

CAN Bus
FINAL THESIS

David Garcia Torre

The Faculty of Electrical Engineering and Communication

 18/06/2021

ABSTRACT
The objective of this thesis was to theoretically address the most important concepts of
the CAN bus as the main part, which is discussed in the first section as an introduction
and as a theoretical part.In this thesis the practical objective was to implement a function
that calculates the direction that has been taken between two given coordinates. For
this we want to save the received coordinates in two variables to return the direction
taken so that this makes sense, a library function has been developed that uses the gps
L80 module to work, for this it relates all the commands of the possible actions indicated
in the datasheet with our instructions

KEYWORDS
CAN, OSI, GPS, Vehicle, Layer, Signal, Voltage, Frame, Bit, Security, Honeypot

Typeset by the thesis package, version 4.03; http://latex.feec.vutbr.cz

http://latex.feec.vutbr.cz

Contents

1 Theorical part 7
1.1 About CAN Bus . 7

1.1.1 Layers . 7
1.2 Basic structure . 9

1.2.1 Frames . 10
1.3 Security . 13

1.3.1 Firewall . 14
1.3.2 Encryption . 14
1.3.3 Honeypots . 15

1.4 Applications . 15
1.4.1 Types . 15
1.4.2 Vehicles . 16

2 Practical Experiments 17
2.1 GPS Program developed . 17
2.2 Library for module L80 . 19

3 Conclusion 21

Bibliography 23

Symbols and abbreviations 25

List of appendices 27

A L80 Library 29

B Check the checksum 37

Introduction
A Controller Area Network (CAN bus) is a vehicle bus standard designed to allow
microcontrollers and devices to communicate with each other’s applications without
a host computer.

It is a message-based protocol, designed originally for multiplex electrical wiring
within automobiles to save on copper, but it can also be used in many other contexts.
For each device, the data in a frame is transmitted sequentially but if sometimes
there is more than one device transmitting at the same time, the highest priority
device can continue while the others could back off. Frames are received by all
devices, including the transmitting device. [1]

The CAN communications protocol provides the following benefits:
• It offers high immunity to interference, ability to self-diagnose and repair data

errors.
• It is a standardized communications protocol, which simplifies and saves the

task of communicating subsystems from different manufacturers over a com-
mon network or bus.

• The host processor delegates the communications load to an intelligent pe-
ripheral, therefore the host processor has more time to perform its own tasks.

• It is a multiplexed network, it considerably reduces cabling and eliminates
point-to-point connections, except for snags.

5

1 Theorical part
The CAN bus is a communications protocol developed by the German firm Robert
Bosch GmbH, based on a bus topology for the transmission of messages in distributed
environments, in this section we are going to go a little deeper

1.1 About CAN Bus

As vehicles have become more modern and efficient, considering the ease of use
for the driver, the environmental impact and passenger safety, have been controlled
more parameters of the same, which has resulted in the need to have a central control
unit. For example, in automatic cars the engine sends the speed of the vehicle to
the transmission, which should tell other modules when to change gears.

Connect all these modules so that they communicate with each other individually
and owner became inordinately complex, so the CAN bus protocol was used. The
standard was introduced in 1986, the first drivers by Intel and Philips appeared in
1987, but it was not integrated into a vehicle until 1988. Not only its wiring was
drastically reduced, weighing 45 kilograms less than the previous model, but the
sensors worked in a much faster.

CAN is one of the key protocols for on-board diagnostics (OBD, OnBoard Diag-
nostics), which have been mandatory since 1996 (OBD-II) in the United States and
since 2001 in the European Union (EOBD).[2]

1.1.1 Layers

We can adapt the CAN protocol to the OSI model, and it would deal with the
physical level and link. We proceed to describe this equivalence and the tasks that
are order each one according to this scheme.[3]

Data link layer
CAN uses as physical infrastructure a twisted pair of cables, CAN-H and CAN-

L, each with a 120 ohm resistance. the dominant states and recessive that we have
illustrated above are defined as a difference of voltage between them greater or
less than the minimum threshold (<0.5v at the input of the receiver or <1.5v at
transceiver output

Transfer layer Most of the CAN standard applies to the transfer layer. The
transfer layer receives messages from the physical layer and transmits those messages
to the object layer. The transfer layer is responsible for bit timing and synchroniza-
tion, message framing, arbitration, acknowledgement, error detection and signaling,
and fault confinement. It performs:

7

• Fault Confinement.
• Error Detection.
• Message Validation.
• Acknowledgement.
• Arbitration
• Message Framing
• Transfer Rate and Timing
• Information Routing
Physical layer
It defines the aspects of the physical medium for the transmission of data be-

tween nodes of a CAN network, the material and electrical characteristics and the
transmission of the bit stream through the bus.

Bus voltage levels
Signal transmission on a CAN bus is carried out over two twisted cables. The

signals on these cables are called CAN-H (CAN high) and CAN-L (CAN low) re-
spectively. The bus has two defined states: dominant state and recessive state. In
the recessive state, the two bus cables are at the same voltage level (common-mode
voltage), while in the dominant state there is a voltage difference between CAN-
H and CAN-L of at least 1.5 V. The transmission of signals in Differential voltage
form, compared to transmission in the form of absolute voltages, provides protection
against electromagnetic interference.

Fig. 1.1: Measured RSS level vs near-water path loss model

Cable and connectors
The different nodes of a CAN bus must be interconnected by a pair of twisted

cables with a characteristic impedance of 120 ohms, and it can be screened or un-
shielded cable . The braided cable provides protection against external electromag-
netic interference. And if, in addition, it is shielded, the protection will be greater

8

Tab. 1.1: Properties of the transmission

Bus length (m) Transfer rate (kbit / s)
40 1000
100 500
200 250
500 100
1000 50

but in exchange for an increase in the cost of the cable.

The CAN standard, unlike other standards such as USB , does not specify any
type of connector for the bus and therefore each application may have a different
connector. However, there are several commonly accepted formats such as the 9-pin
D-sub connector, with the CAN-L signal on pin 2 and the CAN-H signal on pin 7.

The properties of the transmission line limit the bandwidth of the data. In-
dicatively, the following values are accepted as length limit depending on the bus
transfer rate:

1.2 Basic structure

The CAN bus topology is going to maintain a main central line to which they
go connected the other modules or ECUs (Electronic Central Unit) . One of the
modules can be a sensor, an actuator, or even a gateway for another device to
communicate, such as a USB or Ethernet port. The nodes are connected to each
other by a two-wire bus, and each requires a CPU, a CAN controller (usually built-
in) and a transceiver (to receive and transmit, converts the bus information flow
to controller levels and vice versa). If any of the nodes fail, the system continues
to function, unless that there are directly dependent modules, which makes it more
secure.[4]

It also simplifies the control system and makes it much easier introduce new
modules. Any module can alert the controller of the occurrence of an event, that is,
you can send information, as well as receive, but not simultaneously. There are two
types of bus: the high-speed bus, which uses a single linear bus, and the low speed
or fault tolerant one, which can use one linear, star, or multiple stars connected by
a linear one.

9

Fig. 1.2: CAN bus basic frame

1.2.1 Frames

The CAN bus frame has different fields that inform about different aspects of the
message. The fields of a CAN frame are shown below. Frames use bit stuffing, that
is, when 5 equal bits occur, an extra bit of value is introduced otherwise to avoid
desynchronization. As will be seen later, there are two types of frames, standard
and extended, based on the number of bits of the identifier. During the work,
standard frames will be used since using only three nodes does not need a great field
of arbitration.[5]

SOF (Start of Frame bit)
Indicates the beginning of the message and allows synchronization of all con-

nected nodes to network. This bit is dominant (logical 0).
Arbitration field
It is made up of 12 bits or 32 bits depending on the type of frame. Inside the

field finds the identifier, which indicates the priority of the node. The node with
the largest priority is the one with the lowest identifier. The RTR bit is used to
distinguish between a remote frame or a data frame. The different CAN Bus frames.

Control field
Made up of 6 bits. The IDE bit indicates with a dominant state that the frame

sent is standard. The RB0 bit is reserved and is set in dominant state by the protocol
DOG. The rest of the bits, the Data Length Code (DLC) indicates the number of
bytes of data it contains the message. An extended frame has an extra bit RB1.

Data field
It can be made up of up to 8 bytes, depending on what we specify in the DLC.

The message data is contained in this field.
Cyclic redundancy check field
This 15-bit field detects errors in the transmission of the message. It is delimited

with a final bit in recessive state.
Recognition field
The last field of the frame is made up of 2 bits. The transmitting node sends

a frame with the ACK (Acknowledge) bit in a recessive state, while the receivers,

10

Field name Length (bits) Purpose

Start-of-frame 1 Denotes the start of frame transmission
Identifier 11 A (unique) identifier which also represents the message priority

Remote transmission request (RTR) 1 Must be dominant (0) for data frames and recessive (1) for remote request frames
Identifier extension bit (IDE) 1 Must be dominant (0) for base frame format with 11-bit identifiers

Reserved bit (r0) 1 Reserved bit. Must be dominant (0), but accepted as either dominant or recessive.
Data length code (DLC) 4 Number of bytes of data (0–8 bytes)

Data field 0–64 (0-8 bytes) Data to be transmitted
CRC 15 Cyclic redundancy check

CRC delimiter 1 Must be recessive (1)
ACK slot 1 Transmitter sends recessive (1) and any receiver can assert a dominant (0)

ACK delimiter 1 Must be recessive (1)
End-of-frame (EOF) 7 Must be recessive (1)

Tab. 1.2: Frame format

if they have received the message correctly, they will send a message in dominant
state. Contains a delimiter bit.

End of frame field
A series of 7 recessive bits indicates the end of the frame.
CAN has four frame types:
• Data frame: a frame containing node data for transmission.
• Remote frame: a frame requesting the transmission of a specific identifier.
• Error frame: a frame transmitted by any node detecting an error.
• Overload frame: a frame to inject a delay between data or remote frame.
Data Frame
The data frame is the only frame for actual data transmission. There are two

message formats:
• Base frame format: with 11 identifier bits
• Extended frame format: with 29 identifier bits

The CAN standard requires that the implementation must accept the base frame
format and may accept the extended frame format, but must tolerate the extended
frame format.[6]

Remote frame
Generally data transmission is performed on an autonomous basis with the data

source node sending out a Data Frame.It is also possible, however, for a destination
node to request the data from the source by sending a Remote Frame.

There are two differences between a Data Frame and a Remote Frame. Firstly
the RTR-bit is transmitted as a dominant bit in the Data Frame and secondly in
the Remote Frame there is no Data Field. The DLC field indicates the data length
of the requested message.[7]

• RTR = 0 ; DOMINANT in data frame
• RTR = 1 ; RECESSIVE in remote frame
Error frame

11

Field name Length (bits) Purpose
Start-of-frame 1 Denotes the start of frame transmission
Identifier A 11 First part of the (unique) identifier which also represents the message priority

Substitute remote request (SRR) 1 Must be recessive
Identifier extension bit (IDE) 1 Must be recessive (1) for extended frame format with 29-bit identifiers

Remote transmission request (RTR) 1 Must be dominant (0) for data frames and recessive (1) for remote request frames
Identifier extension bit (IDE) 1 Must be dominant (0) for base frame format with 11-bit identifiers

Identifier B 18 Second part of the (unique) identifier which also represents the message priority
Remote transmission request (RTR) 1 Must be dominant (0) for data frames and recessive (1) for remote request frames

Reserved bits (r1, r0) 2 Reserved bits which must be set dominant (0), but accepted as either dominant or recessive
Data length code (DLC) 4 Number of bytes of data (0–8 bytes)

Data field 0–64 (0-8 bytes) Data to be transmitted
CRC 15 Cyclic redundancy check

CRC delimiter 1 Must be recessive (1)
ACK slot 1 Transmitter sends recessive (1) and any receiver can assert a dominant (0)

ACK delimiter 1 Must be recessive (1)
End-of-frame (EOF) 7 Must be recessive (1)

Tab. 1.3: Extended frame format

The error frame consists of two different fields:
• The first field is given by the superposition of ERROR FLAGS (6–12 domi-

nant/recessive bits) contributed from different stations.
• The following second field is the ERROR DELIMITER (8 recessive bits).
There are two types of error flags:
Active Error Flag
Six dominant bits –> Transmitted by a node detecting an error on the network

that is in error state "error active".
Passive Error Flag
Six recessive bits –> Transmitted by a node detecting an active error frame on

the network that is in error state "error passive".
There are two error counters in CAN:
1. Transmit error counter (TEC)
2. Receive error counter (REC)
Overload frame
The overload frame contains the two bit fields Overload Flag and Overload De-

limiter. There are two kinds of overload conditions that can lead to the transmission
of an overload flag:

• The internal conditions of a receiver, which requires a delay of the next data
frame or remote frame.

• Detection of a dominant bit during intermission.
Unlike the error frame, the saturation frame only occurs between frames. It

is generated by detecting a dominant bit in the interframe space or by not being
sending a message for internal problems.

Bit stuffing
To ensure that there are sufficient recessive-dominant transitions to guarantee

synchronization, a bit of opposite polarity is inserted after five consecutive bits of

12

the same polarity. This practice is necessary due to the non-zero coding of the CAN
protocol. The inserted bits are removed by the receiver.

All fields of the frame are filled in except for the CRC delimiter, the ACK ac-
knowledgment, and the end of the frame. When a node detects six equal consecutive
bits in a field capable of being filled, it considers it an error and emits an active
error. An active error consists of six dominant consecutive bits and violates the bit
stuffing rule. [8]

The stuffing bit rule implies that a frame can be longer than expected if the
theoretical bits of each field in the frame are added together.

Here we can see a frame before and after bit stuffing.

Fig. 1.3: Compare a CAN bus frame before and after bit stufing

1.3 Security

Implementing security measures in vehicle networks is complicated due to the re-
strictions imposed by their nature. It works in a time-controlled environment, in
which messages have to be transmitted quickly and with a certain priority, since
they are critical systems (a plot that indicates that the brakes are to be activated,
delays cannot be allowed), in addition to synchronizing the clock ticks and time slots
to transmit.

We also have to take into account that ECUs have a capacity of limited com-
putation, as we are in embedded systems, in addition to the great It would cost
the manufacturer to equip them with processors that powerful enough to carry out
tasks that up to recently they had not been considered worrisome. For example,
S12XD microcontrollers, specifically designed for motorsports, have a 16-bit CPU,
4KB EEPROM, and internal flash memory of 512 KB. It is common to find flash
memory instead of RAM (which would have higher speed) in the ECUs for their

13

lower cost. Those who are in charge simpler or less relevant tasks have 8-bit CPUs,
and in cases more bizarre, 32-bit, such as the V850E1 used in Toyota vehicles that
are suspected they had software bugs causing them to speed up too much

Putting these two considerations together, the size of the packages cannot be ex-
cessive: they have to reach their destination and be processed in a certain time. This
makes redundancy or authentication codes unable to occupy too much space, since
they would occupy the bandwidth that is due dedicate to messages with importance.

Here we present several solutions proposed by both teams of research from uni-
versities and private companies that are dedicated to this industrial sector, having
in several cases different proposals aimed at to solve the same problem. [9]

1.3.1 Firewall

Some companies have developed a firewall for CAN with the intention of limiting
malicious traffic. For example, Genivi has a device that connects to a server to have
the rules that allow or not the frames, avoiding that those that do not comply with
them enter through the telematics module. Each rule is sign with a device-specific
key and update over-the-air, passing as CAN frames to the firewall, which validates
and stores them.

The rules of this firewall have a validation method with a mask and a filter: the
ID is compared with the mask and only the bits remaining at 1 are will match the
filter with an AND. If they pass the filter, they will be intercepted. They also have
several fields to apply transformations to them, discard them or pass them without
modification.

1.3.2 Encryption

Another bet is to encrypt the messages on the buses. This is especially dedicated be-
cause most protocols work too simple and add the burden of performing encryption
on drives with so little processing power like ECUs is not a simple task. Without
However, progress is being made in this regard.

Trillium has developed a technology called SecureCAN, designed to encrypt and
manage payload keys of less than 8 bytes, unlike others technologies that require
larger blocks. Thanks to the possibility of encrypting Frames of this small size can
ensure the confidentiality of the CAN and LIN messages in real time. Symmetric
encryption allows encryption, transmit and decrypt with a threshold of one millisec-
ond, according to the company itself. However, they point out the need for a firewall
despite the encryption.

14

The TrilliumCipher algorithm combines transposition, substitution, and match-
ing algorithms time multiplexing, including the timestamp within the ciphertext
itself, to avoid replay attacks.

1.3.3 Honeypots

Honeypots are rogue systems that make the attacker believe that they are found
in a vulnerable network or system in order to monitor and analyze its activity, as
well as being aware of possible new attacks. They can organize in networks (called
honeynets).

It has been suggested that the honeypots connect to the gateway of the remote
connections and simulate the internal network of the vehicle, performing a realistic
simulation. Taking into account the cost, size and capacity of the computation
needed to do this could be too much, as it should have their own hardware and not
affect the operation of the real network.

1.4 Applications

1.4.1 Types

CAN was initially developed for automotive applications and therefore the protocol
platform is the result of existing needs in the automotive area. The International
Organization for Standardization (ISO, International Organization for Standardiza-
tion) defines two types of CAN networks: a high-speed network (up to 1 Mbit / s),
under the ISO 11898-2 standard, designed to control the motor and interconnect the
electronic control units (ECU); and a fault tolerant low speed network (less than or
equal to 125 kbit / s), under the ISO 11519-2 / ISO 11898-3 standard, dedicated to
the communication of the internal electronic devices of a car such as door control ,
sunroof, lights and seats.

• Passenger vehicles, trucks, buses (gasoline vehicles and electric vehicles)
• Agricultural equipment
• Electronic equipment for aviation and navigation
• Industrial automation and mechanical control
• Elevators, escalators
• Building automation
• Medical instruments and equipment
• Pedelecs
• Model Railways/Railroads
• Ships and other maritime applications

15

• Lighting Control Systems

1.4.2 Vehicles

How can we use this technology in vehicles? Well, in a lot of devices integrated in
a car for example. Let’s think about the electric windows, the climate control, the
central locking, the sunroof, the electric seats, the injection control unit and all its
sensors, the instrument panel, the controls on the steering wheel, the multimedia
systems ...

In fact, such is the number of devices that at present, to guarantee the speed and
robustness of communications, there is usually not a single CAN bus, but there are
several sub-buses in the vehicle. A bus for electronic engine management, another
for air conditioning and entertainment, another for security issues (alarms, central
locking, ABS) etc ...

Any electronic device connected to the bus can send messages and the rest listen
to it. Each type of message carries an identifier. Listeners decide which messages
interest them and which ones are not. For the thing to work, the electrical devices
take turns "talking" one at a time.

Another use of this protocol is for diagnostic services and vehicle data collection.
Cars have a special connector called OBD that is usually found under the steering
wheel. This connector allows us to access the CAN buses of the car. With an
adapter we can connect a computer, smartphone or similar and thus we will find
out everything that is cooked inside our car.

The CAN protocol was the brainchild of Bosch in 1982 and the first production
model to assemble it was the 1992 Mercedes-Benz E-Class. The CAN bus has become
a de facto standard and is now used in the vast majority of countries. Automobiles
being manufactured and also beginning to enter the motorcycle industry.

16

2 Practical Experiments
To exemplify all the theoretical knowledge, we are going to develop some programs
that could be used in the GPS L80 module.

Fig. 2.1: Module L80

2.1 GPS Program developed

This GPS is a project made with the intention of making a final project in which
we talk about the CAN Bus, a technology widely used these days which we consider
that serves to acquire a very practical and useful knowledge for future employment.

The objective of this program is to be able to have the software developed to be
able to make a practical application in the GPS L80 module where we will be able
to verify the correct operation of the same one.

The software that we are going to use consists of two parts, the program that
installed and executed will make the commands / orders that we program it to do.
The other part is the library, which is responsible for the commands that we use
in the GPS program, the device itself understands them as this built to do things
based on the commands you need and that process needs a translation, and this is
responsible for the library, in which we tell him that we want to do depending on
the order that comes to him.

In this case, let’s first talk about the C program.
The objective is to make a code which receives two points and tells me in function

of the first one, the direction in which it has moved until it reaches the second one.
For this the program receives two inputs, which are the two points, which have two
coordinates each. In the program, the two coordinates are used to form a vector,
using the vector product and with the help of mathematics we can easily calculate
the angle between two vectors and compare it with the X-axis to have all the results
in function of it.

17

The results obtained are the angle that is closer to the axis being always less
than 180 degrees, to solve this problem and get a result between 0 and 360 degrees,
we have to take the complementary to have a result in the range we want. Also, to
avoid coding errors, we have added the exception that the end point is the same as
the initial, and in that case the angle obtained is 0.

1 #inc lude <s t d i o . h>
2 #inc lude <math . h>
3 #d e f i n e PI 3.14159265
4

5 i n t main () {
6

7 f l o a t v1x , v2x , v1y , v2y ;
8 double m, ret , vecx , vecy ;
9

10 whi le (1) {
11

12 p r i n t f (" Enter the coo rd ina t e s o f the f i r s t po int (X / Y) \n") ;
13 s can f ("%f %f " ,&v1x ,&v1y) ;
14 p r i n t f (" Enter the coo rd ina t e s o f the second point (X / Y) \n") ;
15 s can f ("%f %f " ,&v2x ,&v2y) ;
16

17 vecx=v2x−v1x ; // Ca l cu la te vect X
18 vecy=v2y−v1y ; // Ca l cu la te vect Y
19

20 // Ca lcu la te ang le between vec to r s
21 m=(vecx /(sq r t ((vecx ∗ vecx)+(vecy ∗ vecy)))) ;
22 r e t = acos (m) ∗ (180 . 0 / PI) ;
23

24 // This i s the way i choose the ang l e s that can be more than 180
tak ing the complementary

25 i f (v1y>v2y) {
26 r e t=360− r e t ;
27 }
28 i f ((v1x==v2x)&&(v1y==v2y)) {
29 r e t =0;
30 }
31

32 p r i n t f ("The ang le i s : %.2 f \n " , r e t) ;
33

34 }

18

35 re turn 0 ;
36 }

2.2 Library for module L80

In this case, we are going to talk about the library, which is a set of functional
implementations, coded in a programming language, that provides a well-defined
interface to the functionality that is invoked.

For this we need the information found in the datasheet which in our case is
GNSS SDK commands manual since we are working with GNSS Module Series
using version 1.4 of 2017.

With this file what we do is to translate the functionality of our program in
commands that understand the module that will apply them, for this what we do is
to create a series of functions that depending on what gets them to be called do a
procedure or another.

1 #inc lude <s t d i o . h>
2 #inc lude <s t r i n g . h>
3

4 i n t gen_checksum (const char ∗ command , i n t s i z e) {
5

6 //We r e c e i v e d the command o f the func t i on an the s i z e
7 i n t i =0,checksum=0;
8 char hex [256]={0} ; //We use 256 because 255 i s the l ength max and we

have a empty one at the end
9

10 checksum=command [0] ;
11

12 f o r (i =1; i<s i z e ; i++){
13 checksum=checksum^command [i] ; //Xor a l l the vytes
14 }
15

16 re turn checksum ; // return the checksum
17 }

19

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36 /∗
37 On t h i s next f u n c t i o n s we r e c e i v e a s t r i n g o f data and some va r i ab l e s ,

we use the s p r i n t f command to j o i n them .
38 We use 256 o f b u f f e r because 255 i s the l ength max and we have a empty

one at the end .
39 The s p r i n t f command l i n e uses the b u f f e r to j o i n the s t i n g with the

v a r i a b l e s to make p o s s i b l e make the checksum
40 We transmit the huart the i n f o
41 ∗/
42

43 void Change_NMEA_Port_Default_Baud_Rate(UART_HandleTypeDef ∗huart , i n t
baudrate) {

44 i n t bytes = 0 ;
45 i n t checksum = 0 ;
46 char b u f f e r [2 5 6] = {0} ;
47

48 bytes = s p r i n t f (bu f f e r , "%s ,%d" , "PQBAUD,W" , baudrate) ;
49

50 checksum = gen_checksum (bu f f e r , bytes) ;
51

52 bytes = s p r i n t f (bu f f e r , "%s ,%d,%X\ r \n" , "PQBAUD,W" , baudrate ,
checksum) ;

53

54 HAL_UART_Transmit(huart , bu f f e r , bytes , 100) ;
55 }

The full code is on the appendix.

20

3 Conclusion
Thesis conclusion. As a conclusion to the final thesis, we can divide everything
done into two parts, a theoretical part where it has been explained what the CAN
bus is, the different layers have been discussed, and the basic structure of a frame
transported in the CAN bus, security measures implemented to protect this com-
munication and finally a series of practical applications in the market today.

In the second part of the thesis, it is divided into two subparts. First a C program
that from two points entered as coordinates on the screen takes us out a direction
in which the object is directed from the first point to the second, this direction will
be an angle between 0 and 360 degrees. Finally, so that the L80 module, which is
the test object in which the system should have been tested, works.

21

Bibliography
[1] “About can bus.” [Online]. Available: http://www.auterraweb.com/aboutcan.

html

[2] “What is can bus (controller area network).” [Online]. Available: https:
//dewesoft.com/daq/what-is-can-bus

[3] W. Buchanan, “Can bus,” Computer Busses, p. 333–343, 2000.

[4] N. Liang and D. Popovic, “The can bus,” Intelligent Vehicle Technologies, p.
21–64, 2001.

[5] B. Hunting, “Can bus system: Understanding the basics,”
Apr 2020. [Online]. Available: https://knowhow.napaonline.com/
can-bus-system-understanding-basics/

[6] C. Electronics, “Can bus explained - a simple intro (2021).” [Online]. Avail-
able: https://www.csselectronics.com/screen/page/simple-intro-to-can-bus/
language/en

[7] “Controller area network.” [Online]. Available: http://www.esd-electronics-usa.
com/Controller-Area-Network-CAN-Introduction.html

[8] “Can bus explained - a simple intro (2020),” Jul 2017. [Online]. Available:
https://www.youtube.com/watch?v=FqLDpHsxvf8

[9] “Can bus,” Jun 2021. [Online]. Available: https://en.wikipedia.org/wiki/CAN_
bus

23

http://www.auterraweb.com/aboutcan.html
http://www.auterraweb.com/aboutcan.html
https://dewesoft.com/daq/what-is-can-bus
https://dewesoft.com/daq/what-is-can-bus
https://knowhow.napaonline.com/can-bus-system-understanding-basics/
https://knowhow.napaonline.com/can-bus-system-understanding-basics/
https://www.csselectronics.com/screen/page/simple-intro-to-can-bus/language/en
https://www.csselectronics.com/screen/page/simple-intro-to-can-bus/language/en
http://www.esd-electronics-usa.com/Controller-Area-Network-CAN-Introduction.html
http://www.esd-electronics-usa.com/Controller-Area-Network-CAN-Introduction.html
https://www.youtube.com/watch?v=FqLDpHsxvf8
https://en.wikipedia.org/wiki/CAN_bus
https://en.wikipedia.org/wiki/CAN_bus

Symbols and abbreviations
CAN Controller Area Network

GPS Digital Signal Processing

OBD OnBoard Diagnostic

OSI Open System Interconnection

EOBD European On Board Diagnostic

ECU (Electronic Central Unit

CPU Central Processing Unit

SOF Start of Frame

RTR Remote transmission request

DLC Data Length Code

CRC Cyclic redundancy check

ACK Acknowledge

TEC Transmit error counter

REC Receive error counte

EEPROM Electrically Erasable Programmable Read-Only Memory

RAM Random Access Memory

ISO International Organization for Standardiza-tion)

OBD On Board Diagnostics

25

List of appendices

A L80 Library 29

B Check the checksum 37

27

A L80 Library
Here is the full code of L80 Library designed

1 #inc lude <s t d i o . h>
2 #inc lude <s t r i n g . h>
3

4 i n t gen_checksum (const char ∗ command , i n t s i z e) {
5

6 //We r e c e i v e d the command o f the func t i on an the s i z e
7 i n t i =0,checksum=0;
8 char hex [256]={0} ; //We use 256 because 255 i s the l ength max and we

have a empty one at the end
9

10 checksum=command [0] ;
11

12 f o r (i =1; i<s i z e ; i++){
13 checksum=checksum^command [i] ; //Xor a l l the vytes
14 }
15

16 re turn checksum ; // return the checksum
17 }
18

19

20 /∗
21 On t h i s next f u n c t i o n s we r e c e i v e a s t r i n f o f data and some va r i ab l e s ,

we use the s p r i n t f command to j o i n them .
22 We use 256 o f b u f f e r because 255 i s the l ength max and we have a empty

one at the end .
23 The s p r i n t f command l i n e uses the b u f f e r to j o i n the s t i n g with the

v a r i a b l e s to make p o s s i b l e make the checksum
24 We transmit the huart the i n f o
25 ∗/
26

27 void Change_NMEA_Port_Default_Baud_Rate(UART_HandleTypeDef ∗huart , i n t
baudrate) {

28 i n t bytes = 0 ;
29 i n t checksum = 0 ;
30 char b u f f e r [2 5 6] = {0} ;
31

32 bytes = s p r i n t f (bu f f e r , "%s ,%d" , "PQBAUD,W" , baudrate) ;
33

34 checksum = gen_checksum (bu f f e r , bytes) ;
35

36 bytes = s p r i n t f (bu f f e r , "%s ,%d,%X\ r \n " , "PQBAUD,W" , baudrate ,
checksum) ;

37

29

38 HAL_UART_Transmit(huart , bu f f e r , bytes , 100) ;
39 }
40

41

42 void Enable_Disable_PQEPE_Sentence_Output (UART_HandleTypeDef ∗huart , i n t
mode , i n t save) {

43

44 i n t bytes = 0 ;
45 i n t checksum = 0 ;
46 char b u f f e r [2 5 6] = {0} ;
47

48 bytes = s p r i n t f (bu f f e r , "%s ,%d,%d" , "PQEPE,W" , mode , save) ;
49

50 checksum = gen_checksum (bu f f e r , bytes) ;
51

52 bytes = s p r i n t f (bu f f e r , "%s ,%d,%d,%X\ r \n" , "PQEPE,W" , mode , save ,
checksum) ;

53

54 HAL_UART_Transmit(huart , command , s i z e o f (command) , 100) ;
55 }
56

57

58 void Set_type_1PPS_output_PPS_pulse_width (UART_HandleTypeDef ∗huart , i n t
type , i n t width) {

59

60

61 i n t bytes = 0 ;
62 i n t checksum = 0 ;
63 char b u f f e r [2 5 6] = {0} ;
64

65 bytes = s p r i n t f (bu f f e r , "%s ,%d,%d" , "PQ1PPS,W" , type , width) ;
66

67 checksum = gen_checksum (bu f f e r , bytes) ;
68

69 bytes = s p r i n t f (bu f f e r , "%s ,%d,%d,%X\ r \n" , "PQ1PPS,W" , type , width ,
checksum) ;

70

71 HAL_UART_Transmit(huart , command , s i z e o f (command) , 100) ;
72

73 }
74

75

76 void Change_FLP_mode(UART_HandleTypeDef ∗huart , i n t mode , i n t save) {
77

78 i n t bytes = 0 ;
79 i n t checksum = 0 ;
80 char b u f f e r [2 5 6] = {0} ;

30

81

82 bytes = s p r i n t f (bu f f e r , "%s ,%d,%d" , "PQFLP,W" , mode , save) ;
83

84 checksum = gen_checksum (bu f f e r , bytes) ;
85

86 bytes = s p r i n t f (bu f f e r , "%s ,%d,%d,%X\ r \n" , "PQFLP,W" , mode , save ,
checksum) ;

87

88 HAL_UART_Transmit(huart , command , s i z e o f (command) , 100) ;
89

90 }
91

92

93 void Enable_Disable_GPTXT_sentence_output (UART_HandleTypeDef ∗huart ,
i n t mode , i n t save) {

94

95

96 i n t bytes = 0 ;
97 i n t checksum = 0 ;
98 char b u f f e r [2 5 6] = {0} ;
99

100 bytes = s p r i n t f (bu f f e r , "%s ,%d,%d" , "PQTXT,W" , mode , save) ;
101

102 checksum = gen_checksum (bu f f e r , bytes) ;
103

104 bytes = s p r i n t f (bu f f e r , "%s ,%d,%d,%X\ r \n" , "PQTXT,W" , mode , save ,
checksum) ;

105

106 HAL_UART_Transmit(huart , command , s i z e o f (command) , 100) ;
107

108 }
109

110

111 void Enable_Disable_ECEFPOSVEL_Sentence_Output (UART_HandleTypeDef ∗
huart , i n t mode , i n t save) {

112

113 i n t bytes = 0 ;
114 i n t checksum = 0 ;
115 char b u f f e r [2 5 6] = {0} ;
116

117 bytes = s p r i n t f (bu f f e r , "%s ,%d,%d" , "PQECEF,W" , mode , save) ;
118

119 checksum = gen_checksum (bu f f e r , bytes) ;
120

121 bytes = s p r i n t f (bu f f e r , "%s ,%d,%d,%X\ r \n" , "PQECEF,W" , mode , save ,
checksum) ;

122

31

123 HAL_UART_Transmit(huart , command , s i z e o f (command) , 100) ;
124

125 }
126

127

128 void Start_Stop_odometer_reading (UART_HandleTypeDef ∗huart , i n t mode ,
i n t i n i t i a l d i s t a n c e) {

129

130 i n t bytes = 0 ;
131 i n t checksum = 0 ;
132 char b u f f e r [2 5 6] = {0} ;
133

134 bytes = s p r i n t f (bu f f e r , "%s ,%d,%d" , "PQODO,W" , mode ,
i n i t i a l d i s t a n c e) ;

135

136 checksum = gen_checksum (bu f f e r , bytes) ;
137

138 bytes = s p r i n t f (bu f f e r , "%s ,%d,%d,%X\ r \n" , "PQODO,W" , mode ,
i n i t i a l d i s t a n c e , checksum) ;

139

140 HAL_UART_Transmit(huart , command , s i z e o f (command) , 100) ;
141

142 }
143

144

145 void Switching_WGS84 (UART_HandleTypeDef ∗huart , i n t mode , i n t save) {
146

147 i n t bytes = 0 ;
148 i n t checksum = 0 ;
149 char b u f f e r [2 5 6] = {0} ;
150

151 bytes = s p r i n t f (bu f f e r , "%s ,%d,%d" , "PQPZ90 ,W" , mode , save) ;
152

153 checksum = gen_checksum (bu f f e r , bytes) ;
154

155 bytes = s p r i n t f (bu f f e r , "%s ,%d,%d,%X\ r \n" , "PQPZ90 ,W" , mode , save ,
checksum) ;

156

157 HAL_UART_Transmit(huart , command , s i z e o f (command) , 100) ;
158

159 }
160

161

162 void PQGLP_Set_GLP_Mode(UART_HandleTypeDef ∗huart , i n t mode , i n t save)
{

163

164 i n t bytes = 0 ;

32

165 i n t checksum = 0 ;
166 char b u f f e r [2 5 6] = {0} ;
167

168 bytes = s p r i n t f (bu f f e r , "%s ,%d,%d" , "PQGLP,W" , mode , save) ;
169

170 checksum = gen_checksum (bu f f e r , bytes) ;
171

172 bytes = s p r i n t f (bu f f e r , "%s ,%d,%d,%X\ r \n" , "PQGLP,W" , mode , save ,
checksum) ;

173

174 HAL_UART_Transmit(huart , command , s i z e o f (command) , 100) ;
175 }
176

177

178 void Enable_disable_veloc ity_sentence_output (UART_HandleTypeDef ∗huart ,
i n t mode , i n t save) {

179

180 i n t bytes = 0 ;
181 i n t checksum = 0 ;
182 char b u f f e r [2 5 6] = {0} ;
183

184 bytes = s p r i n t f (bu f f e r , "%s ,%d,%d" , "PQVEL,W" , mode , save) ;
185

186 checksum = gen_checksum (bu f f e r , bytes) ;
187

188 bytes = s p r i n t f (bu f f e r , "%s ,%d,%d,%X\ r \n" , "PQVEL,W" , mode , save ,
checksum) ;

189

190 HAL_UART_Transmit(huart , command , s i z e o f (command) , 100) ;
191

192 }
193

194

195 void Enable_Disable_jamming_detection_function (UART_HandleTypeDef ∗
huart , i n t mode , i n t save) {

196

197 i n t bytes = 0 ;
198 i n t checksum = 0 ;
199 char b u f f e r [2 5 6] = {0} ;
200

201 bytes = s p r i n t f (bu f f e r , "%s ,%d,%d" , "PQJAM,W" , mode , save) ;
202

203 checksum = gen_checksum (bu f f e r , bytes) ;
204

205 bytes = s p r i n t f (bu f f e r , "%s ,%d,%d,%X\ r \n" , "PQJAM,W" , mode , save ,
checksum) ;

206

33

207 HAL_UART_Transmit(huart , command , s i z e o f (command) , 100) ;
208

209 }
210

211

212 void Enable_Disable_Return_Link_Message_Output (UART_HandleTypeDef ∗
huart , i n t mode , i n t save) {

213

214 i n t bytes = 0 ;
215 i n t checksum = 0 ;
216 char b u f f e r [2 5 6] = {0} ;
217

218 bytes = s p r i n t f (bu f f e r , "%s ,%d,%d" , "PQRLM,W" , mode , save) ;
219

220 checksum = gen_checksum (bu f f e r , bytes) ;
221

222 bytes = s p r i n t f (bu f f e r , "%s ,%d,%d,%X\ r \n" , "PQRLM,W" , mode , save ,
checksum) ;

223

224 HAL_UART_Transmit(huart , command , s i z e o f (command) , 100) ;
225

226 }
227

228

229 void Configure_Parameters_Geo_fence (UART_HandleTypeDef ∗huart , i n t GEOID
, i n t mode , i n t shape , i n t l a t i tude0 , i n t long i tude0 , i n t l a t i t u d e 1 /
radius , i n t long i tude1 , i n t l a t i tude2 , i n t long i tude2 , i n t l a t i tude3 ,
i n t l ong i tude3) {

230

231 i n t bytes = 0 ;
232 i n t checksum = 0 ;
233 char b u f f e r [2 5 6] = {0} ;
234

235 bytes = s p r i n t f (bu f f e r , "%s ,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d" , "
PQGEO,W" ,GEOID, mode , shape , l a t i t ude0 , long i tude0 , l a t i t u d e 1 / radius ,
long i tude1 , l a t i tude2 , long i tude2 , l a t i tude3 , l ong i tude3) ;

236

237 checksum = gen_checksum (bu f f e r , bytes) ;
238

239 bytes = s p r i n t f (bu f f e r , "%s ,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%X\ r \n
" , "PQGEO,W" , GEOID, mode , shape , l a t i tude0 , long i tude0 , l a t i t u d e 1 /
radius , long i tude1 , l a t i tude2 , long i tude2 , l a t i tude3 , long i tude3 ,
checksum) ;

240

241 HAL_UART_Transmit(huart , command , s i z e o f (command) , 100) ;
242

243 }

34

244

245

246 void Conf igure_Parameters_Precis ion (UART_HandleTypeDef ∗huart , i n t
l a t i t u d e b i t s , i n t l o n g i t u d e b i t s , i n t a l t i t u d e b i t s , i n t save) {

247

248 i n t bytes = 0 ;
249 i n t checksum = 0 ;
250 char b u f f e r [2 5 6] = {0} ;
251

252 bytes = s p r i n t f (bu f f e r , "%s ,%d,%d,%d,%d,%d" , "PQPREC,W" ,
l a t i t u d e b i t s , l o n g i t u d e b i t s , a l t i t u d e b i t s , save) ;

253

254 checksum = gen_checksum (bu f f e r , bytes) ;
255

256 bytes = s p r i n t f (bu f f e r , "%s ,%d,%d,%d,%d,%d,%X\ r \n" , "PQPREC,W" ,
l a t i t u d e b i t s , l o n g i t u d e b i t s , a l t i t u d e b i t s , save , checksum) ;

257

258 HAL_UART_Transmit(huart , command , s i z e o f (command) , 100) ;
259

260 }
261

262

263 void Enable_Disable_GBS_Sentence_Output (UART_HandleTypeDef ∗huart , i n t
mode , i n t save) {

264

265 i n t bytes = 0 ;
266 i n t checksum = 0 ;
267 char b u f f e r [2 5 6] = {0} ;
268

269 bytes = s p r i n t f (bu f f e r , "%s ,%d,%d" , "PQGBS,W" , mode , save) ;
270

271 checksum = gen_checksum (bu f f e r , bytes) ;
272

273 bytes = s p r i n t f (bu f f e r , "%s ,%d,%d,%X\ r \n" , "PQGBS,W" , mode , save ,
checksum) ;

274

275 HAL_UART_Transmit(huart , command , s i z e o f (command) , 100) ;
276

277 }

35

B Check the checksum
I used a code only to check that the checksum was working right:

1 #inc lude <s t d i o . h>
2 #inc lude <s t r i n g . h>
3

4 /∗−
5 This code i s used f o r check the fun t c i on gen_checksum used on the

l i b r a r y
6 We use to c a l c u l a t e the checksum a XORing each byte , so t h i s fu cn t i on

takes input and xors i t byte by byte to re turn the f i n a l va lue .
7 ∗/
8 i n t gen_checksum (const char ∗ command , i n t s i z e) {
9

10 i n t i =0,checksum=0;
11 char hex [255]={0} ; // Dec larate the s t r i n g we are going to use
12

13 checksum=command [0] ;
14

15 f o r (i =1; i<s i z e ; i++){
16 checksum=checksum^command [i] ; //Xor a l l bytes from 1 to the s i z e o f

the s t r i n g
17 }
18

19 re turn checksum ;
20 }
21

22 void main () {
23

24 i n t v a r i a b l e =0, i =0;
25 char hex [255]={0} ;
26 char b u f f e r [255]= "PQBAUD,W,115200 " ; // in t roduce the s t i n g data on the

s t r i n g
27 v a r i a b l e=gen_checksum (bu f f e r , s t r l e n (b u f f e r)) ; //we sent to the

func t i on the s t r i n g and the l ength
28 p r i n t f ("%X \n" , v a r i a b l e) ;
29

30 }

On the botton on the code in line 24 I can use what ever I want to check the
functionality.

37

	Theorical part
	About CAN Bus
	Layers

	Basic structure
	Frames

	Security
	Firewall
	Encryption
	Honeypots

	Applications
	Types
	Vehicles

	Practical Experiments
	GPS Program developed
	Library for module L80

	Conclusion
	Bibliography
	Symbols and abbreviations
	List of appendices
	L80 Library
	Check the checksum

