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OPTIMAL CONTROL OF THE TWO-DIMENSIONAL
EVOLUTIONARY NAVIER-STOKES EQUATIONS WITH MEASURE
VALUED CONTROLS*
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Abstract. In this paper, we consider an optimal control problem for the two-dimensional
evolutionary Navier—Stokes system. Looking for sparsity, we take controls as functions of time
taking values in a space of Borel measures. The cost functional does not involve directly the control
but we assume some constraints on them. We prove the well-posedness of the control problem and
derive necessary and sufficient conditions for local optimality of the controls.
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1. Introduction. In this paper we investigate the following optimal control
problem

(P) min J(u)= ;/Q IVu(z,t) — ya(z,t)]* de dt,

where Uyq = {u € L>=(0,7;M(w)) : [|u(t)||m@) < v foraa. t € (0,7)} with 0 <
v < 00, and y and u are related by the Navier—Stokes system

3 .
1) %quy+(y~V)y+Vp:fo+qu inQ=QxI,

divy=0 in@, y=0 onX=Tx1I, y(0) =y in Q.

Here, I = (0,T) with 0 < T' < oo, Q denotes a bounded domain in R? with a C3
boundary I, and w is a relatively closed subset of . We denote M(w) = M (w)x M (w),
where M (w) is the space of real and regular Borel measures in w. In the cost functional
J, the target y4 € L2(Q) is fixed. Regarding the state equation, v > 0 is the kinematic
viscosity coefficient, y,u denotes the extension of u by zero outside w, and fy is a
given element of L4(I, W~1P(Q)) with W=1P(Q) = W=1P(Q) x W=1P(Q), where

2
<p<2 and q>7p

(1.2) S

o~

are fixed. Observe that the previous assumptions imply that ¢ > 4. For the initial
condition we can take yg € Wé’p (©2) such that divyg = 0. A more general choice for
yo will be given later.
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Our motivation for the analysis of measure-valued controls is two-fold. On the one
hand there it is the genuine interest in low-order regularity of the controls, on the other
hand it relates to their sparsity promoting structure. Indeed, it has been observed
and analyzed in much previous work that the optimal controls are typically zero over
subsets of the domain, whereas they would simply be “small,” but not zero, if they
would be replaced by a control in a Hilbert space, for example. We refer, exemplarily
to the work in [6, 8, 23], which treats these phenomena for equations of diffusion type
as well as for wave equations. In these papers the sparsity promoting terms is part
of the cost, whereas in [14] the measure valued term appears as a constraint like in
U.,q above. It should also be mentioned that in case the measure-valued setting is
replaced by an L' formulation together with L? constraints or penalties, again sparsity
phenomena occur, but the optimal controls are, of course, functions in this case rather
than measures [11, 21].

In the literature, the optimal control of the Navier—Stokes equations has received
much attention; we refer exemplarily to [1, 4, 16, 17, 22, 30], and the monograph
[20] and the survey [7]. The controls are always considered as functions in these
contributions. Apparently the only work on measure valued optimal controls in the
case of the Navier-Stokes equations is [13] which treats the stationary case.

For evolutionary Navier—Stokes equations with forcing functions of low regularity,
allowing for measure-valued forcing, very little analysis has been carried out even for
the state equation by itself. We are only aware of [26], where the right-hand side in
(1.1) is chosen in W1o°(I; W=1P(Q)), with W=1r(Q) = @©_, W—1P(Q), d € {2,3},
and p € (%,2]. It is mentioned there that likely the result is not optimal. In our
previous work [15] we have obtained the necessary well-posedness results for (1.1)
which are required for the study of optimal control problems. Thus the current
work is the first one which considers optimal control for evolutionary Navier—Stokes
equations with measure-valued controls.

When formulating optimal control problems some restrictions on the class of
admissible controls are essential to guarantee existence of minimizers to be obtained
by the standard method of the calculus of variations. Such restrictions are also well
motivated by applications. One possible choice consists in adding a properly chosen
control cost to the cost-functional J in (P). In our case it could be a term of the
form %fOT ||u(t)\|%,l(w) dt, where § is a positive weight. For technical reasons ¢ = 2
seems not to be possible, since it does not imply sufficient temporal regularity on the
class of admissible controls. From the analytical point of view it would suffice to take
q > 4. But we prefer to rather work with pointwise constraints in time. In this way
we arrive at the class U,q and the problem formulation chosen in (P). This choice of
temporal pointwise constraints also poses new challenges in deriving both necessary
and sufficient second order optimality conditions, regardless of the measure-valued
norm in space.

Let us comment further on the norm in M(w) appearing in (P). First, we recall
that M (w) is a Banach space when endowed with the norm

lularwy = sup / 6(z) du(z) = [u](w),

Il cpw) <1
where Cy(w) = {¢p € C(@) : ¢(x) = 0 Vo € dwNT} is a separable Banach space,

and |u| represents the total variation measure of w; see [25, page 130]. Note that
Co(w) # C(@) only in the case that @ has a nonempty intersection with T'.
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For vector-valued measures we define

(1.3) [allme) = max(flullarw)s l[uzllaew),

which makes M(w) a Banach space. It is the dual space of Cp(w) = Cp(w) x Co(w)
when it is endowed with the norm ||@||c,w) = [|91llcyw) + |D2]lco @)

Hereafter we denote by L (I; M(w)) the space of weakly measurable functions
u: (0,7) — M(w) satistying [[ul|pe ;M) = esssupser|lu(t)|lve) < oo. This
norm makes L*°(I; M(w)) a Banach space and guarantees that it can be identified
with the dual of L!(I;Cy(w)), where the duality relation is given by

T
(W, Z) oo (1;M(w)), L (I;Co (w)) :A (u(t), z(t)) M(w),Co(w) dt-

The reader is referred to [18, section 8.14.1 and Proposition 8.15.3] for the differ-
ent notions of measurability and [18, Theorem 8.18.2] for the duality identification.
(The distinction between weak and strong measurability is not required for the space
LY(I; Co(w)) because Cy(w) is separable and hence both notions are equivalent; see
[18, Theorem 8.15.2].) Observe that L°°(I; M(w)) is a subspace of L>(I; W~17(())

for every p < 2. Indeed, the embedding Wé’p/(Q) C Cp(2) C Cp(w) implies that the

duality (u(t),z) is well defined for every u € L>°(I; M(w)) and z € Wé’p/(Q), and we
have

[(u(t), Z)M(w),Co(w)| < u()Ivw) 12l cow)
< CP,QHu(t)”M(w)||z||wévP'(Q) < CP,QHUHLOC(I;M(W))||z||wé’Pl(Q)

for a.a. t € I and a constant Cj, o depending only on p and 2. Analogously, we have
that L9(I; M(w)) is a Banach space for the norm

1/q

T
Il pagrmw)) = lallfeeydt ]
0

dual of L9 (I; Co(w)). Obviously, the embedding L>(I; M(w)) C L9(I; M(w)) holds.
The right-hand side of the state equation, fy + x,u, is well defined as an element of
Li(I; W=1P(Q)) for every u € LI(I; M(w)).

Structure of paper. In the following section, well-posed results on the state equation
relevant for the remainder of the paper are summarized. Here we can rely on results
from [15]. Existence of solutions to (P) and first-order optimality conditions are the
contents of section 3. Necessary and sufficient second-order optimality conditions will
be given in section 4. This requires further detailed analysis of the state equations
and its linearization in function spaces of low regularity.

Notation.
In this paper, we denote W{*(Q) = W)5(Q) x Wy*(Q) for s € (1,00), and we
choose as the norm in Wé’S(Q)

1

Wl = 99l = ([ 1991°a0) " = ([ 190+ 19mPlE )
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We also consider the spaces
H = closure of {¢ € C(Q) : dive = 0} in L*(Q),
W.(Q) = {y e W*(Q) : divy = 0}.

For s = 2 we set HA(Q) = W{%(Q) and V = W ().
We also define the following spaces

Jy

W(0,T) ={y € L*(I; V) : 5 € LA(I; V')},
W (0.7) = {y € D'(1EWL(Q) - ¥ € 1 (1 W (0)),
V240,T) = {y € LA (I;H*(Q)NV) : % € L*(I;H)}

with 7, s € (1,00), endowed with the norms

dy
Iyllwo.r) = [I¥llL2zm1 ) + HEHLW;V’)»
Jy
IV ltw..co.) = I¥lle s @) + 155 e aew, @)
dy
1¥llver0.m) = IyllLzm2 @) + I3z 2 rim)-

Obviously these are reflexive Banach spaces, and W(0,7) = W, ,(0,T) if r = s = 2.
Moreover, W (0,7) and V*1(0,T) are Hilbert spaces.

Now we consider the interpolation space B, (2) = (Wsr(Q)/,WS(Q))l,l/m.
From [2, Chapter I11/4.10.2] we know that W, ;(0,7) C C([0,77;Bs,(£2)), and the
trace mapping y € W, 4(0,T) — y(0) € B, () is surjective. If r = s = 2, then
it is known that By () = (V',V);2 = H. Hence, the embedding W(0,T) C
C([0,T]; H) holds; see [24, Page 22, Proposition I-2.1] and [29, Page 143, Remark 3].

2. Analysis of the state equation. The aim of this section is to study the well-
posedness and differentiability of the mapping control-to-state. The results presented

in this section are based on the analysis carried out in [15].
Let us consider the Banach space Yo = H + B, ,(Q2) with the norm

[yollw, = _inf
Y

_infllyaflee) + lly2lls, .-

It will be assumed that the initial state yo in (1.1) is an element of Yy. Now we
introduce the following spaces:
Y = [LX(1; V) N L= (1 H)] + LY W, (92)),
Y=W(0,T)+W,,(0,T).

They are Banach spaces with the norms

ylly = y:ylniyz ”ylHL?(I;H})(Q)) + ||YI||L°C(I;L2(Q)) + ||YZHL11(I;W3’P(Q))7

lylly = y:inlllin Iyillwo.r) + lly2llw, ,0.1)-

Note that ) C Y. Moreover, since W(0,7") and W ,,(0,T") are reflexive spaces, then
Y is reflexive as well. The solution of (1.1) will be found in ).
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DEFINITION 2.1. Given fy € LY(I, W~1P(Q)), u € LI(I;M(w)), and yo € Yo,
we say that'y € Y is a solution of (1.1) if

(2.1)
<y(t>7 1/J>Wp/ (2)), W,/ () + a’(y(t>7 1/’) + b<Y<t)a y(t)7 1/’)
<f0(t)7¢>W71,p(9)vwévp/(ﬂ) + <u(t)7¢>M(w),Co(w) mn (OaT) V'l,b S Wp’ (Q)a
y(0) = yo,

where the system of differential equations is satisfied in the distribution sense and

S

ay(t).9) =v | Vy(e.0): V(@) de = vy [ Vule.) V() da.

by (1), y (1), ) = /Q y(6) - VIy(t) - 9 de.

A distribution p in Q is called an associated pressure if the equation

o
%—uAy+(y~V)y+Vp:fo+xwu in Q

is satisfied in the distribution sense. Then, (y,p) is called a solution of (1.1).

Given y satisfying (2.1), the pressure p is obtained by using De Rham’s theorem;
see [27, Lemma IV-1.4.1]. As pointed out in section 1, the embeddings W(0,7") C
C([0,T];H) and W, ,(0,T) C C([0,T]; B, 4(R2)) hold. Hence, Y € C([0,T];Yo) and,
consequently, the initial condition y(0) = yo with yo € Yo makes sense.

The next theorem establishes the well-posedness of the state equation (1.1). It is
an immediate consequence of [15, Theorems 2.2 and 2.9].

THEOREM 2.2. Suppose that (fo,yo) € LY(I, W~1P(Q))x Y and that (1.2) holds.
Then, system (2.1) has a unique solution (y,p) € ¥ x W=14(I; LP(Q)/R) for every
u € LY(I;M(w)). Furthermore, there exists a nondecreasing function n, 4 : [0, 00) —
[0, 00) with 1,,4(0) = 0 such that

(2.2) lylly < 77p.,q<||f0||Lq(1;wp,(Q)') +lullpaw-1) + HYO||Y0)~

In addition, if ¢ > 8 and yo € B 4(Q) + B, 4(Q), then y belongs to L(I; L*(Q)).
Now, we introduce the mapping G : L4(I;M(w)) — ) associating to each

control u € L9(I; M(w)) the solution y, € Y of (1.1). Then we have the following
differentiability result.

THEOREM 2.3. G is of class C*°. Further, given u,v,vy,ve € L1(I; M(w)) we
have that z, = G'(0)v and zy, v, = G"(u)(v1,v2) are the unique solutions in Y of
the Oseen systems

0z '
(2.3) ot VAZ+ (yu-V)z+(z-V)yu+ Vg =x,v inQ,
divz=0 inQ, z=0 on X, z(0) =0 inQ,
and
(2.4)
% —VvAZ+ (yu-V)z+ (2-V)yu+ Va4 = —(2v, - V)2y, — (Zy, - V)2zy, inQ,

divz=0 inQ, z=0 on X, z(0)=0 in Q,
respectively, where y, = G(u) and z, = G'(u)v; fori=1,2.
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Proof. Let Go : L(I; W~1P(Q)) — Y be defined by Go(f) = y¢ with y¢ the
solution of the system

) .
(2.5) a%—VAyHy'V)yﬂLVP:fIHQZQXL

divy=0 inQ, y=0 onX=Tx1I, y(0) =yp in Q.

Then, we have that G(u) = (Go o B)(u) with B : LY(I; M(w)) — LI(I; W=1P(Q))
given by Bu = fy + y,u. The statement of the theorem is a straightforward conse-
quence of the chain rule and [15, Theorerm 5.1]. 0

We finish this section proving the a continuity result for G.

THEOREM 2.4. Let {u,}3, C LI(I;M(w)) be a sequence such that v, - u
in LY(I;M(w)); then yu, — Yu in Y and yu, — yu in L*(I;Ha,), where Hy, =
H N L% ().

Proof. The boundedness of {uy}° ; in L(I; M(w)) along with the estimate (2.2)
implies the boundedness of {yy, }72; in Y. Since ) is reflexive, there exists a subse-
quence, denoted in the same way, such that y,, — y in V. Now, we pass to the limit
in (2.1) satisfied by every pair (yu,,ux). In this process, the only difficulty is found
in the nonlinear term b(yu,,Yu,,®¥). To deal with it we use a compact embedding.
Using the Sobolev embeddings V C Hy, C V* and W () C Hy, C W, ()", which
are compact, we have the compactness of the embeddings W (0,T) C L?(I;Ha,) and
W, ,(0,T) C LY(I;Hsyp); see [28, Theorem III-2.1]. Since ¢ > 4, we get that the
embedding Y C L2(I; H,,) is compact. Hence, we deduce that y,, — y strongly in
L*(I;Hy,). Finally, given 9 € W,/ () and using the antisymmetric property of b we
get

b(Yuk7YUk7¢) = *b(}’uw";b»}’uk) — 7b(y717b7y) = b(YaYaw) StI‘OHgly iIl LI(I)

Therefore, y satisfies (2.1) and, hence, y = y,. Since every convergent subsequence
of {yu, }3>, converges to the same limit y,, we conclude that the whole sequence
converges as claimed in the theorem to y,,. ]

3. Existence of solutions of (P) and first-order optimality conditions.
We start this section by proving the existence of solutions for the control problem
(P). Then, we show the differentiability of the cost functional and deduce the first-
order necessary optimality conditions. From these conditions we infer the sparsity
properties of the stationary controls.

THEOREM 3.1. There exists at least one solution u of (P).

Proof. First, we observe that U,gq is the closed ball of L*(I; M(w)) centered at O
and radius 7. Moreover, L'(I; Co(w)) is a separable Banach space and L (I; M(w)) =
LY(I;Cy(w))”. Hence, given a minimizing sequence {u;}32, for (P), there exists a
subsequence, denoted in the same way, such that u; — @ in L>(I; M(w)). Then,
Theorem 2.4 implies that y,, — ya in L?(Q). Therefore, J(u;) — J(a) = inf (P)
holds. Thus, u is a solution of (P). |

Before stating the optimality conditions satisfied by a solution of (P), we analyze
the differentiability of the cost functional.

THEOREM 3.2. The cost functional J : LY(I;M(w)) — R is of class C*> and
the following identities hold
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T
(3.1) J(u)v = / V() @ut)) a0y, Co e
(3.2) J'(a)v? = /Q {lzv|” + 2(zv - V)pu2zy} dudt

for all v € LY(I;M(w)), where z, = G'(0)v and ¢, € V>1(0,T) is the adjoint state,
the unique solution along with the pressure my of

(3.3) ——C —vAp — (yu V) — (Vo) yu+ VT = yu—ya inQ,
dive =0 inQ, ¢ =0 onX, o(T)=0 inQ.

Proof. The differentiability of J is a consequence of the chain rule and Theorem
2.3. The expressions (3.1) and (3.2) follow from (2.3), (2.4), and (3.3). We only have
to prove that (3.3) has a unique solution that belongs to V1(0,T). To this end, let
us consider the classical operator associated with the Stokes system A : V. — V'
given by (A, p)v' v = a(h,9) Vip,¢ € V. As usual, we take a basis {1);}32, of
V formed by eigenfunctions of A: Av; = A\jab; with {);}32, C (0,00), j > 1. We
assume that {t;}22, is orthonormal for the Hilbert product in H: (¢4, %;)vr2(q) = dij-
Let us denote by V, the subspace generated by {1, ..., }. Following the classical
Faedo—Galerkin approach, we discretize (3.3)

—C(pult). ;)@ + alou(0),38,) — DyalD) u0) )

=b(;, (), yu(t)) = (Yult) = ya(t), ¥;)L2(0) in (0,T), 1 <j <k,
(1) =0,

where ¢, (t) = Zle gk.j(t);. Arguing analogously as in [15, Proof of Proposition
2.7], we infer the existence and uniqueness of a solution ¢, satisfying the estimate

(3.4)

(3.5) lexlwo.r < mollyulv)llye = yalrz @) Yk

where 79 : [0,00) — [0,00) is a nondecreasing function vanishing at 0. Moreover,
as in [15], we can prove that {¢;}7°, converges weakly in W(0,7T) to the unique
solution ¢, of (3.3). Moreover, ¢,, also satisfies the estimate (3.5). It remains to
prove the VZ1(0,T) regularity. To this end, we split the proof into two parts.

L. Estimate of ||¢ | L2(r;12(Q)nv)- First, we observe that
k k

Apy, = ng,jA¢j = Z)\jgk,j¢j~
j=1 j=1

Multiplying (3.4) by A;gk,;(t) and taking the sum from j =1 to k we infer

d
= 2 (Pr(t), Api(t))r2 (@) + alpr(t), Api(t)) = blyu(t), i(t), Apy(t)
= b(Apy (1), @i (), yu(t) = (yult) — ya(t), Apy(t))L2(0)-
Using the identities established in [5, page 372], the above identity yields

1d
- 5@”8%@)“%{},(9) + [ Ap )iz ) = ult) = ya(t), Apy ()2 (o)

(3.6) +0(yu(t), 1 (1), Apy () + b(Apy(t), P (1), yult))-
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Now, we estimate the right-hand side of this identity. First we get

b(yu(t), i (1), Apy,(1)] < lyu(®)llLs @ IVer (OllLs @) [ Apy (8)ll2 @)

< Cillyu®)llws @) VR0 |0 ) 10y A2k (D) lL2 @)
(

1/2 3/2
< Collyu(®) s ler @) o | Aer (0357,
5() ()
C% /9\3 1
< 2(3) Ira®lkswllen®lEy @ + 5l Aokl o).

Above we have used a Gagliardo inequality (see [5, Proposition I11.2.35]), the H?(Q)
estimates for the solution of the Stokes problem ||y ||g2(0) < C[|Ay||L2(q) [5, Theorem
IV.5.8], and Young’s inequality.

The estimate for b(Apy(t), ¢ (t), yu(t)) is exactly the same. Therefore, inserting
these estimates in (3.6) and using again Young’s inequality we get

_ld
2dt

1
+ Csllyu®llLa@llen Ol o) + 3142 OlIEz @)

||90k(t)||%—lé(ﬂ) + [ Apr ()20 < Iya(®) = yallLe @ Ak )Lz o)

3 1
< SlIya® = valta ) + Csllyu®llLs lex @iy ) + 5 149e Bl @),

which implies

d
= Zlen®lia @ + 1@k )iz

(3.7) <3[lyu(t) = vallfz) + 203||YU(t)||i4(Q)|‘QDk(t)H%—Ié(Q)'

Let us prove that y, € L*(I;L*(Q)). Since y, € Y, we can write it in the form
Yu = y1 +y2 with y; € W(0,T) and y2 € W, ,(0,T). Using again a Gagliardo
inequality we obtain

[y1(D)l|5a() < C4||Y1(t)||%2(9)||Y1(t)||%1(1)(9) < C4HY1||%°°(I;L2(Q))Hyl(t)H%—Ié(Q)'

The embeddings W(0,7) C L?(I;H}(2)) and W(0,T) C L*®(I;L?(Q2)) and the
above inequality imply y; € L*(I;L*(2)). On the other hand, since W, ,(0,T) C
Li(I; W,(Q)) € LYI; L)), recall (1.2); we infer that yo € L*(1;L*(Q)). Then,

Yu € L*(I; L*(2)) holds. Now, integrating (3.7) in [t,T] and using that ¢, (T') = 0 it
follows

T
ler ()lr ) < 3lyu — yallizg) + 203/t 1y7a(8) [0l () 1y ) ds VE € 1.
Applying Gronwall inequality we infer
(38)  Iullzwrmye) < V3lIya - valke@ e (Callyul ey ) Vo> 1.
Finally, integrating (3.7) in [0, 7] and inserting (3.8) we obtain

[AeillL2 (@)
< V3|lyu — vallL2 (@) {1 + V205 yullFe (1100 P (CSHYUH%‘l(I;L‘*(Q))) } :
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Once again, with |ly[|g2) < CllAy|lL2(q) [5, Theorem IV.5.8] we deduce from the
above estimate for all kK > 1

1kl (12 (0)
(39 <Clyu-valla@ {1+ Clyalfsgmsay o0 (C3lyaliarnean) |-
I1. Estimate of ||4}|lL2(r;)- Multiplying (3.4) by —g; ;9;, adding the resulting

identities from j = 1 to k, using the orthogonality of {’l,bj };";1 in H, and integrating
in [0, 7] we get

leilisg =5 [ Galen®. o) dt = = [ ult) = yald). eh0) oo

T T
- [ Wratheengim)de— [ b0, 00, yult) dr
0 0
Now, taking into account that ¢, (T") = 0 it follows from the above identity
#5172 () < IIyu — YallLz@) ¥k Iz

T T
(3.10) +] [ boralt)on®. e dt+ [ b 00, ult) it

With the Gagliardo and Young inequalities we obtain

[b(yu (), 4 (£), 21 ()] < [[yullLao) I VeerllLa @ llerlliz @)

1/2 2
< Cllyu(® s I Ver Ol ler O o ek )Lz )

<3C%
=2

1
lyu®llta@ I Ver® @ len @l + g lek )z

The same estimate is valid for [b(¢), (), @4 (t),yu(t))|. Inserting these estimates in
(3.10) and using Schwarz’s inequality we find

T T
/0 b(yu(t). @4 (£), e (£)) dt + / D@, (1), 0p (), yu(t)) dt

1
< 3012||<Pk||Loe(1;Hg(Q))||Yu||%4(1;L4(Q))H‘Pka(l;H?(Q)) + g”‘P%(t))H?ﬂ(Qy

This estimate, (3.10), and Young’s inequality lead to

3 1
iz () < §||Yu — valliz ) + 6”"0;“"%‘2@)
1
+ 3012H90kHL°O(I;Hé(Q))||YU||%4(I;L4(Q))||90k||L2(1;H2(Q)) + §||Lp;€(t))”%2(ﬂ)7
whence

IleillLz @) < V3llyuw — yallL2 @)
1/2 1/2
(3.11) + VBC Yl s 9al 12 g o 9kl o -

From (3.8) and (3.9) the boundedness of {¢}.}?°; in L?(Q) follows. Therefore, ¢!, €
L2(Q) holds, and with the first part of the proof we conclude that ¢, € V*1(0,T).0
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Let us note that the estimates (2.2), (3.5), (3.8), (3.9), and (3.11) yields

(3.12)
leullvzior < 77(Hf0HL‘1(I;Wp/(Q)’) +[[ull parmwy) + ||YO||Y0) [Yu — ¥allL2()

for some nondecreasing monotone function 7 : [0, 00) — [0, 00).

Next, we prove the first order necessary optimality conditions. Since (P) is not
a convex problem, it is convenient to discuss necessary optimality conditions in the
context of local solutions. Here, we say that u is a local solution of (P) if there exists
a neighborhood A of u in L*°(I; M(w)) such that J(u) < J(u) for all u € A. If
the inequality is strict for all u € A with u # @, we say that u is a strict local
solution. We will also consider local solutions in the L4(I; W~1?(Q)) topology. Let
us observe that the continuous embedding L>(I; M(w)) C L¢(1; W~17(€)) implies
that any local solution in the LI(I; W~1P(Q)) topology is also a local solution in the
L>(I; M(w)) topology.

THEOREM 3.3. Let us assume that u is a local solution of (P) with associated
state §. Then, there exists a unique element p € V*(0,T) satisfying

(3.13) ——— —vAp—(y- V- (Vo) 'y +Vi=y—ys inQ,
divg=0 inQ, =0 onX, &(T)=0 in,

if @i(t) 0, then |[u;(t)||arw) = and
(3.14) Supp(u (t)) C {z € w: @i(,t) = —[[&:i() | co(w) }s
Supp(u; (t) C {z € w: @i(z,t) = +[i(t) ]l o) }

for i = 1,2 and almost every point t € I, where @;(t) = u; (t) — u; (t) is the Jordan
decomposition of the measure @;(t).

Proof. From Theorem 3.2 we know the existence and uniqueness of ¢ € V1(0,T)
satisfying (3.13). From the expression for J’ given in (3.1) and using the convexity of
U.q we have

T
0 < J'(&)(u— &) = /0 (u(t) — 6(t), D)Mo Coey A Y1 € Una.

This is equivalent to

T T
(3.15) /0 (u(t), @i(t»M(w),Co(w) dt < _/0 (a(t), @i(t»M(w),Co(w) dt, i=1,2

for every u satisfying ||u| o (r;0r(w)) < 7-

Since @; : 2 x I — R is a Caratheodory function (continuous with respect to the
first variable and measurable with respect to the second), there exists a measurable
selection t € I — x; € Q such that |@;(z¢,t)| = [|8i(t)||cy(w); see [19, Chapter 8, The-
orem 1.2]. Now, we define the element u € L (I; M (w)) by u(t) = vysign(@;(zt,t))d.,.
We have to check that u : I — M(w) is weakly measurable. To this end the only
delicate point is the weak measurability of ¢t € I — J,, € M(w). This follows from
the measurability of the mapping t — z; and the continuity of x € Q + 6, € M(w)
when M (w) is endowed with the weak® topology. By definition of w, the fact that
a € Uy, and (3.15) we get
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T T
y / 156wy dt = / (w(t), @) 210y ot

T T
< —/O (;(t), @i (t)) v (w),Co(w) dtSV/O 18i ()]l o () -

This implies

T T
—/0 <ﬂi(t),<ﬁi(t)>M(w>,co(w)dt=7/0 12:(t) | oo w) dts

and consequently

T
(3.16) | @) + a0, 60 o de =0
0
Moreover, we have for almost every ¢t € T

(u(t), @i(t)) m(w),cow) = YNPi(E)llcow) = —(@i(t), @i(t)) r(w),Cow)-

Whence we obtain (u(t) + 4;(t), i(t)) m(w),co(w) = 0. This inequality along with
(3.16) yields

— (@ (t), @i (1)) M(w),Co(w) = (u(t), Pi(t)) ar(w),Co(w) = YNPi ()]l o (w)-

This identity yields Hai(t)HM(UJ) = ~ if (ﬁz(t) % 0 and —(ai(t),@(t»M(w),Co(w) =
ll%: () [ a1 () |i (t) | oo (o) holds. Then, we can apply [9, Lemma 3.4] to get the inclu-
sions (3.14). ad

Next we define the Lagrangian function associated with the control problem (P).
To this end, first we consider the functional j : M(w) — [0,00) given by j(u) =
llullar(wy- This is a convex and Lipschitz functional having directional derivatives
' (u;v) for all u,v € M(w). To give an expression for the derivative j'(u;v) we
consider the Lebesgue decomposition of v with respect to |u|: v = v, + vs with
dvg = gyd|u|, where v, and vs are the absolutely continuous and singular parts of
v with respect to |u|, and g, € L'(Ju|) is the Radon-Nikodym derivative of v with
respect to |u|. We can also write du = g, d|u| where g, is a measurable function such
that |gy(x)] = 1 for all © € w. Actually, g, is the Radon-Nikodym derivative of u
with respect to |u|. The reader is referred, for instance, to [25, Chapter 6] for these
issues. Now we have the following result taken from [12, Proposition 3.3].

PROPOSITION 3.4. Let u,v € M(w); then

(3.17) J'(u;v) = / Go du - [[Vs]| ar(w)-
Given u,v € L*(I;M(w)), we denote by g,,(t) the Radon-Nikodym derivative
of v;(t) with respect to |u;(t)| and v;s(t) the singular part of v;(¢t) with respect to

|u;(t)]. Then, g,, : w x I — R is a measurable function.
Associated with the control problem (P) we define the Lagrangian function

2 7
L:L®(M(w)) x L'(I)> — R, L(u,) =J(u) + Z/O V()7 (ui(t)) dt.
i=1

According to (3.1) and (3.17) the directional derivative of £ with respect to the first
variable is given by
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T
et = [ v eu Do e

+ZZ:/T1/%(75) {/ Go, () dui(t) + Uis(t)HM(w)} dt
Z/T{/so (00 O Al 0+ 10 [ g0 () aut) )

(3.18) + Z/O {{is(t), Pui (£)) M(w),Co(w) + Vi () |Vis ()] 1) } -

Denote by u € Uaq a control with associated adjoint state ¢ € V21(0,T) satis-
fying (3.14). We define the function ¢ as follows

_ 1 if (ﬁz(t) = 07
@i(t) = B:(t) . fori=1,2.
el P #0,
Then, we infer with (3.14) that
T [ 41 ifze Supp(ﬂj(t))a .
bil@,t) = { -1 if z € Supp(a; (t)), for i =1,2,

and, consequently, du;(t) = ¢i(t)d|u;(t)| for i = 1,2. Using these identities and
setting u = @ and ;(t) = [|@i(t)[|cy(w), @ = 1,2, in (3.18) we obtain the directional
derivatives

%ﬁﬁﬂ)v—Z / { [ et @i + o0l [ o wdn} a

+ Z/ {(is(t), i (1)) mr(w),Cotw) + 18i () lco (@) 1vis () arwy } dt

-3 / { [0+ 1Ol (0 1) d
+ Z/O {(vis (), #i (1)) M(w),Co(w) + 1Pi () lco @) [vis ()| a1 } dt
=1

2 7
(3.19) = Z/o {(is(®), @i (1)) M), Co(w) + 119: )l o @) 1vis ()| ) T dt.

From the above expression we deduce that g—ﬁ(m 1)) can be extended to a linear
continuous form 8—5( ) Lq(I M(w)) — R. Indeed, taking into account that

ou

V12(0,T) ¢ L2(I; Co(w)) C L (I; Cy(w)) we have
‘5£

%(ﬁ,ﬂf)v < @lle (rco@nlVilagmew) Vv € LY(I; M(w)).

From the inequality

[{vis (8), 2i () b w).Co@)| < N@i() o vis (D41 for i = 1,2,
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[9, Lemma 3.4], the fact that v;s(t) is singular with respect to |u;(t)|, and recalling
that ¥(t) = ||@(t)]|cy(w) We deduce

(3.20) g—ﬁ(ﬁ,{b)v >0 Vv eLi(I;Mw)),
g—ﬁ(ﬁ,{p)v =0 if and only if for s = 1 and 2, in case @;(t) Z 0
(3.21) { Supp(v;; (1)) C {2 € w\ Supp(|a@i()]) : i(2,t) = ~ @i ()l co(e) }
' Supp(v;,(t)) C {z € w\ Supp(|u;(t)]) : ¢i(x,t) = +[i (D)l co(w) }-

4. Second-order optimality conditions. In this section we study the second-
order necessary and sufficient optimality conditions for local optimality. Associated
with u of (P) we introduce the cone of critical directions

(41) Ca= {V € LYI; M(w)) : v; satisfies (4.2),i = 1,2, and g—ﬁ(ﬁ,ﬂz)v = 0} .
u

(4.2) Fora.a. teI: if ||u;(t)|[r(w) =, then { i:gigg:g:gg% i g’if 5:(t) £ 0.

Now, we formulate the second-order necessary optimality condition.

THEOREM 4.1. Let @ be a local minimum of (P). Then, J"(a)v? > 0 for all
v € Cy holds.

Proof. Let us take v € Cqg N L>®(I; M(w)). We set
vi(t) = go, ()d[wi(t)| + vis(t) and dui(t) = ga, (H)d|wi(t)], i = 1,2,

where g, (t) and gy, (t) are the corresponding Randon-Nikodym derivatives. We define
the sets

L;={tel:|ait)|mw =7 and g;(t) = 0},
Iﬂtz:{telﬁz(t)io}ﬁ I’y,i:IS’iUIJr 1 =1,2.

V%0

Note further that I = I, ; U{t € I : |[u(t)||ar@w) < v} From (3.14) it follows that
l|@s () || sy = v for every t € I, ;. Proposition 3.4 and v € Cy yield

g _ =0iftel’,,
(4.3) ]/(ui(t),vi(t)):/gvi(t)dui(t)-i-||vz’s(t)||M(w){ oifre b =L
w - 78

Let us denote
a(t) = / gv; (t) du;(t) and a(t) = / Proji_y +x(9v: (t)) du;(t) for k > 1.

With (4.3) and Lebesgue’s theorem we infer

(44) §@t):vi(t) = a(t) + loss (1) —OIEE L tim a(t) = al)
4) J(wt): i) = a CeIM@ <ot e 1f,, M RIS T
in the a.e. sense. Now, we set
| alt) — a(t)
65 () = proji_p 1 (g0, (1) + g2, (1)
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and 1
0 if vy — 7 < % () | a0y < s
dori(t) = N gk (t)du(t) + dvia(t) if t € I,
dv, (1), otherwise.

Below we shall argue that v — v in LY(/; M(w)). From (4.4) we get

a(t) — ax(t)

5
a(t)_yak(t)/wdmi(t)' + [lvis ()l ar(w)

—0iftelf,,
= a(t) + [lvis ()] () { <0iftell,
> Yt

J (@i (t); vp,i(t)) = ar(t) + / ga, (t) du; (t) + |lvis ()|l ar )

= ak(t) +

Moreover, from (3.19) we have that g—ﬁ(ﬁ, ¥)v only depends on the singular part of
v(t) with respect to u(t). Since the singular part of vi(t) is zero or equal to the
singular part of v(t), we conclude that g—ﬁ(ﬁ,ﬂ))vk = 0. This identity along with
3 (@i(t); vk ,:(t)) =0for t € Iﬂti, @i(t)=0o0n I\ Iﬂt“ and the equality

e = @+ 3 [ 1ROl @ 0i0) d

imply that J'(@)vy = 0.
Next we prove that u+ pvy € U,q for every p > 0 small enough. Indeed, first we
observe that

a0l <k O < 2 g ) ata o) < e vl o
Y Y Jw Y
Let us take p; > 0 such that
2 1
Pk (1 + ;) [Vl zoe (M) < %

For i = 1,2, using (4.4), we deduce for t € I, ; and p < pi,
@i (t) + pvk,i (O) || ar(w) = / |9a. (1) + pgi, ()] @i (t)] + pllvis (0| ()

- / (1+ pgh (£)) dart + / (1 pg®, (1)) du;” + plosa(®) a1

v tp (/w gk (t)du; + ||'Uis(t)||M(W)>
=5+ p(alt) + lloss () s ) < 7.

Moreover, if [[a(t)]|arw) < v — %, then [[a(t) + pvi(t)|arw) = [14(t) + pv (D) |y < v

for all p < pj holds. If v — &+ < [lu(t)|amw) < 7, then [[a(t) + pvi(®)|lrrw) =

la(t)|| ar(wy < v is fulfilled. Thus, we have that @ + pvi € Ugaq for every p < py.
Now, using that @ is a local minimum of (P), J'(@1)vy = 0 as proved before, and

performing a Taylor expansion we get for k fixed and p small enough

2 2
0 < J(@+pvi) = (@) = pJ (@vi + T " @+ Opvi)vi = T @+ Opvi)vi.
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Dividing the expression by p?/2, using the fact that J : LY(I; M(w)) — R is of class
C*, and taking p — 0 we infer J”(@)vi > 0. Now, using again Lebesgue’s theorem
it follows that for almost every ¢t € T

. E
i {lgy, (8) = 9o, (W)l aseyy = 0 and
lgs. () = go, Ol 1 qaon < 2Mgv, Ol qaeyn < 200l Lo (rm))-

Using these properties we easily obtain that vy — v in L(I; M(w)). Then, with
Theorem 3.2 we can pass to the limit when & — oo in the above inequality and
conclude that J”(@)v? > 0.

Finally, if v € Cg \ L (I; M(w)), then we take {v;}2°, C L*°(I; M(w)) defined
as follows £ lvacll

. 0 if ||vi(t M(w) > k,
vi(?) _{ v(t), otherwise.

It is straightforward to check vy € Cg N L>®(I; M(w)) for every k > 1 and v, — v
in L9(I;M(w)). Hence, J”(u)vi > 0 holds for every k, and passing to the limit we
obtain J”(a)v? > 0. ]

In order to formulate a second-order sufficient condition for local optimality we
need to extend the cone of critical directions. Given (@i, @) € U,gq x V21(0,T) satis-
fying (3.13)—(3.14), we define for 7 > 0

Cl ={v e LI(I;M(w)) : v; satisfies (4.6),7 = 1,2, and
oL, -
(4.5) Fq WV S Tlzvliz o

where z, = G'(Q)v.

(4.6) { For a.a. t € I: if ||a;(t)||arwy = 7, then j'(u;(t);vi(t)) <0,
. T g
moreover 37, fo [18:(1)l| ¢y’ ((); vs(t) dt > =72y [[2(0)-

The last condition is a relaxation of the second condition of (4.2).
THEOREM 4.2. Let (@1,p) € Uaq x V21(0,T) satisfy (3.13)—(3.14). Assume that

(4.7 Ir € (4, 4] such that yo € Ba () + B, () and ya,y € L"(I; LY(Q)),
(4.8) 37 >0 and § > 0 such that J"(@)v? > 5sz||%2(Q) Vv e CF.

Then, there exist Kk > 0 and € > 0 such that
_ R _ _
(4.9) J(u) + §||Yu - YH%z(Q) < J(u) VueUaa: lu—alparw-1r0) <,

where y = G(u).

Remark 4.3. Notice that in the proof of Theorem 3.2 the continuous embedding
Y C LAI;L*(€)) was established. Moreover, by Theorem 2.2 we know that for
q > 8 the regularity assumption on y is automatically satisfied with r = ¢ if yo €
B24(Q) + B, 4(Q). If ¢ € (4,8) the local regularity y in L"(0,#p, L*(Q2)) for some
to € (0,T] can be established, but we were not able to prove global regularity in
this case. The necessity of r > 4 is explicitly used in Lemmas 4.8 and 4.9. This
assumption allows us to establish the C(I;C'(Q)) regularity of the adjoint states
and, consequently, to prove the crucial Lemma 4.11. Notice that Lemma 4.8 below
follows from Theorem 2.3 if ¢ > 8.
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Remark 4.4. Sufficient second-order optimality conditions are essential to prove
stability of the optimal states with respect to perturbations in problem data; see, for
instance, [13]. They are also used for proving convergence rates of the optimal states
in the context of numerical approximations of the control problem; see [10].

In order to prove this theorem we need to establish some lemmas.

LEMMA 4.5. There ewists a constant M., such that
(4.10) [yu =¥y < Myl[u—airw-1r) Vu€ Uad.

Proof. Let Go : LY(I; W~1P(Q)) — Y be as defined in the proof of Theorem
2.3. Then, from mean value theorem we infer

||Yu - S’H)} = HGO(XUJU) - GO(Xwﬁ)Hy
< sup (|G (V) 2(za@:w-re @) 0 = 0l Larw 1)

vEUaq
= M [la = Ul Larsw -0 @)-
The constant M, is finite; see the proof of [15, Theorem 5.1]. d

LEMMA 4.6. Given u € Uyq and v € L1(I; M(w)), we set 2y~ = G'(u)v and
zy = G'(0)v. Then, there exist constants My > 0 and Ms > 0 independent of u and
v such that

(4.11) [Zuyv = zvlL2(@) < Millu— 0l Lozw-100) 2vlL2(@),
(4.12) [2uvlL2(@) < MallzylL2(q)-
Proof. According to (2.3), the equations satisfied by z, v and z, are

O0zZy v
7 - VAzu,v + (yu ' v)zu,v + (Zu,v ' V)yu + VQu = XwV,
0z, _ _ _
e VAZy + (¥ - V)zy + (2v - V)§ + V§ = X V.

Subtracting both equations and setting e = zy v — 2y and q = qy — § we get

0

a—?—VAe+(yu~V)e+(e-V)yu+Vq:g in Q,

dive=0 inQ, e=0 onX, e0)=01inQ,

where g = —[(yu — ¥) - Vlzy — (zv - V)(yu — ¥). From [15, Lemma 2.1] we get
that g € L2(I;H71(Q)). Then, [15, Proposition 2.7] implies that (4.8) has a unique
solution (e,q) € W(0,T) x W~12°(I; L?(Q)/R). Take f € L?(Q) arbitrary, and let
@ € V21(0,T) be the solution of the adjoint state equation (3.3) with y, —y4 replaced
by f. We have the estimate

(4.13) lellvaior < ClfllLag Y € LA(Q) Vu € Uag.

Then, we have

T T
/ /fedwdt:/ /[—%—uAnp—(yu-V)go—(Vgo)Tyu+V7r]edmdt
o Ja o Jo ot
Trd
— [ [ e +ale.0) + by, ) + ble(t). yu )] de
0

T T
= / (& Plu-1(0),m0) It = —/ {b(yu = 5,2v, ) + b(zv, yu — 5, )} dt.
0 0
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Let us estimate the last integral. To this end we use the embeddings H?!(Q) C
LY I; WH4(Q)) and Y € L*(1; L*(2)), and estimates (4.10) and (4.13):

T T
/ |b(Yu_y7ZV7SD)|dt:/ |b(Yu_y7‘~PaZv)|dt
0 0

<y = ¥lzaaiwa@) lell e w1 2v ez (@)
< C'|[f]lL2 @) lyu = YllyllzyllLe @)
< "M, [[fllz@)lla — all Lorw-10 @)1 Zv[lL2(Q)-

The term b(zy,yu — ¥, ®) is estimated in the same way. Thus, we have

T
/ /QfedéﬂdtSM1||f||L2(Q)||u—fl||Lq(1;w—1m(Q))||Zv||L2(Q>
0

for all f € L?(Q) and, consequently, (4.11) is fulfilled. Finally, (4.12) follows from
(4.11) and the inequality

L2(@) < [1Zuv = zvllL2(@) + I2vL2(@)- 0

1Zu,v

LEMMA 4.7. There exists g > 0 such that for allu € U,q with ||u—ﬁ||Lq(I.Wém(Q))
< gg the inequality

(4.14) [ya = ¥llLz(@) < 2[|Zu-allLz(g)
holds, where zy_g = G'(a)(u — a).

Proof. Let us consider the equations satisfied by yu, ¥ and zy_g:

% —VAYu + (Yu V)¥u + Vhu = X,
& VAV (V)Y TP =
az(;t*"‘ —vAZy—q+ (- V)Zu—a + (Zu—a V)Y + Voua = Xw(u — 10).
Setting e = yy — Y — Zu—a and q = p, — P — qu—_a, we infer from the above equations
B Vet (7 Vet (e~ V)3 + Va = —[(va ) Vl(vu )

Using again [15, Lemma 2.1], we have that [(yu — ¥) - V](yu — ¥) € L*(I; H71(Q2))
and, hence, e € W(0,T). Arguing as in the proof of Lemma 4.6 and using (4.10) we
infer

lellLzo) < Cillyu = ¥llyllyu — ¥llL2 (@)
< Collu =l par;w-10 ) |[Yu — ¥llL2(0)-

Let us take 0 < g9 < ﬁ Then, we have

IN

lyu —¥llr2Q) < llellz) + |1Zu—allL2(@)

IN

1 _
3 Iya =¥l + lza-allez@),

which implies (4.14). d
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LEMMA 4.8. Assume that (4.7) holds. Then, there exists € > 0 such that y4 €
YNL"(I;L4Y(Q)) for every u € Bz(u) C LY(I; M(w)). Moreover, if {ux}3%, C Bz(a)
is a sequence converging to U in LI(I; W~YP(Q)), then yu, — ¥y in L"(I;L*(Q))
holds.

Proof. Take yo = yno +¥so € Ba,z + B, (). The proof is split in three steps.
Step 1. From [15, Theorem 2.5] we know that the system
dys

(4.15) S ~VAYs + Vs =fo+ux, inQ,

divys =0 in @, ys =0 on X, ys(0) =yso in Q
has a unique solution ys € W, ,(0,T) satisfying
(4.16)  lyslw, ,or) < C1 (”fOHLq(I;Wp/(Q)’) + [lull Lo rw-10 () + ||YS0||Bp7q(Q))
for some constant C; independent of u. Since p >

ys € L (I;L4(Q)).
Now, we take y € W(0,T') as the solution of

% and r < ¢, we have that

(4.17)

a .
a—}ti —VAY+(y-V)y+(ys-V)y+(y - V)ys +Vp=—(ys-V)ys inQ,

divy=0 in@Q, y=0 on ¥, y(0) =yno in Q.

The existence and uniqueness of y follows from [15, Proposition 2.7], as well as the
estimate

(4.18) Iy lwio.r) < (Iysllow, @ + lynolls, ; ),

where 7 : [0,00) — [0, 00) is a nondecreasing function with #(0) = 0. Obviously, the
solution of (1.1) is given by yu = ys+Yy. In the sequel, applying the implicit function
theorem, we will prove that y € L"(I; L*(Q2)) if u € Bz(@) for some £ > 0.

Step 11. First, we write y = ys + ¥ with ys and ¥ solutions of (4.15) and (4.17)
with u and yg replaced by u and yg, respectively. Let us prove that y € W%72(O7 7).
Observe that y satisfies the Stokes equations

a—y—l/AS'—i—Vﬁ:g in Q,

ot
where g = —(y5-V)ys—(7-V)y—(¥s:V)y—(¥:V)¥s. Then, using the maximal par-
abolic regularity for the Stokes system, it is enough to prove that g € Lz (I; H~(Q))
to deduce that y € W 2(0,T). First we observe that (4.7) implies that y =y —ys €
L™(I;L*(2)). Let us prove (ys-V)ys € Lz (I;H71(Q)). Indeed, given z € H{(Q2) we
have

(Fs(t) - V)ys(t),2)| = ((Fs(t) - V)2, FsO) < 1750 Ls0 Izl ey 0)-
Then, we have [|(¥s - V)ysnL%(I;Hfl(Q)) < ||5/5||%T(1;L4(Q)). In a similar way we get

that H(y : v)y||L%(I,H*1(Q)) < ||y||%T(I;L4(Q)) and H(y ’ V)S’SHL%(I;Hfl(Q)) - ”(yS
V)S’”Lg(];Hfl(Q)) < Hy||L7‘([;L4(Q))||yS||LT([;L4(Q)). All together this leads to

~ ~ ~ 2
1¥llw o001 < Cz((HYl rrasma@) + 19sller )™ + ||YN0||B2,5(Q))~
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Step II1. We define the mapping
F: W3 5(0,T) x LYI; W HP(Q)) — L2 (I; V') x By 2 (Q)
9]
Flyw) = (5 +4y +(y-Vy
+ (ys(u) - V)y + (y - V)ys(u) + (ys(u) - V)ys(u), y(0) — yno),

where ys(u) is the solution (4.15) and A : V — V' is given by (Ay, z)v' v = a(y, z).
Using [3, Theorem 3] with Xo = H™'(), X; = H}{(Q),p=15,s=1, and § = 2 we
obtain

W 2(0,T) C L™(I; (H™H(Q), Hg())
= L"(I;H?(Q)) C L"(I;L4(Q)).

1) C© L7 (I3 (H7HQ), Hp(Q)3 o)

3 3
1 1

Let us mention that the inequality § < 1 — s is required in [3, Theorem 3]. This
inequality is satisfied due to our assumption r > 4.

Arguing as in Step II, it yields (y - V)y + (ys(u) - V)y + (y - V)ys(u) + (ys(u) -
V)ys(u) € Lz(I; V') for every y € Wz 5(0,T). Consequently, F is well defined.
Furthermore, it is a C* function. We have that F(y,a) = (0,0). Moreover, the
partial derivative

%(y,m W (0.T) — LE(I: V') x By s (),
oF  _ _ 0z B _
%(ya u)z - (a + Az + (y : V)Z + (Z ! V)yvz(o))7

where y = ¥+ ys = ¥ + ys(u), is an isomorphism. Indeed, the injectivity follows
from [15, Proposition 2.7]. Let us prove the surjectivity. Given (f,z) € L2 (I; V') x
B; : (2), we take a sequence {(fy,2zox)}32; C L% (I;H) x V such that (fy,zox) —
(f,20) in L= (I;V') x By 2 (€2). For every k we consider the equation

0
{ %—FAz;c-l-(S“V)zk—&—(zk.v)y:fk for a.a. t € I,
z1(0) = Zok-

Arguing as we did for (3.3), we get that zp € V*1(0,7). Moreover, using again [15,
Proposition 2.7], we have the estimate analogous to (4.18) for kg large enough:

(4.19)
lzlwio.ry < A (I8l 5 gy + 20kl 2)) < (2005 1y + 08, 5 (0])

for every k > ky. Observe that zj satisfies the Stokes equations
— + Az, = g,

where g = f, — (¥ - V)zr — (2, - V)y. Then, using again the maximal parabolic
regularity for the Stokes system we have

||Zk||wg,2(o7:r) < C3(||gk||L%([;vz) + ||Z0k||B2%(Q))

<Cs (kaHLg(I;V,) + 2[5l (rsa o) 12el L (e o)) + ||ZOI<||B2,%(Q))~
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From [3, Theorem 3], we know that the embedding W 5(0,7) C L"(I;L*(2)) is
compact. Then, we can apply Lions’s lemma with Wz 5(0,T) C L"(I;L*(Q)) C
L?(Q) to deduce the existence of a constant Cy such that

1
1Yl - (r:La )

|zl L (rLe () < 1C; ”Zk”W%g(O,T) + Callzk|lL2(q)-

The last two inequalities and (4.19) imply that {z}72, is bounded in Wt »(0,T).
Then, taking a subsequence, we have that z; — z in Wz 5(0,7) with %—i(y,ﬁ)z =
(f,z(0)), which proves the surjectivity. Hence, from the implicit function theorem we
conclude the existence of £ > 0 such that the statement of the lemma is fulfilled. 0O

LEMMA 4.9. Assume that (4.7) holds, and let € be as defined in Lemma 4.8. Then,
for every u € Bz(u) the solution ¢,, of (3.3) belongs to C(I; C1(2)), and there exists
a constant M3 continuously depending on ||yullL-(1;L4(q)) such that

(4.20) leullercr @) < Msllyu — yallor(rLe9))-
Proof. Let us consider the spaces
X ={y e L"(LW>(Q)nW"(I,L*(Q)) : y =0 on ¥ and divy = 0 in Q},

O={rec L (LW"Q)): / 7(t)dx =0 for a.a. t € I'}.
Q
Applying [3, Theorem 3] with Xy = L*(Q), X; = W24(Q), p = r, % <s < %, and
% < # < 1— s, we obtain that

X € C* 7 (I; (X0, X1)g,1) © C%* =7 (I; (X0, X1),4)
= O H(IWHQ) € O(1: CH(Q),
the embedding X C C(I; C'(€)) being compact. We point out that the lower bound

3 < 6 is used to guarantee the continuous embedding W2%4(Q2) c C'(Q).
Now, for every ¢ € [0,1] and u € Bs(u) we define the linear operators:

Ly : X x I — L"(I; L*(Q)),
Li(p,m) = === = vA@ — t[(yu - V)¢ + (Vi) yu] + V7.

Using the embedding X C C(I;C*(Q)) and the regularity y, € L"(I;L*(Q)) es-
tablished in Lemma 4.8, it is obvious that L; is linear and continuous. Moreover
the inyectivity of L; follows from Theorem 3.2. We prove that L; is an isomor-
phism for every ¢t € [0,1]. Hence, taking ¢ = 1, (4.20) will be deduced. Put
E = {t € [0,1] : L; is an isomorphism}. The maximal parabolic regularity prop-
erty of the Stokes system implies that 0 € E. Moreover, F is a relatively open set in
[0,1]. Indeed, if to € E and t € [0, 1] with |t — to| < & we have

ILe(,m) = Liy (@, )| e (r:n@)) = 1t = tolll(yu - V) + (Vo) yallLrims @)
< Ciellyullor ey llellx;

therefore ||Ly — Ly, || (xxmm,or(r,L4@)) < C¢llyullzr(r:L4(0))- Since the set of isomor-
phisms is an open set, we have that L; is an isomorphism if € is small enough. Now,
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we prove that E is closed. Take a sequence {{;}32, C E such that ¢, — t. It is
enough to prove that L; is surjective to conclude that ¢ € FE. Given an arbitrary
element f € L"(I;L*(2)), we introduce the sequence {(¢y, )}, C X x II such
that Ly, (¢, mx) = £. Using the well known estimates for the Stokes system we have

(@r, ) Ixx11 < Callf + til(yu - V)er + (Vi) valllLrripa o)
< Co ([Ifllr(rina)) + 2lyallor sy lerllo .o @y) -

Using again Lions’s lemma with the spaces X C C(I;C'(2)) C L?(Q) we deduce the
existence of a constant C3 such that

[ (@r ™) Ix st < Ca( (IIF]

which proves the boundedness of {(;,, 7)}52; in X x II. Indeed, the boundedness
of {172, in L*(Q), actually in V21(0,T), follows from Theorem 3.2. Finally, it is
straightforward to pass to the limit in k& and to conclude that (¢, ) — (@, 7) in
X x II with Li(yp,7) = f. Hence, L; is also an isomorphism. Since E is nonempty,
open, and closed, we conclude that E = [0,1] and, consequently, ¢, € X. The
estimate (4.20) follows from the above estimates. |

LEMMA 4.10. Assume that (4.7) is fulfilled, and let € be as introduced in Lemma
4.8. Then, for every u € Bs(u) the inequality

1
@) + Csllyallor s @ llenlliz@) + 5 leelx,

(421) lpw — Pleor @) < Ms(1+2Msllya = yall s ) I¥a = 9l rme)
holds with Ms given by Lemma 4.9.

Proof. Taking (e, ) = (¢,, — @, 7u — T) and subtracting the corresponding equa-
tions we get

— - —vAe—(3-V)e—(Ve) 3+ Vr = yu—y+[(yu—5) - Vieu+ (Vo) (yu—y) in Q.

Then, applying Lemma 4.9 we get

lew — @llor.cr@) < Msllyw =¥ + [(yu — ¥) - View + (Vo) (yu — )l - (ima )
< M; <1 + 2||<Pu||C(f;cl(Q))) Iyu = ¥llzr L @))

< Ms (1 +2M3|lyu — Yd||Lr(1;L4(Q))> lyu = ¥lorrma))- a

LEMMA 4.11. If (4.7) holds, then for every p > 0 there exists €, > 0 such that
(4.22) 7" (w) = J"(@)](u = @)°] < pllzu-sllfzg) Vu € U B, (1),
where Bsp (u)={ueUy:|u- ﬁ”Lq([;Wfl,p(Q)) < Ep}.

Proof. Let € be as defined in Lemma 4.8 and take u € Uyg N Bs(@). Let us set
v=u-1, 2,y =G'(u)v, and z, = G'(a)v. According to (3.2) we have

17 (w) — " ()]v?]
/ [Zuv]? = 2(Zuy - V)Zuv Py dz dt — /

Q

Q

n]? — 2(ay - V)] da dt‘
< / |Zu,v + Zv‘ |Zu,v - Zv| dx dt + 2 ‘/ [(Zu,v — ZV) . V]Souzu“, dx dt‘
@ Q

+2 ’/ (Zy - V)(Py — §)Zuy dz dt’ +2 ’/ (Zv - V)P (Zuyv — Zv) dwdt‘ .
Q Q
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We estimate the last four integrals. For the first one we use Lemma 4.6 as follows

/ |Zuv + Zv| |Zuv — Zv|dz dt < ||Zyy + Zv||L2(Q)HZU,v - ZV||L2(Q)
Q
(4.23) < 2Mp M [Ju = 8| o (w100 l2v [ E2q)-

For the second integral we use Lemmas 4.6 and 4.9 to get

(4.24) ‘/ (Zuv — Zv) - V]@u2Zu v dz dt‘
Q

< lleullomcr@llzay — zvlre @ lzvliiz )
< MyMs | — | orow—rr ) 1Vu = Yall e s @) 2 12 ) -

The third integral is estimated with Lemmas 4.6 and 4.10 as follows

(4.25) ’/ (Zy - V)(py — @)Zuv dx dt’
Q
<l — S_OHC(T;CI(Q))M2HZvHi?(Q)
< Mj3 (1 +2M3|lyu — S’HL"(I;L‘*(Q))) lyu— )_’||LT(1;L4(Q))M2HZVHiz(Q)-

The estimate (4.24) is also valid for the fourth integral just changing y, by y.
Finally, the existence of €, such that (4.22) holds is an immediate consequence of the
above estimates and Lemma 4.8. 0

Proof of Theorem 4.2. Using that G{(i) € L(LI(I; W=1P(Q)),)) we get
(4.26) [1Zu—ullrz@) < CallzZu—ully < CallGo(a)[llla — Al Larw-100))-

From Lemmas 4.8 and 4.9, (4.12), and (4.26) we deduce the existence of a constant
M such that for every u € Uaq N Bz (u) we have

7" (W - 0% < (14 2ealloron@)) 12uualizg
(4.27) < Mllu =l po(yw-10(0) | Zu—allLz(@) Vu € Uaa.

From Lemma 4.11 we obtain the existence of €5 > 0 such that
_ _ 0 _
(4.28) [ (w) = J"(@)](u - w)?| < §qu—alliz(g) Vu € Uaq N By (1),

where 9§ is given in (4.8). We take
5 T 1 T4
= mi €0 ESy Ty N TN =T d = mi {*,* s
€ mm{2 £0,€5 5 CQ||G6(U)||} and = min | 8}

where ¢ is given in Lemma 4.7. Now, we prove the inequality (4.9). To this end, we
take u € B.(11) N U,q and distinguish two cases.

Case I: u—1u ¢ CF. At first we note that if [|@;(t)||rr(.) = 7, taking into account
that @+ p(u — @) € Uyq for every p € (0,1), we have
P\O0 P

<0fori=1,2.

Therefore, if u — u € CZ, then one (or both) of the two conditions holds:
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@29) 1) @) 1) > 7l
2
(4.30) (1) = 7| Zu—allL2(qQ) > Z/O 193 ()| o ()3 (@i (2); i (t)) dt.

If (4.29) holds, then performing a Taylor expansion of J around u, using the
convexity of j, (3.14) and [[u(?) M) < 7, (4.26), (4.27), and taking into account the
definitions of € and &, we get for some 6 € [0, 1]

J(u) — J(@) > L(u,) — L(, ) > g—ﬁ(ﬁ,ﬂ;)(u —1a) + %J”(ﬁ +0(u—1))(u—a)?
> 7
=2

T T 2
> 7||zZu—allL2 @) — §||ZufﬁHL2(Q) = §||Zufﬁ||L2(Q) |Zu—allt2(g)
> Dy = 7122000 > Sllye — 912
> [y YHLz(Q) = 2||Yu YHL?(Q)‘

If (4.30) holds, then we obtain J'(01)(u—1) > 7(|Zu_allL2(g) due to (3.20). Then,
this inequality, (4.26), and (4.27) yield

1
J(u) — J(a) = J'(a)(u—a)+ §J”(ﬁl +0(u—1))(u—u)?
T K o
> 7| Zu—allL2 (@) — §||Zufﬁ||L2(Q) > Sy = Ylizg)-
Case II: u —u € CF. We use J'(a)(u—u) > 0, (4.8), and (4.28) to infer
1
J(u) — J() = J'(a)(u—1u) + §J”(ﬁ +0(u—1))(u—u)?
> L7 ) 4 [T (@ 6 - w) — ()] (a — )?
) ) )
2 §||ZufﬁH%2(Q) - ZHZufﬁH%Z(Q) = Z”zufﬁHi?(Q)
0 19 K 9
2 EHy“ - Y||L2(Q) 2 §||Yu - Y||L2(Q)7
which concludes the proof. 0
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