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Logistic map driven by dichotomous noise
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Bifurcation diagrams and invariant densities are computed and interpreted for a logistic map driven

by dichotomous noise. Two deterministic limits are analyzed. Changes in the stability of such a system,
when varying the correlation time of the noise, are numerically studied. The peaks of the invariant den-

sity in the white-noise case are identified as originating from the most stable attractors among those ap-
pearing in the deterministic limits.
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I. INTRODUCTION

The inhuence of noise on discrete dynamical systems
has been investigated from several points of view. There
are several investigations where the shift, broadening,
and suppression of bifurcations have been analyzed [1].
Others deal with the scaling of Lyapunov exponents and
invariant densities near the onset of chaos [2,3]. Most of
these effects have been investigated with a Gaussian
white noise with small intensity. The noise acts as a per-
turbation of the original system and obviously their
effects must be related with changes on this system.

In this paper, we consider a different kind of noise act-
ing on discrete systems. Instead of a Gaussian white
noise, we deal with multilevel processes with arbitrary in-
tensity and correlation time.

In general, a map driven by discrete dichotomous noise
comes from continuous systems, driven by a random se-
quence of pulses with constant width. Despite its impor-
tance in fields related to electronics, this kind of stochas-
tic signal has not been used in the context of stochastic
processes. Explicitly, for a one-dimensional continuous
system given by the equation

dx =f(x,p(t)),
dt

p(t) being a noise composed by random squared pulses,
with amplitude +6 or —6 and width zo, the values of x
at the beginning of the pulse Ix (0), x(zo), . . . , x (nzo) )
follow a stochastic map:

x(nzo)= Y(x((n —1)zo),zo,p„,)

with p„=+6, and Y(xo, t, p„) being the solution of (1)
with xo as initial condition at t =0. In the case of a regu-
lar system with a stable attractor point and with a value
of zo close to the characteristic time of the system, the
map becomes of the logistic kind.

A colored noise with sufficient intensity can induce
dramatic effects on the original attractors, changing their

character or creating different ones. These changes can
be produced by randomness and by memory effects.
Changes due only to memory effects on a logistic map
have been reported in a recent paper [4]. In fact, the bi-
furcation scenario found in the aforementioned paper is
rather similar to our scenario for some values of the
correlation time. Changes due to colored noise have been
extensively studied in continuous systems with Gaussian
or Markovian noise but only a few works are devoted to
maps. It is worth remarking on the recent work of Ref.
[5], analyzing the noise-induced transitions in a class of
bistable oscillators driven by dichotomous noise. As
pointed out in this paper, a dichotomic noise is a good
candidate for studying such a complicated problem. As
is well known from the study of one-dimensional stochas-
tic continuous models [6], the simplicity of this noise al-
lows one to derive analytical expressions for the probabil-
ity density or transition rates for some nonlinear models.
We show that also, in discrete systems with dichotomic
noise, one is able to derive analytical results.

In Sec. II we introduced the model: a logistic map
driven by a discrete dichotomic noise. Reasons for this
choice are rather obvious: of all the models in dynamical
systems, none is as simple or as widely studied as the
logistic map. Moreover, it is quite amenable to both
theoretical and numerical techniques and, at the same
time, it exhibits all the nonlinear behavior of more com-
plicated systems. On the other hand, the dichotomic
noise is also a widely used noise for driving systems. It is
feasible to produce, simple to simulate, and accessible to
analyze.

Following with the description of the system we re-
mark that the noise drives the system in a multiplicative
manner. Two parameters +6, the value of the noise, and
a, the conditional probability of repeating the same value
of the noise, completely define the noise process. When
varying n from 0 to 1 several interesting situations ap-
pear. The values a —+0 and a~1 correspond to two
deterministic limits. In the case a= —,', we have a white
noise where all sequences of the noise have the same
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probability. A previous analysis of these situations can
be found in Ref. [7].

Section III is devoted to the analysis of bifurcations in
presence of dichotomic noise.

In Sec. IV, the stability of the system as a function of
the correlation time of the noise is computed in several
interesting situations. For a measure of the stability we
use Lyapunov exponents as suggested by several authors
t'8]. We show that in contrast with the one-dimensional
continuous model, the white-noise case does not
represent the most unstable situation. All transitions,
from chaos to regular motion or its inverse, are possible
when varying the correlation time. Hence, we show that
the effect of a change in the correlation time can be
dramatic.

In Sec. V, the white-noise case is considered. We focus
on the search for reminiscent situations coming from the
deterministic limits. Since most probable realizations are
those appearing in the deterministic limits, it seems a
good idea to compare the behavior of a given o; with that
of the deterministic limits (a~1). In this matter, peaks
of the invariant density corresponding to effects induced
by noise are identified.

To conclude this introduction, we remark on an impor-
tant point presented in this paper. We believe that the
study of noise effects on dynamic systems by means of
multilevel processes may be enlightening in order to un-
derstand some aspects of the evolution of chaotic systems
with noise. In fact, it is possible to describe these effects
by superposition of we11-defined maps. Clearly, this pic-
ture is quite precise.

II. THE MODEL

We consider a logistic map with a multiplicative noise
in the form

and —b„with r given by a/(1 —a). In this case, the
definition of correlation time coincides with the one given
in the continuous process. For a= —,

' we have a white
noise and all sequences are equally weighted. For a( —,

'

the most probable sequence is formed by alternated
values of +b, and —b, . Now r reads (1—a)/a. This sit-
uation does not appear in a continuous model. Hence, in
the discrete process there are two deterministic limits, for
a~1 and a~0. Then, the white-noise case, 0.=—,', can
be obtained from one of the above-mentioned limits.

In order to analyze the evolution of the noisy map we
start defining the joint probability, P„(x, 6) of finding
the map and noise with values x and +6, after n time
steps. This joint probability follows a master equation
given by

P„~~(x,+6)=aJ 5(x f~(y—))P„(y,+b, )dy

+(1—a) J5(x f+ (y)—)P„(y, +b, )dy,

(4)
with f+(y)=p(1+6, )y(1 —y). In the limit n~~ the
equation for the stationary joint density p(x, +b, ) is

P(x, +b, ) =a J5(x f+(y ))P—(y, +h)dy

+ (1—a) J 5(x f+ (y ) )P(y,—+ b, )dy .

The stationary probability density for the noisy map
p(x ) is obviously given by

p(x)=P(x, +b, )+P(x, —b, ) .

With these equations in mind, we now consider the two
limiting cases. For o.'~1 we take +=1—e, where e is a
small quantity, and make perturbations in the form

x„~,=p(1+/„)x„(1—x„), P(x, +b ) =PD(x, +b, )+eP, (x, +6) . (7)

where g is a dichotomic noise taking two possible values
+6 with a probability a ~ 1 of repeating the same value
in the following iteration. Since the noise is bounded, the
equation is well defined for p,(1+b, ) (4.

The parameters 6 and e completely define the process.
5 gives the intensity of the noise and 0. is related to the
"correlation time. " In a continuous model, the dicho-
tomic noise usually employed is Markovian, which means
that the distribution of times where the value of the in-
tensity changes from 6 to + 6 is exponential. In this
case, the correlation time is given by the mean value of
these times.

Following on from this, we take as a measure of the
correlation time ~, in the discrete case, the average dura-
tion of the most probable sequence of the noise. For
a& —,', this sequence is formed by repetitive values +4

I

Substituting (7) into (5) we have for the zero order in e

P0(x, +6)= J5(x f+(y ))PQ(y, +h)d—y (8)

and for the first order

P, (x, +6)= J 5(x f~(y))[PQ(y, —+b, )+PD(y, +b, )]dy

+ J5(x f+(y))P, (y, +—&)dy .

Equation (8) has a normalized solution given by

P0(x, +b, ) = —,'p~(x ),

(9)

(10)

where p+(x ) is the invariant density of the logistic map
f+(x ), respectively. The integral equation (9) can be
iteratively solved. From (6), (10), and an iterative n solu-
tion of (9), we finally obtain

p(x ) =—(1—ne)p (x )+—(1—ne)p (x )
1 1

2 2

+ —f 5(x f+(y, ))p (y, )dy, + . .—+ f . . f 5(x f+(y, )). (y„—, f+(y„))p (y„)dy, . dy—„2

+ — J5(x f (y&))p~(y~)dy&+ . —+ f . J5(x f (y&)) 5(y„~ f (—y„))p+(y„)dy& . dy„—

+o(e ) .
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+ f 5(x f+(y )—)P, (y, +A)dy . (13)

This solution gives the superposition of p+ and p and,
in order e, the transient to an attractor of f+ when start-
ing from an attractor off+, respectively.

Let us now consider the limit +~0. Taking u=e in
(5) and making an identical perturbative analysis as in the
case with a —+ 1 we obtain for the zero-order equation

Po(x, +&)=f&(x f+(—f +(y)))PO(y, +&)dy (12)

and for the first order

P, ( x+6)= J 5(x f+(y)—)[ Po(y, +b ) P, (y—, +&)]dy

Equation (12) corresponds to the equation for the invari-
ant density of the composed map f+f ( or f f+).
Since this map is quartic, there would be bistable situa-
tion and consequently one or two invariant densities may
appear depending on the initial conditions. Hence, a gen-
eral solution of (12) is

1 1 1Po(x, +6)=—p+(x ) =—g —p+(x ),
i =1

where p+(x) are the invariant densities in the (I= 1)
monostable or (I=2) bistable case, respectively. Now
Eq. (13) can be solved by iteration. We obtain for the in-
variant density

p(x ) =—(1 ne—)p+(x)+ —(1 ne)p —(x )
1 1

+— J 5(x f+(y, ))p—+(y, )dy, + . . +j j5(x f+(y, ))—

x&(y& —f+(y2)) . &(y. i f+(y. »—P+(y. )dye

+ —f&(x f (y) ))p—(y) )dy)+ f . J &(x f (y) ))&(y) —f (y2)) —&(y„( f (y„))—

Xp (y„)dy, dy„ (15)

Summarizing, the limit a~1 yields to a superposition
of two logistic maps f+ and f . As a consequence, the
invariant measure and the Lyapunov exponent are given
by the arithmetic mean: p(x)= —,'p+(x)+ —,'p (x) and
k= —,'k++ —,'A, , respectively. In Fig. 1(a) we show the bi-
furcation diagram for a=0.99. In agreement with our
analysis, it is mainly composed by the superposition of
the bifurcation diagrams f, f+ and in a lower propor-
tion (first-order contribution) by the transient to an at-
tractor of f+ when starting from an attractor off+ .

In the limit a —+0 we find, in the zero order, the super-
position of attractors of the composed maps f f+ and
f+f . Hence, when these maps are monostable there
are two superposed attractors, whereas there will be four
in bistable situations. In Fig. 1(c) we have plotted the bi-
furcation diagram for +=0.01. As the analysis predicts,
it is formed by the above-mentioned attractors and in a
lower proportion (first order) by the transient states to
the attractors of f+ when starting from attractors off+, respectively. When a goes to —, (white-noise limit)
transient states from the attractors overlap. In Fig. 1(b)
we have plotted the white-noise case. A better descrip-
tion of this case with invariant densities will be given in
Sec. IV.

III. BIFURCATIONS AND NOISE

The concept of bifurcation in presence of noise is not
clear in many situations. Except when the noise is weak

and the deterministic framework still remains, it is
difficult to determine when a bifurcation takes place.
Perhaps the most widely used indicator of the occurrence
of a bifurcation would be the appearance of relevant
changes in the invariant density. Using this rule, bifurca-
tion of several kinds can be observed in our system either
as produced from the deterministic behavior or as in-
duced by the noise. As expected, near the a=1 limit
there appears a superposition of bifurcations correspond-
ing to the logistic maps f+ and f . Since the Lyapunov
exponent A, is the mean of the exponents corresponding to
f+ and f [A, =(A, ++A, )/2], these bifurcations appear
for values of k different to zero. For a close to the white
noise (a=0.5) a bifurcationlike phenomena induced by
noise is shown in Figs. 2 and 3. It consists of the separa-
tion of branches of the f+f and f f+ maps that were
unified by the noise. This kind of behavior is typical of
systems with noise. Instead of bifurcations, some authors
refers to it as multifurcation [9].

In the strict a =0 limit, several tangent bifurcations are
observed. They come from the superposition of the
tangent bifurcations existing in the quartic maps f+f
and f f+. For a very small but different to zero these
bifurcations disappear since the first transient from the
attractors of f+f (f f+) to those of f f+ (f+f )
coincides with the unstable state suppressed in the
tangent bifurcation. This fact is illustrated in Figs. 4, 5,
and 6. In Fig. 4, we show the tangent bifurcation appear-
ing in the a —+0 limit. Figures 5 and 6 show the evolution
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.1.

2„5 3.5

FIG. 2. Bifurcation diagram of the logistic map with dicho-
tomic noise with 6=0.01 in the white-noise case o.= —'. The2'
dashed line corresponds to p'=3. 25. The invariant density for
this value is shown in Fig. 3(d).

of the invariant density with a for two closed points,
below and above the bifurcation point. We can observe
that for a different to zero, the unstable attractor of the
case a=O appears with small probability. Hence, bifur-
cation exists only in the strict limit e~O. In this case
the noise suppresses the bifurcation.
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FIG. 1. Bifurcation diagrams of the noisy logistic map.
Values of parameters are 6=0.05 and a=0.88 (a), 0.5 (b), 0.01
(c).

FIG. 3. Invariant densities for p=3.08 (a), 3.12 (b), 3.15 (c),
and 3.25 (d) in the white-noise case (o.=—') with intensity
5=0.01. All are below the point p' given in the Fig. 2.
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FIG. 4. Bifurcation diagram of the logistic map with dicho-
tomic noise with 6=0.025 in the limit ca~0. A tangent bifur-
cation at p= 3.2736 is shown. The initial condition is kept con-
stant (xo =0.5) and the first value of the noise is —A.
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IV. STABILITY VERSUS CORRELATION TIME

When analyzing the effect of noise on continuous non-
linear systems an interesting problem is to estimate
changes in stability due to changes in the correlation
time. Since in most of the studied cases the noise does
not change the structure of the deterministic attractors a
good measure of the stability changes is given by some

FIG. 6. Evolution of the invariant density with a [0 (a), 0.01
(b), 0.1 (c), 0.5 (d)] in a point pz=3. 28 above the tangent bifur-
cation shown in Fig. 4.

parameter measuring the intensity of fluctuations, such
as, for example, variances or relative variances (variance
to mean ratio, etc.).

In the present work, the structure of deterministic at-
tractors are strongly modified and then estimators of the
system stability must be used. Following the suggestions
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0 0.1 0.2 0.5

(b)

0.5 0.5

0
0 0.1 0.2

(a)

0 I I

0 0.1 0.2

(b)

-0.63
0 0.1 0.2 0.5

(c)

FICr. 5. Evolution of the invariant density with a [0 (a), 0.01
(b), 0.1 (c), 0.5 (d)] in a point p& =3.27 below the tangent bifur-
cation shown in Fig. 4.

FIG. 7. Lyapunov exponent versus correlation time for the
noisy logistic map with 6=0.05 in three situations correspond-
ing to different values of p [3.6, 3.7 (a); 3.41, 3.45 (b); and 3.35,
3.65 (c)].
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of Ref. [8] we use Lyapunov exponents as such estima-
tors. In deterministic systems Lyapunov exponents have
a clear meaning as indicators of chaos. In noisy systems
Lyapunov exponents give average stability properties of
the orbits and then they are adequate for our purposes.

In order to illustrate the degree of instability induced
by a colored noise let us consider as a first example the
o.~1 limit studied in the last section. As we have said,
the invariant measure and Lyapunov exponents in this
case are given by an arithmetic mean of two logistic maps
with control parameters shifted by +5 and —A. Since
the structure of the attractors is very sensitive to changes
in the control parameter, strong changes of the original
attractors are possible even with low intensity. More-
over, these changes are in all possible directions. For in-
stance, changes from chaotic to regular behavior, happen
when the control parameter shifts from chaotic to regular
motion.

In Fig. 7 we plot the Lyapunov exponent versus the
correlation time in several situations. As we show, the
behavior when changing the correlation time is not uni-
form. In Fig. 7(a) we go from a very stable configuration
in the a~O limit to a chaotic situation in the &x~1 limit.
The Lyapunov exponent always grows and as a conse-
quence, the stability is monotically decreasing.

Figure 7(b) is reciprocal and represents cases of in-
creased stability with a. Figure 7(c) corresponds to a
case in which the stability in both deterministic limits is
similar. Now there is a loss of stability when going from
the above-mentioned limits to the white-noise case
(a= —,'), but the point of maximum Lyapunov exponent
does not always coincide with the exact white-noise situa-
tion, a= —,'. In Fig. 8, we show values of a corresponding
to a maximum in the Lyapunov exponent (a ). Exclud-
ing the interval depicted in this figure, the maximum of
the Lyapunov exponents are always located at a=1.
This fact is important in order to explain the behavior
found in the white-noise case as we will see in Sec. V.

For the sake of comparison with the one-dimensional
(1D) continuous model, we note that in such a model a
colored noise always stabilizes the effect of a white noise
[10]. The situation with 1D maps is, as we showed, very
different. On the other hand, it is known that memory
effects on maps may induce strong changes [4]. Hence,
our results are expected since a colored noise introduced
memory into the system.

V. THE WHITE-NOISE CASE

but no analytical solutions are found. Possibly a pertur-
bative analysis for small intensity 6 would give some ap-
proach in the 5~0 case but in general no analytical
methods are available for solving the equation. However,
we are able to identify and even to predict the peaks ap-
pearing in the invariant density (see Fig. 9). Since in a
white noise all sequences are equally probable, one would
expect a smooth shape of the invariant density. Never-
theless, one finds a rich variety of peaks, indicating some
kind of resonance induced by noise. Plotting the invari-
ant density for several values of a it is possible to observe
the evolution of such peaks. In the limits o.~O and
a~1 we have identified these in the Sec. II as attractors
of single maps f+, f or their compositions f+f

P(X) p(x)

4 3
1

In the white-noise case, with 0.=—,', the equation for the
invariant density takes a simple form:

p(x)= I I —,'5(x f+(y))—+ —,'&(x f (y—))Ip(y)dy,

0.5 0.5

0 I I

0 0.1 0.2
0 I I

0 0.1 0.2

p(x) P (X)

0.5

0.5 0.5

3.6

0
0 0.1 0.2

.I ~ l I .A l ~

X
0 0.1 0.2

(b)

FIG. 8. Location of the maximum of the Lyapunov exponent
a for the noisy logistic map (5=0.05) with p varying in the
interval (2.8,3.6).

FIG. 9. Evolution of the invariant density of the noisy map
with b, =0.05 through four values of a [0.01 (a), 0.1 (b), 0.4 (c),
0.5 (d)]. Peaks are identified with a number.
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f f+. Also, we know that the small peaks are tran-
sients from one attractor to others. Going to the white-
noise case a —+ —, from the ex~0 limit it can be seen in

Fig. 9 that some of the large peaks found in this limit
disappear while some other small peaks grow. At the
end, a= —,', we obtain a configuration of identified peaks
with more or less intensity. This behavior with com-
petence between attractors can be understood computing
the Lyapunov exponent. We have analyzed this process
in several cases concluding that the more stable attractor
(attractor with the small Lyapunov exponent) always
remains and, moreover, peaks associated with the tran-
sient from it grow. Hence, we conclude that, at least
with the dichotomic noise, peaks appearing in the invari-
ant density can be identified and analyzed. Repeating the
same analysis, we have found the same results with a

three-level noise. In this case, the analysis is much more
complicated because the number of possible attractors in-
creases but the conclusions are basically identical. A
similar analysis with a general multilevel noise holds.

Hence, we conclude that the effect of a multilevel noise
on discrete maps can be analyzed as superposition of
competing attractors corresponding to maps found in the
deterministic limits. Rather than a description based on
shifts and broadening of bifurcations, this picture seems
to be more precise.
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