US 20160254909A1

a9 United States
a2 Patent Application Publication (o) Pub. No.: US 2016/0254909 A1
GARCIA MORCHON et al. (43) Pub. Date: Sep. 1, 2016
(54) KEY SHARING DEVICE AND SYSTEM FOR Publication Classification
CONFIGURATION THEREOF
(51) Int.CL
(71) Applicant: Koninklijke Philips N.V., Findhoven HO4L 9/08 (2006.01)
(NL) HO4L 9/30 (2006.01)
Ho4w 12/04 (2006.01)
(72) Inventors;: OSCAR GARCIA MORCHON, Ho4L 29/06 (2006.01)
AACHEN (DE); LUDOVICUS (52) US.CL
MARINUS GERARDUS MARIA CPC HO04L 9/0866 (2013.01); HO4L 63/061
TOLHUIZEN, WAALRE (NL): JAIME (2013.01); HO4L 9/0838 (2013.01); HO4L
GUTIERREZ, EINDHOVEN (NL); 9/3093 (2013.01); HO4W 12/04 (2013.01);
SANDEEP SHANKARAN KUMAR, H041 9/0869 (2013.01)
WAALRE (NL); DOMINGO GOMEZ, (57) ABSTRACT
LOS CORRALES (ES) A method of configuring a network device for key sharing and
21 Aopl. No.: 14/397,514 amethod for a first network device to determine a shared key
(21) Appl- No areprovided. The method of configuring uses a private private
(22) PCT Filed: Mar. 28. 2013 modulus, and a modulus (p,) a public modulus (N), and a
’ bivariate polynomial (f}) having integer coefficients, the
(86) PCT No.: PCT/EP13/56730 binary representation of the public modulus and the binary
representation of the private modulus are the same in at least
§ 371 (e)(D), key length (b) consecutive bits. Local key material for a
(2) Date: Oct. 28,2014 network device is generated by substituting an identity num-
ber into the bivariate polynomial and reducing modulo the
L. private modulus the result of the substitution to obtain a
Related U.S. Application Data univariate polynomial. Security may be increased by adding
(60) Provisional application No. 61/649,464, filed on May (440) one or more obfuscating numbers to coefficients of the
21, 2012, provisional application No. 61/658,475, univariate polynomial to obtain an obfuscated univariate
filed on Jun. 12, 2012. 4 polynomial. In a use phase, the network device determines a
shared cryptographic key, by substituting (530) the identity
(30) Foreign Application Priority Data number of another network device into the univariate poly-

May 21, 2012

.................................. 12168710.7

(EP)

nomial and reducing modulo the public modulus and reduc-
ing modulo a key modulus.

obtaining a public a
private modulus, an
symmetric bivariate
polynomial

nd
da

410

number of a networl
device

obtaining an identity

420
k

number into the
bivariate polynomial
modulo the private
modulus

substituting the identity

430
I

adding an obfuscating
number to a coefficient

440

storing obfuscated
univariate polynomial at
the network device

450

400

Patent Application Publication Sep. 1,2016 Sheet 1 of 4 US 2016/0254909 A1

112

110

—y

114

116 —> 122

124
Figure 1
210 220
200
260 —> 240 S 250

Figure 2

Patent Application Publication

Sep. 1,2016 Sheet 2 of 4 US 2016/0254909 A1

320
300

330 [

342 346 348

344

350

310

Figure 3

Patent Application Publication

Sep. 1,2016 Sheet 3 of 4

obtaining a publicand 410
private modulus, and a
symmetric bivariate
polynomial

obtaining external
identity number of
another network device

obtaining an identity 420
number of a network
device

sending local identity
number to other
network device

520

substituting the identity 430
number into the

bivariate polynomial

modulo the private

modulus

substituting external
identity number into the
obfuscated univariate
polynomial modulo the
public modulus

530

\

adding an obfuscating 440
number to a coefficient

reducing modulo key
modulus

540

storing obfuscated 450
univariate polynomial at
the network device

deriving a shared key

550

400

Figure 4

sending a key 560
confirmation message

to the other network

device

Key confirmed? 570

Cryptographic 580
application

500
Figure 5

US 2016/0254909 A1

no

Patent Application Publication Sep. 1,2016 Sheet 4 of 4 US 2016/0254909 A1

A B
A
610
B, KC (K1)
620 |
KC(K2)
630 >
640
KC (K3)
650 >
Ok
660 |
M1
670
600

Figure 6

US 2016/0254909 A1l

KEY SHARING DEVICE AND SYSTEM FOR
CONFIGURATION THEREOF

FIELD OF THE INVENTION

[0001] The invention relates to a method of configuring a
network device for key sharing, the method comprising gen-
erating local key material for the network device comprising
obtaining in electronic form an identity number for the net-
work device, determining using a polynomial manipulation
device a univariate polynomial from a bivariate polynomial
by substituting the identity number into the bivariate polyno-
mial, and electronically storing the generated local key mate-
rial at the network device.

[0002] The invention further relates to a method for a first
network device to determine a shared key, the key being a
cryptographic key, the method comprising, obtaining local
key material for the first network device in electronic form,
the local key material comprising a univariate polynomial,
obtaining an identity number for a second network device, the
second network device being different from the first network
device, substituting the identity number of the second net-
work device into the univariate polynomial and deriving the
shared key therefrom.

[0003] The invention further relates to a system for config-
uring a network device for key sharing, and to a network
device configured to determine a shared key.

BACKGROUND OF THE INVENTION

[0004] Given a communications network comprising mul-
tiple network devices, it is a problem to set up secure connec-
tions between pairs of such network devices. One way to
achieve this is described in C. Blundo, A. De Santis, A.
Herzberg, S. Kutten, U. Vaccaro and M. Yung, “Perfectly-
Secure Key distribution for Dynamic Conferences”, Springer
Lecture Notes in Mathematics, Vol. 740, pp. 471-486, 1993
(referred to as ‘Blundo’).

[0005] Ttassumes a central authority, also referred to as the
network authority or as the Trusted Third Party (TTP), that
generates a symmetric bivariate polynomial f(x,y), with coef-
ficients in the finite field F with p elements, wherein p is a
prime number or a power of a prime number. Each device has
an identity number in F and is provided with local key mate-
rial by the TTP. For a device with identifier m, the local key
material are the coefficients of the polynomial f{(n,y).

[0006] Ifadevicem wishes to communicate with device 1)’
it uses its key material to generate thekey K(m, n)=f(n,n"). As
fis symmetric, the same key is generated.

[0007] A problem of this key sharing scheme occurs if an
attacker knows the key material of t+1 or more devices,
wherein t is the degree of the bivariate polynomial. The
attacker can then reconstruct the polynomial f(x,y). At that
moment the security of the system is completely broken.
Given the identity numbers of any two devices, the attacker
can reconstruct the key shared between this pair of devices.
[0008] Reference is made to the paper “A Permutation-
Based Multi-Polynomial Scheme for Pairwise Key Establish-
ment in Sensor Networks” by authors Song Guo, Victor
Leung, and Zhuzhong Qian, IEEE International Conference
on Communications, 2010. It presents a permutation-based
multi-polynomial scheme for pairwise key establishment in
wireless sensor networks. Different from Blundo, the scheme
presented in Song does not give each node just one share of a
symmetric polynomial, but a group of permuted shares.

Sep. 1,2016

SUMMARY OF THE INVENTION

[0009] It would be advantageous to have an improved
method for establishing a shared key between two network
devices. A method of configuring a network device for key
sharing and a method for a network device to determine a
shared key are provided.

[0010] The method of configuring a network device for key
sharing comprises obtaining in electronic form a private
modulus, a public modulus, and a bivariate polynomial hav-
ing integer coefficients, the binary representation of the pub-
lic modulus and the binary representation of the private
modulus are the same in at least key length consecutive bits,
generating local key material for the network device compris-
ing obtaining in electronic form an identity number for the
network device, determining using a polynomial manipula-
tion device a univariate polynomial from the bivariate poly-
nomial by substituting the identity number into the bivariate
polynomial, reducing modulo the private modulus the result
of the substitution, and electronically storing the generated
local key material at the network device. In an embodiment,
the generating local key material for the network device com-
prises generating an obfuscating number, e.g., by using an
electronic random number generator, and adding using a
polynomial manipulation device, the obfuscating number to a
coeflicient of the univariate polynomial to obtain an obfus-
cated univariate polynomial, the generated local key material
comprising the obfuscated univariate polynomial. More than
one coefficient may be obfuscated, preferably with different
coefficients being obfuscated differently. In an embodiment,
the generating local key material for the network device com-
prises generating multiple obfuscating numbers, e.g., by
using the electronic random number generator, and adding
using the polynomial manipulation device, each obfuscating
number of the multiple obfuscating numbers to a respective
one of the coefficients of the univariate polynomial to obtain
an obfuscated univariate polynomial. In an embodiment to
each coefficient of the univariate polynomial an obfuscated
number is added.

[0011] The bivariate polynomial may or may not be sym-
metric. If the bivariate polynomial or polynomials are sym-
metric any two network devices may derive a shared key.
Interestingly, by using an asymmetric bivariate polynomials
or one or more asymmetric bivariate polynomials among
multiple bivariate polynomials, as root keying material,
allows to accommodate the creation of two groups of devices
such as devices; Two devices belonging to the same group
cannot generate a common key, but two devices in different
groups can.

[0012] Adding obfuscation is an optional step. Without
obfuscation protection against attacks is still obtained,
because the derivation of the local key material uses a private
modulus which is different from the public modulus; the
mathematical relationship that would be present when work-
ing, say, in a single finite field is disturbed. This means that the
usual mathematical tools for analyzing polynomials, e.g.,
finite algebra, no longer apply. On the other hand because the
private and the public modulus overlap in a number of con-
secutive bits, two network devices that have local key material
are likely to be able to derive the same shared key. Security
may beincreased by adding one or more obfuscating numbers
to coefficients of the univariate polynomial to obtain an
obfuscated univariate polynomial. The step of adding obfus-
cating numbers is however optional and may be omitted.

US 2016/0254909 A1l

Whether or not to add obfuscation is a tradeoff between the
chance of correctly deriving a shared key, and additional
security.

[0013] The public modulus is for use in the network device.
The method of configuring a network device for key sharing
may comprise making the public modulus available to the
network device, e.g., storing the public modulus together with
the local key material.

[0014] The method of determining a shared key for a first
network device to, the key being a cryptographic key com-
prises obtaining local key material for the first network device
in electronic form, the local key material comprising a, pos-
sibly obfuscated, univariate polynomial, obtaining an identity
number for a second network device, the second network
device being different from the first network device, substi-
tuting the identity number of the second network device into
the obfuscated univariate polynomial, reducing the result of
the substituting modulo the public modulus followed by
reducing modulo a key modulus, and deriving the shared key
from the result of the reduction modulo the key modulus. In
an embodiment, e.g., the method comprises reducing the
result of the substituting modulo the public modulus dividing
the result by a power of two, and reducing modulo a key
modulus.

[0015] Any pair of two network devices out of multiple
network devices that each have an identity number and local
key material generated for the identity number are able to
negotiate a shared key with few resources. The two network
devices need only exchange their identity numbers, which
need not be kept secret, and perform polynomial computa-
tions. The type of computations needed do not require large
computational resources, which means that this method is
suitable for low-cost high volume type of applications.
[0016] If the local key material has been obtained from a
symmetric polynomial, this allows both network devices in a
pair of network devices to obtain the same shared key. If an
obfuscating number has been added to the local key material,
the relation between the local key material and the root key
material has been disturbed. The relation that would be
present between the unobfuscated univariate polynomial and
the symmetric bivariate polynomial is no longer present. This
means that the straightforward attack on such a scheme no
longer works.

[0017] Evenifno obfuscation has been used, a difficulty of
attack remains because the public modulus and private modu-
lus (or moduli) are not equal. The reduction modulo the public
modulus increases the chance of deriving the same shared
key, even without obfuscation.

[0018] In an embodiment, the binary representation of the
public modulus and the binary representation of the private
modulus are the same in at least key length (b) consecutive
bits. Note, multiple private moduli may be used; they may be
chosen such that the binary representation of any one of the
multiple private moduli of the public modulus and the binary
representation of the private modulus are the same in at least
key length (b) consecutive bits. For each private modulus of
the multiple private moduli a, optionally symmetric, bivariate
polynomial having integer coefficients is chosen to obtain
multiple, and optionally symmetric, bivariate polynomials.
[0019] Because the derivation of the local key material uses
a private modulus which is different from the public modulus,
the mathematical relationship that would be present when
working, say, in a single finite field is disturbed. This means
that the usual mathematical tools for analyzing polynomials,

Sep. 1,2016

e.g., finite algebra, no longer apply. At best an attacker may
use much less efficient structures, such as lattices. Also when
deriving the shared key two modulo operations are combined
which are not compatible in the usual mathematical sense; so
mathematical structure is avoided at two places. The method
allows direct pair wise-key generation and is resilient to the
capture of a very high number, e.g. inthe order of 10"5 or even
higher, of network devices. On the other hand because the
private and the public modulus overlap in a rumber of con-
secutive bits, two network devices that have local key material
are likely to be able to derive the same shared key.

[0020] A particular insight of the inventor was that the
public modulus need not be a prime number. In an embodi-
ment, the public modulus is composite. Also there is no rea-
son why the public modulus should be an “all-one’ bits num-
ber, e.g., a number which only consists of 1 bits, in its binary
representation. In an embodiment the public modulus isnota
power of two minus 1. In an embodiment, the binary repre-
sentation of the public modulus comprises at least one zero bit
(not counting leading zero’s, i.e., the binary representation of
the public modulus comprises at least one zero bit less sig-
nificant than the most significant bit of the public modulus).
In an embodiment, the public modulus is a power of two
minus 1 and composite.

[0021] Inanembodiment the public modulus is larger than
the one or more private moduli.

[0022] In an embodiment, at least key length consecutive
bits of the binary representation of the public modulus minus
the private modulus are all zero bits. This difference should be
evaluated using the signed number representation of the pub-
lic modulus minus the private modulus, not the two-comple-
ment representation. Alternatively, one may require that at
least key length consecutive bits of the binary representation
of the absolute value of the public modulus minus the private
modulus are all zero bits. There is a set of key length (b)
consecutive positions in which the binary representation of
the public modulus agrees with the binary representation of
all private moduli.

[0023] The consecutive bit positions in which the public
modulus agrees with the private moduli, may be the least
significant bits. In an embodiment, the least significant key
length bits of the binary representation of the public modulus
minus the private modulus are all zero bits; this has the advan-
tage that a division by a power of two is not needed when
deriving the shared key.

[0024] Itis allowed in a private modulus of multiple private
moduli is equal to the public modulus; However if only one
private modulus is used then this is undesirable.

[0025] It is desirable that the private moduli introduce suf-
ficient non-linearity. In an embodiment, there is a set of con-
secutive bit positions in which the public modulus differs
with each private moduli. Furthermore, it may also be
imposed that the private moduli differ among themselves; a
pair wise comparison of the binary representation of the pri-
vate modulus may also differ in at least one bitin a set of, say
at least key length, consecutive bits, the set being equal for all
private modulus, and possibly also the same for the public
modulus.

[0026] The network device may be an electronic device
equipped with electronic communication and computation
means. The network device may be attached, e.g. in the form
of an RFID tag, to any non-electronic object. For example,
this method would be suitable for the Internet of things'. For
example, objects, in particular low cost objects, may be

US 2016/0254909 A1l

equipped with radio tags through which they may communi-
cate, e.g. may be identified. Such objects may be inventoried
through electronic means such as a computet. Stolen or bro-
ken items would be easily tracked and located. One particu-
larly promising application is a lamp comprising a network
device configured to determine a shared key. Such a lamp may
securely communicate its status; such a lamp could be
securely controlled, e.g., turned on and/or off. A network
device may be one of multiple network devices each com-
prising an electronic communicator for sending and receiving
an identity number and for sending an electronic status mes-
sage, and each comprising an integrated circuit configured for
deriving a shared key following a method according to the
invention.

[0027] In an embodiment, the method in the invention can
beused as a cryptographic method for security protocols such
us IPSec, (D)TLS, HIP, or ZigBee. In particular, a device
using one of those protocols is associated to an identifier. A
second device willing to communicate with the first device
can generate a common pair wise key with the first device
given its identifier, and the pair wise key (or a key derived
from this by means of, e.g., a key derivation function) can be
used in a method of the above protocols based on pre-shared
key. In particular, the identifier of a device as defined in this
invention can be a network address such as the ZigBee short
address, an IP address, or the host identifier. The identifier can
also be the IEEE address of a device or a proprietary bit string
associated to the device so that a device receives some local
keying material associated to the IEEE address during manu-
facturing.

[0028] Deriving a shared key may be used for many appli-
cations. Typically, the shared key will be a cryptographic
symmetric key. The symmetric key may be used for confi-
dentiality, e.g., outgoing or incoming messages may be
encrypted with the symmetric key. Only a device with access
to both identity numbers and one of the two local key mate-
rials (or access to the root key material) will be able to decrypt
the communications. The symmetric key may be used for
authentication, e.g., outgoing or incoming messages may be
authenticated with the symmetric key. In this way the origin
of the message may be validated. Only a device with access to
both identity numbers and one of the two local key materials
(or access to the root key material) will be able to create
authenticated messages.

[0029] The method of configuring a network device for key
sharing will typically be executed by a network authority,
e.g., a trusted third party. The network authority may obtain
the needed material, e.g., root key material from another
source, but may also generate this himself. For example, the
public modulus may be generated. For example, the private
modulus may be generated, even if the public modulus is a
system parameter and received.

[0030] In an embodiment, the public modulus N is chosen
such that it satisfies 2¢+*2*~* =N=2“">*_], wherein, a repre-
sents the degree of the bivariate polynomial and b represents
the key length. For example, in an embodiment N=2+»%_1,
The modulo operation for the latter choice may be imple-
mented particularly efficiently.

[0031] Having a fixed public modulus has the advantage
that it need not be communicated to the network devices, but
may be integrated with e.g. their system software. In particu-
lar, the public modulus may be chosen using a random num-
ber generator.

Sep. 1,2016

[0032] The public and private modulus may be represented
as a bit string. They may also be abbreviated using each
particular mathematical structure. For example, instead of
storing a private modulus, one may also store its difference
with the public modulus, which is much shorter.

[0033] Having a private modulus chosen in such a way that
a ‘key length’ number of the least significant bits of the binary
representation of the public modulus minus the private modu-
lus are all zero bits increases the likelihood that a shared key
at a first network device of a pair of network device is close to
the shared key derived at a second network device of the pair
of network device; that is the binary representation of the
private modulus has the same bits in the ‘key length’ least
significant positions as the binary representation of the public
modulus. For example, if the key length is 64, a private
modulus may be chosen by subtracting a multiple of 2764
from the public modulus. In an embodiment, the public
modulus minus a private modulus divided by two to the power
of the key length is less than two to the power of the key
length.

[0034] In an embodiment multiple private moduli are
obtained or generated in electronic form, for each private
modulus of the multiple private moduli a symmetric bivariate
polynomial having integer coefficients is chosen to obtain
multiple symmetric bivariate polynomials, so that to each
private modulus a symmetric bivariate polynomial corre-
sponds. Determining the univariate polynomial comprises
substituting the identity number into each one of the multiple
symmetric bivariate polynomials, reducing modulo a private
modulus of the multiple private moduli corresponding to the
one symmetric bivariate polynomial, and adding the multiple
results of the multiple reductions together. Having multiple
symmetric bivariate polynomials for different moduli
increases the security because incompatible structures are
further mixed. Typically the private moduli are distinct. Hav-
ing multiple private moduli further complicates analysis even
more if the corresponding algebraic structures are very dif-
ferent; for example, choosing them relatively prime, in par-
ticular pair-wise relatively prime, even more in particular by
choosing them as distinct primes.

[0035] Havingadifferent private modulus, and in particular
multiple private moduli, will complicate analysis. To further
increase security additional controls on the coefficients are
possible. Inan embodiment, the authority adding the multiple
resulting univariate polynomials of the multiple reductions
together verifies whether the value of each of the resulting
coefficients is either too small or too big, e.g. less than a
minimum threshold or above a maximum threshold This
improves security even further because in either of the two
cases, an attacker might find out the components of the mul-
tiple reductions if they are too big or too small. For instance,
if the value of a coefficient resulting after the addition is equal
to 1 and there are only two univariate polynomials, then an
attacker knows that either the corresponding coefficient asso-
ciated to the first polynomial is 1 and the one associated to the
second polynomial is 0, or the other way around. In particular,
the authority generating the local key material for adevice can
verify whether the value of each of the resulting coefficients
of the local keying material is at least ‘minimum value’ and at
most ‘maximum value’. This checking may omitted, in par-
ticular, if the public modulus is relatively close to all private
moduli and all elements of the key material are between 0 and
N-1. If the TTP is capable of assigning identity numbers it

US 2016/0254909 A1l

could also assign another identity number to the device, if the
TTP detects small or big coefficients.

[0036] Inan embodiment, each specific private modulus is
such that the least significant key length (b) bits of the binary
representation of the public modulus minus the specific pri-
vate modulus are all zero bits.

[0037] The public modulus may both be larger or smaller
than the private modulus. In an embodiment the binary rep-
resentation of the public modulus minus the private modulus
has at least key length bits all zero. The zero bits at least key
length zero bits are consecutive and may be present at any
point in the binary representation. Having a string of zero bits
in the difference between the public modulus and the private
modulus avoids that obfuscation carries too far. In an embodi-
ment, there is an integer parameter ‘s’, such that key length
least significant bits of the public modulus minus the private
modulus, divided by two to the power s are all zero. The
parameter ‘s’ is the same for all private moduli.

[0038] Forexample, one may define a zero bit string divisor
which is a power of two, such that each specific private
modulus being such that key length (b) bits of the binary
representation of the public modulus minus the specific pri-
vate modulus divided by the zero bit string divisor are all zero
bits. If the least significant bits are zero, the zero bit string
divisor may be taken to be 1. In an embodiment the zero bit
string divisor is larger than 1. The division by a power of two
is to be interpreted as an integer division, giving the same
result as a shift of the bits in the direction of the least signifi-
cant bits. Any remainder of the division is ignored.

[0039] To generate the shared key of key length bit, the
network devices first apply an additional division step. The
first network device evaluates the keying material for the
identity number of the second device modulo the public mod-
ules, dividing by 2"s and reducing modulo two to the power of
the key length. Note that this is equivalent to applying first a
module 2"(s+key length) after the public modulo, and then
dividing by 2’s. Here “dividing” includes rounding down-
wards.

[0040] Inanembodiment, the private modulus is generated
using a random number generator. In an embodiment, the
multiple private moduli are generated such that they are pair
wise relatively prime. For example, the multiple private
moduli may be generated iteratively verifying for each new
private modulus that they are still pair wise relatively prime,
and if not discarding the last generated private modulus. An
embodiment comptises iteratively generating a candidate
modulus, using the random number generator, such that key
length (b) consecutive bits of the binary representation of the
public modulus minus the candidate modulus are all zero bits,
e.g., the least significant key length bits, until the candidate
modulus satisfies a primality test using a primality testing
device, wherein the so obtained candidate modulus satisfying
the primality test is used as the private modulus. The primality
test may, e.g., be the Miller-Rabin primality test or the
Solovay-Strassen primality test.

[0041] A symmetric bivariate polynomial in variables of x
and y of degree a, has only monomials of the form x'y/, with
i<a,j=a. Furthermore the coefficient corresponding to X'y’ is
the same as the coefficient of x'y'. This may be used to reduce
the number of stored coefficients by about half. Note that a
more relaxed definition of the degree is used. We define the
degree of a monomial, as the maximum degree of the vari-
ables in the monomial. So the degree of X'y’ is max(ij), i.e.,
that i=a,j<a. So for example what we call a polynomial of

Sep. 1,2016

degree 1 has as general form a+bx+cy+dxy, (note that since
only symmetric polynomials are considered, we have that
b=c). Note that if desired one may put additional restrictions
on the bivariate polynomial, including, e.g., that only mono-
mials with i+j=a are used, but this is not needed.

[0042] Inan embodiment the symmetric bivariate polyno-
mial is generated by the network authority. For example, the
symmetric bivariate polynomial may be a random symmetric
bivariate polynomial. For example, the coefficients may be
selected as random numbers using a random number genera-
tor.

[0043] Although the obfuscation used greatly increases the
resilience against attack, in particular against collusion
attacks wherein multiple local key materials are combined, it
has a potential drawback. Sometimes the shared key derived
by the first network device is not in all bits identical to the
shared key derived by the second network device. This is
mainly due to the mismatch in the bits of carry after the
addition of the obfuscating coefficients. Another reason is the
lacking effect of the modular effects of each of the private
moduli during the generation of the key that affects the gen-
erated bits of carry. Although a nuisance this drawback may
be resolved in various manners. By choosing the obfuscation
with more care the likelihood of a difference and in particular
the likelihood of a large difference can significantly be
reduced. Furthermore, it was found that differences, if they
are any, are likely to be located in the least significant bits of
the generated keys. So by removing one or more of the least
significant bits the likelihood of an identical shared key may
be increased. For example, in an embodiment of the method
of determining a shared key comprises determining if the first
network device and the second network device have derived
the same shared key, and if not deriving a further shared key
from the result of the reduction modulo the key modulus.
Further shared keys may be derived until one is found that is
equal on both sides. If less than a threshold number of bits
remain in the shared key, the method may be terminated. For
some applications it may simply be accepted that some per-
centage of the network devices are not able to communicate.
For example, in ad-hoc wireless networks wherein a message
may be routed along various routes, there is no loss of con-
nectivity if some of the network devices are not able to com-
municate.

[0044] Note that without obfuscation it may also happen
that the shared key derived by the first network device is not
in all bits identical to the shared key derived by the second
network device, although the chance of this is less than the
case with obfuscation.

[0045] Inan embodiment, a number of the least significant
bits of the shared key are removed; for example, the number
of removed bits may be 1, 2 or more, 4 or more, 8 or more, 16
or more, 32 or more, 64 or more. By removing more of the
least significant bits, the chance of having keys that are not
equal is reduced; in particular it may be reduced to any
desired threshold. The chance of shared keys being equal may
be computed, by following the mathematical relationships, it
may also be determined by experiment.

[0046] Also the choice of obfuscating numbers may be
controlled, in an embodiment, the range from which an obfus-
cating number is chosen is reduced for coefficients corre-
sponding to higher degree monomials. In particular, one may
require that le A’i|<2(”+l'1)b, wherein e , , denotes the obfuscat-
ing number for the i-th monomial, i denotes the degree of the
monomial corresponding to the coefficient, a represents the

US 2016/0254909 A1l

degree of the bivariate polynomial and b represents the key
length. A represents the network device for which the local
key material is generated. In an embodiment, an obfuscating
number is generated for each coefficient, e.g., using the above
formula. Different obfuscation may be applied for different
network devices. For example, even if there are 3 or more
network devices, than for each network device different
obfuscation numbers may be generated.

[0047] Note that the obfuscating number may be restricted
to positive numbers but this is not needed, the obfuscating
numbers may be negative. In an embodiment, the obfuscated
numbers are generated using a random number generator.
Multiple obfuscating numbers may be generated and added
coefficients of the univariate polynomial to obtain the obfus-
cated univariate polynomial. One or more, preferably even
all, coefficients of the univariate polynomial may be obfus-
cated in this manner.

[0048] The number of bits in the identity number for the
network device is usually chosen as less or equal than the key
length. The identity number may be a bit string, say a32 or 64,
or longer, bits string. The key length may be 32 or more, 48 or
more, 64 or more, 96 or more, 128 or more, 256 or more. The
key length may be chosen some number of bits higher in order
to reduce a corresponding number of least significant bits of
the determined shared key. On the other hand, in an embodi-
ment, the length of the identity number is longer than the key
length. In this case, the effect of modular operations can lead
10 a higher effect on the least significant bits of the key
length-bits of the generated key so that those bits might not be
equal for a pair of devices willing to generate a common key.
Having a longer length for the identifier can have, however, a
positive effect in the security since more bits are mixed
together when doing the corresponding computations.

[0049] A polynomial manipulation device may be imple-
mented in software running on a computer, say on an inte-
grated circuit. A polynomial manipulation device may be
very efficiently implemented in hardware. A combination is
also possible. For example, a polynomial manipulation
device may be implemented by manipulating arrays of coef-
ficients representing the polynomials.

[0050] Electronically storing the generated local key mate-
rial at the network device may be implemented by electroni-
cally sending the generated local key material to the network
device, e.g., using a wired connection, or using a wireless
connection and having the generated local key material stored
at the network device. This may be done during manufactur-
ing or installation, e.g., during testing, of an integrated circuit
in the network device. The test equipment may comprise or be
connected the network authority. This may also happen after
a successful joining of a device to an operation network (i.e.,
after network access or bootstrapping). In particular, the local
key material can be distributed as a part of operational net-
work parameters.

[0051] Obtaining local key material for the first network
device in electronic form may be done by electronically
receiving the local key material from a system for configuring
a network device for key sharing, e.g., a network authority
device. Obtaining local key material may also be done by
retrieving the local key material from a local storage, e.g., a
memory such as flash memory.

[0052] Obtaining an identity number for a second network
device, may be done by receiving the identity number from

Sep. 1,2016

the second network device, e.g., directly from second net-
work device, e.g., wirelessly receiving from the second net-
work device.

[0053] The public modulus and the key modulus may be
stored in a network device. They may also be received from a
network authority. They may also be implicit in software of
the network device. For example, in an embodiment the key
modulus is a power of two. Reduction modulo such a key
modulus may be done by discarding all bits except the key
length least significant bits. First the result of the substituting
is reduced modulo the public modulus which is then further
reduced modulo the key modulus.

[0054] Although not required, the public modulus and key
modulus may be relatively prime. This may be achieved by
having the public modulus odd and the key modulus a power
of 2. Inany case, it is avoided that the key modulus divides the
public modulus, as then reduction modulo the public modulus
could be omitted.

[0055] The method for key agreement between two devices
may use as root keying material a number of bivariate poly-
nomials. One may use the method forkey agreement using for
x-agreemernt between x parties by using x-variate polynomi-
als as root keying material. In this extension, the trusted third
party evaluates the x-variate polynomials in a variable in the
corresponding ring, the resulting x-1 variate polynomials are
then added over the integers generating the local key material
stored on a device. When x devices need to agree on akey, a
device evaluates its local key material in identifiers of the
other x-1 devices. For example, one may use multivariate
polynomials in a method of configuring a network device for
key sharing, the method comprising obtaining in electronic
form a private modulus (p,), a public modulus (N), and a
multivariate polynomial (f)) having integer coefficients, the
binary representation of the public modulus and the binary
representation of the private modulus are the same in at least
key length (b) consecutive bits, generating local key material
for the network device comprising obtaining in electronic
form an identity number (A) for the network device, deter-
mining using a polynomial manipulation device a polynomial
from the multivariate polynomial by substituting the identity
number into the multivariate polynomial, reducing modulo
the private modulus the result of the substitution, and elec-
tronically storing the generated local key material at the net-
work device. The polynomial obtained by the polynomial
manipulation device is over one fewer variable. It is conve-
nient for key sharing if the multivariate is symmetric in all
variables. A corresponding method for a first network device
to determine a shared key, the key being a cryptographic key,
the method comprising, obtaining local key material for the
first network device in electronic form, the local key material
comprising a, optionally obfuscated, polynomial, obtaining
an identity number for a multiple other network devices, the
second network device being different from the first network
device, substituting the identity number of the other network
devices into the, optionally obfuscated, polynomial, reducing
the result of the substituting modulo the public modulus and
reducing modulo a key modulus, and deriving the shared key
from the result of the reduction modulo the key modulus.
Note that after substituting all but one of the other identity
numbers the method reduces to situation in which a univariate
polynomial is used.

[0056] In an embodiment, a first network device receives
multiple (n) local key materials associated to the device’s
identifier. The key generated between this first device and a

US 2016/0254909 A1l

second device is obtained as the combination (e.g., concat-
enation) of the multiple (n) keys obtained by evaluating each
of the multiple (n) local key materials of the first device in the
identifier of the second device. This allows use of the method
in parallel.

[0057] Theuseofasymmetric bivariate polynomials as root
keying material, i.e., f(x,y) I={(y,x), allows to accommodate
the creation of two groups of devices such as devices in the
first group receive KM(Id,y) and devices in the second group
receive KM(x,iD) being KM the local key material stored on
a device. Two devices belonging to the same group cannot
generate a common key, but two devices in different groups
can. See further Blundo.

[0058] The identity number of a network device may be
computed as the one-way function of a bit string containing
information associated to the device. The one-way function
can be a cryptographic hash function such as SHA2 or SHA3.
The output of the one-way function can be truncated so that it
fits the identifier size. Alternatively the size of the one-way
function is smaller than the maximum identifier size.

[0059] In an embodiment, the symmetric polynomials
involve a single monomial of the form <axiyi>pj where <>,
represents the module operation. In this case, the elements are
within a finite group and the operation is the multiplication.
The public modulus may be larger than the private modulus or
smaller; if there are multiple private moduli, some maybe
larger than the private modulus and some may be smaller.
[0060] In an embodiment of the method of configuring a
network device for key sharing, the method comprises obtain-
ing in electronic form multiple private moduli (p;), and mul-
tiple symmetric bivariate polynomials (f,) having integer
coefficients, such that there is a set of key length (b) consecu-
tive positions in which the binary representation of the public
modulus is the same as the binary representation of all private
moduli, generating local key material for the network device
comprising obtaining in electronic form an identity number
(A) for the network device, determining using a polynomial
manipulation device a univariate polynomial from the mul-
tiple bivariate polynomials by substituting the identity num-
ber into each one of the multiple bivariate polynomials,
reducing modulo a private modulus of the multiple private
moduli corresponding to the one symmetric bivariate poly-
nomial, and adding the multiple results of the multiple reduc-
tions, and generating an obfuscating number and adding
using a polynomial manipulation device, the obfuscating
number to a coefficient of the univariate polynomial to obtain
an obfuscated univariate polynomial, the generated local key
material comprising the obfuscated univariate polynomial,
and electronically storing the generated local key material at
the network device. A bivariate polynomials of the multiple
bivariate polynomials (f;) may be represented as having coef-
ficients modulo the corresponding private modulus (p,).
[0061] More generally, the root key material, may be evalu-
ated over any ring. Itis possible to use polynomials of a single
monomial such as Ax"a, in which case a group may be used.
[0062] An aspect of the invention concerns a system for
configuring a network device for key sharing, e.g., a network
authority, the system comprising a key material obtainer for
obtaining in electronic form a private modulus, a public
modulus, which may or may not be larger than the private
modulus, and a symmetric bivariate polynomial having inte-
ger coefficients, key length bits of the binary representation of
the public modulus minus the private modulus are all zero
bits, possibly the key length least significant bits, a generator

Sep. 1,2016

for generating local key material for the network device com-
prising a network device manager for obtaining in electronic
form an identity number for the network device and for elec-
tronically storing the generated local key material at the net-
work device, and a polynomial manipulation device for deter-
mining a univariate polynomial from the bivariate polynomial
by substituting the identity number into the bivariate polyno-
mial, reducing modulo the private modulus the result of the
substitution.

[0063] An embodiment of the system comprises an obfus-
cating number generator, e.g., a random number generator,
for generating an obfuscating number, the polynomial
manipulation device is configured for adding the obfuscating
number to a coefficient of the univariate polynomial to obtain
an obfuscated univariate polynomial, the generated local key
material comprising the obfuscated univariate polynomial.
[0064] An aspect of the invention concerns a first network
device configured to determine a shared key, the key being a
cryptographic key, the first network device comprising, a
local key material obtainer for obtaining local key material
for the first network device in electronic form, the local key
material comprising an obfuscated univariate polynomial, a
receiver for obtaining an identity number for a second net-
work device, the second network device being different from
the first network device, a polynomial manipulation device
for substituting the identity number of the second network
device into the obfuscated univariate polynomial and reduc-
ing the result of the substituting modulo the public modulus
followed by reducing modulo a key modulus, the public and
key modulus being relatively prime, a key derivation device
for deriving the shared key from the result of the reduction
modulo the key modulus.

[0065] A key derivation device may be implemented as a
computer, e.g., an integrated circuit, running software, in
hardware, in a combination of the two, and the like, config-
ured for deriving the shared key from the result of the reduc-
tion modulo the key modulus.

[0066] Deriving the shared key from the result of the reduc-
tion modulo the key modulus, may include the application of
a key derivation function, for example the function KDF,
defined in the OMA DRM Specification of the Open Mobile
Alliance (OMA-TS-DRM-DRM-V2_0_2-20080723-A, sec-
tion 7.1.2 KDF) and similar functions. Deriving the shared
key may include discarding one or more least significant bits
(before applying the key derivation function). Deriving the
shared key may include adding, subtracting, or concatenating
an integer (before applying the key derivation function).
[0067] Multiple network devices each having an identity
number and corresponding local key material may together
form a communication network configured for secure, e.g.,
confidential and/or authenticated, communication between
pairs of network devices.

[0068] The key generation is ID-based and allows the gen-
eration of pair wise keys between pairs of devices. A first
device A may rely on an algorithm that derives a key from
local key material and an identity number.

[0069] Inanembodiment, a first network device sends akey
confirmation message to the second network device. For
example, a confirmation message may comprise the encryp-
tion of a message, and optionally the message itself. The
second network device can verify the encryption of the mes-
sage. The message may be fixed and present at the second
device, to avoid the need of sending it. The message may be
random, or a nonce, etc, in which case it may be sent together

US 2016/0254909 A1l

with the encryption. The second device may reply with a
message with contains an indication if the keys agree. The
second device may also reply with a key confirmation mes-
sage of its own. It the first and/or second device finds out that
the keys are not equal they may start a key equalization
process, e.g., by deleting least significant bits, etc.

[0070] The network devices and the system may be elec-
tronic devices. The network devices may be mobile network
devices.

[0071] A method according to the invention may be imple-
mented on a computer as acomputer implemented method, or
in dedicated hardware, or in a combination of both. Execut-
able code for a method according to the invention may be
stored on a computer program product. Examples of com-
puter program products include memory devices, optical stor-
age devices, integrated circuits, servers, online software, etc.
Preferably, the computer program product comprises non-
transitory program code means stored on a computer readable
medium for performing a method according to the invention
when said program product is executed on a computer
[0072] In a preferred embodiment, the computer program
comprises computer program code means adapted to perform
all the steps of a method according to the invention when the
computer program is run on a computer. Preferably, the com-
puter program is embodied on a computer readable medium.
[0073] For completeness the international application
W02010032161 with title “A method for secure communi-
cation in a network, a communication device, a network and
a computer program therefor”, is mentioned, which relates to
a method for secure communications in a communication
networks.

[0074] There are number of differences with that applica-
tion, including: the use of modular operations, in particular
combining modular operations with a different public and
private modulus, repeated modular operations, e.g. a reduc-
tion modulo a public modulus followed by a reduction
modulo a key modulus, the use of obfuscation, the use of
whole polynomials.

[0075] A method of configuring a network device for key
sharing and a method for a first network device to determine
a shared key are provided. The method of configuring uses a
private modulus (p,), a public modulus (N), and a bivariate
polynomial (f) having integer coefficients, the binary repre-
sentation of the public modulus and the binary representation
of the private modulus are the same in at least key length (b)
consecutive bits. Local key material for a network device is
generated by substituting an identity number into the bivari-
ate polynomial and reducing modulo the private modulus the
result of the substitution to obtain a univariate polynomial.
Security may be increased by adding (440) one or more
obfuscating numbers to coefficients of the univariate polyno-
mial to obtain an obfuscated univariate polynomial. In a use
phase, the network device determines a shared cryptographic
key, by substituting (530) the identity number of another
network device into the univariate polynomial and reducing
modulo the public modulus and reducing modulo a key
modulus.

BRIEF DESCRIPTION OF THE DRAWINGS

[0076] These and other aspects of the invention are appar-
ent from and will be elucidated with reference to the embodi-
ments described hereinafter. In the drawings,

[0077] FIG. 1 is a schematic block diagram illustrating a
root key material generator,

Sep. 1,2016

[0078] FIG. 2 is a schematic block diagram illustrating a
local key material generator,

[0079] FIG. 3 is a schematic block diagram illustrating a
communication network,

[0080] FIG. 4 is a schematic flow chart illustrating gener-
ating local key material,

[0081] FIG. 5 is a schematic flow chart illustrating gener-
ating a shared key,

[0082] FIG. 6 is a schematic sequence diagram illustrating
generating a shared key.

[0083] Tt should be noted that items which have the same
reference numbers in different Figures, have the same struc-
tural features and the same functions, or are the same signals.
Where the function and/or structure of such an item has been
explained, there is no necessity for repeated explanation
thereof in the detailed description.

LIST OF REFERENCE NUMERALS

[0084] 100 a root key material obtainer
[0085] 110 a public modulus element

[0086] 112 a polynomial degree element
[0087] 114 a key length element

[0088] 116 a number of polynomials element
[0089] 122 a private modulus manager
[0090] 124 a symmetric bivariate polynomial manager
[0091] 200 a local key material generator
[0092] 210 a public material element

[0093] 220 a private material element

[0094] 240 a polynomial manipulation device
[0095] 250 a network device manager

[0096] 260 an obfuscating number generator
[0097] 300 a communication network

[0098] 310 a first network device

[0099] 320 a second network device

[0100] 330 a transceiver

[0101] 342 a polynomial manipulation device
[0102] 344 a local key material obtainer
[0103] 346 a key derivation device

[0104] 348 a key equalizer

[0105] 350 a cryptographic element

DETAILED EMBODIMENTS

[0106] While this invention is susceptible of embodiment
in many different forms, there is shown in the drawings and
will herein be described in detail one or more specific
embodiments, with the understanding that the present disclo-
sure is to be considered as exemplary of the principles of the
invention and not intended to limit the invention to the spe-
cific embodiments shown and described.

[0107] Below an embodiment of the key sharing method is
described. The method has a set-up phase and a use phase.
The set-up phase may include initiation steps and registration
steps. The initiation steps do not involve the network devices.
[0108] The initiation steps select system parameters. The
initiation steps may be performed by the trusted third party
(TTP). However, the system parameters may however also be
regarded as given as inputs. In that case the trusted third party
need not generate them, and the initiation steps may be
skipped. For example, the trusted third party may receive the
system parameters from a device manufacturer. The device
manufacturer may have performed the initiation steps to
obtain the system parameters. For convenience of exposition

US 2016/0254909 A1l

we will refer to the trusted third party as performing the
initiation steps, bearing in mind that this is not necessary.
[0109] Initiation Steps

[0110] Thedesired key length for the key that will be shared
between devices in the use phase is selected; this key length is
referred to as ‘b’. A typical value for a low security applica-
tion may be 64 or 80. A typical value for a consumer level
security may be 128. Highly secret applications may prefer
256 or even higher values.

[0111] The desired degree is selected; the degree controls
the degree of certain polynomials. The degree will be referred
to as ‘a’, it is at least 1. A practical choice for a is 2. A more
secure application may use a higher value of a, say 3 or 4, or
even higher. For a simple application also a=1 is possible. The
case a=1 is related to the so called ‘hidden number problem’;
higher “a” values are related to the extended hidden number
problem confirming that these cases are hard to break.
[0112] Thenumber of polynomials is selected. The number
of polynomials will be referred to as ‘m’. A practical choice
for m is 2. A more secure application may use a higher value
of m, say 3 or 4, or even higher. Note that a low-complexity
application, say for resource bounded devices may use m=1.
[0113] Higher values of security parameters a and m
increase the complexity of the system and accordingly
increase its intractability. More complicated systems are
harder to analyze and thus more resistant to cryptanalysis.
[0114] In an embodiment, a public modulus N is selected
satisfying 2¢“*22' <N and most preferably also Ns2@+2#_1,
The bounds are not strictly necessary; the system could also
use a smallet/larger value of N, although that is not consid-
ered the best option.

[0115] Often the key length, degree and number of polyno-
mials will be pre-determined, e.g., by a system designer, and
provided to the trusted party as inputs. As a practical choice
one may take N=2¢*?_1 For example if a=1,b=64 then N
may be N=2'?_1. For example if a=2, b=128 then N may be
N=2%'2_1. Choosing for N the upper or lower bound of the
above interval has the advantage of easy computation. To
increase complexity one may choose a random number
within the range for N.

[0116] A number of m private moduli p,, p,, . . ., D,,, are
selected. Moduli are positive integers. During the registration
steps each device will be associated with an identity number.
Each selected private modulus is larger than the largest iden-
tity number used. For example, one may bound identity num-
bers by requiring that they are less or equal to 2°-1, and that
the selected private moduli are larger than 2°-1. Each
selected number satisfies the following relationship p =N+
yj-2b. Wherein the y; are integers such that \yj|<2b. One prac-
tical way of selecting numbers that satisfy this requirement is
to choose a set of m random integers y; such that 274
lsyjs2b—l and compute the selected private moduli from the
relationship pj:N+yi~2b . Having Iyl a bit larger may be
allowed, however, a problem may occur in that the modular
operation goes too far so that shared keys might not be equal.
[0117] For m>1, the system is more complicated, and thus
more secure, since modulo operation for different moduli are
combined even though such operations are not compatible in
the usual mathematical sense. For this reason it is advanta-
geous to choose the selected private moduli as pair wise
distinct.

[0118] A number of m symmetric bivariate polynomials f;,
f,,..., I, of degrees a, are generated. All degrees satisfy a =<a,

o im 7
most preferably a=MAX{a,, ..., a,,}. A practical choice is to

Sep. 1,2016

take each polynomial of degree a. A bivariate polynomial is a
polynomial in two variables. A symmetric polynomial f sat-
isfies f{x,y)=f(y,x). Each polynomial f; is evaluated in the
finite ring formed by the integers modulo p,, obtained by
computing modulo p,. The integers modulo p; form a finite
ring with p, elements. In an embodiment the polynomial £ is
represented with coefficients from 0 up to p ~1. The bivariate
polynomials may be selected at random, e.g., by selecting
random coefficients within these bounds. Note that some or
all of the bivariate polynomials may be generated asymmetri-
cally, which leads to a system with two groups. We will
assume for simplicity that the all selected polynomials are
symmetric.

[0119] The security of the key sharing depends on these
bivariate polynomials as they are the root keying material of
the system; so preferably strong measures are taken to protect
them, e.g., control procedures, tamper-resistant devices, and
thelike. Preferably the selected integers p,, pa, - - - » p,, are also
kept secret, including the value y; corresponding to p,, though
this is less critical. We will refer to the bivariate polynomials
also in the following form: for j=I, 2, . . ., m, we write
£(xy)=Z, o™)y

[0120] The above embodiment can be varied in a number of
ways. The restrictions on the public and private moduli may
be chosen in a variety of ways, such that obfuscation of the
univariate polynomial is possible, yet that the shared keys
obtained at network devices remain sufficiently close to each
other sufficiently often. As explained, what is sufficient will
depend on the application, the required security level and the
computing resources available at the network devices. The
above embodiment combines positive integers such that the
modular operations which are carried out when generating
the polynomials shares are combined in a non-linear manner
when they are added over the integers creating a non-linear
structure for the local key material stored on a network
device. The above choice for N and p; has the property that: (i)
the size of N is fixed for all network devices and linked to a;
(ii) the non-linear effect appears on the most significant bits of
the coefficients forming the key material stored on the device.
Because of that specific form the shared key may be generated
by reducing module 2° after the reduction modulo N.

[0121] These design concepts can be applied in a more
general way to improve onaspects (i) and (ii) as mentioned in
the last paragraph. Below different, general constructions, are
given to choose the public and private moduli. To address the
first point (i), this structure for N and p; fits a more general
expression where we write p j:2X+yj2 %1 such that for eachj,
Y +ba=X and ij|<2b . This expression allows for a more
variable form p, while ensuring a maximum effect when intro-
ducing non-linear effects. Note that one can also make,
Y +ba.~X where the difference between the left and right-
hand side is a fraction of the key length.

[0122] To address the second point, the above form for N
and p, fits an even more general expression in which pj:[32X+
v,274C 2% By setting, e.g., {=-1,p=1, and Z =0 Vj we obtain
the previous expression in which the different y, values intro-
duce a non-linear effect in the most significant bits of the
coeflicients of the key material stored on a network device. In
this case, the constant public modulus (N) is N=2%-1, while
the private variable part used in the generation of different
positive integers involved in the modular operations is yj2Yf.
Alternatively, we can sety=1,6=1,2=0, Y =(a,+1)b, X=(a+
2)b Vj while g, are different for different j such that | | <2b.n
this case, the differences in ¢, allow introducing a non-linear

US 2016/0254909 A1l

effect in the least significant bits of the coefficients of the local
key material stored on a node. The construction of the public
part in this case is also different and equal to N= [32 T+
1,27=2%42°*D je., the parts that remain constant. Note in
th1s case the non- lmear effect is in the lowest part, and
because of the condition for maximum mixing effect men-
tioned before, then the difference between Y,~7,-log,(C))
must be eub. In a similar way, other constructions can be
defined following the same concept.
[0123] Registration Steps
[0124] In the registration step each network device is
assigned keying material (KM). A network device is associ-
ated with an identity number. The identity number may be
assigned on demand, e.g. by the TTP, or may already be stored
in the device, e.g., stored in the device at manufacture, etc.
[0125] The TTP generates a set of keying material for a
device A as follows:

KM ()ozzjz1’"<,§(x,A)>p]_+2l’zi:0“gyf),”':zic;‘x"

[0126] Wherein KM*(X) is the keying material of a device
with identity number A: X is a formal variable. Note that the
keying material is non-linear. The notation <. . .>, denotes
reducing modulo p, each coefficient of the polynomial
between the brackets. The notation ‘e, ;” denotes a random
integer, which is an example of an obfuscatmg number, such
that e, ,1<2“*'~%”, Note that any one of the random integers
may be positive or negative. The random numbers € are gen-
erated again for each device. The term 2,_,"e, X' thus repre-
sents a polynomial in X of degree a, of which the coefficient
length is shorter with increasing degree. Alternatively, amore
general, but more complicated condition is that Z,_,“le,
11-27* is small, e.g., <2a. Note that the step of adding obfus-
cation is opuonal and may be omitted, but is preferred to
obtain a higher security level. We will assume that obfusca-
tion is used.

[0127] Allother additions may either use the natural integer
arithmetic, or (preferably) they use addition modulo N. So the
evaluation of the univariate polynomials X, "<{(x,A)>, is
each individually done modulo a smaller modulus D; but the
summation of these reduced univariate polynomials them-
selves is preferably done modulo N. Also adding the obfus-
cating polynomial 2° 2,_,% 1, X' may be done using natural
integer arithmetic or, preferably, modulo N. The keying mate-
rial comprises the coefficients C,* withi=0, . .., a. Thekeying
material may be presented as a polynomial as above. In prac-
tice, the keying material may be stored as a list, e.g., an array,
of the integers C;*. The device A also receives the numbers N
and b. Manipulation of polynomials may be implemented,
e.g., as manipulation of arrays containing the coefficients,
e.g., listing all coefficient in a predetermined order. Note that
polynomials may be implemented, in other data structures,
e.g., as an associative array (aka a ‘map’) comprising a col-
lection of (degree, coefficient) pairs, preferably such that each
coeflicient appears at most once in the collection. The coef-
ficients C;* that are provided to the device are preferably in
the range 0, 1, ... N-1.

[0128] Incase, that the more general construction for N and
the integer numbers p; is used, the obfuscating polynomial
needs to be adapted so that the random numbers E affect
different parts of the coefficients. For instance, if the non-
linear effect is introduced in the least significant bits of the
coefficients of the key material stored on the network devices,
then the random numbers should only affect the highest part
of the coefficients and a variable number of bits in the lowest

Sep. 1,2016

part of the coefficients. This is a direct extension of the
method described above and other extensions are feasible.

[0129] Use Phase

[0130] Once two devices A and B have an identity number
and received their keying material from the TTP, they may use
their keying material to obtain a shared key. Device A may
perform the following steps to obtain his shared key. First,
device A obtains the identity number B of device B, then A
generates the shared key by computing the following:

Kip=<<KM* ()|, g>p=<<E,C{ B>y

[0131] That is, A evaluates his keying material, seen as an
integer polynomial, for the value B; the result of evaluating
the keying material is an integer. Next device A reduces the
result of the evaluation first modulo the public modulus N and
then modulo the key modulus 2°. The result will be referred to
as A’s shared key, it is an integer in the range of O up to 2°-1.
Forits part, device B can generate B' shared key by evaluating
its keyed material for identity A and reducing the result
modulo N and then modulo 2°,

[0132] Inline with the above description, if a more general
expression of N and the positive integers p, is used, then the
method to obtain the b-bits key needs a small adaptation. In
particular, if the non-linear effect is introduced in the lowest
bits of the coefficients of the key material stored on the net-
work devices while the second term in the expression of N is
Y, then the key is generated as follows:

<KM*(%)|i-p >y N

Kap=< o

2b

[0133] Because the bivariate polynomials in the root key
material are symmetric A’s shared key and B’s shared key are
often, though not necessarily always, equal. The particular
requirements on the integers p;, ps. - . . , P, and on the
(optional) random numbers € are such that the keys are often
equal and almost always close to each other modulo two to the
power the key length. If A and B have obtained the same
shared key, then they may use it as a symmetric key which is
shared between A and B; for example, it may be used for a
variety of cryptographic applications, for example, they may
exchange one or more messages encrypted and/or or authen-
ticated using the shared key. Preferably, a key derivation
algorithm is applied to the shared key for further protection of
the master key, e.g., a hash function may be applied.

[0134] If A and B have not obtained the same shared key,
then it is almost certain that these keys are close to each other,
by removing a number of the least significant bits of the keys,
the generated keys can almost always be made the same. A
and B may verify if their shared keys are equal by performing
a key confirmation, for example, A may send to B a message
containing the pair (m, E(m)), wherein m is a message, say a
fixed string or a random number, and E(m) is the encryption
using A’s shared key.

[0135] By decrypting E(m) using B’s shared key, B may
verify if the keys are equal. If so, B may respond to A inform-
ing him of the situation.

[0136] If the keys are not equal, A and B may engage in a
key equalization protocol. For example, they may make use of
the fact that the two keys are arithmetically close to each
other. For example, network device A and B may iteratively
remove a least significant bit and send a key confirmation

US 2016/0254909 A1l

message until the keys are equal. After obtaining equal keys,
A and B may perform a key derivation algorithm to regain
keys of a usual key length.

[0137] The selected m private moduli, p,, p,, - - ., p,,, are
preferably pair wise relatively prime. If these numbers are
pair wise relatively prime the lack of compatibility between
the modulo operations is increased. Obtaining pair wise rela-
tively prime numbers may be obtained by selecting the inte-
gers in order, testing for each new integer if all pairs of
different numbers are still relatively prime, if not the just
selected number is removed from the set. This procedure
continues until all m numbers are selected.

[0138] The complexity increases even further by requiring
that the selected m private moduli, pj, ps, - - - , P,,p» are distinet
prime numbers. In that case each prime number may be
required to have the form p =N+y]21’ Wherein the are integers
such that ijl<2 Experiments have confirmed that these
primes are easily available. For example, one may repeatedly
select a random and test the resulting p; until a prime is found.
The same applies if a more general expression, as described
above, is applied. Indeed it follows from the prime number
theorem for arithmetic progressions that as long as a is of
about the same order of magnitude as b, in particular for a<b,
such primes are abundant. In particular, for any combination
of key length in the group 64, 128, 196,256 and degree in the
group 2, 3, we confirmed by experiment that many prime
numbers of this form could be generated using the above
algorithm within practical time limits. When using prime
numbers each polynomial I is thus taken in the finite field
with p, elements.

[0139] Many variants are possible to choose the various
parameters used during the registration and use phase. For
example, in a simplified embodiment, the private moduli are
smaller than the public modulus and satisfy the relationship
p;~N-B j'2b. Wherein the are positive integers such that f3 j<2b .
One practical way of selecting numbers that satisfy this
requirement is to choose a set of m random positive integers
B; such that [3]<2b and compute the selected private moduli
from the relationship p~N-f3 28,

[0140] As noted, the dlfference between Y,-Z -log,(C)
may be oub. In a similar way, other constructions can be
defined fo]lowing the same concept. In particular, we can
write p= 2. +; 274927 QZZ for the private moduli and
N= [32)‘+62Wf0r the pubhc modulus. A particular instantia-
tion of this construction is p~ 22(“+1)b+y Qlarl)b 2“b+C and
N=22=+Db_2b Tp this case, the absolute value ofterms v,and
B, is smaller than 2° and are in charge of creating a non-linear
effect on the MSB and LSB of the coefficients of the local
stored key material on a device. Note that since the device
identifiers are around b-bits long, v, (B,) affects the MSB
(LSB) of the coefficients of the polynomial share evaluated in
the ring of integers modulo p,. Afterwards during the genera-
tion of the local key material for a device the coefficients of
the polynomial shares in different rings are added over the
integers so that the origin of the contributions is concealed.
[0141] The key may be generated as follows:

< KM*(x)l=g >
=7

Kag = 2
o !

but if the even more general expression of p;and Nis used that
allows introducing a non-linear effect on both MSB and LSB,
then the division after the reduction modulo N is by 2 to the

Sep. 1,2016

power of W, where 27 is the highest integer power of 2 of
which N is an integer multiple. Other constructions of N and
p; may require a division by another power of two. Because
the bivariate polynomials in the root key material are sym-
metric A’s shared key and B’s shared key are often, though
not necessarily always, equal.

[0142] Key Confirmation.

[0143] It may be desirable for one of A and B to send a key
confirmation message to the other party. A so-called key
confirmation message (KC) enables the recipient of the key
confirmation message to verify that he has computed the same
key as the sender of the key confirmation message. In particu-
lar in a key sharing scheme for which it is known that the key
established by both parties may differ, a key confirmation
message may be used both as a confirmation that both have
established the same key, and if not, to determine an equal
shared key. For example, in general a MAC (message authen-
tication code) based on the established key can serve as the
confirmation message, e.g. an HMAC based on SHA2 or
SHA3, or a CMAC based on AES, and the like. Also a cryp-
tographically strong hash function may beused, e.g., a hash of
the established key may be used as the key confirmation
message. The hash may be computed over the key itself. The
MAC can be computed over data which is known by B or
included in the key confirmation message, e.g. a nonce, etc.

[0144] However, general cryptographically strong key con-
firmation messages require some resources, possibly more
resources than a key sharing algorithm according to the above
principles. The key sharing schemes given above allow for
simpler functions that require much less computation
resources than general purpose key confirmation schemes.

[0145] Devices A and B compute keys K ,(B) and K (A). It
can be shown, by following the mathematical relations, that
there exists an integer A, depending on the design parameters,
such that:

KABYe{<Kp(d)+j>|-AsjsA},

[0146] Again <x>,, denotes the integer between 0 and m-1
such that x-<x>, is a multiple of m. Define a function as
follows: h(x)=<x>, wherer is a pre-determined integer such
that 2"22A+1. Compared to the general embodiment, there is
no need that the devices compute possibly complicated hash
functions; the disadvantage is that some information on the
key that is being used is sent over an observable communica-
tion channel. It is usually preferred that a key confirmation
message leaks no, or a negligible amount, of information on
the key for which it is computed. This disadvantage can be
countered by dividing the established key by 27, after a key
has been found that is the same for both A and B. More
generally in a second embodiment, h(x)=<x>, where v22A+1
is such that either 2°is a multiple of v or <2%> =2A+1. In both
cases, h(K,(B)) may be used by A as a key confirmation
message.

[0147] Apart from sending a key confirmation message,
one may decrease the difference between K ,(B) and K4(A)
by dividing both keys by a power of 2. K ,(B) and K;(A) are
b-bit keys, then removing the 1 least significant bits of the
b-bit generated keys so that a b—1bit-key, which corresponds
to the b-1most significant bits of the key generated, is used to
secure the communication. Ifb is relatively big (let’s say, 100)
and 11s also big (let’s say, 50), the probability of the b-1 most
significant bits to be equal is very high, i.e. about

US 2016/0254909 A1l

2A

L= 2

This approach does not require the exchange of any informa-
tion, 1 bits of the original generated key are removed, and the
resulting key can be used for the communication. However,
this has a drawback because the key size is reduced, poten-
tially in a considerable manner to make sure that all the
devices in a network will share a common b-1 bit key with
very high probability.

[0148] Note that removing least significant bits may be
combined with a key confirmation message. For example,
after removing 1 bits, a key confirmation message is computed
and sent to the other party. This approach has the advantage
that, even if the removal of least significant bits was not
sufficient to establish a common key, it will make it easier to
find such a common key.

[0149] In a different approach the problem of potentially
different keys being established by parties A and B is the
following: The central authority has all the information to
compute beforehand if any two devices may derive different
keys. For example, the central authority may start with single
identifier A and keying material computed for A. Devices are
added to a pool of device iteratively. When a new device B' is
to be added to the system, the TTP computes keying material
for B'. The TTP, verifies for each combination of B' and the
devices already in the pool if they would arrive at the same
common key. For example, the TTP may verify that they find
the samekey directly. The TTP may also verify that B' and any
other device will arrive at a common key be engaging in a
suitable key agreement protocol to repair a possible different
key; e.g., by dividing by a power of 2 and/or by sending one
or more key confirmation messages. In view of the foregoing
probabilistic approach, it is very likely that a random choice
for B' makes {A,B'} valid for all A if the number of devices A
is relatively small.

[0150] Ifitturns out that B' will not arrive at a common key
with some of the devices already in the pool, the TTP assigns
a new identifier to B' or computes new keying material, but
with different random choices. Although checking this con-
dition represents quite an overhead, this is possible for rela-
tively small networks (let’s say ~0(10%) or 0(10°) devices).

[0151] A related approach can also be applied in groups of
devices. In particular, in some settings not all devices might
require to talk to each other, e.g., if devices are static and are
deployed in groups (e.g., in a building). In this case, the
verification performed by the TTP when a new device B' is
added is limited to checking for the devices belonging to the
group to which B' will be added. For instance, the TTP can
verify whether all devices in a given group generate a key if
the 1 LSB of the key are removed. Note that this method also
allows for the design of more advanced hierarchical schemes
such that all devices belong to the main group at a first level,
devices are divided into a number of groups at a second level,
devices in a group at a second level are further divided into a
number of subgroups. In such a hierarchical organization, the
TTP might verify whether all devices in a given group at level
w generate a common key after the removal of 1, bits. In such
a system, groups at a deeper level might require the removal
of a lesser number of bits, while groups at high levels might
require the removal of more bits to ensure the generation of
common keys.

Sep. 1,2016

[0152] The TTP may perform these checks whenever a new
device is added, but it may also pro-actively create a pool of
device identifiers and keying material such that each pair of
identifiers from this pool gives a valid common key.

[0153] For example, the TTP may limit to pairs of valid
devices {A B}, where a pair is valid if:

o ol

{KB(A)J _ {KA(B)J

where 1 refers to 1 bits corresponding to the 1 Least Significant
Bits of K ,(B) and K4(A). This condition, in general, shows a
way of verifying that the keys that actually will be used are
equal. Another condition is that a new B is admitted if and
only if for all A, the 1 least significant bits of K ,(B) and Kz(A)
correspond to a number in [A,2°~1-A].

[0154] FIG. 1 is a schematic block diagram illustrating a
root key material generator 100. A key material obtainer is
configured to provide input data, except an identity number,
needed by a local key material generator for generating local
key material. A key generator is an example of a key material
obtainer. Instead of generating all or part of the input data,
some parameters can also be obtained by the root key material
generator by receiving them; for example the key obtainer
may comprise an electronic receiver for receiving input data,
e.g., a public and private modulus. A key material obtainer
obtains all the needed parameters except the identity numbers
from an external source. In an embodiment a,b, m are prede-
termined, e.g., received and the public modulus and the pri-
vate moduli and corresponding symmetric bivariate polyno-
mials are generated. In an embodiment also the public
modulus is pre-determined, e.g., received.

[0155] Root key generator 100 comprises a polynomial
degree element 112, a key length element 114 and a number
of polynomials element 116 configured to provide the poly-
nomial degree, the key length and the number of polynomials,
i.e., a,b and m respectively. Although these elements may be
generated, e.g., depending on circumstances, typically these
parameters are chosen by a system designer. For example, the
elements may be designed as non-volatile memories, or as
receivers for receiving the element values, or as volatile
memories connected to a receiver, etc. A suitable choice
includes a=2, b=128, m=2. Any one of the numbers may be
increased or decreased to obtain a more or less secure system.
[0156] Root key generator 100 comprises a public modulus
element 110 configured to provide the public modulus N. The
public modulus may or may not be chosen by a system
designer. For example, the public modulus may be set a
convenient number allowing fast reduction (close or equal to
a power two). The public modulus is chosen within a range
determined by the elements 112 and 114.

[0157] Root key generator 100 comprises a private modu-
lus manager 122 configured to provide the private modulus p,
or multiple private modulip, . . ., p,,. For example, they are
chosen at random within the appropriate bounds.

[0158] Root key generator 100 comprises a symmetric
bivariate polynomial manager 124 configured to provide the
symmetric bivariate polynomial f, or multiple symmetric
bivariate polynomial, f;, . . ., £ . Each symmetric bivariate
polynomial is chosen with coefficients random modulo the
corresponding private modulus, i.e. the private modulus hav-
ing the same index. The coeflicients may be chosen within the
range 0 to p-1, and may be chosen at random.

US 2016/0254909 A1l

[0159] The private moduli may be chosen by adding or
subtracting a multiple of two to the power of the key length to
the public modulus. This will result in private moduli such
that the difference with the public modulus ends in a series of
consecutive zeros. One may also choose a public modulus and
one or more private moduli such that a series of key length
consecutive zeros occurs not at the end but another position,
say position ‘s’, counting from the least significant bit.
[0160] FIG. 2 is a schematic block diagram illustrating a
local key material generator 200. Key material generator 100
and local key material generator 200 together form a system
for configuring a network device for key sharing.

[0161] Local key material generator 200 comprises a poly-
nomial manipulation device 240. Local key material genera-
tor 200 comprises a public material element 210 for providing
the public parameters a,N to the polynomial manipulation
device 240. Local key material generator 200 comprises a
private material element 220 for providing the private param-
eters p,f; and m to the polynomial manipulation device 240.
Elements 210 and 220 may be implemented by the corre-
sponding elements of key material generator 100; these ele-
ments may also be memories or busses to connect to key
material generator 100.

[0162] Local key material generator 200 comprises an
obfuscating number generator 260 for providing an obfuscat-
ing number ‘e, ,” to the polynomial manipulation device 240.
The obfuscated number may be a random number, e.g. gen-
erated with the random number generator. The obfuscating
number generator 260 may generate multiple obfuscating
numbers for multiple coefficients of the univariate polyno-
mial. In an embodiment an obfuscating number is determined
for each coefficient of the univariate polynomial.

[0163] Local key material generator 200 comprises a net-
work device manager 250 configured to receive an identity
number for which local key material must be generated, e.g.,
from a network device, and is configured to send the local key
material to the network device corresponding to the identity
number. Instead of receiving an identity number, it may also
be generated, e.g., as a random, serial or nonce number. In the
latter case the identity number is sent along with the local key
material to the network device.

[0164] The polynomial manipulation device 240 obtains,
possibly multiple, univariate polynomials by substituting the
identity number from manager 250 into each one of the bivari-
ate polynomials and reducing each modulo the corresponding
private modulus. The resulting multiple reduced univariate
polynomials are added, coefficient wise, with natural arith-
metic addition. Also added are the one or more obfuscating
numbers. Preferably, the result is reduced, again coefficient
wise, modulo the public modulus; the coefficients of the latter
may be represented in the range 0 to N-1.

[0165] The obfuscated univariate polynomial is part of the
local key material corresponding to the identity number. If
needed, the public modulus, degree and the key length are
also sent to the network device.

[0166] FIG. 3 is a schematic block diagram illustrating a
communication network 300 comprising multiple network
devices; shown are a first network device 310 and a second
network device 320. We will illustrate first network device
310. Second network device 320 may be the same, or work
along same principles.

[0167] Network device 310 comprises a transceiver 330
combining a sender and a receiver for sending and receiving
messages in electronic, e.g., digital, format, in wired or wire-

Sep. 1,2016

less from and to second network device 320. Possibly, trans-
ceiver 330 is also used to receive the local key material from
the network authority 200. Through the transceiver 330 the
identity number of another network device is received; in the
figure of the second network device 320.

[0168] Network device 310 comprises a local key material
obtainer 344. The local key material obtainer 344 may be
implemented as local memory, e.g., non-volatile memory
such as flash memory for storing the local key material. The
local key material obtainer 344 may also be configured to
obtain the local key material from generator 200, e.g., via
transceiver 330. Local key material obtainer 344 is configured
to provide the polynomial manipulation device with the
needed parameters.

[0169] Network device 310 comprises a polynomial
manipulation device 342 configured to substituting the iden-
tity number of the second network device into the obfuscated
univariate polynomial, and to perform two reductions on the
result: First reducing the result of the substituting modulo the
public modulus and second reducing modulo a key modulus.
Note that even if multiple private moduli were used, only one
public modulus would be needed. Note that for some combi-
nations of N and private modulus, a division by a 2 power is
required before the result is reduced module a key modulus.

[0170] Network device 310 comprises a key derivation
device 346 for deriving the shared key from the result of the
reduction modulo the key modulus. For example, key deriva-
tion device 346 may remove one or more least significant bits.
Key derivation device 346 may also apply a key derivation
function. It is also possible to use the result of the second
reduction without further processing,.

[0171] Network device 310 comprises an optional key
equalizer 348. Note that it may happen that the shared key
derived in the first network device is not equal to the key
derived in the second network device (based on the identity
number of the first network device). If this is considered
undesirable, a key equalization protocol may be followed.

[0172] Network device 310 comprises a cryptographic ele-
ment 350 configured to use the shared key for a cryptographic
application. For example, cryptographic element 350 may
encrypt or authenticate a message of the first network device
with the shared key before sending it to the second network
device, say a status message. For example, cryptographic
element 350 may decrypt or verify the authenticity of a mes-
sage received from the second network device.

[0173] Typically, a system for configuring a network device
for key sharing 200, and a first network device configured to
determine a shared key 310, each comprise a microprocessor
(not shown) which executes appropriate software stored at the
respective devices, e.g., which software may have been down-
loaded and stored in a corresponding memory, e.g. RAM (not
shown).

[0174] An interesting embodiment is obtained for a=l,
especially in combination with higher values of m, say higher
than 1, 2 or higher, 4 or higher. The required polynomial
manipulation reduces to a single multiplication and reduc-
tion, giving an especially simple implementation. However,
even for this simple case recovering the original bivariate
polynomials is not straightforward, and becomes increas-
ingly complicated with higher values of m. Although no
viable attack is known even for a=1, the linear structure may
be a starting point for future analysis, so one may want to
restrict to a >1, for this reason.

US 2016/0254909 A1l

[0175] FIG. 4 is a schematic flow chart illustrating a
method of generating local key material 400. The method
comprises obtaining 410 a public and private modulus, and a
symmetric bivariate polynomial, obtaining 420 an identity
number of a network device, substituting 430 the identity
number into the bivariate polynomial modulo the private
modulus, adding 440 an obfuscating number to a coefficient,
and storing 450 the obfuscated univariate polynomial at the
network device

[0176] FIG. 5 is a schematic flow chart illustrating a
method of generating a shared key 500. The method com-
prises obtaining 510 external identity number of another net-
work device, sending 520 local identity number to other net-
work device, substituting 530 external identity number into
the obfuscated univariate polynomial modulo the public
modulus, reducing 540 modulo key modulus, deriving 550 a
shared key, sending 560 a key confirmation message to the
other network device, determining 570 if the key is confirmed
570, and a cryptographic application 580. If the key is not
confirmed in step 570 then the method continues in step 550
with deriving a new key. For example, step 550 may remove
one additional least significant bit each time the key is not
confirmed.

[0177] Steps 550, 560, and 570 together form a key equal-
ization protocol. For example, in step 560 a nonce and
encryption of the nonce under the shared key derived in step
550 may be sent to the second device. In step 560 a message
is received from the second device. The received message
may simply say that the received key confirmation message
showed that the keys are not equal. The received message may
also contain akey confirmation message. Inthe latter case, the
first network device verifies the key confirmation message
and establishes if the keys are equal. If not a new key is
derived, for example, by deleting a least significant bit.
[0178] Many different ways of executing the method are
possible, as will be apparent to a person skilled in the art. For
example, the order of the steps can be varied or some steps
may be executed in parallel. Moreover, in between steps other
method steps may be inserted. The inserted steps may repre-
sent refinements of the method such as described herein, or
may be unrelated to the method. For example, steps 410 and
420, or 510 and 520, may be executed, at least partially, in
parallel. Moreover, a given step may not have finished com-
pletely before a next step is started.

[0179] A method according to the invention may be
executed using software, which comprises instructions for
causing a processor system to perform method 400 or 500.
Software may only include those steps taken by a particular
sub-entity of the system. The software may be stored in a
suitable storage medium, such as a hard disk, a floppy, a
memory etc. The software may be sent as a signal along a
wire, or wireless, or using a data network, e.g., the Internet.
The software may be made available for download and/or for
remote usage on a server.

[0180] FIG. 6 shows in schematic form a possible sequence
of message between two network devices, device A and B,
while they are generating a shared key. Time runs downward.
In step 610, network device A sends his identity number to
device B. In step 620 device B, send his identity number and
a key confirmation message for the shared key (K1) it derived
based on identity number A and his local key material. In step
630, device A found that they did not generated the same key.
Device A has deleted one least significant bit (say integer
divide by 2) to obtain key K2. In step 630 device A sends a

Sep. 1,2016

new key confirmation message. In this fashion A and B
exchange key confirmation messages 640 until they arrive at
the same key in step 650. In step 650 device A sends a key
confirmation message to device B. Device B was able to
verify that they had arrived at the same key. In step 660 it
sends a confirmation thereof, this may be an authenticated
message or a key confirmation message, etc. In step 670
device A sends a message M1 which is encrypted (say using
AES) and/or authenticated (say using HMAC) using the now
equal shared key.

[0181] The algorithm below gives a possible implementa-
tion of this approach, i.e., a protocol for mutual key agree-
ment & session key derivation run by Device A and Device B

Set I=L
Set continue=TRUE
Set Length = b-1
Generate a b-bit key K
While(continue AND (Length>MINIMUM__LENGTH)){
K=K>>I
Perform Mutual authentication handshake with B based
onK
If handshake successful, then{
continue=FALSE
Telse{

Length = b-1

[0182] The protocol removes a number of bits of the bit
string generated with a key sharing algorithm, such as
described herein, and performs an authentication handshake,
e.g., challenge-response. The authentication handshake may
comprise a key confirmation message. If it is not successful,
a few additional bits are removed, and so on until the hand-
shake is successfully performed or the key got too short. The
protocol can be modified in a number of ways, e.g., by remov-
ing a variable number of bits depending on the iteration or
requiring always a fixed number of steps so that an eaves-
dropper observing the execution of the protocol does not gain
any information about the length of the shared common key
between A and B. This approach has the advantage that it
makes sure that the shared keys are as long as possible;
however, it has the potential disadvantage that it requires a
number of exchanges for the agreement on the common key.
On the other hand, for most applications this will not be a big
problem because for most pairs of devices the keys will be
equal or differ only in few bits and only a device pairs will
arrive at keys with a relatively high number of different least
significant bits. This follows from the properties of the keys
generated.

[0183] There are other ways to arrive at a same key for both
devices. Again we assume that devices A and B compute keys
K, (B) and K4z(A). The protocols below apply for any key
sharing scheme for which there exists an integer A, depending
on the design parameters, such that:

K((B)e{<Kp(d)4j>pl-Asj=A}.

[0184] For example, the key sharing schemes describe
herein have this property. The generated keys are represented
as b-bits integers. So keys can be considered as elements from
theset {0,1,2,...,2°~1}. For example, ifA=2, and K 5(A)=1,
then K (B)isin {1,2,3,0, 2°~1} (note that <1-2>,=2°-1).
For properly chosen system design parameters, A is relatively
small. The invention assures that the same key is generated
always because a failure to generate a common key can be
recovered from.

US 2016/0254909 A1l

[0185] According to this method, Device A sends to device
B a function value h(K ,(B)). Here h is a suitable hash func-
tion, e.g. a cryptographic hash function. Device B computes
h(i) for all i in {<K,(A)+j>»I-A<j=A} and uses, for future
communications, the integer 1 for which h(i) matches the
received value of h(K,(B)). If A is too large, devices A and B
may first divide their keys by a power of 2 to reduce the size
of A,

[0186] Itwill be appreciated that the invention also extends
10 computer programs, particularly computer programs on or
in a carriet, adapted for putting the invention into practice.
The program may be in the form of source code, object code,
a code intermediate source and object code such as partially
compiled form, or in any other form suitable for use in the
implementation of the method according to the invention. An
embodiment relating to a computer program product com-
prises computer executable instructions corresponding to
each of the processing steps of at least one of the methods set
forth. These instructions may be subdivided into subroutines
and/or be stored in one or more files that may be linked
statically or dynamically. Another embodiment relating to a
computer program product comptrises computer executable
instructions corresponding to each of the means of at least one
of the systems and/or products set forth.

[0187] It should be noted that the above-mentioned
embodiments illustrate rather than limit the invention, and
that those skilled in the art will be able to design many
alternative embodiments. In the claims, any reference signs
placed between parentheses shall not be construed as limiting
the claim. Use of the verb “comprise” and its conjugations
does not exclude the presence of elements or steps other than
those stated in a claim. The article “a” or “an” preceding an
element does not exclude the presence of a plurality of such
elements. The invention may be implemented by means of
hardware comprising several distinct elements, and by means
of a suitably programmed computer. In the device claim enu-
merating several means, several of these means may be
embodied by one and the same item of hardware. The mere
fact that certain measures are recited in mutually different
dependent claims does not indicate that a combination of
these measures cannot be used to advantage.

1. A method of configuring a network device for key shar-
ing, the method comprising:

obtaining in electronic form a private modulus (p,), a pub-

lic modulus (N), and a bivariate polynomial (f,) having
integer coefficients, the binary representation of the pub-
lic modulus and the binary representation of the private
modulus are the same in at least key length (b) consecu-
tive bits,

generating local key material for the network device, the

generating step comprising obtaining in electronic form
an identity number (A) for the network device, and
determining using a polynomial manipulation device a
univariate polynomial from the bivariate polynomial by
substituting the identity number into the bivariate poly-
nomial, reducing modulo the private modulus the result
of the substitution, and

electronically storing the generated local key material at

the network device, and storing the public modulus in
the network device.

2. A method as claimed in claim 1, wherein generating
local key material for the network device comprises generat-
ing an obfuscating number and adding using a polynomial
manipulation device, the obfuscating number to a coefficient

Sep. 1,2016

of the univariate polynomial to obtain an obfuscated univari-
ate polynomial, the generated local key material comprising
the obfuscated univariate polynomial.

3. A method as claimed in claim 1, wherein the bivariate
polynomial (f)) is a symmetric polynomial.

4. A method as claimed claim 1, wherein the least signifi-
cant key length (b) bits of the binary representation of the
public modulus are the same as the least significant key length
(b) bits of the private modulus.

5. A method as claimed in claim 1, further comprising

generating the private modulus (p,) using an electronic

random number generator, and/or

generating the bivariate polynomial using an electronic

random number generator by generating one or more
random coefficients for the bivariate polynomial.

6. A method as claimed in claim 1 wherein the public
modulus satisfies 2“2~ <N, wherein N represents the pub-
lic modulus, a represents the degree of the bivariate polyno-
mial and b represents the key length.

7. A method as claimed in claim 1 comprising obtaining in
electronic form multiple private moduli (p;), and multiple
bivariate polynomials (f;) having coefficients modulo p;, such
that there is a set of key length (b) consecutive positions in
which the binary representation of the public modulus agrees
with the binary representation of all private moduli,

determining the univariate polynomial comprises substi-

tuting the identity number into each one of the multiple
bivariate polynomials (f,), reducing modulo a private
modulus of the multiple private moduli corresponding to
the one symrmetric bivariate polynomial, and adding the
multiple results of the multiple reductions.

8. A method as claimed in claim 1, wherein the obfuscating
number is generated such that

le , [<2@+t-D?
A.i

wherein €, , denotes the obfuscating number, i denotes the
degree of the monomial corresponding to the coefficient,
arepresents the degree of the bivariate polynomial and b
represents the key length.
9. A method for a first network device configured by a
method of configuring a network device for key sharing as in
claim 1, to determine a shared key, the key being a crypto-
graphic key, the method comprising:
obtaining local key material for the first network device in
electronic form, the local key material comprising a,
optionally obfuscated, univariate polynomial,

obtaining an identity number for a second network device,
the second network device being different from the first
network device,

substituting the identity number of the second network

device into the, optionally obfuscated, univariate poly-
nomial,

reducing the result of the substituting modulo the public

modulus and reducing modulo a key modulus, and
deriving the shared key from the result of the reduction
modulo the key modulus.

10. A method as claimed in claim 9, further comprising

determining if the first network device and the second

network device have derived the same shared key, and if
not deriving a further shared key from the result of the
reduction modulo the key modulus.

11. A method as claimed in claim 9, further comprising
dividing the result of the substituting modulo the public

US 2016/0254909 A1l

modulus by a zero bit string divisor which is a power of two,
the zero bit string divisor being larger than 1.

12. A system for configuring a network device for key
sharing, the system comprising:

a key material obtainer for obtaining in electronic form a
private modulus (p,), a public modulus (N), and a sym-
metric bivariate polynomial (f,) having integer coeffi-
cients, the binary representation of the public modulus
and the binary representation of the private modulus are
the same in at least key length (b) consecutive bits,

a generator for generating local key material for the net-
work device comprising

a network device manager for obtaining in electronic
form an identity number (A) for the network device
and for electronically storing the generated local key
material at the network device, and storing the public
modulus in the network device, and

a polynomial manipulation device for determining a
univariate polynomial from the bivariate polynomial
by substituting the identity number into the bivariate
polynomial, reducing modulo the private modulus the
result of the substitution.

Sep. 1,2016

13. A first network device configured to determine a shared
key as in claim 1, the key being a cryptographic key, the first
network device comprising:

a local key material obtainer for obtaining local key mate-
rial for the first network device in electronic form, the
local key material comprising a, optionally obfuscated,
univariate polynomial,

a receiver for obtaining an identity number for a second
network device, the second network device being differ-
ent from the first network device,

a polynomial manipulation device for substituting the
identity number of the second network device into the,
optionally obfuscated, univariate polynomial and reduc-
ing the result of the substituting modulo the public
modulus followed by and reducing modulo a key modu-
lus, and

akey derivation device for deriving the shared key from the
result of the reduction modulo the key modulus.

14. A computer program comprising computer program
code means adapted to perform all the steps of claim 1 when
the computer program is run on a computer.

15. A computer program as claimed in claim 14 embodied
on a computer readable medium.

O R A

	Bibliography
	Abstract
	Drawings
	Description
	Claims

