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Abstract. Existence and uniqueness of solutions to the Navier-Stokes equations in dimension two
with forces in the space L9((0,T); W~ 1?(Q)) for p and g in appropriate parameter ranges are proven.
The case of spatially measured-valued forces is included. For the associated Stokes equation the well-
posedness results are verified in arbitrary dimensions for any 1 < p, ¢ < oo.
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1. INTRODUCTION

In this paper we investigate the following Navier-Stokes system

%quy+(y~V)y+Vp:f inQ=Qx1I,

divy=0 inQ, y=0 on X =T x1I, y(0) =yg in Q,

(1.1)

with focus on low regularity assumptions on the inhomogeneity f. Here, I = (0,7) with 0 < T' < 0o, and Q C R¢
denotes a connected bounded domain with a C® boundary T.

Our interest in this problem is two-fold. First, it has received very little attention in the literature so far.
Indeed the only result which we are aware of is given in [24], where f is chosen in W1 (I[; W~12(Q)), with
W-Lp(Q) = ®?:1 W-tP(Q), d € {2,3}, and p € (%,2]. It is mentioned there, that likely the result is not
optimal, and the natural question arises whether, and how, it can be improved. Secondly we are interested in
control problems with sparsity constraints, subject to (1.1) as constraint. In this case it is natural to demand that
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for almost every ¢t € I the forcing function is a vector valued Borel measure, i.e. f(¢,-) € M(Q) = ®f:1 M(Q),
where M () is the space of real and regular Borel measures in 2, see e.g. [7] and the references on sparse
control given there. To treat (1.1) with spatially measure valued controls it is natural to consider the space
W-12(Q) with p € [1, 7%7), since in this case M(Q2) C W~12(Q). In dimension 3 this requires to consider the
space W—1P(Q) with p € [1, %) However, even in the stationary case the existence of a solution is an open issue
for d = 3 and this range of values for p, see [18] or [24]. For this reason we restrict our attention to the case
d = 2 throughout the paper, unless specifically mentioned otherwise. For the two-dimensional case the result in
[24] guarantees the existence of a solution to (1.1) for £ € WH°°(I; M(Q2)). But this regularity requirement with
respect to time is not practical for control theory purposes.

Thus the focus of our work is the investigation of (1.1) for f € LI(I; W~17(Q)) in the case Q C R?, and p < 2.
For this purpose we also require results on the Stokes equation associated to (1.1). Surprisingly, even this case
has not yet been analysed for f € LI(I; W~1P(£)). We carry out such an analysis which will be independent
of the spatial dimension d.

Before we start, let us summarize, very selectively, some relevant literature. In the stationary case the investi-
gation of the Navier-Stokes system with data less regular than L?(Q) dates back to [20], who considers the case
f € W=12(Q). In [24] the range of admissible forcing functions is increased to f € W=1P(Q), with p € (4,2)
For more recent results we refer to [10, 12, 18], and the references there.

For the evolutionary system well-posedness for forcing functions in the Hilbert spaces L?(I;L?(Q2)), and
L2(I; W=12(Q)), with d € {2,3}, is well understood, see e.g. [5] or [28]. The analysis of the Stokes problem
associated to (1.1) with forcing functions in the Bochner spaces L?(I; LP(£2)), with 1 < p, ¢ < oo, has attracted
much attention. We refer to [17] for an informative summary, including the development of the maximal regu-
larity techniques for this scenario. Well-posedness of the Navier-Stokes system with f € L(I; L?(2)) has been
investigated in [16] or [30]. As mentioned above, the only work that we are aware of where (1.1) with forcing
functions in Sobolev spaces with negative exponents has been investigated is [24].

The plan of the paper is the following. In Section 2 the well-posedness results for the Stokes and the Navier-
Stokes equations with f € LI(I; W~1?(Q)) under proper conditions on p and ¢ are presented. Some selected
proofs are postponed to Sections 3 and 4. Section 5 presents a sensitivity analysis with respect to the right
hand side, and Section 6 an asymptotic stability analysis. The proof of a technical result on the nonlinearity
appearing in (1.1) is given in the Appendix.

Notation

In this paper, we denote L*(Q2) = ®?:1 L5(Q) and W (Q) = ®f:1 Wy () for s € (1,00), and we choose
the norm in WJ*(Q) as

|~

||Y||w(§va‘(§z) = [|Vy|

1 d
v = ([19yFar) = ([ 19w a
Q ot

We also consider the spaces

H = closure of {¢ € CF(Q) : dive = 0} in L*(Q),
W, (Q) = {y € WS*(Q) : divy = 0}.

For s = 2 we set H§(Q) = W5?(Q) and V = Wy(Q). We also define the following spaces

W(0,T)={y € L*(I; V) : %‘;’ c LA(I; V')}
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WL (0.7) = fy € '(EW(@): 2 € 17(1:WL(@))

with r; s € (1,00), endowed with the norms

dy
Iyllwo.r) = [I¥llze(rm @) + ||a||L2(1;V/),
_ dy
HY||WT,5(0,T) = ||YHLr(I;W(1)’S(Q)) + ||a||u(1;ws,(g)')-

Obviously these are reflexive Banach spaces, and W(0,7) = W,. ,(0,T) if r = s = 2.

Now we consider the interpolation space By, () = (W (Q)", W,(?));_1/y,,. From Chapter I11/4.10.2 of
[1] we know that W, (0,7) C C([0,T]; B ,(€2)) and the trace mapping y € W, 4(0,T) — y(0) € B, -(Q) is
surjective. If 7 = s = 2, then it is known that B2 () = (V', V)1 , = H. Hence, the embedding W(0,7") C
C([0,T]; H) holds; see Page 22, Proposition I-2.1 of [22] and Page 143, Remark 3 of [31].

2. WELL-POSEDNESS RESULTS

The aim of this section is to prove the well-posedness of the following Navier-Stokes equations in dimension 2

9
%—uAy+(y~V)y+Vp:f in Q,

divy=0 in@, y=0 on X, y(0) =yo in Q,

(2.1)

where v > 0 is the kinematic viscosity coefficient, f € L9(I; W=17(Q)), and yo € Yo = H+ B, ,(22). The
parameters p and ¢ are fixed throughout this manuscript, and it is assumed that

4 2p

- <p<2andgqg>— 2.2

g=p<2andg> T (2.2)
hold; with the exception of Corollary 2.6. Observe that these assumptions imply that ¢ > 4. This condition
(2.2) is essential for the well-posedness of the bilinear form introduced in Lemma 2.1 as well as in the proofs of

Theorem 2.4 and Proposition 2.7. The low regularity of the force is due to the assumption p < 2. For p > 2 the
solvability of (2.1) is well known. The space Yy is endowed with the norm

= inf
lyollv, oot lyoillLz() + llyoz2llB,., ()

which makes it a Banach space. The assumption Q C R? is imposed throughout this paper, except in
Theorem 2.5, which addresses the Stokes equation.
Now we introduce the following spaces:

Y = [L2(1; V) 1 L® (I H) 4 L9(1; W, (),
Y =W(0,T)+W,,(0,T).

They are Banach spaces with the norms

I¥lly = _int liyallzaamon + I3l + 1920wy 2o

lylly = g inf Iy1llwo,r) + ly2llw, ,©.1)-
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The solution of (2.1) will be found in Y. Before proving the existence of such a solution, let us present the
following technical lemma. Its proof is given in the Appendix.

Lemma 2.1. Assume that (2.2) and Q C R? hold. The bilinear operator B: Y x Y — L*(I; H™1(2)) defined
by B(y1,y2) = (y1- V)ys2 is continuous.

As usual, we can remove the pressure from the equation (2.1) by using divergence free test functions.

Definition 2.2. We say that y € ) is a variational solution of (2.1) if

<%y(t), Y)w,, @), w, (@) +aly(t),¥) + b(y(t), y(t), %)
=) )y 1oy wir @ M (0.7), Vi € Wy (Q), (2.3)

y(0) = yo,

where

2
aly(@).8) = [ Iy 1) Vi) e = vy [ Iyl )V (o) de,
=1

Q

bly(2),y (), %) = (B(y(t),y(1)), ¥)r-1(2). 1} (0) :/Q[y(t)'v]y(t)~v¢d:c~

A distribution p in @ is called an associated pressure if the equation

0
o VA VyFVp=f inQ

is satisfied in the distribution sense. Then, (y,p) is called a solution of (2.1).

Given y satisfying (2.3), the pressure p is obtained by using De Rham’s theorem; see Lemma IV-1.4.1 of [27].
The details are obtained in a similar way as in the proof for the case of the Stokes equation, see step (iv) of the
proof of Theorem 2.5 in Section 3.

Remark 2.3. Given s € (1,00) and g € W~15(Q), we have that g : Wé’sl (Q) — R is a linear and continuous
mapping. We know that W (2) is a closed subspace of Wégl(Q) Therefore, for every element g € W—15()
we can consider its restriction to Wy (Q), and [|gllw_, () < llgllw-1.5(q) holds. Moreover, from Hahn-Banach
Theorem we know that every element of W,/ (Q)" is the restriction of an element of W~*(Q). It is important
to observe that the restriction of an element g € W=15(2) to W () can be zero even though g # 0. Actually,
given an element g € W/ (), there are infinitely many elements in W~=1#(2) whose restriction to W (Q)
coincide with g. As a consequence, the variational solution y of (2.1), as defined by (2.3), only depends on
the restriction of f to W, (£2). Thus, different elements f can lead to the same solution y, but the pressure p

changes. The pressure depends on the action of f on the whole domain W(l)’p ’(Q)
As pointed out in Section 1, the embeddings W(0,T) C C([0,T]; H) and W, ,(0,T) C C([0,T]; B, 4(9))

hold. Hence, Y C C([0,T]; Yo) and, consequently, the initial condition y(0) = yo with yo € Y, makes sense.
The next theorem is the main result of this section.

Theorem 2.4. Suppose that (2.2) and Q C R? hold. Then, system (2.1) has a unique solution (y,p) € Y X
W=L4(I; LP(Q2) /R). Furthermore, there exists a nondecreasing function 1, 4 : [0,00) — [0, 00) with 1, 4(0) = 0
such that

151 < pa (1€l acrsww, o) + [30llys ) (2.4)
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For the proof of this result we will use the next two theorems. The first one concerns the associated Stokes
equation and holds in arbitrary dimension d. It is given by

0
%*VAYSJrVPS:g in Q,

divys=0 inQ, ys=0 on X, ys(0) =yso in Q.

(2.5)

Given g € L"(I; W 15(Q)) and yso € B, () with 1 < r,s < oo, analogously to Definition 2.2, we say that
ys € W,.4(0,T) is a variational solution of (2.5) if for every ¢ € W/ (£2)

d
{ <&YS(t)> ¢>(WS/(Q))/,W5/(Q) + a(ys(t), w) = <g(t)7 ,¢'>W—1,s(g)7w(1)15’(g) in (Oa T)> (26)
ys(0) = yso.

A distribution pg in @ is called an associated pressure if the equation

)
%_VAYS—FVPS:g in Q

is satisfied in the distribution sense.

Theorem 2.5. Assume that Q@ C R? with d > 2. Giveng € L™ (I; W5%(Q)) and yso € B, (Q) with 1 < r,s <
oo, there exists a unique solution (ys,ps) € W,.5(0,T) x W=L7(I; L*(Q)/R) of (2.5). Moreover, there exists a
constant Cy. s such that

1¥sliw,..o.) < Crs (lgllirrow, o) + IysollB. .o )- (2.7)

As mentioned at the end of section 1, the embedding W, 4(0,7) C C([0,T]; Bs,(£2)) holds. Moreover, the
trace mapping y € W, 5(0,T) — y(0) € B, () is continuous and surjective. This motivates our choice for the
initial condition ygo € B, ().

Though Theorem 2.5 is expected to hold by experts, it seems that there is no proof available in the literature.
For this reason it is given in the next section. There, in Remark 3.1, we shall also assert that Theorem 2.5 holds
for domains which are only Lipschitz, provided that conditions on the ranges of r and s are met.

As a consequence of Theorem 2.5 we get the following corollary.

Corollary 2.6. Let assume that p € (2,00) and that Q@ C R?. Then, given (f,yo) € L*(I; W=12(Q)) x B, 2(f2),
the system (2.1) has a unique solution (y,p) € W(0,T) "W, ,(0,T) x W=7 (I; L*(Q)/R). Furthermore, there
exist two constants Mo > 0 and M, > 0 such that

2
I¥llw, o1 < M2(||fHL2(I;V/) + ||YO||H) + Mp(”f”yﬂ([;vvp/(g)/) + ||YO||B,,,2(Q)>- (2.8)

Proof. From our assumptions on p, we have that f € L2(I; W~1?(Q)) ¢ L*(I; H71(Q)) and yo € B, 2(Q) C
B2 2(£2) = H. Hence, it is well known that (2.1) has a unique solution y € W(0,T'). Let us prove that (y - V)y €
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LY (I; W=12(Q)). Given an arbitrary element ¢ € W(l)’pl (©) and using (A.1) with r = 2p we infer

) DY B gy i’ o] = 1o (1), 2, 7))
< Iy O 1%l gy ) < Coplly Ol 1Y )y e 1l gy

2 2
< Coplly I riza o 1Y () 53 g |8 o

Using this estimate and Young’s inequality we deduce

2 2 2
Iy - V)YHLP’(I;W*LP(Q)) < CQP”YHEOO(I;L?(Q))HY||£2(];H(1](Q)) < Cl(HfHLQ(l;V’) + ||YO||H) )

where we have used the standard estimates for the solution of (2.1) y € L?(I; H}(2)) N L>°(I; H); see e.g. ([5],
Thm. V.1.4) or ([28], (3.135)).
Since f € LP (I; W~1?(Q)), we deduce from Theorem 2.5 with g =f — (y - V)y that y € W,/ ,(0,T) and

1¥lw, . ,0.1) < Corp (I8l (row, ) + [¥0llB, a0

2
< C o [Ell o 12w, 1y + € (IEl iy + I¥ollm) + o, a0
which implies (2.8). O

Proposition 2.7. Suppose that (2.2) and Q C R? hold. Given (g,yno) € L*(;H™Y(Q)) x H, ej,e2 € Y, and
vy > 0, then the system

0 ‘
% —VvAyN +1o(yn - V)yn +(e1 - V)yn + (yn - V)ea + Vpny =g in Q, (2.9)

divyy =0 inQ, yyn=0 on 3, yn(0)=yno in Q

has a unique solution (yn,pn) € W(0,T) x W=L°(I; L2(Q)/R). Furthermore, there exists a nondecreasing
function ny : [0,00) — (0,00) such that

Iyl rienycon) + 19 ez < nv (llezlly ) (glaiovn + Iyollea) )
2
Iy liwiory < v (lezll) (lgllze vy + Iy nollee) ) (2.10)
(1 + v+ llerlly + llezlly ) (leally) + 1 (gl vy + lyollea ).

Similarly to the previous cases, we say that yy € W(0,T) is a variational solution of (2.9) if

(D), Bl + alyx(6)9) + voblyx(6) yx(0), %)

Fb(e (1), yx (1),38) + By (D) e2(1). ) (211)
= <g(t)7w>H*1(Q),H(1)(Q) in (OvT)a V'l;b € Va

yn(0) = yno.
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Furthermore, a distribution py in @ is called an associated pressure if the equation

9] .
% —VvAyN +vo(yn - V)yn +(e1- V)yn + (yn - V)ea + Vpy =g in Q
is satisfied in the distribution sense.
Theorem 2.5 and Proposition 2.7 will be proved in Sections 3 and 4, respectively.
Proof of Theorem 2.4. We are going to prove the existence of a solution y = yny + ys with yy € W(0,7") and

Vs € W,,(0,T). To this end we write yo = yno + ¥Yso with yno € H and yso € By, 4(92). Using Theorem 2.5
with r = ¢ and s = p, we define the function ys € W ,(0,T) as the unique solution of the system

Jys e
divys =0 in @, ys=0 on X, ys(0) =yso in Q.
Now, we take yn as the solution of
0 .
% —VAYN + (YN - V)yn + (ys - V)yn + (ynv - V)ys + Vpy = —(ys - V)ys in @, (2.13)

divyy =0 inQ, yvn =0 on X, yn(0) =yno in

The existence and uniqueness of the solution yny € W(0,T) of the above system follows from Proposition 2.7
by taking vp =1, e =e3 =ys €Y, and g(t) = —B(ys(t),ys(t)). As a consequence of Lemma 2.1 we have
that g € L?(I; H™1(Q)). Now, setting y = yny +ys and p = py + ps, and adding equations (2.12) and (2.13)
we obtain that y € Y, p € W=14(I; LP(Q)/R)), and (y,p) is a solution of (2.1). Moreover, (2.4) follows from
(A.6) to estimate g, (2.7) and (2.10).

It remains to prove the uniqueness. Let y1,y2 € Y and py,ps € W—14(I; LP(Q)/R) such that (y1,p1) and
(y2,p2) are two solutions of (2.1). We take (y,p) = (y2 — y1,p2 — p1). Subtracting the equations satisfied for
both solutions we have

dy .
5 " VAY T VP =—(y1-V)y —(y-V)yz in@Q, (2.14)
divy=0 in@, y=0 on 3, y(0)=0in Q.

The right hand side of the above equation can be written in the form g = —B(y1,y) — B(y, y2), which belongs
to L2(I;H~1(Q)) by Lemma 2.1. Let us prove that y € W(0,T'). First, we observe that due to the properties
of p and ¢, in particular p < 2 and ¢ > 2, we have that V. C W,(Q) and W,/ () C V. This implies that
V' € W, (Q)" and, hence, W(0,T) C W3 ,,(0,T) and W, ,(0,T) C W2,,(0,T). Therefore, y € Y C Wy ,(0,T)
holds. Moreover, WE?' (Q) ¢ HL(Q) yields H-1(Q) ¢ W~12(Q) and, consequently, g € L2(I; W—L7(Q)). We
also have that p € W=12(I; LP(Q)/R). Now, from Theorem 2.5 we infer that (y,p) is the unique solution of
(2.14) in Wo,(0,T) x W=12(I; LP(Q2)/R).

On the other hand, (2.14) can be considered as a Stokes system with the right hand side belonging to
L?(I; H~1(Q)). Hence, it is well known that there exists a unique element (3, p) € W(0,T) x W=1°(I; L%(Q)/R)
solution of (2.14). Using again that W(0,T) x W~1°°(I; L2(Q)/R) C Wy ,(0,T) x W=L2(I; LP(Q2)/R), we
deduce from Theorem 2.5 that (§,p) = (y,p). Thus, we have y € W(0,T). Therefore, we can multiply the
equation (2.14) by y and after integration by parts it yields

1d
2dt
= —b(y,y2,y) < ||y2HH(1)(Q)HY||i4(Q) < C||y2||H(1,(Q)HYHLQ(Q)HYHH(%(Q)

Iy ()220 + V1Y 1) = ~(¥1.¥,¥) — by, ¥2.y)
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v C?
§||}’HH1 @ T3, HYQ“%I})(Q)HYH%Q(Q)'

From this inequality we deduce that

d C?
TV Ol < —ly2liz @ lyliz o

Since y(0) = 0, we infer from Gronwall’s inequality that y = 0, and with (2.14) p is the zero element of
W=beo(1; LP () /R). O
Remark 2.8. Let us observe that Y C L*(I;L*(2)). Indeed, given y € ), we can write it in the form y =

yn +ys with ynv € W(0,T) and yg € W, ,(0,T). Using a Gagliardo inequality we obtain for almost every
€ (0,7)

lyn ()@ < C4||yN(t)||i2(Q)”yN(t)H%I})(Q) < C4||YN||%°C(I;L2(Q))”}’N(t)H%I})(Q)

The embeddings W(0,7) C L?(I; H(2)) and W(0,T) C L>®(I;L*(Q)) and the above inequality imply yx €
LA(I; L4(2)). On the other hand, since W ,(0,T) C LI(I; W,(Q)) C L(I; L*(2)) C LA(I; L*(2)), recall (2.2),
we infer that ys € L*(I; L*(12)).

The solution of (1.1) enjoys a better regularity than the one established in the previous remark for ¢ > 8 and

under additional assumption on yg.

Theorem 2.9. Let us assume that ¢ > 8 and yo = yno +Yso € B24(Q) + B, 4(Q). Then the variational
solution y of (1.1) belongs to LI(I;L*(Q)) and depends continuously in this topology on f and yo. Moreover,
the estimate

1Vl La(rnao)) < Uq(HfHLq(I;w—w(sz)) +lysollB, (@) + HYN0||B2,4(Q)> (2.15)

holds for an increasing monotone function 14 : [0,00) — [0, 00) independent of £ and yo, with ny(0) = 0.
Proof. As in the proof of Theorem 2.4, we decompose the equation (1.1) in two systems, namely (2.12) and
(2.13). The solution yg of (2.12) belongs to W, ,(0,7) C LY(I;L*()) due to the assumption (2.2) on p. We
prove that yx € C([0,T]; L*(2)) if ¢ = 8. To this end we follow a fixed point approach. Given z € L8(I; L*(Q))
we consider the equation

N T X

(2.16)
divy=0 in@, y=0 on X, y(0) =yno in £,
where
8z =—(ys V)ys —(z-V)z—(ys-V)z — (z- V)ys. (2.17)
It is immediate to check that
lgallcerm-1(0)) < (lysllosaa) + llzllos (i) (2.18)

Then, Theorem 2.5 implies that the solution y, of (2.16) belongs to W4 2(0,T) and satisfies

1¥allw, s0) < Coo (llgallzacrmsoy) + Iynolls, @ )- (2.19)
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We apply Theorem 3 of [2] with
1 1 3
g <s < Z and 0= Z

to deduce that Wy 2(0,T) C LP(I; H2(Q)) C LP(I; L)) with p = . The choice of s implies that p >
8. Moreover, the first embedding is compact. Using ([1], Thm. III-4.10.2) we also have that W4 2(0,T) C
c([o,TY; (H_I(Q),H(l)(Q))%A). The embeddings H}(Q) € Wz+4(Q) and H1(Q) ¢ W~24(Q) imply that

(H'(9), Hj(2))3 4 € (W HH(Q), WH(Q))s , = Ws4(Q) € LY(Q).

3
)

Hence, we have W4 5(0,7) ¢ C([0,T]; W=4(Q)) c ([0, T]; L*(Q)

).
This embedding, (2.19) and Holder’s inequality imply for 0 < ¢ < T

Iyallzsofre@) < E/8yalloqonreq) < 0151/8(||gz|\L4(o,i;H—1(Q)) + ||YN0HB2,4(Q)>

< O (yslzsrmaoy + Iollzs ans@n)® + Iy volls, (o)

Let us take R > 0 and z any element of the closed ball Br(0) of L8(0,#; L*(2)). Then for some 0 < ¢ < T small
enough we obtain from the above inequality

1yallzoozmacy < Cit® |(lyslzs iy + R + ||YN0||B2,4(Q)} <R

Hence, we have a compact mapping z € Br(0) — y, € Br(0). From Schauder’s fixed point theorem we infer the
existence of a fixed point. Since the solution of (1.1) is unique, this fixed point must be y and, consequently,
yn~ belongs to L(0,¢ L*(Q)). From (2.16) with g, replaced by g, we infer that y € W, 2(0,7) and satisfies
(2.19). Therefore, there exists a maximal time T* < T and a solution in the space Wy . We know there are
two possibilities: either 7% = T and the theorem is proved, or 7% < T and

T [y wliw, 00 =00 and [lynllw, 0.0 < o0 ¥ < T*.

Let us prove that the second option can not occur. Given € > 0, we know from Remark 2.8 that there exists
t. > 0 close enough to T™* so that

lynllza., m 1) <e.

From (2.19) and (2.18) with z replaced by y, and continuous embedding Wy s (t.,t) C C([te,?]; L*(Q)) we get
for every ¢ € (t.,T*) and any € > 0

Iy lwa e < o (s llzsce, mmy + 1y wlzsc. sun)? + lyn () ls.o

1/2 1/2
< Caa((Iysllzsormsn + 1N asop ¥V 1 swsion)® + Iya(t) B, @ )

1/2
< C4,2((||YS||L8(0,T;L4(Q)) + 51/2”yN”C/([ta,ﬂ;L‘l(Q)))z + HYN(ts)||Bz,4(Q))

1/2
< 04,2((||YS||L8(O7T;L4(Q)) + 0161/2\|YN||V\/74,2@5,5))2 + ||YN(t€)||B2,4(Q))'



10 E. CASAS AND K. KUNISCH

Selecting € = [4C4 2C1]1, we deduce from the above inequality

1y 3 lw e < 2Cs2 (205 slEornsay + Iynl)ls, @) YEE (= T7),

which proves that the explosion is not possible.
To prove estimate (2.15) we proceed as above to obtain

||YNHW4,2(O,T)

1/2 1/2
< Cua((Iysllzso s + 1N mws o IV 1150 riws o) + ¥ nols, i)

< Cup (2\\YS\\%8(0,T;L4(Q)) + 2[lynlleqo.rna@pllynll e, rina@) + ||yN0||Bz,4(Q))

Applying Corollary 4 of [26] with X = W#4(Q), B =L*(Q), Y = H *(Q), and r = 2 we infer the compactness
of the embedding W, 2(0,7) C C([0,T],L*(12)). Here we used that W4 2(0,T) C C([0,7],L*(f)), which was
established above. Then, using Lions lemma with

1

8 =
4Cy2|lynllLao,riLe )

we deduce from the above inequality

ly~nllw. .01 <2Ci2 (HYSHLS(O,T;L‘l(Q)) +2Clyn s, s Iy Nl 220,751 -1 () + ||yNo||B2,4(Q))-

Estimate (2.15) follows from (2.7), the above inequality, and the estimate obtained in Remark 2.8 for
Iy~ llzao,r;L4())- Finally, the continuous dependence of y with respect to f and yo can be proved using
Theorem 2.5 and (2.15). O

For the above proof the L°(I; L*(2)) regularity of the solution of (2.16) is crucial. This is obtained if ¢ > 8.

3. PROOF OF THEOREM 2.5

We separate the proof in several steps.

(i) Notation and preliminaries. Let LS (£2) denote the closure in L*(€2) of the space {¢p € C5°(2) : div ¢ = 0}.
Given f € L*(Q2) we define the Helmholtz projection Ps : L°(Q2) — L*(2) by P,f = f — VH, where AH = div f
in Q, and n- (VH —f) = 0 with n equal to the unit outer normal vector to I'. We have that range(Ps) = L2(2),
P2 = P,, and P! = Py, for the dual operator. The Stokes operator in L () is defined by

Ay = —vP,A:D(A,) = W, (Q) N W5(Q) — Li(Q). (3.1)

It is a closed bijective operator when considered on the dense domain D(A,) C LE(2). This operator enjoys
maximal parabolic regularity [14, 16], ([17], page 147). More precisely, for every (g,¥y0) € L"(I;L5(2)) x
(L5 (Q), W4 () N W25(Q)), _1 . the equation

%—}Z(t) + A,y(t) = g(t) for a.a. t € (0,7),
y(O) = S’Ov
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has a unique solution y € L"(I; W2(Q) N W(Q)) N WL (I; L:(Q)). Moreover, the inequality

oy N _ N
15 e o + 19w < C (Il + 150l (3.3)
holds for some C independent of (g,¥o). Above the norm of yo is taken in the interpolation space
(L5 (), Ws(Q) NW*(Q));_1,..
The fractional power AZ i D(AZ) C LE(Q) — LE(Q), is well-defined with D(A?) dense in LS (Q) and the

identity Ay = A A2 holds. A? is an isomorphism when D(AS ) is endowed with the graph norm of A2 The
graph norm ||A5 v

L+(q) is equivalent to the norm ||y||W1 () On D(A ). Moreover, the norms || Asy||Ls (o) and

|y llw=.s (o) are equivalent on D(A;), see e.g. [10]. We shall use in an essential manner that

D(AZ) = D((—A)%) N L(Q) = W,(Q), (3.4)

and —A is understood with homogenous boundary conditions. This was verified in [15], for domains with a
'smooth’ boundary. Using the classical result in [11] on the characterisation of D((—A?)), we obtain that D(AS%)
is isomorphic to W(2). The case of a C® boundary can be argued as follows. First we use that [LZ (), D(AS)]% =
[L(Q), W,s(Q)N WQ’S(Q)]% = D(As%), where [, ]1 denotes complex interpolation. The second equality follows
from the fact that the Stokes operator on LZ(€2) admits an H* calculus [23], see also ([17], pg. 149). Next
we note that the Helmhotz projection satisfies Ps = P, Ps and that the range of P; is given by L2(2). Hence
L:(Q) is a complemented subspace of L*(Q2), see ([31], pg. 22). Using standard regularity results for the Stokes
equation [3] it follows from the definition of Ps, that it is a bounded linear operator from L*(£2) to L3 (Q) and
from W25(Q) to W4(2) N W25(Q2). As a consequence we obtain that [L(Q), W(Q) N Wg’S(Q)]% =W, (Q),
by a general result on interpolation couples involving subspaces, see ([31], pg.118).

(ii) Extending the operator A,. In the following we use arguments inspired by §6 of [9] and §11 of [4] where
the case of second order elliptic operators is considered. First, note that we can utilize the above arguments

1 ’
forls replaced by its conjugate s’. Hence A2 : W4 (Q) — L3 (2) is a topological isomorphism, and its adjoint
(AZ) 1 L(Q) — Wy ()" is an isomorphism too. We also have

(A2)'y = A2y for all y € D(A2) = W,(Q), (3.5)
where equality holds in W/ (Q)". Indeed, for all y € W,(Q2) and z € W/ (Q) we get
1 1
<(A52’)IY7 Z>WS/(Q)',WSI(Q) < A Z>Ls (Q),Ls (Q) = <A52 Y, Z>L§,(Q),Lg’(ﬂ) = <A52 Y, Z>WS/(Q)’,WS/(Q)7

where the identity (y, A22)1.. @ 1@ = (A2, 2y () ps (o for all y € D(AF) = W,(Q) and all z € D(AZ) =

W, (9) is well known, see e.g. equahty (1.23) of [12]. Thus (3.5) holds. Since W(€2) is dense in L2 (£2) we obtain
1

that (A ,) s the extension of AZ from W,() to LE(2). In a similar way we can argue that ((42))7! is an

extension of (A )=t from L2 () to W/ (Q).
Now, we define the operator A, € £L(W4(Q), W (Q)") by

(Asy, Z)w_, )y W (@) = u/QVy : Vzdz.

Let us study some properties of this operator. First, we observe that from the definitions of A, and Ay it follows
that Asy = Ay for all y € D(A,). Hence, A, is an extension of As.
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Now, given y € D(A2) N D(As%) and z € D(A2) N D(AS%,), we have

1 1 1 1 1 1
((A2)' A3y, 2)w, oy W) = (A3Y, Al Z)1: o) e () = (A3Y, A3 Z)r2(0),22(0)

= (A2y,2)12(0),12(0) = V/QVY 1 Vzdr = (Asy, 2)w_, (o), W, ()

1 1 1 1
where we have used that A2y = A2,y for every y € D(A2 ) ND(AZ) and 1 < s1, 82 < 00; see equality (1.30)
1 1 1

of [12]. By density of D(A2) N D(AZ2) in D(AZ) and D(A2) N D(AS%,) in D(A2) we have for all y € W(Q), and
z € Wy (Q)

1 1
(A2) AZy, 2)w oy w. @ = (AsY, B)w_, (o), W (Q)> (3.6)

and consequently (AS%,)'AS%y = A,y for ally € D(AS%) = W,(Q). Since the operators AS% W, (Q) — L3 ()
and (A2)" : L3(Q) — W (Q)" are isomorphisms, the previous identity implies that Ay : W(Q) — W ()’

1 1o
is also an isomorphism. Moreover, taking into account that A2y € W(Q) for all y € D(A;) and A; = A2 A2,
we have

(A2) Ay = A, AZy Yy € D(A,). (3.7)

(iii) Mazimal regularity on Wy (Q). Given (g,yso) € L"(I; W™15(Q)) x B, .(Q) we define g(t) =

((AL))'g(t) and Fo = ((A%))'yso, hence § € L"(I; L (€2)) and

S S

-

1 1

Fo = ((AL))ys0 € (AL)) 7 (Ber(2) = ((A5)) " (W (@), Wo(@)) -, )

= (((A2)) 7 (W (), ((A5))HWL(@)) | = (L5(92), W (@) N WL(2)),

LA

Observe that W=15(Q) € W (Q)', therefore g(t) is well defined. Let y € L"(I; W2*(Q) N W,(Q)) N
1

WLT(I; L5 (S2)) be the unique solution to (3.2). Now, we set yg = (A2)"y. Since y(t) € D(4,) C W4() for
1 1
almost all ¢ € I, from (3.5) we know that ys(t) = (A2)'y(t) = A2y(t) € W,(Q) for almost all ¢ € I. Hence,

we have that ys € L"(I; W,(Q2)). Additionally, from %—i’ € L"(I; L () we deduce that %Lts e L'(I; Wy ().
Consequently, we have that y, € W, (0, 7).

1

Multiplying the differential equation satisfied by y by the operator (A2)’, using (3.7), and the identity
1
ys(t) = A2y (t), we obtain

a 1 8~ 1 ~ 1 o i,
% = (Asz/)/% = —(Af/)’Asy + (Afl)lg = _AsAszy +g= _-Asys + 8.

Moreover, ys(0) = (As%,)/j/(()) = (A2)'yo = yso. Thus, we have

0
% + Asys =g for a.a. t € (07T)»

ys(0) = yso-
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This is exactly (2.6). Finally, we infer from (3.3)

lysliw,..cor) < CUgllLrrow. ) + 1¥sollB... ) (3.8)

(iv) Introduction of the pressure. Recall that ys € L"(I; W4(2)) and, hence, Ays € L"(I; W~15(Q)). We also

note that yg : [0,7] — B,,.(Q) C W (Q) is a continuous function. Thus, we may integrate the differential
equation satisfied by ys to obtain for every ¢t € I and all ¢ € W4 (Q)

t t
<ys(t) — Yso, w>WS/(Q)’,WS/(Q) - <V/0 Ays ds +/(; gd57 ¢>W*1:S(Q),Wé’3,(ﬂ) =0. (39)

Using that A, : W,(Q) — W, (Q)" is an isomorphism, we deduce the existence of §59 € W () such that
for every ¥ € W/ (Q)

(ys0:¥)w, ) W) = (AsTs0, Y)w., ). w. (@) = U/Q V¥so: Vipdz = —u(AS’sm1/1>W71.3(Q)7Wé,5/(m.

Moreover, using that ys € L"(1; W*(2)), (3.9) can be written

t t
<ys(t)qu§fgofy/ Aysdsf/ gds,¢> —0
0 0

W—1.s(Q), Wi (Q)

for all 1 € W (Q) and almost all ¢ € I. Setting

G(t) = ys(t) — vAYso — v / (Ays(s) + g(s)) ds,

we have that G € L"(I; W~14(Q2)) and

<G(t>’¢>W*1~S(Q),Wé’5/(ﬂ) =0 Vi€ Wy (Q)and for a.a. t €1 (3.10)

holds. We next use de Rham’s theorem in L"(I; W~1%(Q)); see Lemma IV-1.4.1 of [27]. It implies that there
exists a unique element m € L"(I; L*(Q)) with [, 7(t) dz = 0 for almost all ¢ € I such that G = —V7 in I x Q.
Moreover, there exists a constant C' > 0 such that

17l zr(rins @)y < CIG Lr ;w15 )
holds. Let us now set pg = %{. Then ps € WL (I; L*(Q)/R) and (ys, ps) is the desired solution to (2.5).

(v) Uniqueness. Let us assume that (y1,p1) and (y2,p2) are two solution of (2.5). We set y = y2 —y1 and
p = po — p1. Since y; and y» satisfy (2.6), we infer

dy B
a—l—Ay—Ofor a.a. t € (0,7), (3.11)
y(0) = 0.
Now we define = [(A2)']"ly = (A2)~ly € D(A,) = W25(Q2) N W,(€). Then, (3.11) and (3.7) yield
oy S Lo L 1o . .
o [(A2)) M Ay = —[(A2)) T AAZY = —[(A2)]TNAZ)Y A = — Ay

ot
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Therefore, ¢ is the solution of (3.2) with § = 0 and yo = 0. Hence, estimate (3.3) implies that ¥ = 0 and,
consequently, y = 0 as well. Finally, subtracting the partial differential equations satisfied by (y2,p2) and
(y1,p1), we infer that Vp = 0. This implies that p is the zero element of W17 (I; L*(Q)/R).

Remark 3.1. Recently interesting work has been carried out on the treatment of the semigroup associated to
the Stokes equation on LZ(£2) under the assumption that the boundary T' is only Lipschitz continuous. This
requires a restriction on the range of the parameter s. Let us summarize how these results can be utilized for
our treatment of the Stokes equation in W—1%(Q) if the assumption on the regularity of I is relaxed to that of
Lipschitz continuity.

Following [25] we define the Stokes operator in L () is defined by

Asy = —vAy + Vp
with domain
D(A,) = {y e W,*(Q) : divy =0, —vAy + Vp € L5(Q) for some p € L5(Q)}.

We have decided to use the same notation as for the definition of A, given in (3.1). But this should not be
problematic since it is only used within this remark. It was proved in [25] that there exists an ¢ > 0 such that
for all s satisfying

s —5l<ggte (3.12)

and all d > 3, the operator Ay is sectorial with angle 0 and with 0 in the resolvent set, and that — Ay generates
a bounded analytic semigroup on L2 (€2). As a consequence it is densely defined and closed. Moreover W,(€2) N
W25(Q) C D(Ay) and A = —vP,A on W (Q)NW?25(Q). In [19] it was further verified that € > 0 could further
be chosen such that A, has maximal L3 () regularity and that it admits a bounded H*— calculus for all s
satisfying (3.12). This implies that the fractional powers of A, are well-defined and that [Lg(Q2), D(A,)]1 =

’D(AS%) as in the first equality of (3.4) above.

The second equality in (3.4), namely ”D(AS%) = W, (Q) was established in [29] in the case of Lipschitz domains,
see also [30].

Summarizing, there exists € > 0 such that for all s satisfying (3.12), and all d > 3, the structural properties
of Step (i) of the proof of Theorem 2.5 hold. The assertion of Theorem 2.5 can therefore be obtained as before.
It appears to be the case that restriction d > 3 dated back to the work in [25], where the proof utilizes the
fundamental system of the Stokes system.

4. PROOF OF PROPOSITION 2.7

Proof of Proposition 2.7. Let us consider the classical operator associated with the Stokes system A : V. — V'
given by (A, @)y v = a(h, ¢) Vi, ¢ € V. As usual, we take a base {1),}52; of V formed by eigenfunctions of
A: A = Ajap; with {152, C (0,00), j > 1. We assume that {1,}52, is orthonormal for the Hilbert product
in H: (¢;,%,)12(0) = dij- Let us denote by Vj the subspace generated by {%,...,;}. Now we define the
orthogonal L?(Q)-projection operator P : H — V, given by

k
Py =Y (9 L2 ¥;-

j=1
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Following the classical Faedo-Galerkin approach, we discretize (2.11)

%(Yk(t)ﬂbj)m(n) +a(yr(t), ¥;) + vob(yr(t), yr(t), ;) + ble(t), yr(t), ;)

Fhyi(t),ex(t), ;) = (g(t), w;)vv i (0,T), 1< <k, 4.1
y&(0) = yok,
where
k k
=> gei(M; and yor = Pryno = Y (YN0, %)L @)
— o

It is clear that (4.1) has a maximal solution yj, defined in an interval Ij;. We shall derive a point-wise a priori
bound for yj on I for each k from which I = I follows. We will also prove a priori estimates which allow to
pass to the limit in (4.1).

I - Estimates in L>(I; L?()). Multiplying the equation (4.1) by gi ;(¢) and adding from j = 1 to k we infer

1d

5 3 VE @ Lz @) + a(®), yi(t) + byx(®), e2(t), yi (1) = (&), yr(t)) v, v, (4.2)

)) = 0. Let us estimate the term

where we have used the identities b(yg(t),yx(t), yx(t)) = b(e1(t),yx(t), yi(t
L3(I; V) N L>=(I;L2(Q2)) and eq €

b(yk(t),ea(t),yr(t)). To this end we write ex = eay + eaw with ey €
L1(I; W,(2)). Then, we have

b(Yk (t)a €2 (t)7 Yk (t)) = b(Yk (t)a €[ (t)7 Yk (t)) + b(Yk: (t)7 € (t)7 Yk (t))

To estimate the first term we use Schwarz’s inequality, Gagliardo inequality (A.1) with » = 4, and Young’s
inequality as follows

b(yk(t), e2m (), yr(0)] < yr(®)lFe (o lleza ()1
< Cullyr ez llye(®) ey o) lle2n () e o)

v 2 QCZ 2 2
< Zya (g + - Iyw(6) s lean () (4.3)

o ¢)

For the second term, we apply Holder’s inequality, Gagliardo inequality with r» = 2p’, and Young’s inequality
to get

[b(yi(t), e2w (1), Y& (0))] < Iyr (DI 20 (@ 28 (D) W, ()
2 2
< Copllyr Lz [yl @) lle2m ) w, @)

1% 2 22/ ’
< gIye®lE o) + — = lyeOlzz (o lesw 0y, @)- (4.4)

Since p > 3, then p’ < 4 < ¢ holds. Therefore, the function ¢ — ||e2W(t)||€;,p(Q) is integrable in [0,T]. From
(4.3) and (4.4) we infer

14 ’
by (8) e2(6). 3 (D] < 21y (0 g ey + s (e (lle2n Oy + leaw Bl o)
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Now, inserting this inequality in (4.2) we deduce

1d v 1
5&”)%@)”%2(9) +alyr(t), yr(t) < 5“%”%1})(9) + ;Hg(t)ll%/

£ Cllys 0y (lear () Fay ) + leaw (), o).
consequently
Sy oy + ¥ Iys) By
< %Hg(t)H%// + 20|y k(1) 120 (He2H(t)H%—I[1)(Q) + ||ezw(t)||1\);vp(n))' (4.5)
Gronwall’s inequality implies Vt €
Iye(@)llL2(e)

2 2 pl
S (HyokHLQ(Q) + \/;”g”L?(I;V’)) exp {C(HGQH”LQ(I;H})(Q)) + HeQW”Lp/(I;Wp(Q)))}

< i llezan 2ty oy + lezw Nl row, oy ) (I¥or Iy + gl 2iv) )

with

iin(p) = max {1, \/f} exp{C(1+ p")}.

Moreover, by taking the infimum among all elements eayy € L*(1; V) N L% (1;L2(Q)) and eaw € LI(1; W, (2))
satisfying ex = ear + €2, and noting that [lyox||L2(0) = [[PrynollL2(@) < [[ynvollL2(o) we conclude

¥kl rn2 @) < in(llez2ly) (||YNO||L2(Q) + ||g||L2(I;V’))- (4.6)

This estimate implies that I, = [0, 7] for all k.
II - Estimates in L*(I; V). Integrating inequality (4.5) in [0, 7] and using (4.6) we get

T
2
v [ IOy < Iywollaey + 2 gl vy

N 2 ’
+207([lezlv) [||92HH2L2(1;H(1)(Q)) + ||e2W||ip/(1;Wp(Q))] (||YN0||%2(Q) + ||g|\%2(I;V/)>-

Arguing as above, we infer from this inequality

1 2 . v
Ivileerayon < - mas {1, \[} 1+ VaCi(llezllv)lleall ¢ T (Iynolluzce) + lgllzzcravn). (A7)

Then, (4.6) and (4.7) imply that yj satisfies the first inequality of (2.10) for

nw (p) =10(p) + \% max {1, \/E} [1+ @ﬁ(p)p%].
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III - Estimates of y}, in L*>(I; V'). Let us observe that {1;}52, is an orthonormal basis of H and an orthogonal
basis of V. Then, given @ € V we have the identity

V= ; wj,w W By

From here we infer
(Pev, P)ui) = (¥, @) Vo € Vi,

which shows that Py is also the orthogonal H}()-projection of ¥ on V. As a consequence we get that
| Petbllmz o) < [1%llmy ) for every ¢ € V. Moreover, since

k
j=1

we get (v, (1), ¥)r2) = (¥%(t), Pe¥)L2(q). Then, from the differential equation (2.11) we get for every ¥ € V

(Y (), ¥)L2) = (8(1), Putb)vr v — a(y(t), Putb) — vob(yr(t), yi(t), Puip)
—b(e1(t), yr(t), Pewp) — b(yx(t), ea(t), Pxp).

Now we observe that the estimates I and II imply that {y;}$2, is bounded in L?(I; V) N L>(I;H), hence
bounded in Y. Then, using Lemma 2.1 we deduce form the above identity and the inequality ||Pyt|lm1 ) <

19|12 )

Iyellzzcvy < lgllezavey + Iyelly (v + wollyrlly + lledlly + llezlly)-

This inequality along with the estimates (4.6) and (4.7) proves the boundedness of {y} }2%, in L?(I; V'). Hence,
{yx}22, is bounded in W(0,T) and the second inequality of (2.10) holds.

Finally, using the above estimates, it is standard to pass to the limit in (4.1), taking a subsequence if necessary,
and to deduce that {yx}7>, converges weakly in W(0,7") and weakly* in L>°(I; H) to a solution yx of the
system (2.11); see, for instance, Chapter 1-6.4.4 of [21]. Moreover, since every yj, satisfies (2.10), then yy does
it as well. Further, since yy € L?(I; V) and y'y € L?(I; V') we deduce that ynx € W(0,T). Moreover, applying
De Rham theorem we infer the existence of py € W=1°°(I; L?(Q)/R) such that (yn,pn) is solution of (2.9);
see Chaper V-1.5 of [5]. Now, using Lemma 2.1 and Gronwall’s inequality the uniqueness of a solution follows
in a standard way; cf. Chapter V-1.3.5 of [5]. O

5. SENSITIVITY ANALYSIS OF THE STATE EQUATION

In this section we analyze the differentiability of the mapping G : L4(I; W~1?(Q)) — ) associating to each
element f € LI(I; W~17(Q)) the solution y¢ € Y of (2.3).

Theorem 5.1. The mapping G is of class C>. Further, given f,g,g1,82 € LI(I; W~1P(Q)) we have that
zg = G'(f)g and zg1 g0 = G (f)(g1,82) are the unique solutions of the systems

0z
5—VAZ-F(Yf'V)Z'i‘(Z-V)Yf“qu:g in Q,

divz=0 inQ, z=0 on X, z(0)=0 in Q,

(5.1)
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and

0
£ —vAz+ (yf : V)Z + (Z : V)yf + Vg = _(Zgz ’ V)Zgl - (Zgl : V)ZgQ in Q,

divz=0 in@, z=0 onX, z(0) =0 in Q,
respectively, where y¢ = G(f) and zg, = G'(f)g; fori=1,2.
Proof. Let us define the space F = L?(I; V') + L(I; W,/ (Q)") endowed with the norm
£l 7 = inf{|[f1[L2(r;v) + 1f2llLaw,, @) : £ = f1 4+ f2}.

Thus, F is a Banach space. We also consider the operators

Av:V — VI, <Avy,Z>V/7v = I// Vy:Vzdz, VzeV,
Q

Aw, : W,(Q) — W, (), (Avy, z)w,, Q) W,@) = V/Q Vy:Vzdz, Vze W, (Q).

Associated with these two continuous operators we define
ALY ‘)-/_'.7 Ay:AVyl+AWpy27

where y = y1 +y2 with y; € W(0,T) and y; € W, ,(0,T). It is immediate to check that Ay is independent
of the chosen representation y = y1 + y», and it is continuous. Now, we introduce the mapping

G:Yx LYI; Wy (Q)) — F x Y,

dy
G(y.f) = (E + Ay + B(y,y) —£,y(0) — yO),
where yo is the initial condition in (2.1). Recall that Y C C([0;T); Yo) holds. Hence, y € Y — y(0) € Yo
is a linear and continuous mapping. Moreover, Lemma 2.1 implies that y € ¥ — B(y,y) € L*(I;H1(Q)) C
L*(I; V') C F is bilinear and continuous. By definition of W (0,7) and W, ,(0,T’) we also have that % Y= F

is a linear and continuous operator. All together this implies that G is a C*° mapping.
Given f € LI(I; W,/ ()"), we denote by y¢ € ) the solution of (2.3). Then, we have that

g

g(yf,f)iy%fXYo,
% (y1.1) —(@+A +B(y;,2) + B(z,ys),2(0)) Vz€Y (5.3)
ay Y1)z = ot VA Yr, 2z Z,¥f),2 Z .

is a linear and continuous mapping. Actually, it is an isomorphism. Let us prove this. Given an arbitrary element
(g,Zo) € FxYy, weset g =gy +gs and zg = zno + 250 With gy € LQ(I; V/), gs € Lq(]; Wp/(Q)/), zno € H,
and zgo € B, 4(2). Now, we show the existence and uniqueness of a solution z € ) of the equation

0z

5 + Az + B(yyf,z) + B(z,yf) =g in (0,7,
z(0) = zo.
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We decompose the system in two parts

6Zs .
W +AVVPZS =gs 1n <O’T)7 (55)
z5(0) = zso,
and
8ZN .
-5 TAvay + B(ys,zn) + B(zn,yt) = gv — B(ys, zs) — B(zs,yt) in (0,7), (5.6)

zn(0) = zn0 in Q.

The existence and uniqueness of a solution zg € W, ,(0,T) of (5.5) follows from Theorem 2.5. In equation (5.6),
we have that zyg € H, yr € Y, and from Lemma 2.1 we get that the right hand side of the partial differential
equation belongs to L(I; H~1(Q)). Hence, from Proposition 2.7 we infer the existence and uniqueness of a
solution yx € W(0,T) of (5.6). Now, setting y = yn +ys € V, we deduce that y is a solution of (5.4). The
uniqueness follows from Gronwall’s inequality, arguing as in the proof of Theorem 2.4.

Now, it is enough to apply the implicit function theorem to deduce the existence of a function G : W, (Q)/ —
Y of class C* such that G(G(f),f) = 0 for every f € LI(I; W, (Q)'). Hence, G(f) = y¢ is the solution of
(2.3). Moreover, by differentiation with respect to f of the identity G(G(f),f) = 0, setting z, = DG(f)g for
g € LY(I;W~1P(Q)), and using (5.3) and Rham’s theorem equation (5.1) follows. The equation (5.2) follows
easily from the identity

oG 0z
g2 (@1 82)m = (57 + Az + Blyy,2) + Blaye) + Blog, 7,) + Blrg, 7). 5(0)).

Finally, the theorem follows by observing that G : LI(I; W~1P(Q)) — Y is given by G = G o R, where
R, : LY(I; W1P(Q)) — £ € LI(I; W,/ (Q)') is the restriction operator, that is linear and continuous. O

6. ASYMPTOTIC STABILITY OF STEADY SOLUTIONS

In this section we extend an asymptotic stability result to the case of a source term f € W,(Q), with
pE [%,2)7 independent of time, compare e.g. Section 3.4 of [5]. Associated with this source we consider an

element (Yoo, Poo) € WP (Q) x LP(Q)/R satisfying the following steady-state Navier-Stokes equations

(6.1)
divyee =0 inQ, yoo =0 onTI.

{ ~VAY oo + (Yoo - V)¥oo + VPoo = f in ©,
The reader is referred to [24] for the existence of a solution of (6.1) in the mentioned space. In this section, we
will prove that given yg € H and assuming that f is small enough, the solution of

%Bt’,,,AyHy.v)y+vp:f in Q x (0,00),

divy =0 in Qx (0,00), y=0 onT x (0,00), y(0) =yp in Q.

(6.2)

satisfies that y(t) — yoo as t — co. First, let us prove that the solution of (6.1) is unique if f is small enough.

Lemma 6.1. There erists a constant Cy depending only on v, p and Q such that if ||f|w-1.,(q) < Cs, then
(6.1) has a unique solution (Yoo, Poo) € Wp(2) x LP(Q)/R.
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Proof. Let (yi1,p1) and (y2,p2) be two solutions of (6.1) belonging to W,(2) x LP(Q)/R. We set (y,p) =
(y2 = y1,p2 —p1) and

g=—{(y-V)er(yz-V)er(yV)yg .

Then, (y,p) € W,() x LP(I;Q)/R is the unique solution of the Stokes system

(6.3)

—vAy + Vp=gin Q,
divy=0 inQ, y=0 onT.

It is easy to check that g € H™1(Q) ¢ W~LP(Q). Using this fact, Cattabriga’s result [8], see also ([13],
Thm. IV.6.1), and the embedding V C W,(2), we infer that y € V. Therefore, we can multiply the
equation (6.3) by y to get

V”YH%—I})(Q) — (& Y)u-1@.Hy @ = 0. (6.4)
Using that b(y,y,y) = b(y2,y,y) = 0 and b(y,y2,y) = —b(y,y,y2) it yields

(&, ¥ u-1(0)mi@)) = [0y, ¥ ¥2)| < [[¥llLa@lly2llLs@lly o) < Cl||y2HL4(Q)HyH%—I(1)(Q)’ (6.5)

where C; only depends on . Now, from Theorem 2.3 of [7] we infer the existence of a constant M, depending
only of p, v and 2 such that

||y2||w})4’(n) < Mprpr,(Q)' (1 + HY2||L4(Q)).

Hence, with the inequality [|y2||Ls o) < C’2Hy2||wé,p(9)7 recalling that p > %, and assuming that
1
f < =
Iflw, 0 < Goar
we obtain

CoMp||f[lw, , )

ly2llLi) < 1= CZMp”f”Wp,(Q)’. (6.6)
From (6.4) and (6.5) we get that y = 0 if C|lyz||Ls() < v. With (6.6) this inequality holds if
I€llw, @) < Coe = o veir (6.7)
P (C1 +v)Co M,
Finally, the uniqueness of po, € LP(€2)/R follows from the uniqueness of yo, in W, (). O

Now, we prove the main theorem of this section.

Theorem 6.2. Let us assume that (f,yo) € W—1P(Q) x H with f satisfying (6.7). Let y € Y be the solution of
(6.2). Then, there exists a constant a > 0 depending only on Q, p and v such that the following estimate holds

[y (t) = yYoollLz@) < lIyo — yoollLz@e ™", vt > 0. (6.8)
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Proof. Let us set (z,q) = (¥ — Yoo, P — Poo). Hence, we have

O VATt (2 V)at (v V)at (2 V)ya + VA =0 0 Q,

divz=0 inQ, z=0 on X, z(0) =yg — Yoo in Q.

(6.9)

First, we observe that yo, € W,(2) C H, hence yp — yoo € H. Taking vy = 1, €1 = €3 = Yoo, g = 0 and
YN0 = Y0 — Yoo in Proposition 2.7, we deduce with Theorem 2.5 that (z,q) € W(0,T) x W=1°°(I; L?(Q)/R)
and that it is the unique solution of (6.9). Then, multiplying (6.9) by z and using that b(z,z,2) = b(y,2,2) =0
and b(z,Yo0,2z) = —b(2,2,yo) we infer

1d
5 l5(0) [y + POy ) — D), 2(0), Yoo (1)) =0, for aua 1> 0. (6.10)
As in (6.5), we have

b(2(t), 2(8), Yoo ()] < Cillyoollescey 2]z -

Therefore, with (6.6) and the inequality [|z|rz(q) < Cs|z|g (o) it follows

C1C2 My ||flw,, )

C1C M, ||f|w
> Ly DOy,
G\ 1= G, [flw, oy

Taking

«

1 ( Clc?MPHfHWP/(Q)’ )
= — v — s
C3 1= CoMy|Ellw,, oy

we deduce from the assumption ||f||w-1.,(q) < Cs that a > 0. Moreover, from (6.10) we obtain

d
a”z(t)”iz(m + 2a||z(t)H%2(Q) <0, fora.a.t>0.

Applying Gronwall’s lemma to this inequality we deduce (6.8). O

APPENDIX A

Proof of Lemma 2.1. Let y1,y2 € Y and (y;m,yiw) € [L2(I; V) N L®(I;H)] x LY(I; W,(£)) be elements
such that y; = y; g +yi,w for i = 1,2. Then, we are going to prove estimates for the terms B(y1 m,y2.1),
B(y1,z.y2,w), By1,w,y2,1), and B(y1,w,y2w). Given ¢ € H§(Q), we observe that

2
(B(y1,¥2), )1 () 1y = Z /QyLz‘(Ivt)axq:)’Zj(antﬁ/’j@)dx-

ij=1
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To deduce the estimates we will use the Gagliardo inequality
2 r=2
¥ty < Collyllie o)1 lgi ) V7 € (2,00) and Vy € Hg(9);
@) o()

see ([6], page 313). Now, we proceed in four steps.
Step 1.- Using that divy; g = 0, we know that

/ (y1,1 - V)y2,ultpde = —/ (y1,15 - V)ly2,um de.
Q

Q
Then, from Schwarz’s inequality and (A.1) with r = 4 it follows

1 1
2 2

T T
(/ <B<yl7H<t>,y2,H<t>>,¢>|2dt) =</ |<B<y1,H<t>,¢>,y2,H<t>>|2dt)

T 3
<</0 yl,H(t)|i4(Q)IIyQ,H(t)Ili4(Q)dt) 1% ll32)

N

T
<C} </o [y1,8 O llLz@ Iy 1,m ()l o) lly2z @) llLz@) |y, m ()l o) dt) %1l ea )

1 1 1 1
< CA%Hyl,HHzoo(];Iﬁ(Q)) HYLHsz(];Hé(Q)) Hy2,HH[2,oo(1;L2(Q)) ||Y2,H||22(1;Hé(9)) ||'¢’||H})(Q)

02
< T4

= (||Y1,H||L°°(I;L2(Q)) + ||Y1,H||L2(1;H5(Q)))

% (Iy2,all o raay + vzl ) 1l -

Step 2.- Using Holder’s inequality and (A.1) with r = 2p' = % we get

2

T
</0 |<B(y1,H(t),y27W(t))’,¢>|2 dt)

2

T
< </0 HYl,H(t)”izp'(Q)H"pnim’(g)”)Q,W(ﬂ”%vévv(g) dt)

=

T 2 2 2
sc( [ G AP A W dt) It lsz3 -

Applying Holder’s inequality with r; = ro = p, and r3 = 4 we find

g
pg—q—2p’

4 1
< Cllyvallsr, )Hyl,H||£2([‘H(l)(Q))Hy2>WHLG(I;W&”’(Q))H’(/)HHé(Q)
LY ’

(LL2(Q)

3

1 L 1
< CT? Hy1,H||zoo(1;L2(Q)) |y1,1 ‘|£2(1;H(1)(Q)) ||y27W||Lq(I;Wé”’(Q)) ||¢||HE,(Q)’

(A.3)
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and with Young’s inequality we infer

1
CT21
< = (Imlleecneen + Wyl ) 1920 Loy 2o 1 Do) (A.4)

Observe that ¢ > pQTp1 implies pg — g — 2p > 0, hence r; > 1 and the use of Holder’s inequality is correct.
Step 3.- Using again Holder’s inequality and (A.1) with » = 4 we obtain

1
2

T
(/0 |<B(Y1,W(t),yQVH(t))7¢>|2 dt)

2

T
S(/O ||YI,W(t)||i4(Q)||y2,H(t)||i4(Q)dt) %l ee )

=

T 2
<} (/0 HyLW(t)||3N(1],p(9)|\Y2,H(t)HL2(Q)||}’2,H(t)||H5(Q) dt) 19| )

applying Holder’s inequality with ry = 2, ry = ;%4, and r3 = 2 we infer

2 3 3
< ||y17W||Lq(1;W(1’vP(Q))”y?,H”L%(I;Lz(Q))||y2,H||L2(I;H(1](Q))||’¢||H(1)(Q)
ot : :
< CIT % ||y1,W||L<I(I;W(1)’P(Q))||y2,H||L00(];L2(Q))HyQ,HHL2([;H(1)(Q))“¢||Hé(§2)
'
< T”yLWHLQ(I;Wé’p(Q))(”ylH”L"’C(I;LQ(Q)) + ||Y2,H||L2(I;H(1)(Q))>||’¢HH5(Q)' (A.5)

Step 4.- Using again the property (A.2), Holder’s inequality, the embedding Wé’P(Q) C L4(9Q), due to p > %,
and the fact that ¢ > 4 we obtain

Nl

T
</0 '<B(Y17W<t)’mw<t>>,¢>|2dt>

SIS

T
<</o ||Y1,W||%4(Q)||YZ,W||%4(Q)dt> 1% lex )

< C||y17W||L4(I;Wé*p(Q))||y27W||L4(I;Wé“’(Q))”’IPHH})(Q)
2(g—4)

<CT = HYI,WllLG(I;Wé”’(Q))||y2,W||L4(I;Wé'p(Q))”'lvaHé(Q)- (A.6)

Finally, adding the estimates (A.3)—(A.6) we obtain

1B(y1,y2)lz2(rm-1(0)) < C(||Y1,H||L°°(I;L2(Q)) +llyrelzam) + ||Y1,W||Lq(1;wé=P(Q))>

% (2, mlle sy + Iyzmllzaeye) + 1y2wlpogaws @ ) (A7)
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Taking the infimum on the right hand side of the above inequality among all functions (y; m,y:.w) €
[L2(I; H () N L0, T; L2(Q))] x L0, T; WyP(Q)) satisfying that y; = y; g + yiw, i = 1,2, we conclude

I1B(y1,y2)le2rm-1 ) < C'llyilly ly2|ly-

O
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