-week period from Seoul (South Korea) [46], if users did not
get on the earliest run they could have boarded of the route they finally chose for
their next ride of the day (allowing for a leeway of 5 min), or if they took the same
route as in their previous ride, the researchers conclude that an activity happened
in-between.

Many other examples [84, 13, 85] share the idea of establishing an array of
checks consecutive rides must pass in order to add up to a single trip, inferring
the existence of an intermediate activity otherwise. These conditions range from
requiring a minimum distance between the origin and destination of the tentative
trip; not entailing a geometrically overly circuitous path or, in finer detail, in a
series of rides that exceed in more than a given threshold the fastest travel time
possible through the IPTS at that moment; or complying with an upper limit to the
ratio between time spent transferring (from previous alighting to next boarding)
to total travel time.

Another problem of this model that has induced multiple studies is how to
infer a destination for the last ride of each day, or for those rides where there is a
next one, but it is not deemed adequate to infer the alighting of the previous (for
instance, it may be too far way). Two common answers for the former case are
to try to use the first boarding of the day, or the first ride of the following day
(both later refined as the closest stop to it of that latest untreated ride). For those
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rides still without an inferred alighting, research has focused on studying, with a
gradually increasing level of aggregation, the mobility patterns of the users, to find
the likely destinations of their travels.

For example, access and usage patterns (walking distances, frequency and con-
sistency of daily travels, customer behavior) have been calculated at residential
area level with one month of data from the Chicago Transit Authority (USA) [86].

A model to predict which locations people visit has been created from the
records of 626 public transport users during a period of 3 months in London
(United Kingdom) [87]. Its main findings are that, from a spatial perspective,
fixed probabilities can be assigned to the most frequent locations each user vis-
its; and when visiting other places, they mostly select popular places in the city;
while from a temporal point of view, the distributions of how long people stay
at their most and second most visited destinations present in the first case two
distinct peaks at 9 h and 14 h, and a mode of 9 h in the second, consistent with the
activities ‘home’, and ‘work’, respectively.

In another example, using card type (‘adult’, ‘elderly’, or ‘student’) and the
ability to access specific parts of the network without penalty (‘regular’, ‘interzone’,
or ‘express’) to cluster in 5 categories the records from 7118 SCs during 9 months
from Gatineau Transit Authority, scientists were able to create travel profiles for
each group [88].

It is also worth mentioning the analysis of a set of 5 typical weekdays of SC data
from Metro Transit in the Minneapolis/St. Paul metropolitan area (USA) [89]; in
which researchers built the training set for a classification decision tree utilizing
behavioral and heuristic rules, which can then be used to infer the purpose of other
trips according to their class.

A study based on the data from the weekdays for one month provided by the
Outaouais Transport Society [90] located the ‘anchor points’ of each individual
using ‘hot spot’ analysis, identifying concentration of events through spatial, tem-
poral, land utilization and IPTS features.

Other researchers opt for the widely utilized DBSCAN ([91], described in
3.5.3.2.1) to extract the spatial and temporal patterns from AFC data. For in-
stance, analyzing 4 months of multi-modal data from South East Queensland (Aus-
tralia) [42]; or 5 weekdays of SC records from the Beijing Transportation Research
Center (China) [92].

Finally, a probabilistic approach, based on a three-dimensional latent Dirichlet
allocation model, has been tested with SC data from 10 000 randomly selected
passengers with at least 20 observations during a 3-month period from Guangzhou
Metro (China) [93]. Besides capturing essential latent passenger behavior patterns,
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comparing the output of the model with the available tap-out information shows
an increased accuracy in destination estimation.

2.3 Research objective
To the best of the author’s knowledge, there is room for improvement in the

methodologies to apply in situations where AFC, AVL, and schedule data are avail-
able, but they are particularly challenging to use to full advantage: information
of varying reliability to differentiate runs within each of the 3 subsystems, but
no direct way to identify entries of different subsystems that describe the same
run; missing of wrong AVL entries, AFC with wrong state information, or fail-
ing to correctly identify the current stop; only the planned (and sometimes, the
detected) starts of the runs available from the scheduling subsystem, which may
be stipulated at a stop ‘downstream’ the initial terminus of the route; users not
requiring to check-out when leaving a vehicle; or unplanned runs that respond to
daily operational decisions and are not shown in the schedule of the system.

This work has been written hoping it will be useful to other researchers and
transportation engineers during their activities; such as auditing, obtaining transit
origin-destination matrices and travel patterns, user behavior modeling, or esti-
mation of vehicle load profiles. Specifically, this thesis aims to use these improved
definitions of vehicle runs and boarding events to, through the application of a trip
chaining model, including several of the improvements found in the existing liter-
ature, analyze the evolution of the mobility in a city through the year, obtaining
OD matrices for different day types, as well as frequent activity destination nodes,
defined by a spatial location and the time window when they start.
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Chapter 3

Methodology

This section begins specifying the sources and expected structure of the input
data. Then (page 22), it details the preprocessing steps that are applied to AVL,
AFC, and planning information; representing each visit of a bus to a stop as a single
event from each source. This is followed in page 35 by the improved definition of
the runs that the vehicles of the IPTS have carried out. After that (page 52),
AFC events are assigned to bus calls. Subsequently (page 53), the trips performed
by the passengers are inferred using the trip chaining model. Finally in page 69,
travelers movements are aggregated to analyze the evolution of public transport
demand and bus occupation. Figure 3.1 shows an overall summary of the whole
process.

3.1 Input data
Table 3.1 contains a summary of the required bus stops, AFC, AVL, travel times

lower bounds, schedule, and route-level data. It is worth noting that the ids of bus
stops, routes, and vehicles need to be consistent throughout all the subsystems.
The group columns in the AFC and AVL data should contain a unique identifier
for each set of values from other columns present in their respective subsystems
that can help to differentiate between runs of a vehicle.

Regarding the schedule, the methodology is designed to work even when it
is incomplete, or to detect unplanned runs. This section assumes that the three
columns with temporal information may be available in at least part of the dataset.

3.1.1 Bus stops
The location and name of the bus stops are needed. Ξ is defined as a set

composed by tuples ξi, which represent each of these entries, differentiated by a
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Table 3.1: Methodology input data

Column Type Description
id integer Bus stop id used throughout the IPTS.
location (real, real) Geographical coordinates.
name text Human-readable name.

(a) bus stops

Column Type Description
bus stop 0 integer Initial stop id.
bus stop 1 integer Final stop id.
free flow tt time Lower bound of the time a bus needs for this trip.

(b) travel times lower bounds

Column Type Description
bus stop integer Bus stop id.
route integer Route id.
vehicle integer Vehicle id.
instant timestamp Validation time.

group integer
UID for each set of values from other columns
that differentiate distinct visits of the vehicle.

(c) raw AFC

Column Type Description
bus stop integer Bus stop id.
route integer Route id.
vehicle integer Vehicle id.
stop duration time How long the bus stayed at the stop.
instant datetime Arrival time to the station.

group integer
UID for each set of values from other columns
that differentiate distinct visits of the vehicle.

(d) raw AVL

Column Type Description
line integer Line id.
vehicle integer Vehicle id.
bus stop integer Bus stop id.
planned start timestamp Planned bus departure time.
recorded arrival timestamp Detected bus arrival time.
recorded start timestamp Detected bus departure time.

(e) raw schedule

Column Type Description
route integer Route id.
unreliabl trm boolean True if undependable AFC and AVL at termini.
trp strt crrct time Mean span from AVL entries to trip start detection.
max hdwy time Uppr. bound of the interval separating consec. trips.
max trvl lg time Travel time between consecutive stops uppr. bnd.
min rnd trp time Lower bound of how long a roundtrip takes.

(f) route-level information
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Information input (page 19)

Preprocessing (page 22)

Vehicle runs definition (page 35)

Boarding groups imputation (page 52)

Trips inference (page 53)

Aggregate trip analysis (page 69)

Figure 3.1: Methodology outline

unique id mi (other variables not shown):

Ξ =
{
ξi = (mi, . . .)

}
i : unique row id i∈Z
m : bus stop id (bus stops info) m∈Z

(3.1)

3.1.2 Travel times lower bounds
AVL events that imply impossible vehicle movements are recognized and filtered

out with a table of lower bounds for the travel times between stops.

3.1.3 AFC
The methodology makes use of the ticketing system records: when did each

transaction take place; which vehicle was boarded at which stop; and, if available,
other non-temporal columns which can help to tell entries from different visits
apart.

3.1.4 AVL
A registry of the visits of the buses to the stops is needed, including fields that

provide temporal information, and that help differentiate the different runs of each
offered route.

3.1.5 Schedule
This methodology utilizes the planned beginnings of runs along each route,

characterized by which vehicle was going to be used, and where and when they
start. Two other timestamps may be recorded by the IPTS, corresponding to the
detected arrival and departure of the bus to the first stop of the new run.
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3.1.6 Route-level information
Several aspects that describe each route as a whole are also used (eq. 3.2):

• Whether the timestamps of AVL and AFC events at the termini, which are
more prone to suffer the problems described in the literature (page 12), are
particularly unreliable (y).

• If there is a systematic time deviation between the events recorded in the
scheduling and AVL subsystems, the earlier can be corrected by the appro-
priate constant value z. This may happen for instance if the AVL stores
when the doors of the buses close, while the scheduling subsystem registers
the moment vehicles cross certain geofence.

• An upper bound of the headway between runs during normal operations, s.

• An upper bound e of how long a route leg connecting consecutive stops may
last.

• A lower bound d of how much time a vehicle needs to come back to a stop
after traveling the whole route.

y : termini are unreliable boolean

z : run start detection lag time

s : headway upper bound time

e : leg upper bound time

d : round trip lower bound time

(3.2)

3.2 Preprocessing
This section specifies how to process raw AFC (page 22) and AVL (page 31)

datasets, synthesizing in a single entry the information that each provides regarding
a bus call.

In the case of AVL, lower travel time bounds are used to filter out unreliable
data, and remaining entries are classified in trajectories (page 32).

Finally, the analysis of the scheduling subsystem extracts the available arrival
and departure time information at the first stops of the planned runs, and time
buffers to match them to their corresponding detected runs (page 34).

3.2.1 AFC
It is assumed that there are no duplicate rows in the raw AFC information, since

due to the monetary repercussions of the data, ticketing information is managed
in a very careful way. SC and manual payment operations are atomic: they are
either completed successfully or do not happen.
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As is explained in detail in section 3.3.3, AFC information (which provides
one data point per validation) is used to deal with the limitations of the AVL
data (ideally, one datum per bus visit). Thus, the objective is to classify as a
single boarding event all the validations that happen each time a bus calls at a
stop. The first and last ticketing events of these “boarding groups” can be used
as an approximation of when the bus arrived and left the stop. To create them, a
three-part process is carried out:

• For each vehicle, route, and group; identify as a “stop group” each set of
consecutive AFC events (section 3.2.1.1).

• Some stop groups may contain payments or validations from unrelated events
(for example two tap-ins of the same stop group may happen too far apart
from each other, or the AVL data could have registered a call at another stop
in between them). Two criteria are used to identify these instances, splitting
stop groups in boarding groups (section 3.2.1.2).

• Gather the results in the table boarding groups (section 3.2.1.3).

The rest of this section details and exemplifies each of these steps.

3.2.1.1 Create stop groups
The AFC records pertaining each bus are analyzed, distinguishing stop groups

of consecutive entries referring to the same stop id.

This procedure relies on the fact that, as is represented on table 3.2, for a
set (in this case, the raw AFC entries linked to a single vehicle) where a relation
(‘happened before’) can be used to establish rankings over the whole set (column
‘rank over set’) and also over the different subsets defined by a partition (entries
with the same vehicle, route, group, and bus stop id ; column ‘rank over subset’), the
difference between the rank over the whole set and over a particular subset (column
‘classif. variable’) provides a distinct value for the members of that subset that
appear consecutively when ranking all elements of the whole set (the stop group,
shown in column ‘stop grp.’). The meaning of the rest of the columns of table 3.2
and the coloring of the cells will be explained as they are mentioned thorough the
rest of this description of the AFC preprocessing.

The process is explained as three consecutive tasks:

3.2.1.1.1 Partition by vehicle, rank over each set
AFC entries are grouped by vehicle, and then ranked chronologically, starting

from the superset Ω that contains all entries from the raw afc table:

Ω =
{
ωi = (ti, vi, ai, αi, bi, . . .)

}
(3.3)
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Table 3.2: Raw AFC preprocessing procedure. Vehicle, route, and group UID
remain constant through this example.
stop
id

rank
over set

-
rank over
subset

=
classif.
variable

stop
grp.

validation
instant

time
gap

below
upper limit

@ intermed.
AVL entry

board. grp.
change

board.
group id

. . .
A 1 1 0 A 03-24 12:31:23 <null> 1 987
B 2 1 1 B 03-24 12:33:56 <null> 1 988
C 3 1 2 03-24 12:36:14 <null> 1
C 4 2 2

C
03-24 12:36:16 00:00:02 X X* 0

989

D 5 1 4 D 03-24 12:37:24 <null> 1 990
E 6 1 5 03-24 12:39:44 <null> 1
E 7 2 5

E
03-24 12:45:22 00:05:38 X X* 0

991

F 8 1 7 F 03-24 12:47:37 <null> 1 992
G 9 1 8 03-24 13:48:51 <null> 1
G 10 2 8 03-24 13:50:59 00:02:08 X X* 0
G 11 3 8 G 03-24 13:53:04 00:02:05 X X* 0

993

G 12 4 8 03-24 14:11:11 00:18:07 X 7** 1
G 13 5 8 03-24 14:11:13 00:00:02 X X* 0

994

. . .
B 45 2 43 B 03-24 15:49:28 <null> 1 1004
C 46 3 43 C 03-24 15:51:33 <null> 1 1005
D 47 2 45 03-24 15:54:02 <null> 1
D 47 2 45 D 03-24 15:54:02 00:00:00 X X* 0

1006

D 48 3 45 03-24 23:05:49 08:11:47 7 1 1007
E 49 2 47 E 03-24 23:09:09 <null> 1 1008

. . .
*: No visit of this vehicle to a different bus stop was found in the AVL data between ti − ∆ti (ωi) and ti

**: The AVL data reveals that this vehicle visited bus stop K at 14:01:51

Each element ωi is a tuple that represents one row of raw afc:

i : unique row id i∈Z
t : validation instant full date (time)

v : vehicle id v ∈Z
a : route id a∈Z
b : bus stop id b∈Z
α : AFC group UID α∈Z

(3.4)

Then, a partition Σ of Ω is established, where each subset Xvi contains the
entries from raw afc of the bus vi:

Σ =

{
Xvi ⊂ Ω | Xvi =

{
(xvi)j

}
= {ωk | vk = vi}

}
(3.5)

Equation (3.6) defines a binary relation Θvi (‘happended after ’) over each Xvi

(also known as an endorelation):

Θvi =
{

((xvi)l , (xvi)m) | tl > tm

}
(3.6)
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Θvi creates a total preorder over Xvi , allowing to assign a rank (γvi)n to each
of its elements (some may be tied with each other). For each Xvi there is a set Γvi
of ranks, as many as distinct timestamps:

Γvi =
{

(γvi)j

}
=
[
1 . . . |Γvi|

]
(3.7)

Finally, eq. (3.8) establishes the functions βvi that link each element (xvi)j of
each subset Xvi to its rank within it. Thus, column ‘rank over set’ of table 3.2
contains the rank βvi (ωi) of each raw afc entry within the subset of all the rows
related to vehicle vi.

βvi : Xvi → Γvi ; ∀ (xvi)j , (xvi)k :
βvi

(
(xvi)j

)
> βvi

(
(xvi)k

)
⇔ (xvi)j Θvi (xvi)k

βvi

(
(xvi)j

)
< βvi

(
(xvi)k

)
⇔ (xvi)k Θvi (xvi)j

βvi

(
(xvi)j

)
= βvi

(
(xvi)k

)
⇔ tj = tk

(3.8)

3.2.1.1.2 Partition by vehicle, route, group, and bus stop; rank over
each subset

AFC entries are classified by vehicle, route, group, and bus stop; and ranked
chronologically. These four columns of the raw afc table remain constant during all
the validations of a particular boarding event. The process is analogous to what has
already been described in 3.2.1.1.1. The family Φ partitionsΩ in several Yvi,ai,ui,αi,bi
subsets. Each one contains the entries from raw afc that show in their columns
vehicle, route, group, and bus stop the values defined by the tuple (vi, ai, αi, bi):

Φ =

{
Yvi,ai,αi,bi ⊂ Xvi

∣∣∣ Yvi,ai,αi,bi =
{

(yvi,ai,αi,bi)j
}

= {(xvi)k | ak = ai ∧ αk = αi ∧ bk = bi}

}
(3.9)

The binary relation Λvi,ai,αi,bi (again, ‘happened after ’) is characterized over
each Yvi,ai,αi,bi subset in eq. (3.10):

Λvi,ai,αi,bi =
{(

(yvi,ai,αi,bi)l , (yvi,ai,αi,bi)m
)
| tl > tm

}
(3.10)

Each element of Yvi,ai,αi,bi can be mapped to a rank value (δvi,ai,αi,bi)n thanks to
the total preorder established by Λvi,ai,αi,bi over it. The set ∆vi,ai,αi,bi of all ranks
of the elements of subset Yvi,ai,αi,bi within it is:

∆vi,ai,αi,bi =
{

(δvi,ai,αi,bi)j

}
=
[
1 . . . |∆vi,ai,αi,bi |

]
(3.11)
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Lastly, (3.12) shows how functions εvi,ai,αi,bi link each element (yvi,ai,αi,bi)j of
each subset Yvi,ai,αi,bi to its rank within it. Thus, column ‘rank over subset’ of
table 3.2 contains the rank εvi,ai,αi,bi (ωi) of each raw afc entry within the subset
of all the rows that share its vehicle, route, group, and bus stop values.

εvi,ai,αi,bi : Yvi,ai,αi,bi → ∆vi,ai,αi,bi ;
∀
(
(yvi,ai,αi,bi)j , (yvi,ai,αi,bi)k

)
:

εvi,ai,αi,bi
(
(yvi,ai,αi,bi)j

)
> εvi,ai,αi,bi

(
(yvi,ai,αi,bi)k

)
⇔ (yvi,ai,αi,bi)j Λvi,ai,αi,bi (yvi,ai,αi,bi)k

εvi,ai,αi,bi
(
(yvi,ai,αi,bi)j

)
< εvi,ai,αi,bi

(
(yvi,ai,αi,bi)k

)
⇔ (yvi,ai,αi,bi)k Λvi,ai,αi,bi (yvi,ai,αi,bi)j

εvi,ai,αi,bi
(
(yvi,ai,αi,bi)j

)
= εvi,ai,αi,bi

(
(yvi,ai,αi,bi)k

)
⇔ tj = tk

(3.12)

3.2.1.1.3 Create stop groups
The difference between βvi (ωi) and εvi,ai,αi,bi (ωi) from eqs. (3.8) and (3.12)

returns the ‘classif. parameter’ of element ωi (ζ (ωi), shown in table 3.2). This
value, if one ranks chronologically all entries of set Xvi (the ones related to bus vi),
remains the same and is unique for each group of rows from its subset Yvi,ai,αi,bi
(those that report bus, line, group, and bus stop values of vi, ai, αi, and bi) that
appear consecutively.

ζ (ωi) = βvi (ωi)− εvi,ai,αi,bi (ωi) ;
∀ (ωi, ωj) :

vi = vj ∧ ai = aj ∧ αi = αj ∧ bi = bj

∧ ζ (ωi) = ζ (ωj)⇐⇒ ωi and ωj belong to the same stop group.

Otherwise ⇐⇒ ωi and ωj belong to different stop groups.

(3.13)

The column ‘stop grp.’ of table 3.2 shows the outcome of this first approxima-
tion to the objective of identifying the boarding groups ; displaying a single letter
for all consecutive raw avl entries with the same vi, ai,αi, bi, and ζ (ωi) values.
The coloring of columns ‘stop id,’ ‘classif. variable,’ and ‘stop group’ illustrates
the classification process and its result. For instance, rows pertaining to calls at
bus stop D are gathered in two stop groups, differentiated by ζ (ωi) values of 2
and 45 .

A way to verify how this first process has performed is to study the ‘time gap’
(table 3.2) between consecutive rows of the same stop group, ∆ ti (eq. 3.14), noting
that if ωi−1 does not belong to Yvi,ai,αi,bi , εvi,ai,αi,bi is not defined, so neither is ∆ ti:

∆ti = ti − ti−1 if εvi,ai,αi,bi (ωi−1) = εvi,ai,αi,bi (ωi)− 1 (3.14)
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As this gap increases, it is more likely that the latter entry took place during a
different visit of the bus (with no intermediate entries due to no validations being
recorded until the bus came back). The next section studies this situation.

3.2.1.2 Split stop groups in boarding groups
The question regarding excessive time gaps between some of the entries that

are part of the same stop group, is addressed with the following assumptions:

• In some cities, it is not uncommon for the driver to allow passengers to
wait for the start of a run inside the bus, especially if the weather is bad.
However, if the separation between two consecutive entries of the same stop
group is greater than the maximum headway s (eq. 3.2), their group is split
between them. This happens in the next to last row of table 3.2: the time
elapsed since the previous validation is extremely long (represented with the
symbol ‘7’ in column ‘below upper limit’), so one can be certain that this
row is describing a different boarding event and the group is split, as has been
portrayed with the change in color from orange to red . An adequate value
for this parameter depends on the particularities of the case under analysis.

• For all other pairs of consecutive entries of the same stop group, if table
avl coalesced (defined in section 3.2.2.5 during the description of the pre-
processing of the AVL data) shows that the bus visited another stop between
their timestamps, they belong to different boarding groups. An example of
this situation can be found in the row with ‘rank over set’ = 12 of table 3.2,
where the 5-entries stop group (G, 8) it is part of is split in two boarding

groups ( 993 and 994 ); because, as the symbol 7 of column ‘@ AVL entry’
denotes, between its timestamp (14:11:11) and the one from the previous
entry (13:53:04) a lookup through the raw AVL data (not represented) has
concluded that the bus called at bus stop K at 14:01:51.

These premises are utilized to define η, (eq. (3.15), column ‘board. grp. change’
of table 3.2), a value that equals 1 if a row is the first of a boarding group, and 0
in other cases. σj represents an entry of table avl coalesced (section 3.2.2.5), while
hj and pj are its vehicle id and arrival time, respectively:

η (ωi) =


0 if ∆ti ≤ s

∧ @σj
∣∣∣ hj = vi

∧ ti −∆ti ≤ pj ≤ ti

1 otherwise

(3.15)

An index θ is then defined over Ω, sorting its rows by vehicle, chronological rank
within the entries of their vehicle (ascending), bus stop (ascending), and boarding
group change (descending). The relative ordering of entries ωi, ωj with vi = vj,
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βvi (ωi) = βvj (ωj), bi = bj, and η (ωi) = η (ωj) = 0 is inconsequential. When
ordered with this index, the elements of Ω appear consecutively if they are part
of a boarding group, with a value of group change of 1 for the first entry and 0 for
the others up until its end. In other words, group change equals one when a stop
group commences (since a boarding group also begins) or when a stop group is split
due to one of the two previous criteria (section 3.2.1.2).

θ : Ω →
{
1 . . . |Ω|

}
;

θ (ωi) > θ (ωj)⇐⇒ vi > vj
∨ vi = vj ∧ βvi (ωi) > βvj (ωj)
∨ vi = vj ∧ βvi (ωi) = βvj (ωj) ∧ bi > bj
∨ vi = vj ∧ βvi (ωi) = βvj (ωj) ∧ bi = bj

∧ η (ωi) ≤ η (ωj)

(3.16)

The boarding group id, o (ωi), of each row ωi is the sum total of all η (ωj) values
from rows ωj such that θ (ωj) ≤ θ (ωi):

o (ωi) =
∑

j|θ(ωj)≤θ(ωi)

η (ωj) (3.17)

Going back to Table 3.2, the content and colors of the cells of columns ‘time
gap,’ ‘below upper limit,’ ‘@ intermediate AVL entry,’ ‘boarding group change,’
and ‘boarding group id’ have been chosen to describe how stop groups are split in
boarding groups:

• If an entry is the first of its stop group (‘time gap’ = <null>), a new boarding
group should also begin (rows with ‘rank over set’ ∈ {1, 2, 3, 5, 6, 8, 9, 45, 46,
47, 49}). ‘group change’ equals 1, and there is no need to check columns
‘below upper limit’ or ‘@ intermediate AVL entry.’ For each of these rows, the
columns involved in the identification of their stop group and boarding group
are filled with the same color, different from their respective predecessors.

• If the lapse between two successive validations of the same stop group is too
long, they are the end and beginning of two different boarding groups. The
latter row shows the symbol 7 at ‘below upper limit,’ while its column ‘@ in-
termediate AVL entry’ is not needed, and ‘group change’ is 1. It also depicts
its whole decision process, utilizing one color for ‘stop id,’ ‘grouping param-
eter,’ and ‘stop group’; and another for ‘below upper limit’ and ‘boarding
group id,’ showing how each stop group is split in boarding groups.

• For the remaining pairs of consecutive rows that share the same stop group,
the symbol of column ‘@ intermediate AVL entry’ indicates whether they
belong to the same boarding group:
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Table 3.3: AFC pre-processing output: boarding groups
Column Type Description

id integer Id of the boarding group.
bus stop integer Bus stop id.
vehicle integer Vehicle id.
route integer Route id.
group integer AFC group UID.
boarding range time range [earliest validation, latest validat.]

7: The vehicle related to both entries has moved to another stop (and
eventually back) at a time between their timestamps, so they belong
to different boarding groups. Again, ‘group change’ = 1, and colors
illustrate the reasoning behind this decision: one color for ‘stop group’
and the first boarding group, and a different one for the second boarding
group created by the split.

X: There is no evidence that the vehicle has moved between the timestamps
of both entries, so it is concluded that they belong to the same boarding
group: ‘group change’ = 0. The columns of the latter row that decide
its stop group and boarding group show the same colors as in the former.

Alternatively, fig. 3.2 illustrates how stop groups are separated in boarding
groups with a flow diagram.

Finally, for each boarding group ox, the instants of its first ϑ (ox) and last ι (ox)
validations are computed, as well as how long it lasted κ (ox):

ϑ (ox) = min
({
ti | o (ωi) = ox

})
ι (ox) = max

({
ti | o (ωi) = ox

})
κ (ox) = ι (ox)− ϑ (ox)

(3.18)

Boarding groups that last longer than the maximum headway for their route
(s, eq. 3.2) are considered to originate from unreliable data, and are not utilized
to infer missing visits to stops not recorded by the AVL.

3.2.1.3 Output
The results of the AFC pre-processing are gathered in the table boarding groups,

structured as shown in table 3.3, while fig. 3.3 depicts an example transition from
15 individual ticketing events to 4 encompassing boarding groups.
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For each ωi ∈ Ω, ordered by θ (ωi) ascending

Is ωi the
first row of a stop group(

@∆ti
)
?

Is the time gap
with the previous validation
from its boarding group too

long?
(
∆ti > s

)

no

Is there any
record of this bus calling at
a different stop between this
entry and the previous one

of its stop group?

no

ωi starts
a new group

yes

yes

yes

ωi is part of the stop group of the previous entry

no

η (ωi) = 0

o (ωi) =
∑

j|θ(ωj)≤θ(ωi)

η (ωj) η (ωi) = 1

End for

Figure 3.2: Splitting stop groups in boarding groups
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16:02 16:03 16:04 16:05 16:06 16:07 16:08 16:09 16:10 16:11

AFC data sample from one vehicle

Stop A

boarding group Stop B

ticketing event Stop C

Stop D

Figure 3.3: Transition from individual ticketing events to encompassing boarding
groups

3.2.2 AVL
The procedures detailed in this section aim to characterize the movement of

the vehicles with a single record for each stop of each run. Also, after unfeasible
entries are identified and removed, the remaining ones are classified in trajectories.

3.2.2.1 Filter out duplicate rows
The first action is to identify and filter out duplicate entries, creating the

multiset Θ of all raw avl rows, defined over the set Λ of distinct AVL records λi;
and the multiplicity function ζ that returns how many times each λi appears in
the raw AVL dataset:

Θ = 〈Λ, ζ〉 =
{
ϑi = λi

ζ(λi)
}

Λ=
{
λi = (ti, vi, ai, bi, βi, ϑi)

}
ζ : Λ→ Z≥1

(3.19)

Each λi is a tuple with the fields described in eq. (3.20):

i : unique row id i∈Z
t : instant full date (time)

v : vehicle id v ∈Z
a : route id a∈Z
b : bus stop id b∈Z
β : AVL group id β ∈Z
ϑ : stop duration time

(3.20)

3.2.2.2 Remove rows not linked to a real bus stop
It is assumed that entries with a bus stop id not found in set Ξ (defined in

eq. 3.1) are caused by exceptional events that do not happen consistently as the
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buses travel their routes, and are not linked to a position change. Equation (3.21)
establishes Ψ , a subset of Λ after these have been filtered out:

Ψ = {ψi = λj | ∃ξk : bj = mk} (3.21)

3.2.2.3 Identify trajectories
The next step is to utilize the columns from the AVL data to differentiate

between the runs that constitute the public transportation supply. To this end, in
this work a ‘trajectory’ is defined as consecutive AVL records that share the same
vehicle, route, and group. The relation R maps each element of Ψ with distinct
values of h, f , and β to a different trajectory id (r):

R (ψi) = ri ∈ Z; ∀ (ψi, ψj) :
ri = rj ⇐⇒ ai = aj ∧ vi = vj ∧ βi = βj ⇐⇒ ψi and ψj are part

of the same trajectory.

ri 6= rj ⇐⇒ ai 6= aj ∨ vi 6= vj ∨ βi 6= βj ⇐⇒ ψi and ψj are part

of different trajectories.

(3.22)

3.2.2.4 Determine visit groups
Table 3.4 depicts how each trajectory is examined to tell apart those occasions

when more than one row is added to the dataset for the same call at a stop
(for example, when the doors are re-opened to let a late passenger in the bus).
The procedure to identify these ‘visit groups ’ (calculate each entry’s ranks over its
trajectory, and among those records with the same trajectory and stop values; and
then evaluate each element’s classification variable as their subtraction) is similar
to the one that has already been described and implemented in page 23 to find
stop groups in the AFC data. Its result is a relation M (eq. (3.23)) which assigns
the same visit group id (µi) to consecutive entries of a trajectory that happen in
the same bus stop:

M (ψi) = µi ∈ Z; ∀ (ψi, ψj) :{
µi = µj ⇐⇒ ψi and ψj are part of the same visit group.

µi 6= µj ⇐⇒ ψi and ψj are part of different visit groups.

(3.23)

3.2.2.5 Merge entries of each visit group
The set Σ summarizes the information pertaining the visit groups. Its elements

contain the fields shown in eq. (3.24), and are stored in the table avl coalesced
(table 3.6b):

Σ =
{
σµi = (rµi , bµi , nµi , pµi)

}
(3.24)
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Table 3.4: How entries of a trajectory linked to a single visit are identified

Stop
Chronological rank

over trajectory
-

Chronological rank over
(trajectory, stop)

=
Visit group
number

Stop

A 1 - 1 = 0 A
B 2 - 1 = 1 B
C 3 - 1 = 2
C 4 - 2 = 2

C

D 5 - 1 = 4 D
E 6 - 1 = 5 E
C 7 - 3 = 4 C
F 8 - 1 = 7 F

. . .

Each of its elements σµi is a tuple with the characteristics of the visit group µi
(table 3.5 outlines this process):

• Its unique visit group id (µi).

• Its trajectory rµi : The characteristics that define it (route, vehicle, and group
UID) are referred to as rµi , vµi , and βµi .

• Its bus stop bµi .

• The moment nµi the bus arrived at the stop, defined as the minimum instant
(w) from all elements of Ψ that are part of this visit group:

nµi = min
(
{wj | ψj : M (ψj) = µi}

)
(3.25)

• The instant pµi when the bus left the stop defined as the maximum of these
two values:

– (pµi)1: The maximum of the addition of the instant (wj) and the dura-
tion (ϑj) for those elements ψj of the visit group where stop duration is
defined.

– (pµi)2: The maximum of the instant (wj) for those elements ψk of the
visit group that do not report a stop duration value (pk = <null>).

(pµi)1 = max
(
{wj + ϑj | ψj : M (ψj) = µi ∧ ∃pj}

)
(pµi)2 = max

(
{wk | ψk : M (ψk) = µi ∧ @pj}

)
pµi = max

(
(pµi)1 , (pµi)2

) (3.26)
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Table 3.5: Treatment of multiple AVL entries from the same visit to a stop

instant duration stop
. . .

12:50:29 0 151

12:51:11 19 135

12:51:18 198 135

12:51:47 <null> 135
12:55:07 14 134

. . .

(a) avl

arrival departure stop
. . .

12:50:29 12:50:29 151

12:51:11 12:54:36 135
12:55:07 12:55:21 134

. . .

(b) avl coalesced

3.2.2.6 Identify and remove unfeasible or unrealistic trajectory legs
Regarding each trajectory as a series of legs between its visit groups, those

shorter than the free flow time between the involved stops are not possible. Two
situations arise:

• Moving backwards the departure time in the former stop, thus increasing the
leg length, solves the issue. This amounts to assuming that the information
regarding how long the bus stayed in the initial stop of the leg is not reliable.

• Not even setting the dwell time in the former stop to zero leaves enough
time to travel to the latter. In this case, both visit groups are considered as
unreliable and removed.

Also, those legs longer than the upper bound e (eq. 3.2) for their route are
used to split their trajectories. Thus, AVL entries that present the same vehicle,
route, and group, but separated by a leg too long to have occurred during a single
run, are considered separately.

3.2.2.7 Output
Table 3.6 shows how the outcome of AVL preprocessing is stored in tables

trajectories and avl coalesced.

3.2.3 Schedule
Firstly, the events recorded in the scheduling subsystem should be corrected

by the appropriate value z (eq. 3.2), if defined for the corresponding route.

Then, a time range n is created for each planned run, encompassing the arrival
and departure times that can be deducted from the most specific available columns,
as long as they provide coherent information (e.g., departures cannot happen before
arrivals). Another time buffer q is also created around its planned start time tp
, with a semi-width equal to the maximum headway s (eq. 3.2). It is used in
section 3.3.5 to match each entry of the schedule to the run that materializes it.
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Table 3.6: AVL preprocessing output

Column Type Description
id integer Id of the visit.
route integer Route id.
vehicle integer Vehicle id.
group integer AVL group UID.
stops sequence integer Stops seq. id (described later).
trajectory range time range [traject. start, traject. end]

(a) trajectories

Column Type Description
id integer Id of the visit.
bus stop integer Bus stop id.
ord wthin trj integer Chronological order within traject.
trajectory integer Trajectory id.
avl range time range [arrival, departure]

(b) avl coalesced

Equations (3.27) and (3.28) respectively enunciate the parameter and variables,
and detail the conditions just described; while table 3.7 shows the structure of the
planning information after preprocessing.

tp : planned departure time full date (time)

td : recorded departure time full date (time)

ta : recorded arrival time full date (time)

n : visit range from scheduling subsystem
[
arrival time,

departure time
]

q : run search buffer
[
lower time bound,

upper time bound
]

(3.27)

n=


[ta, td] if ta ≤ td

[tp, td] if (ta > td ∨ @ta) ∧ tp ≤ td

[td, td] if (ta > td ∨ @ta) ∧ tp > td

<null> otherwise

q= [td − s, td + s]

(3.28)

3.3 Vehicle runs definition
This section aims to improve the representation of the runs that occurred in the

IPTS, which is hindered by the problems described in page 12. Besides missing,
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Table 3.7: raw schedule preprocessing output: schedule
Column Type Description

id integer Planned start id.
bus stop integer Stop id.
vehicle integer Vehicle id.
run srch buff t. range [t. min, t. max] to match to a run.
sched range t. range [arrival, depart.] from the sched. subsystem.

duplicate, o erroneous entries, events referring to the same run may have been
mistakenly labeled as belonging to different ones.

The outline of this process is: study trajectories according to their underlying
sequences of bus stops, and these as fragments of the subroutes offered by the
IPTS (page 36); choose travel and dwell times models for each route (page 39);
build tables that describe when each bus run visits each stop, combining AVL and
AFC entries (page 39); detect and treat instances where the id of a vehicle changes
mid-run (page 45); link runs to planned starts, making use of the extra information
to improve their definition (page 48); and filter out possible runs not supported
by enough IPTS evidence (page 49).

3.3.1 Analyze AVL trajectories as sequences and fragments
of routes

AVL trajectories are analyzed as just ordered sequences of stops, which are
the building blocks to assemble the full runs that have occurred, defined by their
“template sequences.” Table 3.8 illustrates this process, and table 3.9 gathers the
outputs of its three steps:

3.3.1.1 Identify distinct AVL trajectory sequences
An id is assigned to each unique stops sequence extracted from the trajectories

of each route, as shown in tables 3.8a, 3.8b and 3.9a. The field stops sequence of
the trajectories table (page 35) signifies this relation.

3.3.1.2 Single out template sequences
This methodology assumes that each route can be split in a series of “sub-

routes” that represent the runs that compose it (for instance, the runs back and
forth between the termini of a linear route; or a single run in the case of circu-
lar routes). Each subroute is characterized by its “template sequence” of stops
table 3.8c) that a typical, completely carried out, perfectly recorded run of that
subroute must follow. They can be known beforehand, or ascertained through the
examination of the sequences of stops found during their previous step, and their
relative frequencies, since the templates are very likely to be among those found
most often. They are stored as illustrated in table 3.9b.
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Table 3.8: Analysis of the trajectories of a route for one of its template sequences

id stops
. . .

123 A B C J E F A
. . .

4567 A B C J E F A
. . .

18460 A B C J E F A
. . .

(a) trajectories

A

B

C

J
E

F

A

1st fragment

2nd fragment

3rd fragment

(b) sequence 124

A
B

C
D

E

F

(c) templ. seq.

16365︸ ︷︷ ︸
⇓

Ord. within sequence Ord. within template
(stop number)

Length Sub-seq. id Seq. id Template

. . .
1 1 3 1 124 16365
5 4 2 2 124 16365
7 1 1 3 124 16365

. . .

(d) fragments

The elements of each of the template sequences of each route can be identified
by their ordinal (the “stop number”).

3.3.1.3 Break down sequences in template fragments
As depicted in tables 3.8b to 3.8d, the sequences followed by the trajectories

can be split in:

• Continuous fragments of their route’s template sequences (i.e., no elements
missing between their extremes), that represent parts of runs that the AVL
system managed to record correctly. They allow to view each trajectory
found in the AVL data as a series of segments that fit in its template. Ta-
ble 3.9c how they are stored.

• Incompatible portions (caused by erroneous entries in the AVL subsystem;
the vehicle carrying out other subroute; or incorrect operations (e.g., not
updating the on-board computer to reflect that the bus is following a different
route).
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Table 3.9: AVL sequences analysis output

Column Type Description
id integer Id of the sequence.
route integer Line id.
stops sequence tuple of int Sequence of stop ids.

(a) stops sequences

Column Type Description
id integer Sequence id.
n stops integer Number of stops (materialized for convenience).
name text Human-friendly name.

(b) template sequences

Column Type Description
ord within seq int Event ordinal within its sequence
stop number int Event ordinal within the template.
fragment int fragment id within its sequence.
sequence int sequence id.
template int template sequence id.

(c) fragments
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3.3.2 Choose link travel times and dwell times distribution
models

These models are utilized as part of the criteria for identifying AVL fragments
or boarding groups that are part of the same run, to infer missing stop information,
and to filter out erroneous recorded run starting times. For each route, link travel
times between consecutive stops, and dwell times for all of them but the last one,
are needed.

They should consider known factors that modify travel and dwell times in the
system under study, such as the time, whether it is a working day or not, or
seasonal mobility changes.

3.3.3 Assemble vehicle runs
Runs are constructed starting from a “seed” that is completed backwards and

forward in time, looking for AVL segments and boarding groups events part of the
same subroute and with the same vehicle id as the seed that, according to the
instant of the furthermost known data point in the current growth direction and
the probability distributions of the duration of unknown intermediate legs and
calls at stops, fall within their minimum-amplitude prediction interval of
probability g.

‘g’ is a parameter of this methodology (eq. 3.29). The closer it is to one,
the wider and more computer-intensive the search needs to be, and the risk of
considering invalid or unrelated events as part of the current run increases. If set
too low however, events that really were part of the run that is being characterized
may be ignored.

g : probability of the prediction intervals g ∈ [0, 1] (3.29)

For each subroute and direction (backwards or forward in time), the seeds
are selected following two consecutive iterative process. Firstly, by looping over
the AVL fragments with a length of at least c, from longer to shorter. ‘c’ is
the parameter ‘minimum AVL seed length ’ (eq. 3.30). This decision stems
from the hypothesis that longer AVL trajectory fragments are more likely
to be reliable, while shorter ones may be caused by clock, GPS, or operation
errors. After that, those boarding groups not filtered out are also used as seeds.
The algorithm skips those seeds contained in the tables of events to be ignored
(explained in page 40).

cz : min. AVL seed length c ∈ N− {0} (3.30)

Once a seed has been established, it “grows” both back and forward in time,
following a procedure that bears similarity to dead reckoning: starting from the
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furthest known point in a direction (the initial fix), minimum-amplitude prediction
intervals of probability g for the departures or arrivals (if traversing backwards or
forward, respectively) of the calls at consecutively farther away stops are computed
as the sum of the involved travel and dwell times from intermediate stops, until one
of following conditions is reached (checked in this order) and a new fix is selected:

• The prediction interval intersects the avl range of at least a record from
table avl coalesced. In this case, the closest to the most likely arrival and
departure times range is chosen, and a portion of its encompassing fragment
is identified and added to growing new run, from said record up to what
comes first between:

– The next-to-last or second stop of the route, while growing forward or
backwards, respectively.

– The end of its fragment in the current growth direction.

This distinction aims to on one hand to save computer time, by adding in a
single step several calls of the vehicle; and it also makes sure that a feasibility
range is always calculated at the termini. Besides being used as part of the
current process to filter out unrealistic IPTS entries at those stops; they are
also employed to decide the best way to include the information available
from the schedule.

• The prediction interval intersects the boarding range of at least a compatible
boarding group. The closest to the most likely arrival and departure times
range is chosen.

• If the stop under scrutiny is a terminus, the most likely arrival (or departure,
if growing the run backwards) and dwell time are chosen.

In the first or second conditions, “compatible” means that it refers to the same
route and vehicle as the seed; and is not in the table of events to be ignored (ex-
plained in page 40). Also, if more than one possibility appears, the most likely one
according to the utilized link travel time and dwell time distributions is selected.

In all three instances, once the new fix has been selected, the set of most likely
values for link travel times and dwell times is used to infer the arrival and departure
times at missing intermediate stops.

After reaching a terminus, growth in the current direction ends. For those
routes where data at the termini have been deemed particularly unreliable (y =
true, eq. 3.2), if the call at the closest stop is backed by AVL or AFC data, arrival
and departure times are always inferred.

Once a seed has grown to encompass a full run, as described by its template;
a buffer encompassing it is created, extending backwards and forwards in time
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from each call’s respective arrival and departure, adding the roundtrip time lower
bound for the corresponding route (d, eq. 3.2). AVL segments and boarding groups
that overlap it are added to the tables of elements to ignore during the reminder
of the run assembly process. This procedure serves two purposes: to enforce that
no event is utilized as part of more than one run; and that vehicles follow feasible
itineraries (enough time passes before they return to the same stop, as part of
another run).

Figure 3.4 displays a flowchart of the first part of this process, which utilizes
segments of AVL data as seeds. The second part is completely analogous, but for
the fact that only the remaining AFC information is utilized.

Figure 3.5 shows a complete example. Its main steps are:

1 The initial seed is an AVL segment that goes from the arrival at :20:13 at
AB, to the departure at :22:41 from AE.

2 It grows backwards, utilizing the search range [:18:51, :19:53] at the terminus
AA. It has been defined setting the arrival at AB as a fixed point, and
calculating the prediction interval of probability g for the presence of the
vehicle at AA.

• A single compatible overlapping AVL event is found (3a), with arrival and
departure times :18:31 and :18:55, respectively:

– If the readings at the termini for this route have been deemed as reliable
as in other stops (y = false), 3a is accepted as the call of the bus at the
initial terminus.

– Otherwise, since the fix for the search is in the stop next to the terminus
(3c ), the inferred visit 3b , from :19:15 to :19:46, is preferred.

Since this is one of the route’s terminus, the growth backwards ends.

4 Growing forward, the search range to be used at AF is computed, utilizing
as a fixed reference the departure time from AE (:22:41). The result is
the prediction interval of probability g of the presence of the bus at AF:
[:23:04, :24:05], which intersects no compatible entry from the AVL or AFC
subsystems.

5 The script keeps searching forward. At AG, another prediction interval of
probability g is created for the arrival of the bus. This time, the sum of
the individual distributions of travel times from AE to AF, and from AF
to AG; and of the dwell time at AF will be needed. The ensuing range
([:23:17, :24:57]) overlaps with a boarding group ([:23:55, :23:59]). Its earliest
and latest ticketing events are used as an approximation of the arrival and
departure at AG.
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For each AVL segment of sufficient
length, not in list of elements to

ignore, ordered by length, descending

Initialize a new run with the fragment as seed

For each direction, in
(forward, backwards)

Try to set the stop under analysis as the
first unknown one in the current direction

Has the
terminus already

been reached?

Change
direction

yes

Build a prediction
interval for arrival and
departure times at the

stop under analysis

no

Is there
any compatible
AVL fragment?

Append
the closest
match to

the new run

yes

Set intermediate
unknown arrivals
and departures
to their most
likely values

Is there any
compatible boarding

group?

no

yes

Try to advance stop under analysis one position
no

Has the
terminus been

reached?

no

Set unknown arrivals and depar-
tures to their most likely values

yes

End for each direction

Add the new run to the database

Add segments and boarding
groups in buffer around new run

to the elements to ignore list

End for each
AVL segment

Figure 3.4: Vehicle run inference process from AVL seeds
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Figure 3.5: Vehicle runs inference process

6 Considering now the gap of 1m14s between the bus leaving AE at :22:41,
and arriving at AG at :23:55; the most likely combination of the travel times
from AE to AF and from AF to AG; and of dwell time at AF that add up
to it is, according to their respective probability distributions, 45s, 26s, and
3s; respectively. Thus, arrival and departure times at AF are set to [:23:26,
:23:29].

7 Again, the search takes place at stop H, finding a compatible AVL entry.
This one, and other three from the same fragment are added to the run.

8 Several intermediate stops had to be inferred between the departure from
AK and the arrival and AR. Missing arrival and departure times are set to
their most probable values, according to the 7 travel time and 6 dwell time
distributions involved.

9 Finally, the other terminus of the route is reached. Since no compatible AVL
or AFC is found, the arrival at this stop; as well as arrivals and departures
at others downstream the last known departure, if any; are set to their mean
values.

Table 3.10 shows the output generated once all AVL and AFC data have been
processed, materialized as 3 tables:

• runs, which synthesizes each of the vehicle runs that have been detected by
this methodology.
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Table 3.10: Vehicle runs definition

Column Type Description
vehicle int Vehicle id.
id int Run id.
merged run int Encompassing run id (if appl.).
template sequence int Template sequence id.
scheduled beginning int Scheduled beginning id (if appl.).
run range time range [1st stop depart., last stop arriv.]
merged runs tuple of int Encompassed runs ids (if appl.)

(a) runs

Column Type Description
stop number int Ordinal of stop in template.
id int Id of the visit.
run int Run the visit is part of.
avl coalesced id int avl coalesced source (if appl.).
boarding group id int boarding group id source (if appl.).
visit range time range [arrival, departure]

(b) visits to stops

Column Type Description
origin int Ordinal of the last stop with IPTS data.
stop number int Ordinal of the stop under scrutiny.
run int Run the visit is part of.
search range time range Bounds of the prediction interval.

(c) search ranges
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• visits to stops, that characterizes each run.

• search ranges, where the prediction intervals utilized during the creation of
the runs are saved.

3.3.4 (Optional) detect and merge instances where a vehi-
cle changed its id mid-run

Due to the way operations are handled by the IPTS, some vehicles may change
their id mid-run, as it happens in the case study analyzed in this paper. They can
be detected in this methodology as two extremely close in time “former” and “lat-
ter” runs, where a single vehicle could have provided all non-inferred visits to stops.
This section follows the nomenclature described in (3.31).

φ, λ : formr, lattr run ids φ, λ ∈ Z
C : “should be

merged” relation
C =

{
(φ, λ) | φ, λ are
the same run

}
T : instants possible full dates (time)

R : time ranges R=
{

(ρ[0], ρ[1]) ∈ T 2

| ρ[0] ≤ ρ[1]
}

&& : “overlap” && =
{

(ρi, ρj) |
relation ρj[0] ≤ ρi[1] ≤ ρj[1]

∨ ρj[0] ≤ ρi[0] ≤ ρj[1]
∨ ρi[0] < ρj[0]

∧ ρi[1] > ρj[1]
}

σi : run i range σ= (start, end) ∈ R
υi,j : visit range for

run i at stop j
υ= (arrivl, depart.) ∈ R

εi,j : search range for
run i at stop j

ε= ( lower bound,
upper bound) ∈ R

τ : stop number τ ∈N
µi : lower bound of the

travel time from
stop i to i+ 1

time

(3.31)

To correct this problem, the authors propose the following procedure to be
carried out for each template sequence:

3.3.4.1 Identify pairs of vehicle runs that should be combined
• To decrease process time, only those runs with overlapping run ranges are

considered:
φ C λ =⇒ σφ && σλ (3.32)
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• For each call of each run at a stop, a time buffer is created, as the smallest
one that includes its visit range and, if exists, its search range. Two runs
happen closely enough to be candidates when their time buffers overlap.

φ C λ =⇒ ∃τ | υφ,τ && υλ,τ ∨ εφ,τ && υλ,τ
∨ υφ,τ && ελ,τ ∨ εφ,τ && ελ,τ

(3.33)

• Finally it must be possible, considering the lower bounds of the travel times
between stops, for a single bus to perform all visits to stops entries from both
runs that stem from the IPTS data. How this condition is met depends on
the highest stop number for which the “former” run presents a non-inferred
visits to stops entry (τφ); and, correspondingly, on the lowest one from the
“latter” (τλ):

– If τφ = τλ = τ , they both represent the same stop, where the IPTS has
records with both the old and the new vehicle ids. The following time
ranges are computed at said stop:

∗ A “feasibility range” ζφ,λ that delimits the time span in which it is
possible for the bus to have arrived after departing from the (τ−1)th

stop, as described in the “former” run φ, and still make it to the
(τ + 1)th from the “latter” λ, taking into account the minimum
bounds of the durations of the involved route legs:

ζφ,λ ∈ R; ζφ,λ =
(
υφ,(τ−1)[1] + µ(τ−1),
υλ,(τ+1)[0]− µ(τ)

) (3.34)

∗ A “bus presence range” ηφ,λ, which is the minimum-span range that
encompasses those of both the “former” and “latter” runs:

ηφ,λ ∈ R; ηφ,λ =
(
min (υφ,τ [0], υλ,τ [0]) ,
max (υφ,τ [1], υλ,τ [1])

) (3.35)

The condition is met if these two ranges overlap:

φ C λ ∧ τφ = τλ =⇒ ζφ,λ && ηφ,λ (3.36)

– If τφ < τλ, the time span between the recorded departure of the former
run from stop τφ and the registered arrival of the latter at τλ should be
greater of equal than the lower bound of the total travel time between
them.

– If τφ > τλ, the two candidate runs do not originate from a single one
that changed its id once.
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Figure 3.6: Merging of 2 runs (former blue , latter orange , modified visits

green line )

Equation (3.37) summarizes these criteria:

φ C λ⇐⇒

{
ζφ,λ && ηφ,λ if τφ = τλ

υλ,τλ [0]− υφ,τφ [1] ≤
∑τφ−1

τ=τλ
µi if τφ < τλ

(3.37)

3.3.4.2 Update vehicle runs characterization tables
The runs that comply with eqs. (3.32), (3.33) and (3.37) are merged in a new

one. Arrival and departure times at any stop between τφ and τλ are chosen as
the most likely ones, according to dwell and travel time distributions; and the
information to link them is stored in the columns merged run and merged runs.
Figure 3.6 illustrates an example, where the methodology detects that entries that
were on a first approach used to assert that two different runs of a route between
stops AR and BJ took place ( blue and orange ) are actually part of a single one,
and then re-evaluate unknown calls where this fact may be used to improve arrival
and departure estimations:

1 The two runs proposed by section 3.3.3 of this methodology comply with the
conditions that identify them as a single one, with an intermediate vehicle
id change:

• Their time buffers overlap in at least a stop, as can be seen observing
the parts colored blue and orange .

47



CHAPTER 3. METHODOLOGY

• Considering only calls backed by IPTS entries, the latest from one of the
runs (visit of blue at AY, 17:11:50, 1a) happens in a stop prior to the

earliest from the other (visit of orange at BE, 17:22:05, 1b ). The span
between the departure from the former and the arrival at the latter is
10m15s, while the sum of the lower bounds of the route legs involved is
2m23s, which means that a single vehicle could be responsible for both.

2 Intermediate arrival and departure times between AY and BE are re-calculated.
Instead of their mean values according to their respective distributions and
the departure from AY or the arrival at BE; they adopt the most likely
combination of values that satisfy both conditions at the same time.

3.3.5 Ascribe vehicle runs to scheduled runs and update
visit time spans

This part of the methodology has several goals: firstly, to differentiate between
planned runs that were materialized or not; to identify non-scheduled, extra runs;
and to remove inferred visits to stops that did not actually take place, for those
runs that are successfully identified as starting downstream the initial terminus
stop.

After a run has been linked to its scheduled beginning, the additional informa-
tion from the schedule table may be used to further refine arrival and departure
times. These are the proposed steps, also shown as a flowchart in fig. 3.7:

• A loop is performed over all (scheduled beginning, run) pairs where the latter’s
departure from the planned stop falls within the former’s buffer q (eq. 3.27),
considering those that share the same vehicle id first, and then ordered by
the absolute value of the time span between the run’s departure and the
scheduled start, ascending. Unless either of them has already been linked,
they become so with each other.

• For each pairing that is found, starting at the initial terminus of the whole
route, inferred visits to stops are consecutively removed from the run, until
one that it backed by AFC or AVL records is reached.

• If the planning subsystem registered the start of the run, the plausibility of its
corresponding time range n (eq. 3.27) is evaluated, utilizing the appropriate
feasibility range stored in the search ranges table (if not available, one is
computed utilizing the closest downstream data-supported call of the run).
If n is judged credible, two situations may occur:

– If the initial call of the run was previously deduced from other IPTS
data, the available information is combined to obtain the earlier and
latest presence of the bus at that stop.
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– Otherwise, n is used as the [arrival, departure] range at the beginning
of the run.

• Downstream inferred visits, up to the first one sustained by IPTS data, are
improved to their new most likely values, considering the total travel time
between the scheduled run start and that first known data point, and travel
and dwell time distributions.

Figure 3.8 shows the first stops from an example run:

1 Its initial estimation has been linked to a planned start at stop AF, with a
gap between their inferred and planned departure times of 51s.

2 The stops upstream the planned start are not backed by any IPTS records
and are erased.

3 In this case, the arrival and departure were logged by the scheduling subsys-
tem at 07:25:39 and 07:26:01, respectively. Since these times falls within the
search range for that run at stop AF ([07:23:39, 07:26:13]), they are accepted
as what really happened.

4 Visits to AG, AH, AI, and AJ are also recalculated, considering the new
information.

3.3.6 Select vehicle runs backed by enough information
The last task is to establish and apply criteria to accept or reject each of the

possible runs that have been identified by this methodology. It is suggested to set
boundaries that consider these features (eq. 3.38):

• Whether or not a planned departure was mapped to the run (w). In the latter
case, also consider if the id of the vehicle is the same in both databases (p),
and whether the scheduling subsystem registered a compatible starting time
(ν).

• The total number h of boarding groups attributed to the run, as described in
section 3.4.

• How many visits of that run stem from AVL data (f).

• The number of stops between the earliest and latest visits supported by IPTS
data (l).
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For each (scheduled start, run id), runs
within buffer only, same vehicle first and

then ordered by deviation, ascending

sched. start
or run already

assigned?

yes

Link the run and the scheduled start

no

Delete superfluous visits to stops from the run

Has the
scheduling subsystem recorded
credible arrival or departure

departure times (n)?

no

Was there
AFC or AVL info

at planned
start?

yes

Use n[0] and n[1]
as the new arrival

and departure times

no

Combine n with that info to
get the earliest and latest trace
of the presence of the bus. Use
them as arrival and departure.

yes

Adjust visits between the start and the first AFC or AVL entry

End for each (sched. start, run id)

Figure 3.7: Associating scheduled and inferred vehicle runs
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Figure 3.8: Improvement of arrival and departure times of a run once its likely
planned beginning is identified. Final characterization blue , removed or modified
entries orange .

w : run was planned boolean

p : the planned vehicle was utilized boolean

ν : the scheduling subsystem registered a valid starting time boolean

h : boarding groups count h∈N
f : visits backed by AVL data f ∈N
l : longest range between stops backed by IPTS data l∈N

(3.38)

As a first step, candidate runs of a vehicle following alternative configurations
of a line which overlap in time are compared, choosing the one with greater backing
from the previously enumerated features. This happens for instance when a line
changes part of its path at certain times during the day: some IPTS records may
end up pointing at the wrong alternative.

The features of the remaining possible runs are evaluated to filter out those that
in all likelihood did not happen. Figure 3.9 provides an example, analyzing two
consecutive possible runs of a vehicle, covering complementary subroutes between
AI and BF termini, both composed of 23 route legs. Only 2 consecutive entries
from the avl coalesced table hint at the existence of the earlier ( 1 ); while the
latter is supported by a planned run of that vehicle for which the scheduling
subsystem recorded the first call ( 2 ), 4 boarding groups (shown in 3a and 3b ),
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Figure 3.9: Analysis of the IPTS data that sustain each of two consecutive potential
runs of a vehicle and imputation of boarding groups

12 avl coalesced rows ( 4 ), and by the fact that the span between its earliest ( 2 )
and latest ( 5 ) calls obtained from recorded IPTS observations covers the whole
route. The former almost certainly did not happen, while the latter most likely
did.

3.4 Boarding groups imputation
Once the calls of all possible runs have been defined and refined, boarding

groups are firstly mapped to a run, and then to the stop where they took place.

The first task requires to build two imputation ranges for each run:

• A ‘default’ one, which covers from the moment when the vehicle arrived
at the initial stop to the moment it left the next-to-last one (as no AFC
events should be assigned to the last stop of a run), extended forward and
backwards in time the parameter o (identified as 6a for the latter case of
fig. 3.9), which allows for some leeway between AVL and AFC events,
to cover cases such as validations after the vehicle leaves the stop or minor
clock desynchronizations. It has been marked with this pattern: .

o : AFC leeway time (3.39)

• An ‘extension’, stretching backwards from the previous ‘default’ range, cov-
ering an interval equal to the upper bound for the headway of the route the
route (s from eq. 3.2, marked as 6b ). It is used to consider the possibility of
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passengers boarding the vehicle well before the detected start of a run. This
may happen for instance, if they enter a vehicle as it arrives at a terminus,
and wait inside for its next departure). It has been marked with this pattern:

.

Then, each boarding group is treated in a three-step process:

• Firstly, it is assigned to the run whose ‘default’ time range it overlaps and
that refers to the same vehicle and route. If no run is found, the route id
sameness requirement is dropped, to treat those cases where the ticketing
subsystem state did not reflect the route the vehicle was really following.

• If no run was found, the procedure described in the previous point is carried
out again, utilizing the ‘extension’ range of each run instead.

• Any boarding group left is not linked to a run.

Finally, the proper stop within the run is identified, considering all its calls but
the last one:

• If the gap between the boarding range (eq. 3.3) and the visit range (eq. 3.10)
at the stop specified by the boarding group is less or equal to the maximum
leeway o (eq. 3.39), that stop is accepted as the one where the travelers got
on the bus (e.g., 3a in fig. 3.9).

• Otherwise, it is assumed that the AFC did not properly identify the id of
the stop. The one from the closest call of the vehicle is chosen instead (e.g.,

3b , where the 3 boarding groups that were recorded as happening at stops
BJ, BK, and BN are respectively assigned to BO, BP, and BS).

3.5 Passenger trips inference
With the aim to apply this work to IPTSs that only require validation when

getting on a vehicle, in this section the trip chaining model is applied to vehicle
runs and passenger boardings to infer the unknown alighting stops of the rides that
have taken place. After an introduction and an exposition of the core reasoning
behind the algorithm which stems from it, the different improvements that are
utilized to improve the results are described.

3.5.1 Trip chaining demand models
While traditional travel demand models assume that the choices made for each

trip are independent of those made for other trips in the same journey, those based
on trip or activity chains can reflect the increasingly complex way humans behave,
particularly in urban areas. The former assumption is reasonable for ‘round-trip’
journeys, consisting of two symmetric trips with both activity centers in common;
while the latter allows for trips to influence each other in in complex ways (for
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Figure 3.10: A ‘Round-trip’ (left) vs chained trips (right)

instance, commuters that leave their cars at home are very unlikely to be able to
drive them until they return) [1].

Figure 3.10 illustrates the difference between a ‘round-trip’ journey on the left,
and another composed by a series of chained trips on the right. In the former
case, the person just goes to work (maybe driving a car), and when the shift ends,
returns; while in the latter, the commuter leaves home (maybe using some combi-
nation of public transport modes), performs the ‘primary activity’ of the journey
(working), and after that, before returning home, decides to perform 2 other con-
secutive trips to carry out activities at different chosen locations before it is time
to go back home.

3.5.2 A ‘base’ trip chaining model
To facilitate its exposition, this ‘base model’ already incorporates some subse-

quent ideas that deal with the last ride of the day ([80, 4]).

A ‘trip’ is the movement of a traveler through a public transport system. Its
beginning and end are linked with the conclusion of an activity and the start of
another, respectively. The ith trip that has been carried out by the holder of the
SC c during the day d will be referred as trc,d,i. Each of the rides that happen
during it are named ric,d,i,j, with the index j indicating their temporal succession.
The different variables associated with each ride can thus be identified utilizing
the same sub-indexes. E.g.: ‘boarding time’ (btc,d,i,j), ‘boarding stop id’ (bsc,d,i,j),
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‘alighting time’ (atc,d,i,j), ‘alighting stop id’ (asc,d,i,j), etc.

c : card id text

d : day date

trc,d,i : i
th trip for card c during day d trc,d,i ∈N− {0}

orc,d,i : Origin stop of trip trc,d,i orc,d,i ∈N
dec,d,i : Destination stop of trip trc,d,i dec,d,i ∈N
ric,d,i,j : jth ride for trip trc,d,i ric,d,i,j ∈N− {0}
btc,d,i,j : boarding time of ride ric,d,i,j full date (time)

bsc,d,i,j : boarding stop id of ride ric,d,i,j bsc,d,i,j ∈N− {0}
atc,d,i,j : alighting time of ride ric,d,i,j full date (time)

asc,d,i,j : alighting stop id of ride ric,d,i,j asc,d,i,j ∈N− {0}
pac,d,i,j : passengers that boarded the vehicle

using the same SC (page 66)

∈N− {0}

tr′c,d,i : trip for which an alighting could not be

found. ‘′’ will be used to signify the rest of

variables in the same way. E.g.: @de′c,d,i

trc,d,i ∈N− {0}

(3.40)

The basic reasoning behind this model is that people who use the public bus
for their daily movements will most likely leave a vehicle at the stop closest to the
one utilized to get on the next bus of the same day, as long as they are no more
than M apart.

M : max. dist. from alighting to next boarding M ∈R (3.41)

To find out if the rides that correspond to these 2 boarding events are part of
the same trip or are the end and beginning of 2 different ones with an intermediate
activity, the methodology focuses on the inferred alighting of the former ride, and
the known boarding on the latter: whether the distance between them is greater
than mdp, and if the time that passed between them exceeded mtt.

mdp : max. dist. between stops during a transfer mdp ∈ R
mtt : max. t. from alighting to boarding during a transfer time

(3.42)

∀ (ric,d,i,j, ric,d,k,l)
∣∣∣@ric,d,m,n | btc,d,i,j < btc,d,m,n < btc,d,k,l :

btc,d,i,j+1 − atc,d,i,j ≤mtt ∧ dist (asc,d,i,j, bsc,d,i,j+1) ≤mdp
⇐⇒ k = i; l = j + 1

ric,d,i,j and ric,d,i,j+1 are part of the same trip.

Otherwise⇐⇒ k = i+ 1; l = 1

ric,d,i,j and ric,d,i,j+1 belong to different trips.

(3.43)

55



CHAPTER 3. METHODOLOGY

Figure 3.11 shows an, where a user has performed 4 rides in a single day: 2 on
the red line, at 7:00 and 17:30; and another pair on the green one, at 7:20 and
17:00. The trip chaining model tells us that the most likely alighting point of each
ride along its corresponding run ( ) is the closest to the stop where the next one
is boarded; while accepting that the first and last rides of the day are respectively
the first and last legs of trips from and to home, the alighting stop for the latest
ride can be assumed to be the closest to the earliest boarding. Supposing that the
traveler has enough time to walk from one stop to the next during transfers, the
by far most likely interpretation is that 2 trips have happened:

• One in the morning, probably from home to work, composed by 2 rides:

– The first on the red line, from to , where the alighting time

would be obtained from definition of the vehicle run.

– The second on the green line, from to .

• And the trip back home in the evening, also materialized in 2 rides:

– Firstly on the green line, from to .

– And finally on the red line, from to .

Since for each SC on each day the boarding to each ride is utilized to guess the
alighting from the previous; the last one requires particular consideration. Two
alternatives are:

1. Use the first boarding of the day, as already explained on the example of
(fig. 3.11). Most transit users depart from home on the first trip of the day,
and return to it on the last.

2. For those days with only one trip, the strategy describe above does not
work. In these cases, if the next day registered any validations, the first one
is evaluated as the possible destination of the last trip of the previous day.
This may happen for instance if the user went to work in the morning using
the public bus, but returned home by other means.

After applying this reasoning to all entries from all SCs, the output is a series
of trips, composed by one or more rides each, plus a series of boarding events for
which no alighting could be inferred.

3.5.3 Trip chaining model improvements
Several improvements from the existing literature have been implemented over

the ‘base’ methodology to better define the rides and their encompassing trips,
aiming to solve the different problems encountered during its application.
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Figure 3.11: Trip chaining model example [94]
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Each of the following subsections describes an issue and the steps taken to
tackle it.

3.5.3.1 Alighting stop inference refinement
Always choosing the closest stop from the previous ride as the alighting point

can be unrealistic. For instance, if the previous route passes almost as close both
on its way forwards and backwards to the boarding to the next one, the passenger
will almost certainly leave the bus at the first opportunity, not spending a long
extra time on the vehicle to avoid walking a few meters. A solution to this problem
has already been formulated [12], and consists in choosing, among all candidate
alightings of the previous run, one that:

1. Occurs at a time compatible with the next boarding (i.e., the traveler must
have time to walk to the next stop).

2. Minimizes the ‘generalized time’ (gt), which is the alighting time from the
previous run, plus the estimated walking time to the next boarding stop mul-
tiplied by a ‘walking time penalization factor ’ (fw). The interpretation
of this condition is that users tend to choose the alighting stop that provides
the greater time margin until their next boarding, but they also prefer, to a
degree controlled by the parameter fw, riding the bus to walking. To check
it, the maximum speed at which users are supposed to walk, ws, must be
chosen.

ws : maximum walking speed speed

fw : walk penalization factor fw ∈ R
gt : generalized time time

(3.44)

gt = talighting +
dist (possible previous alight., next board.)

ws
· fw (3.45)

3.5.3.2 Alighting inference for the last trip of the day and other in-
complete trips

The ‘base’ model does not provide a destination for the last trip of the day if
it is also the first, and the next day the card was not utilized, nor does it if the
chain of trips is broken because an alighting and the consecutive boarding are too
distant (eq. 3.41). Moreover, if a possible destination pd is too close to the start
of the trip (less than md apart), it is deemed as not realistic and also rejected:

md : last trip min. dist. from board. to alight. md ∈ R
pa : Stop where the last alighting of the day

may have occurred

pa ∈ N− {0} (3.46)

If ric,d,i,j is the last ride of its day for its card:
dist (bsc,d,i,j, pa) >md =⇒ asc,d,i,j 6= pa

(3.47)
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Figure 3.12: DBSCAN algorithm example (minPts=3 points)

For all these cases, another approach already utilized in the literature to identify
activity locations is applied, based on the DBSCAN algorithm. This subsection
firstly describes it, and then elaborates on how it is applied to this situation.

3.5.3.2.1 The DBSCAN algorithm
It is a method that, given a set of points, classifies them as either belonging

to a cluster (a ‘dense region’), or being noise. Moreover, points part of a cluster
can be part of its ‘core’ or its ’border’. It requires a distance function and two
parameters: ε, the ‘maximum density reach distance’; and minPts, the minimum
number of points within reach for a point to be considered as ‘core’. The detailed
rules of this algorithm to classify a point are:

• It is a ‘core point’ if, including itself, there are at least minPts points within
a distance ε of it.

• It is a ‘border point’ if there are less than minPts points within a distance ε
of it, being at least one of these a ‘core point’.

• Otherwise, it is considered ‘noise’.

Figure 3.12 shows an example of its application.
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3.5.3.2.2 Last or otherwise incomplete destination deduction
Those trips for which none of the first two approaches (page 56) yield a valid

result (eq. 3.47), are held back until all the entries available from that card are
processed; as also are those that cannot be completed because the closest possible
alighting to the next boarding is too far away from it (eq. 3.41). Then, DBSCAN,
explained in 3.5.3.2.1, is applied on the last alightings of fully defined trips, to
detect activity centers which regularly are, during certain periods of time during
a day, the destination of the trips of the user.

In this work, for two alightings to be within the neighborhood of each other,
they need to be situated on the map less than a distance εd apart, and no more
than a time εt should pass from the earlier to the latest. This is equivalent to
evaluating the proximity of the alightings of the last rides of two trips of the same
SC on the same day ,ric,d,i,j and ric,d,k,l, utilizing a distance function dist′, related to
the Euclidean distance dist as shown in eq. (3.49). In this equation, the ∗ signifies
that only the time of the day of the alighting is being considered, not the full date.

εd : maximum distance between alightings εd ∈ R
εt : maximum span between alightings time

minPts : min. neighbors to be a core point minPts ∈ N− {0}
(3.48)

∀ (ric,d,i,j, ric,d,k,l)
∣∣∣@ric,d,i,m | m > j ∧ @ric,d,k,n | n > l :

|at∗c,d,i,j − at∗c,d,k,l| ≤ εt
⇐⇒ dist′ (asc,d,i,j, asc,d,k,l) = dist (asc,d,i,j, asc,d,k,l)

Otherwise⇐⇒ dist′ (asc,d,i,j, asc,d,k,l) = +∞

(3.49)

These spatiotemporal clusters provide a series of zones in the city where users
regularly arrive within a certain time window (destinations). εd, εt and minPts
decide in each case what is a ‘regular trip’.

Rides and runs datasets may be partitioned following known features that
influence the mobility patterns in the city (for instance, day of the week, or whether
schools are open or not), establishing different values for εd, εt and minPts for
each partition.

The spatial location of these frequent activity centers is set in the center of
mass of the stops of each cluster; with an associated user arrival window as the
narrowest of two possible ones:

• From the earliest to the latest times of the day, considering all elements of
the cluster.

• A fixed minimum amplitude mtw.

mtw : Minimum time window time (3.50)
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Finally, each incomplete trip that was held back is evaluated against the fre-
quent destinations suggested by the DBSCAN. A valid destination should comply
with eq. (3.47), and be reachable within its time window, supposing that the user
walks directly to it after alighting. If there are several possibilities, the one that
minimizes its gt (eq. 3.45) is chosen.

3.5.3.3 Trip maximum duration
Knowledge of the IPTS allows to set a threshold duration mtr of the trips in

the city. Once a trip has surpassed it, no more rides are added to it.

mtr : Trip threshold duration time (3.51)

3.5.3.4 Improved activity detection
In certain IPTS it is especially difficult, just using themtt andmdp (eq. 3.42),

to tell if between an inferred alighting and the next boarding users are transferring
between the legs of a single trip, or if they are performing an activity amidst trips;
because sometimes (but not always) the time dedicated to an activity is quite short
before starting another trip to the next one. This behavior can be fomented by
pricing schemes that offer free rides during a period after the first tap-in, and by
a transportation offer with high spatial density and frequencies.

To ameliorate this problem, this work utilizes the two strategies described in
the following subsections.

3.5.3.4.1 Detection of alightings close to stops that would have been
reachable from one of the previous rides of the trip

While building a trip, if the inferred alighting stop of the latest ride under
consideration could have been reached sooner if the user had stayed longer on a
previous ride (directly, or getting off the vehicle at a stop closer than vcd to it),
it is assumed that the user chose to get off earlier to reach, at that stop or further
along the current chain of rides under analysis, a destination where to perform
some short intermediate activity. Thus, the chain of rides under analysis is split
between those that leave the greatest time margin for an in-between activity. The
former part is considered a whole trip, and the latter is used as part of a new one
to be completed.

vcd : Bus stop buffer vcd ∈ R (3.52)

An example of the kind of situation solved by this enhancement is shown in
fig. 3.13 where, to make it clearer, routes B and C share the same stops in the
segment of interest, even though they could be separated at most vcd and still be
detected. As can be seen, the user boards a bus of the route A ( 1 ); changes to

route B at 2 with 3 min to spare; switches again at 3 this time to route C ,
with a margin of 19 min minutes; and arrives at 09:47 for an activity at 4 .
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Figure 3.13: Detection of a short intermediate activity thanks to an otherwise
counterproductive transfer

If mtt > 19 min, the basic criterion of the trip chaining model would state
that was happened at 3 was a transfer; but that really does not make sense, since
if all the user wanted was to arrive to 4 , there was no need to change buses at
3 . Thus, we conclude that at 3 or further down the chain of rides, but before

arriving to 4 , the user carried out some short-length activity. In this case the
only choice is 3 , but if there were multiple possibilities, the one that offered the
most leeway to perform an activity would be chosen.

3.5.3.4.2 Directness check
Once a possible trip has been fully defined from origin to destination, if the

sum of the distances covered by the rides that compose it is greater than the direct
distance from origin to destination, multiplied by an ‘circuity ratio’ (cr, [13]),
the candidate trip is, as in 3.5.3.4.1, split between the rides that leave the greatest
time margin for an in-between activity. The former part is considered a whole
trip, and the latter is used as part of a new one to be completed.

cr : circuity ratio (3.53)

Figure 3.12 shows a graphic interpretation of this parameter, linking it to the
sum of the legs of the isosceles triangle OFD, which has as its base the segment

between the initial boarding and final alighting of the trip ( OD ), and a vertex
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Figure 3.14: Graphic interpretation of the circuity ratio

angle α. The segment OM is used as the upper limit of the total traveled distance
of a valid trip between O and D, which means that OM = OD · cr. Also, it can be
seen that OM = OF + DF = OD

sin α
2

; thus cr = 1
sin α

2
, and cr ∈ [1,+∞]: the flatter

α is, the less a trip is allowed to deviate from a straight line. Of the two possible

trips, OGD is shorter than OM, (OC < OM), so it is accepted as a single trip;

while OED is longer than OM, (OB > OM), and is split, which means assuming
that the traveler performed some activity at E. The area defined by cr is an ellipse
with the origin and destination of the trip as foci.

3.5.4 Final trip chaining model
The flowchart in fig. 3.15 shows the overall process once all enhancements

previously described have been implemented to the ‘base’ algorithm. It relies on
3 tables among which each ride moves as it is processed.

• ‘rua’ (‘rides under analysis ’), for those rides that are defined as a SC is
processed, but it is not clear yet how they should be grouped in trips.

• ‘roc’ (‘rides of one card ’), that stores the rides of the trips of the SC being
analyzed that have been completely defined.

• ‘rides’, which stores the output of the process. Its columns allow to identify
the SC, trip, and order within it of each ride; and contain the information of
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Figure 3.15: Trip chaining model flowchart
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interest regarding their boarding and alighting events.

Two other tables store boarding events without an inferred alighting:

• ‘itoc’ (‘incomplete trips of one card ’): as the program advances through the
boarding events of one SC, those trips which are not immediately assigned a
final alighting are stored here, to try to find one after all entries of that SC
have been processed utilizing the enhancement described in 3.5.3.2.2.

• Those trips that the methodology has finally failed to link to a destination
are stored in the table ‘inctrips ’ (‘incomplete trips’).

The algorithm makes decisions based on the entries determined by its progress
as it iterates over the different boarding groups of each SC:

• ‘NRGB ’ (‘next ride boarding group’): the boarding group most recently re-
trieved.

• ‘CRBG ’ (‘current ride boarding group’): the boarding group retrieved just
before NRGB.

• ‘CRA’ (‘current ride alighting ’): the event where the ride that started with
the CRBG ends. It is inferred thanks to the NRGB position and instant.

• ‘OBG ’ (‘origin boarding group’): the boarding group of the initial ride of the
trip that is currently being assembled by the program.

• ‘FBGS ’ (‘first boarding group’): the bus stop of the boarding group of the
first ride of the day.

• ‘FBGTS ’ (‘first boarding group of tomorrow ’): the bus stop of the boarding
group of the first ride of the next day.

• ‘REA’ (‘ride ends with activity’): true if the CRA and NRGB are too far
away or happen too apart to be part of a transfer, false otherwise (according
to eq. 3.42).

• ‘TTL’ (‘trip too long ’): true if the instants of the boarding and alighting
from respectively the first and last rides stored in rua are separated more
than mtr (eq. 3.51), false otherwise.

• ‘LRDD ’ (‘last ride of the day destination’): the location that is used as goal
for the last ride of a day, established as specified in page 60.

• ‘LRDA’ (‘last ride of the day alighting ’): the event where the last ride of the
day ends, found following the rules from page 60.

• ‘LBGIT ’ (‘last boarding group of the incomplete trip’): the latest boarding
group of an incompletely defined ride page 60.
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Data structures and flows are defined aiming to minimize processing time:
besides the outer loop over all AFC entries, ordered by SC and instant, no indexing
is needed, using the different tables to keep data that needs to be processed together
in one place.

3.5.5 Multiple passengers per tap-in consideration
To deal with users that tap-in a single SC to allow several passengers to board a

bus, a ‘public transport trip’, as it is detected by the trip chaining model, consists
in as many ‘individual trips’ (it) as the minimum value of the passengers column
(table 3.11) for all the rides it encompasses; while excess validations ev are taken
into account for the expansion of the OD matrices.

itc,d,i : number of travellers of trip trc,d,i (eq. 3.40) itc,d,i ∈N− {0}
evc,d,i : number of tap-ins from the rides of trc,d,i

that are not part of the overall trip

evc,d,i ∈N− {0} (3.54)

∀trc,d,i , k = max j | ∃ric,d,i,j :

 itc,d,i = min
(
pac,d,i,j

)
evc,d,i =

k∑
α=1

pac,d,i,α − k · itc,d,i
(3.55)

This formulation means assuming that, for each trip, it passengers will be the
same people, moving between activity locations quite similar spatial and tempo-
rally; while ev validations won’t be matched to a trip nor a ride.

3.5.6 Allow passenger rides to span two vehicle runs
The call where a passenger wishes to alight may be beyond a terminus of the

route, and thus be reached while the vehicle is carrying out a different run than
the one the user boarded. If it is not required to tap-in again at the terminus, the
alighting stop may part of one of these two rides. The methodology considers this
situation through two actions:

• Before the trip chaining model is applied, each run is evaluated, searching
for another that:

– Has the same vehicle id (those runs where the id changes, as explained
in section 3.3.4, have both), and is following the same route (even if its
configuration changes).

– Departs from the same terminus where the former ends, after no longer
than mrs.

mrs : max. time gap between subsequent rides time (3.56)

If a run meets these conditions, it is labeled as ‘subsequent’ of the one under
analysis.
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• While the trip chaining model is searching for the alighting of a ride, it con-
siders the remaining calls of the run that corresponds to the boarding event,
plus some of those from the ‘subsequent’ one. To avoid analyzing illogical
rides (staying on a bus for much longer than necessary, due to deciding to
board the wrong direction of a ‘linear’ route, or the one of two complemen-
tary circular routes that goes in the opposite of the needed direction), only
the first ‘nssr’ first stops from the ‘subsequent’ run are allowed, based on the
parameter mcr:

mcr : maximum circuity of a ride mcr ∈ [0..1]

tnsri : Total number of stops of route i nsrt ∈ N− {0}
nsfr : Number of possible alighting stops

from the first ride

nssr ∈ N

nssr : Number of stops of the second ride

to consider as possible alighting points

nssr ∈ N− {0}

(3.57)

nssr = max (0, round (tnsri ·mcr − nsfr)) (3.58)

This restriction is founded on a principle similar to 3.5.3.4.2, but applied to
a single circular path along which the vehicle is supposed to be moving, and
its aim is to avoid needless computations in main trip chaining loop, since all
alighting candidates filtered out by this criterion should result in rides that
would be rejected anyway. As an example, if a route has 10 stops, numbered
from 1 to 10, and mcr = 0.6, it means that the program will try to consider
at least 10 · 0.6 = 6 possible alighting points:

– For users that board at stops [1..4], taking into account the calls from
the vehicle run they get on is enough.

– However, if they board at stops [5..9], the appropriate number of visits
from the subsequent run will also be considered. For instance, boarding
the earlier run at stop 8, would make the script regard as candidate
alightings those at stops [9, 10] from that run, and those at stops [2..5]
from the subsequent one (if exists).

3.5.7 Trip chaining output
The output of this section is shown in table 3.11. It includes the rides that

have been delimited by the trip chaining model (their encompassing trips com-
pletely defined by the boarding and the alighting of its earliest and latest rides,
respectively), and a list of incomplete trips without an alighting for the last ride.
Run id is registered for both the boarding and the alighting of the trip, reflecting
that the vehicle run may change once mid-ride (quite common in ‘circular routes’,
but it may also happen in ‘linear’ ones where the paths in both directions do not
completely mirror one another).
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Table 3.11: Trip chaining output: rides and incomplete trips
Column Type Description

gap too lng boolean
too far away boolean
too circuit boolean
trp too lng boolean
alght reachbl boolean

These columns are TRUE if the corresponding
criterion from section 3.5 to end a trip is met
as the ride is being processed.

inc ride sol enum

Shows which method is applied for the last ride
of those trips that could only be completed us-
ing the first boarding of the same or the next
day (page 56, only applicable for the last ride
of the day), or using a destination found with
DBSCAN (section 3.5.3.2).

run id ini int
Id of the run the vehicle is carrying out when
the user gets on the bus (table 3.10a).

run id end int Idem, when the user leaves the bus.
passengers int How many people board the vehicle.

visit id ini int
Id of the call where the bus was boarded (ta-
ble 3.10b).

visit id end int Idem, where users leave the bus.
trip int Id of the overarching trip that includes this ride.
n in trp int Ordinal of the trip within its ride.
card int SC id.
bg int Boarding group linked to this ride (table 3.3).
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3.6 Aggregate trip analysis
Initial OD matrices are created aggregating the trips inferred by the chip chain-

ing model for different periods of the year, according to the observed mobility
patterns in the city.

These matrices are expanded utilizing a linear factor that considers as origins
of extra trips the AFC events that could not be translated to fully defined trips.
Three extra sources of individual trips are considered:

• Those trips tr′c,d,i from the trip chaining model where only the origin or′c,d,i
could be identified.

• ‘Excess validations’ (as defined in eq. 3.54).

• Cash payments.

The effect of these extra individual trips result in an expansion of the OD
matrix cells for the row corresponding to the known origin, as shown in eq. (3.60)

od′a,b : Individual trips between stops a and b from

successfully defined public transport trips

od′a,b ∈N

oda,b : Expanded individual trips between stops a and b oda,b ∈N
eta : Total number of extra individual trips with

a as origin stop.

(3.59)

od′a,b =
∑

c,d,i|orc,d,i=a ∧ dec,d,i=b

itc,d,i

oda,b = round

(
od′a,b ·

(
1 + eta∑

b
|od′a,b|

))
(3.60)
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Case study

4.1 Introduction
This methodology has been applied to the AVL and AFC events, and scheduled

run beginnings from the vehicles that, for 1 year, run in Santander, a city on the
northern coast of Spain (fig. 4.1).

Since most detailed examples of the vehicle runs definition and boarding groups
imputation (sections 3.3 and 3.4) are shown for route 1, it will be described in
greater detail; while the exposition of trips inference and the aggregate trip analysis
(sections 3.5 and 3.6) refer to the whole dataset.

4.1.1 Santander IPTS dataset
Santander has approximately 460 bus stops, as shown in fig. 4.2. Its public

transport offer is articulated through 33 routes:

• 19 ‘linear’ routes, with 2 subroutes each that travel the opposite directions
between their 2 termini: 1, 2, 3, 4, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
23; and the nightly N1, N2, and N3.

• 3 circle routes, where each of the directions they can be traveled from their
single termini can be itself considered a route: 5C1 and 5C2, 6C1 and 6C2,
7C1 and 7C2.

• Other routes, offered less frequently, seasonally, or just during special events:
30, 41, 42, 43, 44, 45, and 50.

These routes can show different configurations. The logic behind the planning
decision of which one is active varies in each case: period of the year, day of the
week, hour of the day, etc. As an extreme case, consecutive runs of routes 17 and
18 switch back and forth between two different itineraries during all day. Each of
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Figure 4.1: Santander city [95] [96]

72



4.1. INTRODUCTION

Figure 4.2: Santander city bus stops

these configurations are considered as different route, as defined in section 3.3.1,
and thus have their own template sequences.

During the year, the AVL subsystem registered 12 400 000 events, distributed
as shown in fig. 4.3. It is worth pointing at the densely serviced corridor from ap-
proximately mid-city eastward, which turns northwest after reaching the Peńınsula
de la Magdalena: many of the most important lines of the city travel it, calling at
the same stops.

Regarding AFC data, figs. 4.4 and 4.5 show the distributions of the 16 100 000
SC validations and 1 370 000 cash payments, respectively.

While the IPTS is extremely helpful during day-to-day operations, the exploita-
tion of its data must overcome several issues:

• Low AVL and AFC reliability at most route termini (y = true, eq. 3.2),
due to how on-board computers are sometimes operated and to the fact that
when a bus is empty as it approaches the end of the route, drivers often find
more convenient to wait until their next run in a stop upstream from the
final one.

• Daily, each run sometimes cannot be reliably identified with an id within the
AVL and AFC datasets: this field may show several values within a single
run, or the same value may be used for consecutive runs. Also, this id is not
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Figure 4.3: Distribution of raw AVL events

Figure 4.4: Distribution of SC validations
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Figure 4.5: Distribution of cash payments

consistent between the AVL, AFC, and planning information.

• Sometimes the AVL or AFC subsystems do not properly reflect which con-
figuration of the current route is being carried out.

• Missing AVL entries.

• Wrong AVL and AFC events that stem from the limitations of the IPTS, such
as GPS signal loss, communication failures, or on-board computer errors; or
from atypical or incorrect operations (e.g., setting vehicle state parameters
that mistakenly identify the task being performed).

• The information regarding whether a planned run finally happened and when
did it start is most of the times accurate, but sometimes a normally performed
run fails to register, or it does with highly inaccurate timestamps.

• Occasionally, the id of a vehicle changes in the middle of a run, presenting
2 different values.

4.1.2 Route 1
Route 1 operates from approximately 07:00 to 23:00, with headways of at most

s = 20 min (eq. 3.2). In approximately half of the occasions, the scheduling sub-
system records, with a deviation of around z = 20 s, the arrival and departure
of the vehicle from the first stop of the run. A complete roundtrip requires at
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least d = 1 h, while a single route leg, even in the most unfavorable circumstances,
should not take more than e = 15 min.

4.2 Implementation of the methodology
This implementation utilizes the procedural language PL/pgSQL within a Post-

greSQL 13.2 database for its core tasks; and Python 3.8 and Bokeh 2.2 to show an
interactive representation of the results. As previously mentioned, the explanation
is initially focused on the case of line 1; while from section 4.2.5 on, it broadens to
the whole dataset.

4.2.1 Input data
4.2.1.1 Bus stops and subroutes

The location of the 75 ones that shape route 1, which is divided in two sub-
routes with one intermediate stop (‘Consuelo Berges 16’) and both termini in
common, is shown in fig. 4.6. These subroutes provide the templates which are
used to break down the stop sequences found during the treatment of the AVL
data in 4.2.3.1.

This itinerary begins at the Pctcan science park in the west, and traverses the
city eastward through main arteries, passing by many of its commercial, residential,
touristic, and administrative centers until it reaches La Magdalena Park (one of
its foremost leisure locations). Then, it turns north-westward, and follows the
coastline, providing access to Santander’s most popular beaches. Finally, it ends
in Valdenoja, a dormitory suburb with some limited commercial use.

During non-business days the activity at Pctcan greatly diminishes, so buses do
not visit the 3 easternmost stops. This fact is reflected on the dataset as a different
configuration for route 1, which in turn is reflected by this methodology with two
other template sequences to build vehicle runs. Also, especially during working
days, several planned but not announced reinforcement runs begin downstream the
first stop, to make use of short free slots drivers have between other assignments.

4.2.1.2 AFC
The dataset includes 2 586 600 raw AFC events for this route. Almost all

(99.99 %) correspond to real stops within the city, while the rest have ids that
do not refer to a physical stop.

4.2.1.3 AVL
There are correspondingly 1 569 417 raw AVL events. All represent calls at real

stops of the city.

4.2.1.4 Scheduling information
While the daily timetable that travelers consider when planning their runs on

route 1 specifies, depending on whether it is a business day or not, around 100 or
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Figure 4.6: Bus stops of route 1

80 places and times where a run begins, the transport authority plans some extra
actual vehicle runs, offering less-known additional runs of the route, such as several
starting at Valdecilla hospital for staff that just ended their shifts, or reinforcing
the offer during known peak demand periods when the distribution of available
resources allows to do so. In approximately 95 % of occasions a detected run start
time was logged. Extra vehicle runs not present in the scheduling information may
occur due to tactical decisions during day-to-day operations.

4.2.2 Preprocessing
4.2.2.1 AFC

Following the methodology outlined in section 3.2.1, 719 971 stop groups have
been found. Using a value of 20 min for the parameter s, the maximum headway for
this route, leads to splitting them in 724 550 boarding groups (0.6 % more events).
Of these, 108 (0.01 %) last more than s and are not considered. There is, on
average, 1 boarding group per 4 passenger boardings. Moreover, they provide
a first fallback estimation of arrival and departure times at the stops, which is
utilized if no AVL records are available.

4.2.2.2 AVL
As explained in section 3.2.2.3, consecutive AVL events that represent the same

visit to a stop are merged, leaving 1 532 299 entries (2 % less). Of these, 78 520
(5 %) are deemed unreliable because they are part of impossibly short travel legs.
The remaining 1 453 779 entries, gathered in the table avl coalesced, are classified
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in 45 840 trajectories.

4.2.3 Vehicle runs definition
4.2.3.1 Analyze AVL trajectories as sequences

The 45 840 trajectories present 5800 different sequences of stops. The two most
frequent ones match the already known itineraries of the subroutes under study
(fig. 4.6), accounting for around 30 % of the trajectories. Others contain in most
cases one or several fragments compatible with one of the subroutes (as described
in table 3.8d), though sometimes (2 % of trajectories) the state of a vehicle did not
change between subroutes, so a single trajectory contains information regarding
more than one run.

4.2.3.2 Specify travel times and dwell times distribution models
Due to its computational advantages, two families of Normal distributions (eq.

4.1) have been chosen to model leg travel and stop dwell times. Considering the
mobility cycles of the city, each of these families provides a different function for
each subroute, stop, type of day (working, Saturdays, or Sundays and holidays),
period of year (summer or not), and time bin (with a span of 30 min, and approxi-
mately 16 daily hours of service, there are 32 possible time buckets: 07:00 to 07:30,
07:30 to 08:30, and so on).

pa,τ,γ,δ,ζ,η : run leg travel time t ∈ T ;

t ∼ N
(

(µp)a,τ,γ,δ,ζ ,
(

(σp)a,τ,γ,δ,ζ

)2)
ua,τ,γ,δ,ζ,η : dwell time u ∈ T ;

u ∼ N
(

(µu)a,τ,γ,δ,ζ ,
(

(σu)a,τ,γ,δ,ζ

)2)
a : route id From the methodology (eq. 3.4)

τ : stop number From the methodology (eq. 3.3.1.2).
For run legs, their first stop.

γ : period of year γ ∈{‘summer’, ‘rest of the year’}
δ : type of day δ ∈

{
‘working’, ‘saturday’,

‘sunday or holiday’
}

ζ : time of day bin ζ ∈{1 . . . η}
η : time bins in a day η ∈N

(4.1)

Route 1’s leg travel times and dwell times have been characterized at each stop
by roughly 2 periods · 3 day types

period
· 32 distributions

day type
= 192 distributions each. Their means

and standard deviations have been calculated utilizing the pertinent entries from
table avl coalesced.
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4.2.3.3 Assemble vehicle runs
After applying the process described in section 3.3.3, setting its parameters to

to g = 0.998 and c = 2 stops, 42 319 possible runs were found.

4.2.3.4 Merge instances where a vehicle changed its id mid-run
This refinement leads to the detection of around 2 daily occurrences of this

issue, reducing the number of candidate runs to 41 641.

4.2.3.5 Ascribe vehicle runs to scheduled services and update visit time
spans

40 352 runs have been mapped to a scheduled run beginning (111 utilizing a
vehicle different from the planned one); while the other 1289 were not. 86 % of
logged run start times were utilized to characterize the first call of their runs.

4.2.3.6 Select vehicle runs backed by enough information
After considering the results from sections 4.2.3.5 and 4.2.4, the following ac-

ceptance criteria have been chosen (utilizing the nomenclature from eq. 3.38):

• For runs mapped to a scheduled beginning (w = True):

– Always accept if the planned vehicle was utilized (p = True).

– If a bus other than the scheduled one was used (p = False), require at
least 3 boarding groups linked to the run (h ≥ 3).

• Unscheduled runs are required to offer stronger evidence: at least three tick-
eting events and no less than 12 total entries (one third of the number of
stops of a subroute) endorsing its existence (h ≥ 3 ∧ h+ f ≥ 12)

Applying these thresholds, the methodology reports on average 120 and 97 daily
runs, depending on weather analyzing a business day or not. In the former case,
the 96.5 % of runs had previously been planned, and were materialized with the
intended vehicle; while 3 % were planned, but executed with a different vehicle;
and 0.5 % were unplanned runs. During non-business days, the corresponding
ratios are 99.2 %, 0.5 %, and 0.3 %; which is consistent with weekends and holidays
being usually less demanding for the public transport of the city, resulting in less
deviations from the schedule to react to the evolution of the traffic system.

Of all raw AVL data available, 92 % was finally used to provide information to
re-create a call of a run. The source utilized to discern bus calls was AVL, statistical
inference, a run beginning logged by the scheduling subsystem, and AFC in 91 %,
7 %, 2 %, and 1 % of occasions.

4.2.4 Boarding groups imputation
Applying the criteria described in section 3.4, using an AFC leeway of o = 1 min,

provides the following results:
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• 94.7 % of all boarding groups have been deemed to be correctly reporting
their route and bus stop.

• 5 % have been assigned to another stop than the automatically logged one.

• 0.3 % were linked to a run of a different route.

4.2.5 Trip inference
4.2.5.1 Introduction

Passengers in Santander may access the vehicles validating a SC, or paying
with money to the driver. The ‘standard’ card charges for a single trip roughly
half the fare asked to those customers using cash. It may be used to cover the costs
for several users, swapping it multiple times, or asking the driver may perform this
operation in a single transaction. Moreover, it allows owners to travel for free
during one hour after a tap-in, if they keep boarding different routes. This policy
encourages users to expedite their activities and board a bus of another route as
soon as possible, to enjoy a free ride; which is especially easy to do in the corridor
mentioned in page 73.

Other types of SCs allow for unlimited free rides, and are available to people
part of certain groups, for personal use only: ‘large’ or single-parent families,
seniors, affected by disabilities (completely free or renewable monthly, depending
on their severity), unemployed, or teens (renewable trimonthly by paying a reduced
fee). These users are more likely to board a bus for quite short trips, in situations
where others who would have to pay will probably walk instead.

The clear benefits of SCs make them the preferred choice in roughly 90 % of
rides recorded by the AFC.

The capability of ‘standard’ SCs to pay for multiple users is reflected in the
column ‘passengers ’ of the table boarding groups , summarizing how many people
gained access to a bus during a call thanks to a single SC. As described in sec-
tion 3.5.5, this information is preserved through the trip chains model, linked to
the appropriate inferred rides and trips.

Another aspect of the IPTS that has been considered is that users may stay
inside the vehicle between runs if the wait before the next one is not too long; and
in many cases they need to do so to arrive at their destination. Not only in the
case of ‘circular’ routes; some ‘linear’ ones have paths that greatly diverge near the
termini (e.g., route 13, shown in fig. 7.4, which deviates from the straighter path
when traveling towards ‘Lluja - Cementerio’ to visit Rucandial neighborhood; and
on the opposite direction before reaching ‘Residencia Mayores de Cueto’ to the
stop ‘Hermanos Tonetti 16’). The trip chaining model has been programmed to
allow for this behavior, having identified beforehand which runs are consecutive
(even in those cases where the configuration changes): users may board one run of
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a route, and get off the bus while it is already following another run of the same
route. In the case of ‘circular’ routes this means that the bus called at the single
terminus in-between; while for linear routes, it called at one of the two available
termini and started going towards the other.

To decrease the computation complexity of identifying frequent activity des-
tinations through DBSCAN (section 3.5.3.2), their geographical location on the
map will be approximated to the closest stop which is part of its cluster.

4.2.5.2 Model parameters
After some testing, and taking into consideration the peculiarities of the city,

the following parameters were adopted for the trip chaining model:

M=2 km mdp=400 m mtt=40 min ws=4.8 km
h

mrs=15 min

fw=1.3 md=400 m mtr=1 h vcd=160 m mcr=0.6

εd=160 m εt=15 min mtw=30 min cr=2.92

minPts =


workdays Saturdays holidays

school season 20 4 5

summer 20 4 5


(4.2)

Or, to put down in words:

• An alighting is only inferred if the subsequent boarding takes place no more
than 2 km away. Maybe the user utilized a different mode, and even if that
were not the case, the odds of choosing the wrong stop are great.

• If an inferred alighting takes place more than 400 m away of the next board-
ing, or if it happens more than 40 min later, it is accepted that an activity
has taken place in-between. Otherwise, the user was just transferring from
one route to another as part of a single trip.

• Travelers are considered to walk in straight lines, at a maximum speed of
4.8 km

h
.

• Transit users tend to choose to leave vehicles in the stops that leave them the
most leeway, considering how long it would take them to walk to the next
known boarding. However, they prefer riding a bus to walking, perceiving
the same disutility from 1 min and 28 s of the former as from 1 min of the
latter.

• When trying the different solutions implemented to find the alighting for the
last trip of the day, a minimum distance of 400 m is required between origin
and destination.

• After a trip surpasses the 1 h threshold, no more rides are added to it.
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• The year is partitioned in the 6 categories that is known influence mobility
in Santander (summer and rest of the year in one hand; and workdays,
Saturdays, and holidays in the other). Within each, DBSCAN is applied to
search for the location and time window of frequent activity destinations. To
be neighboring events, two alightings must occur no more than 160 m apart,
within a time gap of 15 min. Then number of neighbors an alighting needs
to be a core point is different and computed separately for each partition,
to reflect how users may change their behavior in different occasions. For
instance, routinely going to work on workdays, and visiting family or friends
on Saturdays, or going to the beach in summer.

• The time window during which a traveler should arrive to a frequent activity
found through DBSCAN for it to be accepted as the destination of the trip
under analysis will be no narrower than 30 min.

• If the sum of the distances between boarding and alighting stops of the rides
of a possible trip is greater than 2.92 times the direct distance between its
origin and destination (equivalent to α = 40◦ in fig. 3.14), it is judged too
circuitous and is split according to 3.5.3.4.2.

• Passengers can stay on the vehicle as part of the same ride between two runs
of the same route, when the second one begins at the same terminus that
the first ends, and no more than 15 min later. Calls from the latter run are
added to the list of possible alightings (which also includes those from the
former that happen after the boarding event) until there are at least as many
candidates as 60 % of the total number of stops of the route.

4.2.5.3 Overall results
15 524 405 SC boarding events have been analyzed. 75 % successfully: alighting

stop of the ride, and overarching trip. In 1 % of occasions, at least one ride of the
trip could be defined, but the overall destination could not. For the other 24 %
percent, the methodology could not find the alighting stop of the ride (nor the
destination of the trip).

68 337 frequent activity nodes have been found, under the parameters of eq. (4.2).
Table 4.1 shows their distribution among the different types of days that have been
considered, while fig. 4.7 shows the relative temporal density of the availability of
frequent activities in the city. For instance, on workdays, in school season, there is
a morning peak at 08:12, with a frequency slightly greater than 10 %: that is the
portion of all frequent activity destinations that were detected during that type of
day which are available at that time. Workdays present two main routine activity
peaks at early morning and early afternoon, being quite sharper in school season,
probably due to all the students that regularly go to their educational centers
and back. Routine activities during Saturdays and holidays tend to happen more

82



4.2. IMPLEMENTATION OF THE METHODOLOGY

Table 4.1: Distribution of activity nodes though the year
workdays Saturdays holidays

school season 34 037 14 507 9080
summer 5503 2925 2285
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Figure 4.7: Frequent activities availability ratio along each type of day

uniformly, and later.

In turn, figs. 4.8 and 4.9 display the spatial distribution of frequent activities on
a working day in winter, and a summer holiday. They show how citizens gravitate
towards the coast on their spare time.

Table 4.2 shows the frequency with which each trip ending or splitting criteria
were met while processing the last ride of each trip (They may happen simulta-
neously, and thus they do not add up to 100 %). It is worth noting that many
trips are the last of their days, which makes the three approaches applicable for
this situation (page 56, section 3.5.3.2) even more important. The distribution of
which one provided an estimation of the final alighting stop of the last trip of each
day (or, of the final alighting stop of trips that were unrelated to the next boarding
of the same day, as explained in page 55) is shown in table 4.3.
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Figure 4.8: Distribution of frequent activities on different day types in winter

(a) Working day

(b) Saturday

(c) Holiday
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Figure 4.9: Distribution of frequent activities on different day types in summer

(a) Working day

(b) Saturday

(c) Holiday
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Table 4.2: Trip ending or splitting criteria occurrences
Criterion Frequency

gap too long 48 %
stops to far away 8 %
too circuitous 1 %
trip too long 46 %
alighting reachable sooner from former ride 7 %
last ride of the day 45 %

Table 4.3: Destination estimation method utilized for last or incomplete trips
Method Frequency

first stop of the day 82 %
first stop of the next day 15 %
destination from DBSCAN 3 %

4.2.6 Trip aggregation
10 996 165 trips have been defined by the trip chaining model. However, consid-

ering that in some of these inferred trips multiple users got on the bus (as explained
in section 3.5.5), the number of individual trips is 11 869 841, showing table 4.4
their distribution.

An expansion factor is needed to consider the rest of the AFC events that
are not part of the inferred trips. The great economic benefit of using a SC
supports the assumption that only sporadic, non-transferring users use cash. In
turn, incomplete trips provided by the trip chaining model still manage to identify
a likely trip origin.

Thus, as explained in eq. (3.60), an expansion factor is calculated for each cell,

Table 4.4: Transformation from inferred trips to individual trips
Simultaneous users Trips inferred Individual trips
1 10 247 155 10 247 155
2 658 901 1 317 802
3 69 434 208 302
4 14 811 59 244
5 3413 17 065
6 1251 7506

. . .
45 1 45

Total 11 869 841
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Figure 4.10: Location of the 113 transportation zones in Santander

to add these extra individual trips of known origin but unknown destination. They
fall under 3 categories, which add up to a total of 5 844 323 individual trips:

• 4 197 756 individual trips, from isolated alightings or partially defined trips
(some intermediate transfer was found, but not the final alighting).

• 1 633 763 cash AFC events.

• 12 804 from excess validations (eq. 3.54) from trips completely defined by
the trip chaining model.

This process ends with 6 457x457 OD matrices, which are in turn aggregated
to the 113 transportation zones usually defined in studies in Santander City, which
are shown in fig. 4.10 These matrices have been included in the first appendix.

Table 4.5 shows the different periods of time of the year from the point of
view of mobility patters, and how many individual trips happen on average in
each. As can be seen, summer is the peak season in Santander from the point of
view of public transport use. It is noticeable the increase of roughly one third of
individual trips on Saturdays and holidays from winter to summer. They probably
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reflect that both tourists and locals take advantage of the usually good weather.

Table 4.5: Mean daily individual trips across the different periods of the year
workdays Saturdays holidays weighted average

school season 55 566 29 956 20 272 45 443
summer 58 746 38 804 32 648 51 821
weighted average 56 396 31 902 32 270 47 051
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Chapter 5

Discussion

5.1 Vehicle runs definition
This section gathers several examples to illustrate how this methodology has

successfully improved the characterization of runs that were registered in the IPTS
in a way that impeded their consideration.

5.1.1 Reconstruction of a vehicle run from fragmented and
erroneous information

Figure 5.1 shows the case chosen for this analysis. The temporal horizontal axis
has been broken in three regions with a shift between them for easier visualization:

• The central one, where the actual run detected by the methodology and the
planned departure ( 5 ) are depicted. Its temporal axis has been placed in
the lower part of the plot.

• The leftmost area, with its temporal axis located in the upper part of the
figure. It includes the relevant raw AVL and AFC data, with a −20 min shift:

– 4 AVL sequences:

1 : From ‘Arsenio Odriozola 16’ to ‘San Fernando 66,’ with a gap of
almost 1 h between ‘Plaza de Italia’ and ‘Luis Mart́ınez’.

2 : From ‘San Mart́ın’ to ‘Pctcan,’ overlapping with 1 along its first
9 stops, and missing data at ‘Avenida de Valdecilla’ and ‘Torres
Quevedo 22.’

3 : A single event, at ‘Plaza de Italia’.

4 : A single event, at ‘Pctcan’, the last stop of the run. It happens
around 30 s before 2 ends.
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Figure 5.1: Characterization of a vehicle run from fragmented and erroneous in-
formation

– 19 AFC events, occurring between ‘Plaza de Italia’ and ‘José Ma Cosśıo 24.’

• The rightmost zone only contains the clearly unrelated arrival and departure
times logged by the planning subsystem ( 6 ), with a −40 min shift.

The run has been defined making use of the available information. The first
part of sequence 1 was considered as 2 different fragments, discarding the earlier
( 1a , which was probably caused by an incorrect vehicle state) and utilizing the

latter ( 1b ). After the last entry from 1 , the call at ‘Avenida Valdecilla’ ( 7a )

is approximated from a ticketing event ( 7b ); and the one at ‘Torres Quevedo 22’

( 8 ) is inferred considering departure and arrival times from the previous and
next stop, respectively. Of the two possible arrivals at the final terminus ( 9 ), the
one from sequence 4 , which happens 30 s earlier, is more likely according to the
departure time from ‘Albert Einstein 14’ and the travel time distribution between
these stops during the time period [17:30-18:00] on a workday.

It is worth noting that even though the run was planned to start at ‘San
Mart́ın,’ the methodology has detected that it actually began a few stops upstream
(at ‘Plaza de Italia,’ from run 3 ). The search for previous events ( 10 ) did not
return any match, so that is the stop where the run began.

5.1.2 Vehicle id mid-run change
Figure 5.2 shows how the information regarding a run of the subroute from

‘Pctcan’ to ‘Arsenio Odriozola’ appears in the IPTS, and its characterization by
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Figure 5.2: Characterization of a run when its vehicle id changes while it happens

this methodology. Again, the horizontal temporal axis has been divided in three
zones:

• The rightmost area, which contains, with the temporal axis on top, the two
runs initially found, how they have been combined, and the planned start
linked to them.

• The middle and leftmost regions show, with shifts of −40 min and −20 min
and their temporal axes at the bottom, the pertinent raw records.

Initially, step 3.3.3 had found two runs:

• One for vehicle 14 ( orange ), backed by a 4-stops trajectory, and several

ticketing events ( 1 ), being the latest one at ‘Manuel Llano.’

• Another for vehicle 224 ( green ), inferred from 4 ticketing events at 3 stops

( 2 , the earliest at ‘Luis Mart́ınez’), and any of the two raw AVL events with
the same timestamp at ‘Arsenio Odriozola 16’ terminus, which are part of
opposite trajectories which end ( 3 ) or begin ( 4 ) there.

These have been detected, as described in section 3.3.4, to be part of a single
run (displayed with a thicker blue line). Its corresponding scheduling subsystem
entry ( 5 ) only detected the departure of the vehicle, a bit later than the available
AVL data at that stop. Since it falls within the feasibility range from ‘Pctcan - 1,’
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Figure 5.3: Vehicle run characterization from AFC data only. Actual vehicle not
the planned one

it is accepted and used to update the departure time at ‘Pctcan,’ and to improve
the inferred call at the intermediate stop ‘Pctcan - 3.’

5.1.3 No AVL data and wrong vehicle id
Figure 5.3 shows a case that illustrates two situations that happen in the case

study: the AVL subsystem not recording any entry, and a vehicle different from
the planned one carrying out the run.

There is a shift of 10 min between where the run and the scheduled departure
are drawn (rightmost part, temporal axis on top), and where the raw AFC data
can be found (on the left, temporal axis at the bottom). It can be seen ( 1 ) that,
since the scheduling subsystem did not register the beginning of the trip, the calls
and ‘Pctcan’ and ‘Pctcan - 3’ had to be inferred using the arrival at ‘Pctcan - 1’
as the fix.

5.1.4 Handling of alternating route configurations
Several routes of Santander change their configuration through the day, to

better address the evolution of the demand; or to cover a wider area of the city,
alternatively visiting one zone or the other, at the expense of longer frequency
in those areas. The runs of a bus before and after a configuration change are
particularly prone to be mislabeled or unregistered altogether: the vehicle location
and ticketing systems may improperly be set for a configuration of the route, while
it is in fact following another. This all may be compounded by the rest of issues
already discussed in page 73.

For instance, route 3 connects with Peñacastillo municipality (a residential area
on the west border, roughly 6 km away from the center of Santander). Its ‘main’
configuration joins the main transportation corridor, described at page 73, and
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ends at ‘Paseo de Pereda 35’ (around 2 thirds along its west-east arm). However,
to better satisfy travel demand, when classes start or end, to go to and from
the educational centers alongside the Los Castros Avenue, one of the alternative
configurations of route 3 extends the ‘main’ one, moving north through the Tetuán
Tunnel, and then traverses Los Castros westwards, ending at The University of
Cantabria Rectorate.

Figure 5.4 shows an example of this situation, for one bus on route 3, on a
Wednesday in school season. On three occasions (morning, around midday and
evening) the route changes accordingly to when most students begin or end their
daily classes. The movement of the bus can be coherently followed, occasionally
switching between figs. 5.4a and 5.4b at termini. Focusing on the third period
when the vehicle follows the ‘main’ configuration, from approximately 16:00 to
20:00, it can be appreciated that the AVL did not properly register the position
of the vehicle, but the methodology has successfully identified which configuration
of route 3 was materialized, and inferred each call of each run combining AFC,
scheduled service beginnings, and the pertinent distributions of travel and dwell
times for route 3, on a workday in school season.

A similar situation in route 4 (fig. 5.5), that connects a neighborhood in the
southwest of Santander, with a mix of residential use, traditional fishing, and
restaurants. A significant number of calls of several runs had to be approximated
from AFC or the travel and dwell times distributions.

5.2 Treatment of initial termini
The objective of this section is to study the benefit of how this methodology

handles the data available at especially problematic termini, as it happens in this
route. To this end, the 25 466 runs which present recorded starting times from
the planning subsystem that, as described in section 3.3.5, have been accepted
for their characterization, are used as the ground truth to be compared with the
results obtained in three scenarios where that information is not considered:

A Follow the default methodology behavior for a route when the scheduling
subsystem did not record the start of a run (page 40).

B If the data at the first stop is deemed feasible, utilize it in the same way as
any other stop.

C if the planned start of a run falls within its corresponding feasibility range
(already stored in the search ranges table, or computed utilizing the closest
downstream data-supported call of the run), it is used as departure, if it
happens later than any available AFC or AVL entries. This means assuming
that schedule adherence is high enough to trust the planned departure times,
unless they are impossible or very unlikely.
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Figure 5.4: Runs of one vehicle covering Route 3 during a workday in school season

(a) ‘Main’ shorter configuration

(b) Alternative configuration, adding extra stops to the educational hub in Los Castros
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Figure 5.5: Runs of one vehicle covering Route 4 during a workday in school season

(a) ‘Main’ shorter configuration

(b) Alternative configuration, adding extra stops to the educational hub in Los Castros
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Figure 5.6: Distributions of abs. departure time errors per gap for scenarios A

and C

Figure 5.6 shows the distributions of the absolute error of the run departure
time reported in scenarios A and C . Runs have been classified according to
their “gap”: how far away (measured in route legs) are their earlier visits based on
AVL or AFC data from their scheduled beginnings. As can be seen, the decision of
relying on the inferred start time rather than the planned one provides approxima-
tions with less dispersion (standard deviations of 13 s and 17 s, respectively) and
a smaller mean absolute error (MAE), though as the uncertainty increases (more
unknown calls between the start of the run and the first data point) this benefit
lessens.

Scenarios A and B only differ for those runs where compatible AVL or AFC
data at the scheduled first stop can be found (zero gap). Figure 5.7 shows their
distributions of absolute errors in this case. Again, scenario A infers the missing
data with less dispersion (std. devs. of 15 s and 17 s, respectively) and MAE (11 s
versus 13 s).

5.3 Robustness against missing and wrong data
This section analyses how the methodology is affected by missing and erroneous

AVL information and run start detection (ticketing events are fully available in all
scenarios). The 16 863 runs where all calls were fully recorded by the scheduling
and AVL subsystems (49 % of all) is used as the ground truth; and compared with
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B

the results of running this methodology utilizing only part of the recorded raw AVL
data and scheduling subsystem detections, chosen through Bernoulli sampling; also
adding different amounts of synthetic AVL erroneous readings, which have been
randomly generated following these rules:

• bus stop, vehicle, and group are chosen between all their distinct values.

• instant happens between 07:00 and 23:00 of any day.

• Sampling from the distribution of durations is simulated utilizing its per-
centiles and the Uniform Distribution.

In fig. 5.8, the percentages are relative to the raw AVL entries and planned
runs available in the dataset. For instance, a scenario with 25 % of real data and
100 % of simulated errors only reads the arrival and departure of the vehicles at
the initial stop recorded by the scheduling subsystem in 25 % of the scheduled
runs; while its raw AVL input is created combining a Bernoulli sample of the real
information with a probability 25 % and 4 times as many bogus entries.

As more real data are available in a scenario, the more accurately runs are
characterized. For instance, with a relatively small sample (25 %), while the 99th

percentile does not significantly differ from not using AVL or detected run starts
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Figure 5.8: Distribution of the deviation from the ground truth for different pro-
portions of real and wrong data. Extremes at 1st and 99th percentiles

at all (slightly less than 7 min), it can already be appreciated that absolute error
(AE) is quite more likely to be smaller: lower quartile, median, and upper quartile
reduced from 4 s, 9 s, and 24 s to 0 s, 4 s, and 13 s, respectively ( A & B ).

It is also noticeable the strength of the methodology against artificial incorrect
entries, which grows as more true readings are available in the scenario. Two
examples are:

• With just 25 % of real information, the effect of adding four times as many
wrong entries is a relatively small increase of the 99th percentile, from 6m51s
to 7m07s ( B & C ).

• If all real data is available, the methodology successfully identifies the correct
values as seeds (section 3.3.3), and is able to completely ignore many false
events ( D & E ).

5.4 Trip chaining examples
This section will show several examples from the rides table that contains all

trips found by the methodology (table 3.11).
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5.4.1 Example 1
Figure 5.9 shows the 4 trips carried out by one user during a working day in

summer, in two pictures:

• In fig. 5.9a the 2 first trips can be seen:

– The first trip ( purple ), composed by 2 rides:

∗ On route 3, from ‘Barrio de Ojaiz 7’ (08:11:28) to ‘Valdecilla’ (08:25:46).

∗ The traveler crossed the street, to board a bus of route 1, from
‘Avenida de Valdecilla 7’ (08:33:59) to ‘Instituto Alisal’ (08:41:27).

– The second trip ( brown ), from ‘Los Ciruelos 47’ (09:10:44) to ‘Ayun-
tamiento’ (09:27:55), on route 1 again. Even though less than mtt =
40 min pass from the very close alighting stop, if the user had wanted
to go to ‘Ayuntamiento’ he could have stayed on the previous bus, and
thus the program correctly identifies this as a new trip

• Figure 5.9b shows the other 2 trips:

– The third trip ( pink ), from ‘Plaza Ayuntamiento’ (09:40:05) to ‘San
Fernando 66’ (09:44:14), on route 7C1. Again, according to the time gap
from the previous alighting this could have been a transfer, but if the
user destination had been ‘San Fernando 66’ all along, he would have
alighted from the second trip at the very close stop of ‘San Fernando’.

– Finally, the traveler performs the last trip of the day ( green ) to proba-
bly return home from ‘San Fernando 66’ (10:24:37) to ‘Barrio de Ojaiz’
(10:41:02).

5.4.2 Example 2
In this case from a working day in school period, depicted in fig. 5.10, the chain

of trips is as follows:

• The first trip ( red ), composed by 2 rides:

– On route 12, from ‘Francisco Tomas y Valiente 11’ (12:28:11) to ‘Cuatro
Caminos’ (12:37:57).

– The traveler crossed the street, to board a bus of route 2, from ‘San
Fernando 66’ (12:56:51) to ‘Instituto Alisal’ (13:06:26).

• The second trip ( purple ) occurs after a 1-hour activity. It also is composed
by 2 rides:

– On route 1, from ‘Los Ciruelos 47’ (13:57:32) to ‘Jesús de Monasterio’
(14:10:59).
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Figure 5.9: Trip chaining example 1

(a) First two trips

(b) Last two trips
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Figure 5.10: Trip chaining example 2

– On route 4, from ‘Jesús de Monasterio’ (14:17:41) to ‘Calle Castilla 51’
(14:23:59).

• The last trip of the day ( brown ), to probably return home from ‘Calle
Castilla 51’ (14:35:28) to ‘Francisco Tomas y Valiente 7’ (14:40:52), riding
route 19. Even though the rest of the criteria allowed for this last ride to be
part of the previous trip, the total path would be too circuitous (more than
3 times the direct distance between ‘Los Ciruelos 47’ and ‘Francisco Tomas
y Valiente 11’), and thus a break was introduced just before this ride, where
more leeway for some short activity is available (11 min and 29 s).

5.4.3 Example 3
Figure 5.11 illustrates a chain of trips for a working day in school period:

• It starts with a trip on route 17 ( green ) from ‘San Fernando 66 (10:53:25)
to ‘Corbán’ (11:06:43).

• The second trip ( red ) (after roughly 4 and a half hours) goes from ‘Corbán’
(15:43:11) to ‘Bo La Sierra’ (15:45:18).

• The next ride begins too far away and too long after the previous ends to
be part of the same trip, so it starts a new one ( purple ), which was carried
out by two passengers, from ‘Joaqúın Rodrigo’ (16:54:11) to ‘Puertochico’
(17:16:01) on route 1.

• The next and last ride of the day, for the same reasons as before a trip on its
own ( brown ), goes from ‘General Dávila 58’ (22:22:09) to ‘Camilo Alonso
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Figure 5.11: Trip chaining example 3

Vega 19’ (22:29:36).

5.4.4 Example 4
This case from a summer working day is an example of multiple users sharing

the same SC. On each occasion, three people boarded the vehicle:

• The first trip ( brown ) goes from ‘Camarreal 135’ (17:25:40) to ‘Jesús de
Monasterio’ (17:42:51), on route 3.

• Roughly 4 and a half hours later, they return in another run of the same
route ( blue ), from ‘Jesús de Monasterio 12’ (22:21:04) to ‘Camarreal 136’

5.4.5 Example 5
This trip chain happens between a Saturday and a Sunday in summer, and

is captured thanks to the decision to specify that, from the point of view of the
mobility in the city, the transition between one day and the next happens at
06:00. Thus, for later aggregation of individual trips in OD matrices, these would
be considered as happening during a summer Saturday:

• One ride on route 1 ( green ) from ‘Correos’ (17:11:56) to ‘Luis Mart́ınez’
(17:20:05), a zone with several popular spots for young people to go out.

• 9 h later, come back home ( red ) on route N1, from ‘Luis Mart́ınez’ (02:17:52)
to ‘Correos 2’ (02:29:03).

5.4.6 Example 6
Two consecutive Saturday and Sunday summer days are shown in fig. 5.14:
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Figure 5.12: Trip chaining example 4

Figure 5.13: Trip chaining example 5
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• On Saturday, the user only makes a single-ride trip ( red ) from ‘Catedral’
(14:09:51) on route 5C2. To infer the most likely alighting bus stop, since
the card is utilized again next day, the earliest of those Sunday validations
is assumed to be the most likely destination (‘Menendez Pelayo 61’). Thus,
the program supposes that this Saturday trip ends at ‘Menéndez Pelayo 46’
(14:18:23).

• On Sunday, two trips take place:

– From ‘Menendez Pelayo 61’ (08:12:57) to ‘Camilo Alonso Vega 10’ (08:24:04),
on route 5C1 ( purple )

– From ‘Valdecilla’ (10:13:08) to ‘Puertochico’ (10:26:11), on route 2 ( brown ).
Again, ‘Menendez Pelayo 61’ is assumed to be the destination, this time
because it is where the first boarding event of the day under analysis.

5.4.7 Example 7
It is possible to infer the destinations of 3 trips on a sunday in school season

thanks to the detection of a frequent activity around ‘San Fernando 66’ stop on
that day type, where the traveler usually arrives between 13:48:10 and 14:18:10.
These 3 trips all start past 13:30 at different stops, being materialized as rides
of routes 1 or 2, arriving at ‘San Fernando 66’ around 14:00. Since they all are
the only ride of their respective days and the first boarding of the next day does
not exist (the SC was not used) or is too close (eq. 3.47) or too far away (eq
3.41), the ‘first boarding of the same day’ and ‘first boarding of the following day’
(section 3.5.2) criteria are not applicable.

Several of the trip chains that have as one of their destinations a node part of
this frequent activity cluster, can be seen in Figure 5.15b.

5.5 Desire lines
Several cases corresponding to highly demanded destinations for different parts

of the year have been built with the information contained in the OD matrices
generated in section 4.2.6.

5.5.1 Trips attracted by zone 8 on a working day in school
season

Zone 8 is where the city council plaza is, one of the most prominent locations of
the commercial and services sector, as well as government buildings (treasury and
motor vehicles departments, city council, traffic, etc.). Figure 5.16 shows those
OD pairs with it as a destination and more than 30 individual trips. As can be
seen, few originate from the east. Maybe those citizens find some kind of activity
closer to home, and do not need to travel to zone 8; while those from the west do.
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Figure 5.14: Trip chaining example 6

(a) Trip on the former day

(b) Trips on the latter day

105



CHAPTER 5. DISCUSSION

Figure 5.15: Trip chaining example 7

(a) Inferred trips

(b) Days with trips that contributed to the cluster
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Figure 5.16: Trips attracted by zone 8 on a working day in school season

5.5.2 Trips attracted by zone 8 on a working day in school
season

Zone 77 accommodates a shopping center and several large store chains. As
can be seen in fig. 5.17 (showing desire lines with more than 10 individual trips),
many citizens go there on Saturdays to shop in a closed environment.

5.5.3 Trips attracted by zone 11 on a holiday in school
season

Zone 11 is a popular destination for recreational activities during Sundays
(restaurants, bars, pubs, etc.) Figure 5.18 shows its desire lines for more than
20 individual trips.

On the contrary to what was observed for working days in the very close zone 8
(section 5.5.1), this time citizens from all over Santander are attracted.

5.5.4 Trips attracted by zone 108 on a working day in sum-
mer

Finally, fig. 5.19 illustrates the high demand of travelling to Santander beaches
during summer. Desire lines only drawn for OD pairs with 20 or more individual
trips.
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Figure 5.17: Trips attracted a Saturday during winter by zone 77

Figure 5.18: Trips attracted by zone 11 on a holiday in school season
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Figure 5.19: Trips attracted by zone 108 on a working day in summer
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Chapter 6

Conclusions and future research

6.1 Conclusions
The methodology described in this thesis begins combining AFC, AVL, schedul-

ing subsystem information, and probability distributions of travel and dwell times,
providing a better definition of the runs of the routes offered in a public transport
system and the trips (composed by one or more rides) that transit users carry
out within it; ameliorating the problems that commonly occur when working with
IPTS data: ambiguous ids for some elements of the system; missing or multiple
entries related to the same AVL event; inconsistent run ids between the different
subsystems, which impedes identifying their respective records related to the same
run; AFC events with wrong information; and uncertainty regarding whether a
programmed run actually took place.

Events whose attributes wrongly classify them as part of different runs are sin-
gled out and treated, as also are those unlikely to have really happened. Calls at
each stop of each run are delimited considering the multiple sources of data avail-
able in that instance, providing the most likely arrival and departure times instead
if there is none. A way to detect and handle those cases where the vehicle changes
its id mid-run, which among other problems would lead to the misrepresentation
of their load profiles, is formulated.

A run and a stop are assigned to each ticketing record, distinguishing those
cases where the AFC state information and timestamp are coherent with the cor-
responding run call, and those where their timestamp and vehicle id are utilized
to infer the ticketing action that really took place.

The discussion of the case study shows several instances where initially incom-
pletely or wrongly recorded runs are properly defined. To show the flexibility of
the methodology, it is shown how if no AVL data is available at all, the vehicle
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run is reconstructed approximating arrivals and departures from each stop to the
earliest and latest AFC events of the corresponding boarding groups. Moreover,
the program finds the event in the scheduling subsystem that likely corresponds
to this rebuilt run even though the id of the planned vehicle and that of the AFC
records do not match.

To evaluate how it fares characterizing calls at the termini, those starting times
logged by the planning subsystem deemed to be correct have been used as empirical
evidence; to compare with the outputs (without using that data) of the chosen
strategy of preferring to infer the initial call in unreliable termini if the stop next
to them is backed by real data, and two alternatives that were considered while
writing this thesis: treat termini as any other stop, and consider planned run start
times if feasible. It can be seen how the former consistently provides a better
approximation of when runs have begun. This improvement may be particularly
useful to better audit how closely a system adheres to its timetable.

Also, to assess the impact of bad AVL records, as well as missing AVL and
detected run beginning information, those runs perfectly recorded in the original
dataset (start logged by the scheduling subsystem, and all other calls derived from
AVL) have been used as the ground truth, studying how their characterization
deviates with different amounts of real and bogus simulated entries. The results
show significant improvements: with as little as 25 % of real AVL and run start
detection data, even when adding 4 times as many wrong entries the results are
significantly better than those from applying the methodology using only AFC
records. The more real data is available, the closer the characterization is to the
run that took place, and the more resistant it is to incorrect values: for instance,
if 100 % of the real information is utilized, the methodology can completely filter
out twice as many erroneous data.

This work makes use of the improved definitions of runs and boarding events
with a trip chaining model, which successfully captures the mobility patterns of
users in the city, thanks to several enhancements that, as illustrated again in the
discussion of the case study, improve the likelihood of the inferred trips and runs
being correct. The case where a single SC may be used to grant access to several
passengers is considered, as also is the possibility that a single ride may overlap one
or two vehicle runs, which may correspond to different configurations of a route.

One of these enhancements is an analysis of frequent activity destinations,
specifying the area where they are located within the city, and the time window
when the user arrives through DBSCAN. They have provided another way to find
the last alighting of some inferred trips that would otherwise remain undefined,
and a representation of the spatial and temporal mobility patterns in the city, for
6 day types.
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Individual trips have been aggregated and expanded to account for cash pay-
ments and for those SCs validations for which a destination could not be inferred,
producing OD matrices for different part of the year.

This methodology is applicable to situations with different scheduling informa-
tion: none, planned beginnings only, or scheduled and detected (but not necessarily
correct) start times; while the id of the originally intended vehicle may be known
or not. These improvements help provide more accurate depictions of user rides
and vehicle runs.

6.2 Future research
As his next objective, the author is currently studying the extension of this

methodology to provide more accurate vehicle load profiles.

Also, other interesting line of work is the integration within the ecosystem of a
running IPTS, to have directly available the improved representation of what has
occurred in the system. The way to approach this task would be to start with an
application which would provide daily updated definitions, and to build up from
that point forward (hourly, and finally ‘near-real-time’ information).

Another possible line of investigation is the utilization of other probability
distributions to model dwell and travel times, or use more sophisticated models to
calculate them.

It is likely that weather and comfort influence the attractiveness of taking a bus
versus walking. Thus, it would be interesting to modulate the walk penalization
factor fw of the trip chaining model according to weather and bus occupancy.

Another variable that would be interesting to factor in the selection of the trip
chaining model parameters is the type of SC card utilized in each transaction, since
they correspond to different demographic groups. For instance, senior citizens and
people with disabilities are more likely to get on the bus for short trips if the street
is too steep, as are owners of SCs which provide a flat rate.

Also, it may be worth exploring utilizing existing research to infer the purpose
of trips to improve the definition of the location and time window of frequent
activity nodes, since they may show different spatial and temporal variabilities
according to their nature. For instance, ‘work’ or ‘go to school’ should usually
be quite rigid temporally, while the time when people return home can be more
flexible. On the other hand, ‘leisure’ activities may be less precise spatially than
other types.

And finally, even though this work has focused on urban public bus trans-
port, it might be worth exploring its applicability to other ambits which similar
characteristics, such as intercity bus services.
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[80] Martin Trépanier, Nicolas Tranchant, and Robert Chapleau. “Individual trip
destination estimation in a transit smart card automated fare collection sys-
tem”. In: Journal of Intelligent Transportation Systems: Technology, Plan-
ning, and Operations 11.1 (2007), pp. 1–14. issn: 15472450. doi: 10.1080/
15472450601122256.

122

https://doi.org/10.3141/1841-13
https://doi.org/10.1109/ACCESS.2019.2930279
https://doi.org/10.1061/(ASCE)0733-947X(2005)131:8(640)
https://doi.org/10.1061/(ASCE)0733-947X(2005)131:8(640)
https://doi.org/10.1109/ITSC.2014.6958148
https://doi.org/10.1109/ITSC.2014.6958148
https://doi.org/10.3390/info9010018
https://doi.org/10.1016/j.ijpe.2020.107920
https://doi.org/10.1016/j.ijpe.2020.107920
https://doi.org/10.1016/j.ijpe.2020.107920
https://doi.org/10.3141/1817-24
https://doi.org/10.1080/15472450601122256
https://doi.org/10.1080/15472450601122256


BIBLIOGRAPHY

[81] Jinhua Zhao, Adam Rahbee, and Nigel H.M. Wilson. “Estimating a rail
passenger trip origin-destination matrix using automatic data collection sys-
tems”. In: Computer-Aided Civil and Infrastructure Engineering 22.5 (2007),
pp. 376–387. issn: 10939687. doi: 10.1111/j.1467-8667.2007.00494.x.

[82] Markus Hofmann and Margaret O’Mahony. “Transfer journey identification
and analyses from electronic fare collection data”. In: IEEE Conference on
Intelligent Transportation Systems, Proceedings, ITSC 2005.October (2005),
pp. 34–39. doi: 10.1109/ITSC.2005.1520156.

[83] Wonjae Jang. “Travel time and transfer analysis using transit smart card
data”. In: Transportation Research Record 2144 (2010), pp. 142–149. issn:
03611981. doi: 10.3141/2144-16.

[84] Flavio Devillaine, Marcela Munizaga, and Martin Trépanier. “Detection of
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CHAPTER 7. APPENDICES

7.1 Daily OD matrices
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7.2 Runs from other Santander routes
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CHAPTER 7. APPENDICES

Figure 7.2: Runs of one vehicle on different days that show the configurations of
5C1. The changes from green to yellow correspond to vehicle id variations that were detected and treated.

(a) Configuration on workdays during school season

(b) Longer configuration for the rest of day types, extending up to Sardinero beach
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Figure 7.5: Runs of one vehicle covering Route 17 during a workday in school
season

(a) Longer configuration, up to Ciriego

(b) Shorter configuration to Corbán
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Figure 7.6: Daily runs of different vehicles that show the configurations of Route 18
to Monte neighborhood

(a) Configuration during a workday in school season, up to Corbanera

(b) Configuration during a workday in school season, up to El Castillo

(c) Summer configuration with some extra stops on the way to Monte
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Figure 7.10: Runs of a vehicle (not the initially planned one) following route 30

Figure 7.11: Runs of a vehicle of route 41 (special daily route to Valdecilla Hospital)
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Figure 7.13: Runs of a vehicle of route 43 (special route to Peñacastillo secondary
education center)

Figure 7.14: Runs of a vehicle of route 44 (another daily route to Peñacastillo)
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Figure 7.16: All runs of route 6C1 in a day (2 vehicles)

Figure 7.17: All runs of route 6C2 in a day (2 vehicles, one changes its id during
the run which starts at 12:00)
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Figure 7.18: Runs of a vehicle of route 7C1

(a) ‘Main’ longer configuration

(b) Shorter early morning configuration. It skips some stops to
arrive sooner to Los Castros educational hub.

Figure 7.19: Runs of a vehicle of Route 7C2 in a working day in school season
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