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Summary 
 

Lipopolysaccharide (LPS), also called endotoxins, is the major component 

of the outer membrane of Gram-negative bacteria and is constituted of 

three regions; the O-specific chain, the core region and the lipid A, which 

is the responsible segment of toxicity. Lipid A presence often poses a 

serious risk not only when delivered in the bloodstream but also in several 

industrial fields.  

As described in chapter 1, endotoxin contamination has been reported in 

different industries and environments as for example, in water and 

sewage treatment plants and in the cotton, food and pharmaceutical 

industry. Also, endotoxins have also been detected in house-dust, in 

bioaerosols, soil, water, air conditioners and waste treatment plants 

where organic-water solvent extraction systems, ultrafiltration processes 

and chromatographic techniques have been employed to avoid 

contamination in both processes and products.  

Besides, LPS is highly toxic when is present in human blood, and causes 

fever, physical discomfort, leukocyte alterations and respiratory 

affections. In the worst scenario it can lead to sepsis, an exaggerated 

response to LPS that triggers immune suppression, organ dysfunction or 

even death. Despite the advances in knowledge on sepsis 

pathophysiology, several observational studies and clinical trials have 

failed to identify effective adjuvant therapies that could modify the 

course of the disease. 

In the search of alternative methods of contaminant removal, blood 

cleansing procedures for the extracorporeal endotoxin separation have 

received increased attention. In this context, various strategies for LPS 

separation from contaminated fluids have been developed such as 

organic solvent extraction, the use of detergents such as Triton X-100 or 
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antibiotics (polymyxin B) immobilized on polystyrene fibers and packed 

into columns ready for direct perfusion of the biofluids. Unfortunately, in 

spite of these efforts, most of these systems have drawbacks that make 

endotoxin detection/removal a crucial challenge to achieve safe and 

effective detoxification processes. 

In this regard, progress and capabilities of magnetofluidic devices 

deserves special attention. Magnetofluidic devices entail two main stages 

taking part in the whole process; the initial entrapment of LPS in 

conveniently functionalized magnetic nanoparticles (MNPs) and, the 

removal of the loaded MNPs from the biofluid. Whereas the second stage 

has received the attention of a great number of researchers, the LPS 

capture, where functionalized beads selectively bind to the target 

pathogen needs further research. 

Consequently, this dissertation reports the methodology to advance in 

the design of the LPS sequestration stage to promote its separation from 

biofluids. To this end, first, chapter 2 reports the procedure for an 

antilipopolysaccharides protein from Limulus polyphemus (LALF) 

synthesis based on genetic engineering techniques where the first step 

was to assembly a plasmid, a small, circular, double-stranded DNA 

molecule consisting of a gene encoding the protein of interest in a 

specialized vehicle called vector. Subsequently, the circular DNA was 

transformed into cells capable of expressing the protein, which, in a final 

stage was successfully purified.  

Afterwards, chapter 3 addresses the binding strength of the LALF protein 

to LPS quantification through a newly approach that consisted of a 

functionalization stage where the protein was supported on the surface 

of agarose beads and then, a capture stage where the decorated particles 

were contacted to fluorescent LPS solution. Moreover, variables affecting 

the beads-LALF-LPS complex formation such as binding and capture 

temperature, the optimum bead: protein and protein:LPS ratios, were 

experimentally studied to accurately determine the LALF activity. 
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Once LALF:LPS complexation equilibrium was determined, it was 

necessary to develop an application to carry out the continuous LPS 

capture aimed at fluid detoxification based on the use of flow-through 

microdevices. Because of the novelty of this approach, an in-depth 

methodology has been developed and described in chapter 3, making use 

of chemical systems with known equilibrium and kinetics and maintaining 

the fluid-dynamic similarity. Thus, the design of microdevices for the 

homogeneous and L-L heterogeneous separation of aqueous anions 

(chromate) has been developed, setting the grounds to continue with the 

microfluific design of L-S separation and finally its application to LPS 

capture.  

ANSYS FLUENT software was used to develop a flexible model that solves 

under dynamic conditions both Navier-Stokes and species balance 

equations; the model also implements the surface tension between the 

liquid phases that had been experimentally determined, and the fluid-wall 

interaction through the measurement of the contact angle.  

Last, experimental and simulated results were compared in order to 

validate the model and apply it to the subsequent analysis of the reactive 

L-S systems and, finally perform the capture of LPS.  
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Resumen 

 

El lipopolisacárido (LPS), o endotoxina, es el principal componente de la 

membrana externa de las bacterias Gram negativas y está constituido por 

tres regiones: la cadena específica O, la región del núcleo y el lípido A, que 

es el segmento responsable de su toxicidad. La presencia del lípido A suele 

suponer un grave riesgo no sólo cuando llega al torrente sanguíneo, sino 

también en varios ámbitos industriales.  

El capítulo 1 explica la problemática asociada a la contaminación por 

endotoxinas registrada en diferentes industrias y entornos, como, por 

ejemplo, en las plantas de tratamiento de agua y aguas residuales y en la 

industria del algodón, la alimentaria y la farmacéutica. También se han 

detectado endotoxinas en el polvo doméstico, en los bioaerosoles, en el 

suelo, en el agua, en los aires acondicionados y en las plantas de 

tratamiento de residuos, donde se han empleado sistemas de extracción 

con disolventes orgánico-acuosos, procesos de ultrafiltración y técnicas 

cromatográficas para evitar la contaminación tanto en procesos como en 

productos.  

Además, el LPS es altamente tóxico cuando está presente en la sangre 

humana, y provoca fiebre, malestar físico, alteraciones leucocitarias y 

afecciones respiratorias. En el peor de los casos, puede conducir a la 

sepsis, una respuesta exagerada al LPS que desencadena una supresión 

inmunitaria, una disfunción orgánica o incluso la muerte. A pesar de los 

avances en el conocimiento de la fisiopatología de la sepsis, estudios y 

ensayos clínicos no han logrado identificar terapias adyuvantes eficaces 

que puedan modificar el curso de la enfermedad. 

En la búsqueda de métodos alternativos para la eliminación de 

contaminantes, los procedimientos de detoxificación de la sangre para la 
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eliminación de endotoxinas han recibido gran atención. En este contexto, 

se han desarrollado diversas estrategias para promover la separación del 

LPS de fluidos contaminados tales como la extracción con disolventes 

orgánicos, el uso de detergentes como Triton X-100 o de antibióticos 

(polimixina B) inmovilizados en fibras de poliestireno y empaquetados en 

columnas a través de las que se puede realizar la perfusión directa del 

fluido contaminado. Lamentablemente, a pesar de estos esfuerzos, la 

mayoría de estos sistemas extracorpóreos presentan inconvenientes que 

hacen que la detección/eliminación de endotoxinas sea un reto crucial 

para lograr procesos de detoxificación seguros y eficaces. 

En este sentido, los avances y las capacidades de los dispositivos 

magnetofluídicos merecen especial atención e implican dos etapas 

principales; el secuestro de LPS en nanopartículas magnéticas (MNPs) 

convenientemente funcionalizadas y, la eliminación del complejo MNPs-

LPS del fluido biológico. Mientras que la segunda etapa ha sido 

ampliamente abordada, la captura de LPS en la que las partículas 

funcionalizadas se unen selectivamente al patógeno objetivo necesita 

más estudios al respecto. 

En consecuencia, esta disertación aporta una metodología integrada para 

avanzar en el diseño de la etapa de secuestro de LPS para promover su 

separación de los biofluidos. Para ello, el capítulo 2 describe la síntesis de 

una proteína antilipopolisacáridos (LALF) procedente de la especie 

Limulus polyphemus mediante técnicas de ingeniería genética. 

Inicialmente, se construyó un plásmido, una pequeña molécula de ADN 

circular de doble cadena, compuesta por un gen que codifica la proteína 

de interés en un vehículo especializado denominado vector. 

Posteriormente, el plásmido fue transformado en células capaces de 

expresar la proteína que, finalmente fue purificada con éxito. 

Posteriormente, el capítulo 3 aborda la cuantificación de la fuerza de 

unión de la proteína LALF al LPS mediante un nuevo enfoque que consiste 

en una etapa de funcionalización en la que la proteína es adherida en la 

superficie de las partículas de agarosa y, a continuación, una etapa de 

captura en la que las partículas decoradas se ponen en contacto con una 
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disolución de LPS fluorescente. Además, se estudiaron 

experimentalmente las variables que afectan a la formación del complejo 

partícula-LALF-LPS, como la temperatura de unión y captura, y las 

proporciones óptimas partícula: proteína y proteína:LPS, para determinar 

la actividad de LALF. 

Una vez detallado el equilibrio de complejación LALF: LPS, fue necesario 

desarrollar una aplicación para llevar a cabo la captura de LPS en continuo 

para a la detoxificación de fluidos. Debido a la novedad de este enfoque, 

el capítulo 4 recoge una metodología desarrollada en la que se ha 

empleado un sistema químico cuyo equilibrio y cinética son conocidos y 

con similitud fluido-dinámica. Por tanto, se ha desarrollado el diseño de 

microdispositivos para la separación homogénea y heterogénea L-L de 

aniones acuosos (cromato), sentando las bases para continuar con el 

diseño microfluidico para la separación L-S y finalmente, su aplicación a la 

captura de LPS. 

Además, utilizando el software ANSYS FLUENT se desarrolló un modelo 

flexible que resuelve, en condiciones dinámicas, tanto las ecuaciones de 

Navier-Stokes como las del balance de especies. En el modelo también se 

han implementado la tensión superficial entre fases determinada 

experimentalmente y la interacción fluido-pared mediante la medición 

del ángulo de contacto.  

Por último, los resultados experimentales y simulados fueron comparados 

para validad el modelo y aplicarlo al posterior análisis de sistemas 

reactivos L-S y a la captura de LPS. 
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Introduction 

 

 

 

Abstract 

This thesis reports an integrated methodology to advance in the design of 

the LPS sequestration stage to promote its separation from biofluids. The 

methodology combines protein and separation fundamentals and starts 

with the synthesis of an anti LPS factor protein (ALF), followed by the 

quantitative determination techniques of its binding strength to LPS. For 

this analysis ALF was supported on agarose beads and the variables 

affecting the functionalization and subsequent LPS binding, as binding 

and capture temperature, the optimum bead:protein and protein:LPS 

ratios, have been experimentally studied. The methodology and results 

here reported constitute the information needed to advance the 

knowledge for the design of LPS separation devices.  
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1.1. Gram negative bacteria and LPS structure  

Prokaryotic cells comprise bacteria and archaea, both characterized by 

the absence of nucleus and membrane bound organelles. Focusing on 

bacteria, these single-celled microorganisms are found everywhere on 

the planet and show diverse shapes and structures. About 5,000 different 

bacteria have been identified living in Earth ecosystems, including our 

body [1,2]. 

Bacteria are classified into two large groups: gram-positive (GPB) and 

gram-negative (GNB) since, in 1884, Hans Christian Gram developed a 

method to distinguish between them by using a crystal violet-iodine 

complex and a safranin counter stain. While gram-positive bacteria 

turned violet or purple, gram-negative bacteria did not retain the complex 

and stained pink. This different behavior is explained due to the 

composition or the morphology of the cell wall in each bacterial type [3] 

as depicted in Figure 1.1.  

 

Figure 1.1. Gram-positive and gram-negative bacteria structural 
differences. 
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Gram-negative bacteria are characterized by an envelope that consists of 

the inner and the outer membrane separated by an aqueous cellular 

compartment termed the periplasm that contains a peptidoglycan cell 

wall which provides the cell from their specific shape [4] as shown in 

Figure 1.2. The inner membrane (IM), which surrounds cytoplasmic 

components, is a phospholipid bilayer that is responsible for structure, 

transport, and biosynthetic functions [5]. The outer membrane (OM) is 

the main feature that distinguishes GNB from GPB. This outer layer 

separates the cell from the environment and constitutes the first defense 

line against potential threats. It is a highly asymmetric bilayer that 

contains phospholipids in the inner leaflet and lipopolysaccharide (LPS) 

molecules in the outer leaflet [6]. 

 

Figure 1.2. LPS structural regions on GMB outer membrane. 

LPS, also called endotoxins, is recognized as the major structural 

component of the OM. These LPS molecules have the ability to transform 

the OM into an effective permeability barrier against small, hydrophobic 

molecules that can otherwise cross phospholipid bilayers, making GNB 

resistant to antimicrobial compounds [7,8]. 
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LPS is a large glycolipid whose chemical structure consists of three 

structural domains: O-antigen, outer and inner core and Lipid A [9]. The 

O-antigen is an extended polysaccharide composed of a repeating 

oligosaccharide made of two to eight sugars that is attached to the core 

oligosaccharide with hydrophilic nature [10,11]. The core is a partially 

phosphorylated heteropolysaccharide composed of a non-repeating 

oligosaccharide linked to the glucosamines of lipid A  [12,13] and usually 

contains 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) residues, heptoses, 

and various hexoses [14,15] and structurally is more uniform than the O-

antigen.  Finally, the lipid A region that forms the outer leaflet of the OM 

is responsible for biological activity and toxicity. Lipid A is the hydrophobic 

portion of the molecule commonly composed of two glucosamine units, 

each containing a phosphate group, with attached fatty acids. The 

phosphorylated glucosamines, together with the KDO-containing inner 

core portion, represent the most conserved region of LPS in structural 

terms. Lipid A is thus an amphiphilic glycolipid that has the ability to adopt 

different physical structures under different temperature or pH 

conditions [16,17]. Due to the toxic effects, LPS presence causes relevant 

contamination problems that must be addressed as it affects to diverse 

fields. 

 

 

1.2. LPS in industrial environments and removal 

techniques 

Endotoxin contamination has been reported in different industries and 

environments as for example, in wastewater treatment plants. 

Endotoxins in public drinking water supplies pose a potential concern 

where the removal involves traditional treatment processes as 

coagulation, sedimentation and filtration as well as granular activated 

carbon (GAC) adsorption chlorination [18,19].  Moreover, sewage 

treatment plants have also involved exposure to different types of 

microorganisms, viruses and chemicals, mainly gram-negative bacteria 
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which are of particular interest as the acute effects of endotoxins are well 

documented in several inhalation experiments in humans [20,21].  

In fact, LPS has also been detected in other industrial environments, such 

as the cotton industry, from which chronic dust inhalation could involve 

byssinosis due to an inadequately ventilated working environment during 

exposition to cotton [22]. Food industry has also been  affected by 

endotoxin presence in milk and dairy products, where process hygienic 

levels must be guaranteed [23]. In addition, undercooked beef burgers, 

raw milk, cold sandwiches, vegetables and even water have been 

considered potential sources of outbreaks and therefore, reliable 

detection methods are needed to screen high-risk foods [24].  

Furthermore, potential risk of engineered nanoparticles is of particular 

importance in nanomedicine since endotoxins can mask the toxic effects 

of nanoparticles. Endotoxin presence in nanomaterials can distort the 

evaluation of the possible toxic and inflammatory effects of the 

nanomaterials as several studies both, in vivo and in vitro, have 

demonstrated, suggesting a potential risk for human health [25]. Also, 

endotoxin has also been detected in house-dust, in bioaerosols, soil, 

water, air conditioners and waste treatment plants, where organic dusts 

are present and negative health effects have been described as a 

consequence of handling waste and biofuels  [26].  

Among all the different fields affected by LPS contamination, endotoxins 

pose a high risk to pharmaceutical industries due to the employment of 

Gram-negative bacteria in biopharma manufacturing to produce 

recombinant DNA products like proteins and peptides. In this context, 

contamination by toxins or pyrogens involve high batch rejection rates of 

biopharmaceuticals as these bioproducts are rigorously controlled to 

avoid serious issues and work safety infractions. In fact, this industry is 

adhered to regulations and strict international quality standards 

regulated by different organisms as the Federal Drug Administration and 

the Occupational Health and Safety Administration in the United States or 
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the European Agency for Safety and Health Work in Europe, that ensures 

the contamination control [27].  

When unfortunately, endotoxin presence is detected on a bioproduct, 

there are two difficulties to face in order to proceed with the removal. 

The first one is to make sure that the applied procedure must not alter 

the product during the endotoxin clearance. The second one is related to 

the low endotoxin concentration in the product and the difficulty in 

removing bound endotoxin. In this regard, different removal techniques 

based on endotoxins structure and composition have been developed to 

address its removal [28].  

As an alternative to organic-water solvent extraction systems, the use of 

aqueous systems has become popular as it favours milder conditions that 

do not harm or denature labile biomolecules. In addition, aqueous- two-

phase partitioning systems serve effectively for endotoxin removal thanks 

to their hydrophobic nature. Moreover, these systems offer flexibility in 

the face of altering factors like polymer mass, pH, ionic strength and 

concentration of the phase component or through the addition of affinity 

ligands [29]. Although endotoxins tend to form micelles or vesicles in 

aqueous solutions, ultrafiltration techniques work by excluding 

endotoxins through molecular weight using an ultrafine filter that blocks 

molecules greater to 10 kDa and often, this process is coupled with 0.1 

µm filters for bioburden control. Despite ultrafiltration has shown 

effectiveness for water decontamination, little effect on endotoxin levels 

has been reported [30,31]. Besides, for many applications of endotoxin 

clearance, the negative chromatographic technique is the preferred 

method as it acts to bind endotoxin through binding affinity.  

In contrast, ion exchange chromatography uses positive charges that non-

selectively attract the negatively charged endotoxin allowing the elution 

step. Variables as the pH range, temperature, flow rate and the amount 

of electrolytes in the solution directly affect both processes and some 

modifications of the technique include large bead hydrogel-based 

methods as the inside-out ligand attachment technique [32,33]. 
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Furthermore, size exclusion chromatography, in spite of the dependence 

of the biomolecules size, can also be considered [34,35].   

Additionally, but not so widely used, electrophoresis has been reported 

to separate LPS from biomolecules and washing steps with non-ionic 

surfactants can favour endotoxin dissociation from protein solutions. 

However, the aforementioned techniques for endotoxin clearance can 

lead to some loss of product yield and are not suitable for many processes 

as sometimes, the contamination risk is not completely eliminated [36–

38]. Therefore, the implementation of routine endotoxin tests could 

minimize the undesired consequences of LPS contamination. 

Conventional LPS detection methods are the rabbit pyrogen test (RPT) 

and the Limulus amoebocyte lysate assay (LAL). The principle of detection 

of the RPT, which came out in the 1920s, consists on the injection of 

pharmaceutical drugs into rabbits and the observation of the response in 

terms of temperature rise or fever [39]. In 1997, the US Food and Drug 

Administration approved the use of the LAL test in replacement of RPT as 

a method for endotoxin detection. The LAL assay uses blood extract from 

horseshoe crab (Limulus Polyphemus) and is based on clot formation 

when the blood extract is contacted with LPS. An improvement of the LAL 

detection method was implemented with the discovery of  zymogen  

factor C, the major endotoxin-mediated cascade component with high 

LPS detection capacity, which switches to its active form under LPS 

presence [40]. Despite its high sensitivity and specificity for G(-) bacterial 

walls, crab over-fishing is threatening the species and therefore, the 

European Directorate for the Quality of Medicines and Healthcare 

(EDQM) revised its using guidelines [41–43] which rises the importance of 

the design and development of sustainable and affordable new LPS 

capture or detection systems. 
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1.3. LPS in human body and removal techniques 

 

LPS is highly toxic when is present in human blood, and causes fever, 

physical discomfort, leukocyte alterations and respiratory affections. In 

the worst scenario it can lead to sepsis,  an exaggerated response to LPS 

that triggers immune suppression, organ dysfunction or even death 

[44,45]. Just to contextualize, 49 million cases of sepsis (41% of all global 

sepsis cases in 2017 affected to children under 5 years of age) and 11 

million sepsis-related deaths occurred worldwide in 2017, accounting for 

approximately 20% of all-cause deaths. Mortality is estimated to be 42% 

in intensive care patients treated for sepsis and, among sepsis survivors, 

one in three died within a year and one in six experienced significant, long 

term mortality. Consequently, the economic burden of this disease is 

tremendous; for example, the annual cost in the USA is estimated at $16.7 

billion and the median of the mean hospital-wide cost of sepsis per 

patient was $32,421 [46,47].  

 

1.3.1. Immune response   

Several studies have been carried out to deeply describe the immune 

mechanism triggered by the LPS presence in the human body. When LPS 

presence activates the immune system response, it starts a “cascade 

mechanism” involving membrane proteins as toll like receptors (TLR) and 

CD14, [48–50] as illustrated in Figure 1.3.   

LPS interacts with different cell types, inducing the activation of 

macrophages whose cell surface contains many pattern recognition 

receptors for different microorganisms. Among these receptors, toll-like 

receptors (TLR) are transmembrane proteins enriched in leucine in the 

ectodomain that selectively recognize LPS [51]. TLR4 is predominantly 

expressed in phagocytes and, its signaling task needs the co-expression of 

an adaptor protein called MD-2. MD-2 is a lymphocyte antigen present in 

most cells of the human body and it has been identified as an 

accompanying receptor of TLR4 in LPS sensing stages. This means that 

both MD-2 and TLR4 are co-expressed and form an heterodimer prior to 
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LPS binding on the MD-2 positively charged region, [52–55].  Five of the 

six lipid chains of LPS are bound to MD-2 and the remaining chain 

interacts with TLR4 of a second MD-2-TLR4 complex inducing the 

formation of a TLR4–MD-2–LPS dimer  [56] which triggers an intracellular 

signal that leads to pro-inflammatory cytokines and chemokines [57].  TLR 

ligands induce co-stimulating molecules as CD14 [58–60], which is both a 

phospholipid and an LPS transporter [61,62].  LPS released by bacteria is 

previously complexed with the lipid binding protein (LBP), a plasma 

protein which is mainly produced by hepatocytes and is by far the most 

extensively studied soluble protein with LPS-binding capacity [63,64].  LBP 

is an elongated molecule formed by two domains (N-terminal and C-

terminal) [65]. Each N- and C- terminal domain contains a hydrophobic 

pocket able to bind phospholipids. The basic mechanism involving LPS and 

LBP starts when LPS aggregates are dissociated by the LPS-binding protein 

(LBP) to form LPS-LBP complexes [66,67]; the LPS-LBP complexes are 

transferred to CD14 representing the early step in cell activation by LPS. 

Thus, the rate of either process will determine the response of the host 

to LPS [58].  

 

Figure 1.3. Human immune cascade triggered by LPS presence. 
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1.3.2. LPS removal techniques in poisoned blood 

Sepsis is a medical emergency and life-threatening condition due to a 

dysregulated host response to infection but, despite the advances in 

knowledge on sepsis pathophysiology, several observational studies and 

clinical trials have failed to identify effective adjuvant therapies that could 

modify the course of the disease [68,69]. In the absence of any specific 

sepsis treatment, it is crucial to treat sepsis as a medical emergency, to 

seek for the early control of infection and organ support [70–72]. Since 

time is paramount in the prognosis of sepsis, the 2016 Surviving Sepsis 

Campaign (SCC) guidelines advocate for intravenous broad-spectrum 

antibiotics that must be a priority, ideally within the first hour of diagnosis 

[72,73]. 

In the search of alternative methods of contaminant removal, blood 

cleansing procedures for the extracorporeal endotoxin separation has 

received increased attention. Various extracorporeal strategies have 

been developed, such as organic solvent extraction, the use of detergents 

such as Triton X-100 or antibiotics (polymyxin B) immobilized on 

polystyrene fibers and packed into columns for direct blood perfusion 

[74–78]. 

Endotoxin removal cartridges (Toraymyxyn, PMX-F) were developed as 

medical devices via hemoperfusion employed for the treatment of 

patients with endotoxic septic shock who are unresponsive to 

conventional therapies. These cartridges consist on polymyxin B (PMB) 

covalently immobilized in polystyrene fibers as PMB has been 

demonstrated as an LPS-neutralizer thanks to its antibacterial and 

antiendotoxin capabilities [79]. Removal efficiencies  up to 90% have been 

reported [80]  but the use of these cartridges is restricted to 12 countries 

worldwide and side effects have been reported [81].   

In spite of these efforts, most of these extracorporeal systems have 

drawbacks that make endotoxin detection/removal a crucial challenge to 

achieve safe and effective detoxification processes. 
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Alternatively, the progress and capabilities of magnetofluidic devices 

deserves special attention. These continuous blood-cleansing devices for 

LPS removal comprise a first LPS sequestration step followed by the 

separation of the LPS loaded particles stage via magnetophoretic-

microfluidic techniques as depicted in Figure 1.4. 

 
Figure 1.4. Schematic illustration of micro-magnetophoretic 
extracorporeal blood cleansing process for LPS separation. 

Firstly, the functionalized magnetic beads are mixed with the patient´s 

blood and selectively bind to target pathogens forming an LPS-MNPs 

complex. For that to occur, it is necessary the presence of a binding 

molecule decorating the MNPs surface, with LPS affinity and 

biocompatible with blood to avoid side effects when the blood is returned 

to the patient. Moreover, selective LPS capture should take place and the 

initial LPS concentration in blood should significantly decrease to 

accomplish with the desired capture efficiency (>90%). Once the LPS 

adsorption on the beads surface is completed, blood is flowed into a Y-Y 

microfluidic device where the toxin-bead complex is magnetically 

deflected and collected in a co-flowing buffer in the continuous-flow 

separator. Afterwards, the resulting toxin-free blood solution is returned 

to the patient’s circulatory system.  
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Recently, the continuous-flow magnetophoretic system has been 

analyzed by our group through a computational fluid dynamic (CFD) 

model to characterize  the trajectory of the beads under the external 

magnetic force and to  predict the overall performance of the two-phase 

liquid-liquid separation with the Y-Y flow configuration and where critical 

details of the separation process were also studied [82–86]. Since the 

MNPs separation has been already addressed, synthesis of LPS active 

binding molecules and their coupling on quantitative LPS removal systems 

are key factors necessary to improve for the endotoxin separation 

systems success. 

1.4. Thesis scope and outline 

This thesis reports an integrated methodology to advance in the design of 

the LPS sequestration stage to promote its separation from biofluids. The 

methodology combines protein engineering and separation 

fundamentals and starts with the synthesis of an anti LPS factor protein 

(ALF), followed by the quantitative determination of its binding strength 

to LPS. For this analysis ALF was supported on agarose beads and the 

variables affecting LPS binding, as binding and capture temperature, the 

optimum bead:protein and protein:LPS ratios, were experimentally 

studied. The methodology and results here reported constitute the 

information needed to advance the knowledge for the correct design of 

LPS separation devices.  

Chapter 2 reports information about the potential binding molecules that 

have exhibited some affinity towards LPS such as organic solvents, 

polymers, antibiotics and proteins. In order to contribute to the capture 

stage of micro-magnetophoretic cleansing systems, a biologically active 

molecule has been produced. As peptide-based structures typically 

produced by living organisms present higher affinities towards endotoxins 

and at the same time high LPS-binding specificity, an anti LPS factor 

protein (ALF) has been designed and synthesized through protein 

engineering. Different protein sequences, genetic vectors and hosting 
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cells have been tested to get a soluble protein with LPS entrapping 

capabilities. 

 

Chapter 3 describes the functionalization of a solid matrix with the 

obtained ALF protein to form a bead-protein complex. Initial experiments 

were carried out to select the variables that provided the best LPS 

separation performance; specifically, the influence of bead/protein ratio 

and process temperature was experimentally addressed.  Afterwards, the 

active particles were contacted to a FITC-LPS solution to test the affinity 

of the LPS capture and the influence of the temperature on LPS removal 

was studied. Protein:endotoxin optimal ratio (φ) was determined to 

achieve removal rates greater than 90% and finally, an apparent 

association constant is reported. 

Chapter 4 is focused on the preliminary design of microfluidic devices for 

fluids separation. The methodology has been developed starting with the 

analysis of Y-Y geometry with the separation of aqueous Cr (VI) as system 

model. Two different scenarios have been considered: (a) two 

homogeneous phases, where water is the receptor phase, and (b) a 

heterogeneous system where the solute moves from the feed solution to 

a receptor phase composed of Shellsol D-70 and Alamine 336 as the 

selective extractant. A rigorous and flexible model has been constructed 

through Computational Fluid Dynamics (CFD) seeking to provide a useful 

tool for the design of micro separation processes by predicting the 

technical performance for numerous applications at micro scale. 

 

Finally, Chapter 5 collects the general conclusions of this thesis and an 

overview of the challenges and prospects for future research. 
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2                               
LPS binding molecules 

 

Abstract 

This chapter pursues the synthesis of an active molecule to selectively 

bind LPS. For that purpose, first, a thorough revision of the state-of-art of 

binding molecules that have shown anti-LPS activity has been 

accomplished. Among all the potential candidates, two main proteins 

were selected to be obtained by the rational method of protein design: 

human lipid binding protein (LBP) and Anti LPS factor protein from Limulus 

polyphemus (LALF). These peptides were attempted to obtain using the 

recombinant DNA technology. Recombinant proteins were achieved by 

expressing a cloned gene in both Escherichia coli bacteria and yeast, 

specifically Pichia Pastoris. During the protein expression process, 

solubilization issues arose and the protein of interest was located in the 

insoluble fraction of the cells. Finally, after constructing a Fusion protein 

formed by maltose binding protein (MBP) and LALF (MBP_LALF) and 

finding the appropriate strain, Arctic express, which allows expression at 

lower temperatures (18˚C), a soluble heterologous protein was obtained.
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2.1. Introduction 

The interaction between lipid A and different molecules has been studied 

in order to clarify the binding mechanisms and to develop new diagnosis 

methodologies and advanced therapies for sepsis control.  

There is a large number of molecules that interact with LPS (see Appendix 

A). In brief, it has been proved that some organic solvents such as octanol 

and butanol [1,2] and polymers like polyamide and polysulfone [3,4] 

present some affinity towards LPS and therefore, they could be useful for 

certain applications.  

However, the most important molecules that selectively bind LPS are 

peptide-based structures that are usually produced by living organisms. 

There is a variety of structures and biological functions, but generally, 

peptides present higher affinities towards endotoxins and at the same 

time high LPS-binding specificity.  

Within anti-LPS potential peptides, two main groups can be distinguished; 

peptides produced in humans and in other living organisms as bacteria, 

responsible for FhuA, OmpT and MsbA, membrane proteins located in 

their outer membrane [5–7], and invertebrates, which are also capable of 

synthesizing antimicrobial peptides such as LALF and TALF (ALF from 

Tachypleus tridentatus) [8,9].  

Regarding the human peptides, proteins with potential activity against 

LPS like HDL [10–12], hemoglobin [13–15], lactoferrin [16,17] or BPI 

(bactericidal permeability-increasing protein) have been reported [18–

20]. 

But, undoubtedly, the most studied proteins as potential ligands to LPS 

are the ones involved in the human response where the most in-depth 

reviewed  are CD14 [21–23], LBP [24–26], TLR4 [27–29] and MD-2 [30,31].  

Among all the molecules that have exhibited activity against LPS, two of 

them are particularly interesting for application in a capture system such 
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as the one proposed in this work: LBP and LALF (ALF protein from Limulus 

polyphemus) protein.  

LBP (58 kDa) is by far the most extensively studied soluble protein with 

LPS-binding capacity  as its presence plays a key role in the human 

immune cascade [24,25]. On the other side, LALF, a 11.8 kDa protein from 

the Atlantic horseshoe crab, has been found to inhibit the endotoxin 

mediated activation of its coagulation system so that its neutralizing 

capacity renders this molecule attractive for LPS sequestration systems 

[32–34].  

Currently, both proteins are commercially available but their acquisition 

price is so high that their implementation would make the process 

economically unsustainable. In addition, regarding LALF protein, the 

conventional obtaining method is based on the bleeding of live horseshoe 

crabs which has been reported as an ecologically unsustainable practice 

for the marine species [35]. 

 
This highlights the need to find an alternative for obtaining the 

aforementioned proteins. Fortunately, in recent decades, thanks to the 

application of genetic engineering techniques that allow the manipulation 

of DNA, it has been possible to produce recombinant proteins which  were 

proposed for the first time by Peter Lobban who, for the first time, 

described the successful production and intracellular replication of 

recombinant DNA between 1972 and 1973 [36–38].  

 

To obtain these recombinant proteins, a gene encoding the protein of 

interest and a specialized vehicle called a vector are required. In a typical 

DNA cloning procedure, the DNA fragment is inserted in the vector 

resulting in a plasmid, which is a small, circular, double-stranded DNA 

molecule that replicates independently from the host chromosomal DNA 

(Figure 2.1). They are mainly found in bacteria, but also exist naturally in 

archaea and eukaryotes such as yeast and plants [38,39]. 
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Figure 2.1. DNA cloning illustration. 

Lab-created plasmids have an origin of replication (which controls the 

host range and copy number of the plasmid), selection marker and cloning 

site (Figure 2.2). The easiness of modifying plasmids and the ability of 

plasmids to self-replicate within a cell make them attractive tools for the 

life scientist or bioengineer [40]. 

 

Figure 2.2. Schematic representation of a plasmid. 

The constructed plasmids or recombinant DNA are then introduced into 

host cells and grown in LB agar plates. As plasmids develop antibiotic 

resistance, organisms that take up the plasmid will survive and reproduce 

while the ones without the plasmid will die [41–43]. Figure 2.3 details the 

transformation process using bacteria as host cells. 
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Figure 2.3. Transformation process illustration. Recombinant DNA is 
introduced in hosting cells (bacteria) which grow in a petri dish when the 
cells satisfactorily contain the recombinant DNA. 

Systems used to express recombinant DNA include both prokaryotic and 

eukaryotic systems. Often this choice is based on the type of protein, 

functional activity, as well as the required yield needed.  

Expression in E.coli bacteria is one of the most widely used, due to its ease 

of handling and high yield. However, since it is a prokaryotic expression 

system, recombinant proteins from eukariotic origin cannot be expressed 

in prokariotic systems, which lack the molecular machinery needed to 

generate the correct native structure of some proteins. To solve this 

problem, more complex eukaryotic expression systems are used, such as 

yeast, insect cells, mammalian cells or plants [44,45]. 

Regardless of the host cell chosen, when they reproduce, replicate the 

plasmid and pass it on to their offspring that contain copies of the DNA 

template. Afterwards, cells containing the DNA template are larger 

cultured so that they can be induced to transcribe and translate the 

protein of interest. Finally, these cells are lysed or ruptured to release the 

protein together with other proteins and macromolecules (Figure 2.4). 

Because of this, the target protein is subject to purification methods to 
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remove residual cells. Eventually, the purified protein can then be used in 

the experimental runs. 

 

Figure 2.4. Schematics of the protein production process. 

This protein obtaining alternative procedure where the recombinant 

protein technology is used have reported 90% reduction in reagents 

consumption and  can lead to both lower production costs and to 

contribute to horseshoe crab conservation [35,46,47]. Consequently, this 

work reports the strategy designed to obtain biologically active proteins: 

LBP, LBD (LBS binding domain from human LBP), and two ALF proteins, 

LALF and GALF (antilipopolysaccharides protein from Penaeus monodon). 

 

 

2.2. Materials  

2.2.1. Gene sequences 

Gene sequences employed in this work have been codon optimized for 

the specific host to Integrated DNA Technologies (IDT) and are described 

in table 2.1. 
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Table 2.1. Gene sequences employed in this work. 

Gene ID 
Lengt

h  
Origin Reference  

GALF A5A3I5 377  Penaeus monodon [48] 

LALF 1307201A 342 Limulus Polyphemus  [7] 

LBP AAH22256.1 1434 Homo sapiens  [26] 

LBD 4767724 636 
Homo sapiens  

(LBP binding domain)  
[49] 

 

2.2.2. Major microbial strains 

Bacterial strains employed for this work are described in Appendix B 

(Table B.1). All of them were gently provided from the collection of the 

Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC). 

2.2.3. Expression vectors 

Expression vectors employed during this work have been obtained from 

the IBBTEC collection and are detailed in Table 2.2. 

Table 2.2.Expression vectors used in this thesis. 

Plasmid Phenotype Size (Kb) 

pET29c KnR 5.4 

pET3a ApR 2.6 

pPICZ ZnR 3.3 

 

2.2.4. Plasmids construction  

Plasmids constructed during this work through enzyme restriction (RE) 

or isothermal assembly (EI).  
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Table 2.3.Plasmids used in this work. 

Plasmid  Insert Vector  Stability Tag Size (Kb) 

pABP1 LBP pPICZ - 4.9 

pABP2 GALF pPICZ - 3.7 

pABP3 LALF pPICZ - 3.7 

pABP4 LALF pPICZ α Factor 4.5 

pABP5 LBD pPICZ - 4.0 

pABP6 LBP pET29c - 7.0 

pABP7 LALF pET29c - 5.8 

pABP8 LBD pET29c - 6.1 

pABP9 LBD pET3a TRX  5.3 

pABP10 ALF pET29c MBP 6.2 

pABP11 ALF pET29c SUMO 5.9 

pABP12 ALF pET29c TRX  6.0 

pABP13 ALF pET29c GST 6.1 

 

2.2.5. Oligonucleotides 

Oligonucleotides were designed and optimized for the different DNA 

fragments and expression vectors and were purchased to IDT.  Appendix 

B collects the sequences employed for E.coli constructions (Table B.2), 

Primers employed for E.coli plasmids construction (Table B.3) and 

Oligonucleotides employed for PCR and Sanger sequencing (Table B.4). 

2.2.6. Chemical reagents 

Required antibiotics were purchased to Apollo Scientific, Isopropyl ß-D-1-

thiogalactopyranoside (IPTG) to Thermo Scientific, and 

phenylmethylsulfonyl fluoride (PMSF) and Lysozyme from chicken egg 

white to Sigma Aldrich. Dithiothreitol (DTT) and 20% SDS were obtained 

from Fisher Scientific. Trizma base, glycine, Tris-HCl, NaCl, LB medium and 

LB Agar medium were acquired from Scharlab, S.L. His Trap HP columns 

were purchased to GE Healthcare and the required solutions were made 

up with MiliQ® water. 
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2.2.7. Buffers and solutions 

Buffers and solutions employed in this work are described in Table 2.4. 

Table 2.4. Buffers and solutions employed during this work. 

Lysis Buffer  100 mM Tris-HCl, 500 mM NaCl, 1% Triton X-100, 
5 mM DTT, pH 7.5. Supplemented when used with 

100  µg/mL Lysozyme,  PMSF 
 
 

Buffer A 100 mM Tris-HCl, 500 mM NaCl, 500 mM 
Imidazole,  pH 7.5 
 
 

Buffer B 100 mM Tris-HCl, 500 mM NaCl, 500 mM 
Imidazole,  pH 7.5 
 
 

Buffer C 50 mM Tris-HCl, 150 mM NaCl, pH 7.5 
  
 

dNTPs 10 mM dGTP, dCTP, dATP, dTTP 
 
 

0.5x TBE 45 mM Tris-HCl, 45 mM boric acid, 0.5mM EDTA, 
pH 8.2 
 
 

DNA Sample 
Loading Buffer 
6x 

0.25% (w/v) bromophenol blue, 30% (v/v)  
glycerol in 0.5xTBE 
 
 

SDS Sample 
Loading Buffer 
2x 
 

50 mM Tris-HCl pH=6.8, 2% SDS, 10% glycerol, 
0.1% bromophenol, 100mM β- mercaptoethanol 
 
 

1x SDS-PAGE 
Buffer 

25 mM Tris-HCl, 192mM Glycine, 1% SDS, pH=8.4 

Assembly 
Mixture Buffer 
(6 mL) 

3 mL 1M Tris-HCl pH 7.5, 150 µL 2M MgCl2, 60 µL 
100 mM dGTP, 60 µL 100mM dATP, 60 µL 100 
mM dTTP, 60 µL 100 mM dCTP, 300 µL 1M DTT, 
1.5g PEG-800, 300 µL 100 mM NAD. 
 

Master Mix                
(80 aliquots) 

320 µL 5x Isothermal reaction buffer, 0.64 µL 10 
U µL-1 T5 exonuclease, 20 µL 2 U µL-1 Phusion 
DNA polymerase, 160 µL 40 U µL-1 Taq DNA 
ligase, water up to 1.2 mL. 
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2.3. Experimental procedure 

2.3.1. Molecular cloning 

Gene insertion 

Obtaining plasmids implies the union of the chosen vector and the desired 

insert. This process was carried out following two strategies: restriction 

enzymes digestion and isothermal assembly. 

Restriction enzyme digestion is the traditional cloning process based on 

recombinant DNA methods that begins with the preparation of a vector 

to receive the insertion DNA by digesting each (insert and vector) 

separately with the appropriate restriction enzymes. The digested 

fragments were then joined at the cohesive ends by the T4 DNA ligase 

(Thermo) to form a plasmid capable of expressing the gene of interest 

(Figure 2.5). 

 

Figure 2.5. Gene cloning procedure by Enzyme Restriction. 
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Digested vector and DNA were purified from the agarose gels with the 

GeneJet Gel Extraction Kit (Thermo Fisher) and DNA ligation was 

performed using a molar ratio of vector: insert DNA of 1:3 and 1U of T4 

DNA ligase (Thermo Fisher) in a final volume of 20 µL for overnight 

incubation at room temperature. The final concentration was measured 

through spectrophotometry (Nanodrop 200c) and electroporation was 

performed on DH5α cells. 

On the other hand, isothermal assembly (Gibson Assembly), the modern 

approach for plasmids construction, was also employed. This method 

combines several overlapping DNA fragments to produce a ligated 

plasmid ready for transformation in a single reaction as explained in 

Figure 2.6  [56].  

 

Polymerase chain reaction (PCR) is carried out under isothermal 

conditions using three enzymatic steps: a 5’ exonuclease generates long 

overhangs, Phusion High-Fidelity DNA polymerase fills in the gaps of the 

annealed single strand regions, and a DNA ligase seals the nicks of the 

annealed and filled-in gaps (see appendix C).  

Frozen 15µl assembly mixture aliquots were thawed and then kept on ice 

until ready to be used. Five microliters of the DNA to be assembled were 

added to the master mixture in equimolar amounts. Between 10 and 100 

ng of each ∼6 kb DNA fragment were added. For larger DNA segments, 

proportional amounts of DNA were added. Incubation was performed at 

50 °C for 15 to 60 min (60 min was optimal). 
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Figure 2.6. Gibson assembly cloning procedure. 

 

DNA electrophoresis in agarose gels 

 

In order to observe the presence and DNA band size obtaining either by 

PCR or enzymatic digestion, DNA fragments were separated via 1% (w/v) 

agarose gel prepared in 0.5x TBE buffer. To visualize the DNA, 5 µL of 

intercalating agent SafeView Classic (ABM) were added to the 100 mL 

(1%) agarose solution. Usually, 20 µL of sample solution were mixed with 

4 µL of DNA sample-loading buffer and loaded into wells (indentations) at 

one end. For sizing and approximate DNA kb quantification, Generuler 

1Kb DNA ladder plus (Thermofisher) was used.  
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Horizontal cells were employed for the electrophoresis with 0.5x TBE 

buffer and an electrical field of 120V was applied for 45 minutes to move 

the negatively charged DNA through the agarose gel matrix towards the 

positive electrode (Figure 2.7). Finally, agarose gels were visualized in a 

transilluminator UV Gel Doc 2000 (BioRad) and images were analyzed 

with Quantity One program (BioRad). 

 

Figure 2.7. DNA electrophoresis schematic illustration. 

 

DNA extraction 

 

Plasmid DNA from cultures was extracted using the GeneJET plasmid 

miniprep kit (Fisher Scientific) following the manufacture’s protocol. 

In addition, DNA purification from agarose gel was performed cutting 

bands from the electrophoresis gel. After that, it was employed a GeneJET 

gel extraction kit, following the manufacturer´s guide. 

 

Nucleic acids quantification 

 

DNA concentration was measured by spectrophotometer techniques at a 

wavelength of 260 nm with a Nanodrop 2000c (Thermo Scientific) with 2 

µL of each sample. Purity of the extracted DNA was checked taking into 

account the 260/280 nm ratio which should be 1.8. 
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Sanger sequencing 

Every constructed or modified plasmid was verified through DNA 

sequencing by using the “YouTube It” service offered by StabVida 

company. Samples (DNA + primer) were prepared according to their 

recommendations. 

 

2.3.2. Protein expression  

Culture medium 

For E.coli cultures it was employed Luria Bertani (LB) growth medium 

composed of 10 g/L tryptone, 5 g/L yeast extract, and 5 g/L NaCl 

(Pronadisa) supplemented with 1.5% (w/v) of plate agar, 50 µg/mL 

Kanamycin (kn) (Apollo) sterilized by filtration (0.22um) was used as 

antibiotic. 

For Pichia pastoris cultures, Yeast Extract-Peptone-Dextrose (YPD) 

medium was used. YPD consists of 10 g/L Yeast extract, 20 g/L Peptone 

and 20 g/L dextrose. The antibiotic resistance for this case was 50 µg/mL 

zeocin (Zn). Microbial strains were preserved frozen at -20˚C in 50% (v/v) 

glycerol peptone from the pellets in stationary phase.  

 

Pichia cells were expressed in Buffered Glycerol-complex Medium 

(BMGY) and Buffered Methanol-complex Medium (BMMY) was employed 

for protein induction. Growing medium was prepared with 8 g Yeast 

extract (Pronadisa) and 16 g Peptone in 560 mL water. The mixture was 

autoclaved for 20 minutes on liquid cycle. Once the solution was cooled 

down to room temperature (RT) 80 mL of 1 M Potassium Phosphate 

Buffer of pH=6 and 80 mL 10x YNB (13.4% Yest Nitrogen Based with 

Ammonium Sulfate without amino acids, Pronadisa) were added. For 

BMGY 0.16mL of 0.02% Biotin solution were added and BMMY was finally   

prepared with 80mL of 10% Glycerol solution. 
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Bacterial growth measures 

Cultures growth was measured through optical density (OD) at a 

wavelength of 600 nm using a Nanodrop 2000c spectrophotometer 

(Thermo Scientific) with 1 mL sample volume. 

DNA transformation 

E.coli and Pichia Pastoris strains transformations were carried out by 

electroporation due to the high efficiency of the method which consists 

of the application of an electrical current from an external source on any 

competent cell which becomes more permeable allowing DNA to enter it 

[57]. 

Four different types of competent cells were employed to perform this 

stage; DH5α provided by the support service of the IBBTEC, BL21, Arctic 

Express, and Pichia Pastoris obtained through the following protocols. 

Primary cultures of E.coli electrocompetent cells were grown in 10 mL LB 

supplemented if required with the appropriate antibiotic at 37˚C for 12-

18 h in a shaking incubator. Then, 2.5 mL were inoculated into a 50 mL LB 

culture until reaching an OD600 of 0.5-0-7. After approximately 1.5 h, the 

flask was placed in cold storage to stop cell growth. Then, the culture was 

poured into a previously cooled falcon tube and centrifuged at 4˚C for 15-

20 minutes.  The supernatant was discarded and the pellet was 

resuspended in the following order of washing: two washes with 50 mL of 

cold distilled water and, finally, one wash with 50 mL of 10% cold sterile 

glycerol. The supernatant of the last rinsing was discarded and the pellet 

was finally resuspended in 150 µL-200 µL glycerol resuspension. As a final 

step, the electrocompetent cells were aliquoted in 100µL Eppendorf 

tubes (80 µL/tube) which could be directly used or frozen utilizing dry ice 

and ethanol for a fast freezing and then, preserved at -80˚C. 

Pichia Pastoris competent cells preparation started with a primary culture 

in YPD medium incubated overnight at 30˚C with 1:1000 Zeocin. Then, 2.5 

mL were inoculated in 50 mL of fresh medium and left growing overnight 
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until an OD600 around 1.3 or 1.5. Once reached the desired OD, the culture 

was centrifuged at 1500 rpm during 5 minutes at 4˚C.The pellet was 

resuspended with ice-cold sterile water twice; a first rinse with 50 mL and 

the second one with 25 mL. For the final wash 20 mL of ice-cold 1M 

Sorbitol were employed, as well as for the last resuspension in 200 µL. 

Electrocompetent cells were used in the same day, never stored. 

Before stating the transformation process in Pichia cells, 15 ng of plasmid 

DNA was linearized by restriction enzyme digestion with SacI and using 

the Fast Digest Value Pack (ThermoFisher). The transformation process 

(Figure 2.8) for both, yeast and bacteria, was performed by mixing an 

aliquot of 50 µL electrocompetent cells and 2 µL of the desired plasmid 

DNA in a 2 mm electroporation cell (Molecular BioProducts) previously 

cooled in ice. An electric pulse (2.5 kV/cm, 25 uF capacitance and 200Ω) 

was applied using a MicroPulser electroporator (BioRad). The mixture was 

finally resuspended in 1 mL YPD sterile and preheated to 30˚C and then 

transferred to a 1.5 mL Eppendorf tube which was also incubated at 30˚C 

under agitation for 1-2 h. Finally, 200 µL of the culture were plated in a 

Petri dish with LB agar (E.coli) or YPD (Pichia) supplemented with the 

appropriate antibiotics to select the transformed cells. 

 

 

Figure 2.8. Recombinant DNA transformation process. 
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Overexpression and cells lysate  

Bacterial colonies from transformation were incubated in 50 mL medium 

with the required antibiotics at 37˚C overnight until an OD600 around 0.4- 

0.6 was reached. Then, 50 mL culture were transferred into a 37˚C 

preheated 1L medium flask. When the OD600 reached a value of 1-1.5, the 

culture was cooled down to 18˚C. After 30 minutes, protein expression 

was induced with 1 mM IPTG and the culture remained at 18˚C overnight. 

For Pichia, colonies were grown at 30˚C during 72 h in BMGY and induced 

with methanol (BMMY). 

The cells were then harvested by centrifugation at 4000 rpm at 4 C̊ for 15 

minutes and the cellular pellet was flash frozen at -80   C̊. After defrosting 

at room temperature, cells were resuspended in lysis buffer, 

supplemented with 10 µg/mL of lysozyme and 1:1000 PMSF as proteases 

inhibitor, incubated at 4˚C for 30 min and sonicated 3 times (1 min ON/ 1 

min OFF) for cells disruption (Figure 2.9). 

In order to verify the protein expression and once centrifuged, both 

samples from the supernatant and pellet were taken and the obtained 

protein was observed by electrophoresis under denaturalizing conditions. 

 

 
Figure 2.9. Overexpression and cells lysate procedure illustration. 
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Protein electrophoresis under denaturalizing conditions. 

 

Protein expression was analyzed through electrophoresis with 

polyacrylamide gels in sodium dodecyl sulphate buffer (SDS-PAGE). Due 

to the size of the target protein, 15% polyacrylamide gels were used and 

prepared with 0.1% SDS (Sigma Aldrich) and acrylamide: Bis-acrylamide 

(29:1) (BioRad). 

 

Pellet samples were resuspended in 200 µL of 2x loading buffer while 50 

µL of supernatant ones were mixed with 50 µL of the same loading buffer. 

Both types of samples were incubated during 5 minutes at 100˚C and 10 

or 15µL of each were loaded into acrylamide gel wells. Page Ruler Plus 

Prestained Protein Ladder (Thermofisher) was used as molecular weight 

marker. 

Electrophoresis took place in a Mini-protean system (BioRad) at 180V 

during 50 minutes in 1x SDS-PAGE buffer (25 mM Tris-HCl, 192 mM 

Glycine, 1% (w/v) DS, pH=8.4).  Subsequently, eluted protein fractions in 

acrylamide gels were visualized using BlueSafe protein stain (Nzytech) to 

determine the fractions containing the tagged protein (Figure 2.10). 

 

 

Figure 2.10. Protein electrophoresis and visualization procedure. 
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2.3.3. Protein purification 

Fast protein liquid chromatography (FPLC) purification 

 Previous lysate was ultra-centrifuged at 40000 rpm at 4 °C for 20 min and 

the supernatant, containing the soluble protein, was loaded into a HisTrap 

HP histidine-tagged protein purification column (GE Healthcare). These 

columns are packed with Ni-Agarose resins because the nickel present on 

them binds to the 6x histidine tag added to the protein sequences during 

the cloning stage. 

The column was initially washed with 5 column volumes (CV) of filtered 

and sterile Mili-Q water using a MiniPlus 3 peristaltic pump bomb (Gilson) 

with an adequate flow rate following the manufacturers’ indications. 

Then, 5 CV of buffer A were passed through. Afterwards, the protein 

sample was loaded, the flow through) was saved and as a final step, the 

column was equilibrated with 5 CV Buffer A before connecting it to the 

FPLC system ÄKTA type (GE, Healthcare). This system eluted the protein 

through a buffer B gradient with the following program: initial wash with 

5 mL Buffer A, 0-100% buffer B gradient in 15 fractions of 2.5 mL, 15 mL 

buffer B rinsing and final wash with 15 mL buffer A. The overall 

purification process is described in Figure 2.11. 

Every buffer employed during this purification stage was previously 

filtered using Membrane MF-Millipore, 0.45 µm (Merck Millipore) for 

removing bubbles and suspension particles susceptible to damaging the 

matrix of the columns.   
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Figure 2.11. Protein purification process; from lysate cells to protein 
elution. 

 

Determination of protein concentration 
 
Final concentration of the obtained protein was determined by 

absorbance measurements at 280 nm wavelength using a Nanodrop 200c 

(Thermo scientific) spectrophotometer and using the molar extension 

coefficient for greater precision. 
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Protein concentration and buffer exchange 

Protein solutions obtained after the purification method are quite diluted 

and also contain high salt concentration. With the objective of protein 

concentration and decrease of the salts content (NaCl, imidazole), 30 kDa 

Centricon ® centrifugal filters were used (Amicon Ultra, Millipore). This 

pore size filtration systems retain the proteins while allowing the passage 

of smaller molecules. For this purpose, samples were centrifuged with a 

Centrifuge 5810R (Eppendorf) with A-4-62 rotor at 4200rpm at 4˚C and 

diluted 1/5 in buffer C until reaching the desired concentration for the 

subsequent experiments (Figure 2.12). 

 

Figure 2.12. Protein concentration and buffer exchange graphical 
representation. 

Protein Identification  

Protein identification was performed by mass spectrophotometry Matrix-

Assisted Laser Desorption/Ionization with Time of Light detector (MALDI-

TOF) thanks to the proteomic service of the UPV/EHU University. 

Molecular mass and peptides sequences of the proteins were determined 

by MALDI-TOF from band cuts of acrylamide gels. Peptides were identified 

by confronting the MASCOT software search engine against the Swissprot 

database. 
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2.4. Results  

2.4.1. Molecular cloning  

Every genetic construction carried out in this work was optimized 

containing a 6x Histidines tag for its later purification with HisTrap 

columns.  

Moreover, plasmids construction was performed via isothermal assembly 

(IA) or enzyme restriction (ER). In this regard, Table 2.5 summarizes each 

of the plasmids used in this thesis according to the employed strategy and 

details whether or not they were verified by sanger sequencing. 

The same procedure was carried out with each plasmid independently of 

the cloning strategy. As an example, the process and verification of the 

first construction of the table (pET29c_LALF) is explained.  

Table 2.5. Summary of plasmids constructed by ER or IA and sanger 
sequencing results. 

Gene Vector 
Fusion 
protein 

Host 
Cloning 
strategy  

Sanger 
sequencing  

LALF 

pET29c - E. coli ER Yes 

pET29c TRX E. coli IA Yes 

pET29c GST E. coli IA Yes 

pET29c MBP E. coli IA Yes 

pET29c SUMO E. coli IA Yes  

pPICZ - P. pastoris IA Yes 

pPICZ- α 
Factor 

- P. pastoris ER Yes  

GALF  pET29c - E. coli IA No 

LBP  
pPICZ - P. pastoris ER No 

pPICZ- 
α Factor 

- P. pastoris ER No 

LBD  pET3a TRX E. coli ER Yes  
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Initially, pET29c_LALF construction was approached via isothermal 

assembly. Since amplification was unsuccessful, the strategy was 

modified and finally tested using restriction enzymes employing XhoI and 

NdeI oligonucleotides. Samples were stained with loading buffer and 5 µL 

Safeview was added to visualize the gel.  Besides, GeneRuler plus DNA 

ladder (1kb for pET29c and 100bp for LALF) was loaded in an agarose well 

to visualize each band and verify the correct digestion of each vector 

(Figure 2.13a) and fragment (Figure 2.13b). 

 

Figure 2.13. DNA electrophoresis verification of a) pET29c vector and b) 
LALF fragment. 

Afterwards, recombinant DNA was transformed into DH5α 

electrocompetent cells and seeded on LB agar plates with their 

corresponding antibiotic. Several colonies were randomly selected, DNA 

was extracted and sent for verification by sanger sequencing to STABVIDA 

(Portugal). This procedure verified that the extracted DNA coincided with 

the target sequence. 
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2.4.2. Protein overexpression  

As shown in Table 2.6, many of the gene constructions performed were 

not satisfactory in terms of protein production despite being 

overexpressed in different strains of E.coli and also in yeasts (more 

information available in appendix D). 

In general terms, none of the proteins that were attempted to be 

overexpressed were finally obtained. Thus, it was decided to address 

fewer variables and, taking into account the experience acquired so far, it 

was decided to work only with the LALF protein.  

Table 2.6. Protein expression results based on each constructed plasmid. 

Gene Vector 
Fusion 
protein 

Host 
Size 

(kDa) 
Protein 

production 
Conditions 

LALF 

pET29c - E. coli 13 No  

pET29c TRX E. coli 27 Yes 18°C,37°C 

BL21,Arctic 

express 

pET29c GST E. coli 42 Yes 

pET29c MBP E. coli 58 Yes 

pET29c SUMO E. coli 24 No  

pPICZ - P.pastoris 13 No  

pPICZ-

α Factor 
- P.pastoris 22 No   

GALF  pET29c - E. coli 13 No   

LBP  

pPICZ - P.pastoris 54 No  

pPICZ-

α Factor 
- P.pastoris 63  No   

LBD  pET3a TRX E. coli 18  No 
 

 
 

Since LALF protein production was not observed despite employing 

different hosting cells, we proceeded to construct fusion proteins using 3 

stability tags for E.coli strains: TRX (Thioredoxin), GST (Glutathione S-
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transferase), MBP (Maltose Binding Protein), and SUMO (Small Ubiquitin-

like Modifier) and α Factor secretion signal for P. pastoris.  

The efforts made for protein obtention in yeast even with the addition of 

the α-factor secretion signal were unsuccessful. Therefore, it was decided 

to continue the process focusing on E.coli expression of LALF gene. 

Initially, fusion vectors were introduced in BL21 strain derived from E.coli 

and overexpression for each protein was performed at both 30˚C and 18˚C 

as shown in Figure 2.14, where it is marked with a star on the gel and with 

an arrow on the right side, the height at which the band corresponding to 

each fusion protein should appear when cultures samples were loaded. 

As appreciable, the expression of SUMO_ALF did not occur either at 30˚C 

or at 18˚C. On the contrary, GST_ALF (42kDa) expression seemed to work 

better at 18˚C than at 37˚C as the protein band is better visualized under 

that condition. On the other side, MBP_ALF worked for the two tested 

conditions and the protein band corresponding to 58 kDa is appreciable 

under the two temperatures. (Expression tests with TRX_LALF and other 

constructions carried out during this thesis are detailed in appendix D). 
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Figure 2.14. LALF fusion proteins expressed at 30˚C and 18˚C in BL21 
strain. 

 

So far, the most promising expression corresponded to MBP_LALF in 

BL21. Furthermore, cells were lysed by sonication and samples were 

centrifuged to separate the soluble proteins present in the supernatant 

(SN) from the insoluble proteins or inclusion bodies located in the pellet 

(P). Supernatant and pellet fractions were loaded separately on an SDS-

PAGE gel; MBP_LALF was observed mainly in the pellet fraction which 

indicated that the protein was in the insoluble fraction of the cell culture. 

(data not shown) 

In cases where proteins are located in the insoluble fraction, denaturation 

and renaturation protocols using urea have been described [58]. 

Nonetheless, this process possesses high risk as protein denaturation may 

result in total loss of activity. Alternatively, it was decided to introduce a 

new E.coli strain called Arctic Express for new over-expressions.  
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E.coli is a mesophilic bacterium, whose growth range is between 20˚C and 

42˚C, being 37˚C the optimum temperature.  Below 20 ˚C, E.coli presents 

a slow in growth rate, probably due to a reduction in the activity of 

chaperonins GroEl and GroES, proteins that assist in the protein folding 

process [59].   

In order to compensate for the lack of chaperonin activity at low 

temperatures, Ferrer et al. 2003 [54],  expressed in E.coli the genes Cpn60 

and Cpn10 from the psychrophilic bacterium Oleispira antarctica, two 

chaperonins analogous to GroEl and GroES whose folding activity range is 

between 4˚C and 18˚C. This modification demonstrated that the 

expression of Cpn10 and Cpn60 improved the protein folding capacity of 

E.coli at low temperatures.  

Up to this point, it was decided to express the MBP_LALF protein at 18˚C   

and compare the yield of Arctic express and BL21 strains.  

Both cell cultures were lysed and centrifuged to separate the cell debris 

from the soluble fraction. Both fractions were analyzed by SDS-PAGE. As 

detailed in Figure 2.15, obtained MBP_LALF protein in BL21 was insoluble 

and present in the pellet while when it was expressed in Arctic Express, 

the protein was observed in the supernatant and therefore, in the soluble 

fraction.  
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Figure 2.15. Pellet and supernatant samples of MBP_LALF protein 
expression in BL21 and Arctic express at 18˚C.  

 

2.4.3. Protein Purification 

MBP_LALF in Arctic express cultures were prepared, induced and 

incubated overnight at 18 C̊. Afterwards, the cells were then harvested by 

centrifugation at 4000 rpm at 4   C̊ for 15 minutes and the cellular pellet 

was flash frozen at -80   C̊. After defrosting at room temperature, cells 

were resuspended in buffer A, incubated at 4   C̊ for 30 min and sonicated 

on ice 3 times (1 min ON/ 1 min OFF). The lysate was then ultra-

centrifuged at 40000 rpm at 4 °C for 20 min and the supernatant was 

separated from the pellet. The supernatant was loaded directly onto a 

HisTrap HP histidine-tagged protein 5 mL purification column (GE 

Healthcare) previously equilibrated in buffer A. (This procedure is 

previously detailed in Figure 2.11). 

These columns are prepacked with Ni Sepharose® High Performance, 

which consists of 34 µm highly cross-linked agarose beads with an 

immobilized chelating group as Ni2+ ions are present in the medium. 

Proteins with 6-histidine labels, such as MBP_LALF, increase the affinity 
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for Ni2+ ions and are the strongest binder among other proteins in the 

sample, therefore these are the preferred columns for recombinant 

histidine-tagged proteins purification [60]. 

Protein purification was then performed through FPLC and the MBP_LALF 

protein was eluted by an imidazole concentration gradient of buffer B 

(from 20 mM to 500 mM) as shown in Figure 2.16, which depicts the 

chromatogram obtained during the process. 

Since proteins absorb UV radiation at 280 nm, while purifying a 6x His 

Tagged protein, the elution profile shows an absorbance increase 

allowing identifying the target protein fractions. In this case, it can be 

observed that fractions between 7 and 11 apparently contained the 

MBP_LALF protein. 

 

Figure 2.16. FPLC chromatogram of the protein elution process. 

Once the protein elution was finished, the system was rinsed with buffer 

A, MiliQ water and ethanol to remove imidazole and salts residues from 

the system. Subsequently, fractions obtained during the purification were 

mixed with SDS Sample Loading Buffer and loaded onto an SDS-PAGE 

acrylamide gel to verify the presence of MBP_LALF. As appreciable in 

Figure 2.17 and accordingly to the absorbance peaks of the 

chromatogram, fractions from 7th to 11th contain MBP_LALF protein as the 
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intensity of those gel bands is stronger than others whose protein content 

is almost negligible. 

These fractions where concentrated and buffer exchanged to Buffer C to 

remove salt and imidazole residuals that could interfere in subsequent 

assays using a Amicon Ultra 30k Centrifugal filters. 

 

Figure 2.17. Eluted protein fractions where MBP_LALF is mostly present 
from 7th to 11th. 

Finally, it was proceeded to identify whether the observed band 

corresponded to the theoretical protein by MALDI-TOF mass 

spectrometry. The majority products corresponded to the expected LALF 

protein and both the first and the last peptides were identified (bold 

typed amino acids) in order to confirm the complete fusion protein 

configuration as depicted in Figure 2.18 so that the results obtained 

concluded that the protein was unequivocally MBP_LALF. 
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Figure 2.18. MBP_LALF protein identification through MALDI-TOFF mass 
spectrometry. 

 

2.5. Conclusions 

With the aim of contributing to an extracorporeal detoxification system, 

specifically to the LPS sequestration stage, a thorough review of the 

molecules with activity against LPS has been carried out. Among all the 

molecules studied, two in particular are highlighted due to their LPS high 

affinity previously reported: human lipid binding protein (LBP) and LALF 

protein. Since acquiring any of them for their implementation in the 

desired capture system is unfeasible due to their high price and due to 

the ecologically unsustainable practice to obtain the LALF protein from 

the live bleeding horseshoe crab, it was decided to address their 

production through the rational method of protein design.  

 

This procedure entails three main stages: molecular cloning, 

overexpression and protein purification. Several plasmids consisting of 

genes coding for different proteins (LBP, LALF and LBD, the binding 

domain of LBP), a tag of 6x His and diverse vectors (pET29c, pET3a from 

E.coli and pPICZ derived from Pichia pastoris) were constructed, 

transformed in DH5α electrocompetent cells and satisfactorily validated 

via Sanger sequencing. Subsequently, all plasmids were transformed and 

overexpressed even in different E.coli strains but, unfortunately, in the 

cases where protein was obtained, it was located in the insoluble fraction 
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of the cells and therefore, it was not viable for further purification and 

final use. In an attempt to obtain soluble protein, it was proceeded to 

construct fusion proteins using 3 stability tags for E.coli strains: TRX 

(Thioredoxin), GST (Glutathione S-transferase), MBP (Maltose Binding 

Protein), and SUMO (Small Ubiquitin-like Modifier). 

 

Two of the fusion constructs showed good expression at low 

temperature, however the protein was found in the insoluble fraction 

when analyzed by SDS-PAGE. Thus it was decided to express these 

constructs in Arctic express, a variant of E.coli that allows the expression 

at low temperatures (18˚C). In this case, the MBP_LALF protein was 

present in the soluble fraction or supernatant and was therefore loaded 

into a HisTrap HP histidine-tagged protein purification column. The target 

protein was eluted through FPLC with an imidazole gradient (20 mM- 

500mM). Fractions were analyzed and protein was identified between 7th 

to 11th fractionation steps which, then, were washed with buffer C and 

concentrated, and the final protein concentration was determined by 

spectrophotometry.  

 

Finally, the identity of the protein was verified by MALDI-TOF, as the 

majority of the peptides identified corresponded to the expected LALF 

protein and both the first and the last peptides were identified so that, 

the results obtained concluded that the protein was unequivocally 

MBP_LALF. 
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3                               
Experimental LPS capture  
 

 

Abstract 

The purpose of this chapter is to experimentally determine the binding 

strength of the synthesized LALF protein to LPS. Initially, a thorough 

review of the literature concerning affinity parameters, kinetics and the 

employed measuring techniques for the main ligand-LPS interactions was 

carried out. Besides, LALF affinity was analyzed by supporting it on 

agarose beads selected as particle model system and the variables 

affecting the beads-LALF-LPS complex formation as binding and capture 

temperature, the optimum bead:protein and protein:LPS ratios, were 

experimentally studied. In addition, magnetic nanogels were synthesized 

and characterized as a potential alternative to be implemented on the 

biofluids cleansing system; this information is included in the Appendix G 

to this chapter. The methodology and results here reported constitute the 

information needed to advance the knowledge for the correct design of 

LPS separation devices.
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3.1. Introduction 

Affinity of the ligand-LPS complex formation is a key point to develop 

detection and control protocols. Although multiple molecules have 

reported activity against endotoxins, only a few potential ligands have 

been deeply studied to determine their binding capacity to LPS.  

The characteristic parameters of the main ligand-LPS binding complexes 

have been quantitatively described through the use of techniques such as 

surface plasmon resonance (SPR), isothermal titration calorimetry (ITC) 

and fluorescence resonance energy transfer (FRET) (see Appendix E for 

techniques explanation) and have been thoroughly reviewed (see 

Appendix F). Briefly, Table 3.1 summarizes the state of the art referred to 

the association constants of the main complexes which primarily imply 

the proteins involved in the human immune response and polymyxin 

(PMB), a cyclic amphipathic peptide antibiotic. Association constants are 

defined as KA=k1/k-1 and the values ranged from 104 M-1 to 108 M-1
, for the 

analyzed groups of LPS ligand molecules.  

Table 3.1. Association constants of the LPS-biomolecule interactions. 

 LPS-receptor molecule KA (M-1) Ref 

Proteins 
extracted from 
G(+) bacteria 

LPS-PMB 3 105 -2.1 106 [1,2] 

Human proteins 
involved in the 

immune system 
response 

LPS-CD14 <106 - 5.00 108 [3–6] 

LPS-TLR4 7.1 104 - 3.30 108 [6,7] 

LPS-MD-2 4.29 105 – 1.54 107 [6,8] 

LPS-LBP 1.40 108 - 2.88 108 [3,5] 

 

Most of the interactions studied report association constants KA higher 

than 107 M-1 reflecting a very favorable affinity towards LPS binding. With 



Experimental LPS capture 
__________________________________________________________________________________________________________________________________ 

 

 

69 
 

regard to the types of molecules, first, PMB, that is a polypeptide 

bactericidal antibiotic, has been widely studied with values of the affinity 

constant KA in the range of 3 105 – 2.1 106 M-1. The highest value of the 

association constant corresponds to polymyxin nonapeptide  (PMBN) 

which exhibited the strongest binding capacity to LPS [1,2]. In overall 

terms, PMB exhibits fast kinetics and good affinity to lipopolysaccharides 

but, despite its nephrotoxic and neurotoxic properties when released in 

the bloodstream, its use is limited to extracorporeal cartridges 

Toraymyxin PMX-F) [9–11] thus, the design of less toxic analogues is a 

challenge in defining more effective LPS binding molecules. 

The second type of molecules collected in Table 3.1 refers to 

biomolecules related to the human cascade mechanism implicated in LPS 

recognition. The lipopolysaccharides receptor CD14, whose interaction to 

LPS , yielded association constant values ranging from  1 106 M-1  to 5 108 

M-1 obtained by Viriyakosol et al. [4] who developed different CD14 

mutants. Both, the lowest and the highest association values obtained for 

this interaction correspond to DPRQY and DDED/PQPD double delection 

respectively. 

 It is worth noting that, the same authors also studied the binding capacity 

of LPS- CD14 wild type, whose  KA was 1.35 107 M-1, two orders of 

magnitude higher than the one previously reported by Shin et al. [6], a 

fact that may be explained because of the peptide synthesis carried out 

[6] entailed CD14 fusion proteins which could  imply steric impediments 

in the LPS binding.  

TLR4, is a transmembrane protein responsible of LPS recognition whose 

interaction to LPS has been quantitatively determined in the range of KA= 

7.1 104 - 3.30 108
 M-1. The remarkable difference in the association values 

lies in the studied interaction because, while LPS-TRL4 interaction 

reported the lowest KA value, when MD-2 is added to the complex 

formation, its binding activity is enhanced.  This ternary complex binds 

with higher affinity than LPS-MD-2, suggesting that TLR4 could directly 
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bind to LPS or even it could mediate in the interaction  between LPS and 

MD-2 [7].   

MD-2, an adaptive protein that plays an important role in the 

inflammatory response, reported association values for the LPS-MD-2 

interaction that varied from 4.29 105 M-1 to 1.54 107 M-1 [8]. Once again, 

the differences between the two studies and the quantified values of  KA 

for the same interaction of LPS-MD-2 could rely on  the peptide synthesis 

stage as Shin et al. [6] developed a MD-2 fusion protein.  

Finally, LBP, is a soluble acute-phase protein that binds to LPS and has 

shown the highest LPS binding capacity among all the studied molecules. 

In fact, three different quantification methods were employed to quantify 

the activity of the LPS-LBP complex and all reported KA values ranging 

from 1.40 108 M-1 to 2.88 108 M-1 , which highlights the importance of the 

LBP presence in the LPS recognition dynamics [3,5].  

Affinity constant values could be well considered as the baseline to make 

a step forward in the development of new LPS detection and/or 

sequestration techniques but it also highlights the necessity of further 

research to expand the studies on the affinity and selectivity of already 

known ligand molecules as well as synthesizing new antimicrobial 

peptides capable to interact to LPS with affinity constant values 

sufficiently high to bind and remove LPS from different environments. 

However, the interaction kinetics needed for the use of these promising 

peptides in advanced blood-cleansing devices is still lacking. In this regard, 

we describe a new methodology to quantitatively determine the binding 

strength of the previously obtained LALF protein to LPS. For this analysis, 

LALF was supported on agarose beads employed as a particle model 

system and afterwards, the functionalized beads were contacted to LPS 

solutions to analyze the interaction between the lipid A and the binding 

molecule. 

Once the activity of the protein has been determined, the next step 

consists on the development of a continuous blood-cleansing device for 
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LPS removal which entails two main stages taking part in the whole 

process, i) entrapment of LPS in conveniently functionalized particles and, 

ii) removal of the loaded beads from the biofluid [12–20].  

For the removal stage to be successful, a solid and magnetic substrate is 

required. In this sense, and as a potential alternative to agarose particles, 

magnetic nanogels (MNGs) were synthesized and characterized to 

contribute to the advancement of these LPS separation processes. MNGs 

are three-dimensional materials with dimensions in the nanoscale; they 

are formed by cross-linked, swellable polymeric networks and embedded 

magnetic nanoparticles (MNPs) that have a high water-holding capacity, 

without dissolving in the aqueous medium. In addition, they have shown 

high biocompatibility and biodegradation capacity that make them 

nontoxic carriers with a great potential for biomedical applications [21–

24]. 

Despite the existent theoretical and experimental studies have clarified 

the binding mechanism of different ligands-LPS complexes, our newly 

approach for the experimental determination of the kinetic parameters 

opens the way for further improvement and advances on the state-of-the 

art of LPS separation processes, thus, playing an important role in the 

design and optimization of treatment devices.  

 

 

3.2. Materials  
 
Escherichia Coli O111:B4 with FITC conjugate was purchased from Merck. 

HisTrap HP histidine-tagged protein purification columns (5 mL) were 

purchased from GE Healthcare as well as the agarose beads (Ni 

Sepharose® 6Fast Flow). Employed lysozyme was obtained from sigma 

(Lysozyme from chicken egg White, Sigma) as well as Trizma base, glycine, 

Tris HCl, NaCl, FeCl3.6H2O, FeCl2.4H2O, NH4OH, HNO3, EtOH, 3-

(methacryloyloxy) propyl trimethoxysilane (MEMO), diethylenglycol 

methacrylate (DEGMA), oligoethylenglycol methacrylate (OEGMA), 2-

Hydroxyethyl metacrylate (HEMA), dodecyl sulfate (SDS), ammonium 
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persulfate (APS), N,N,N′,N′-Tetramethylethylenediamine (TEMED), N,N-

Dimethylformamide,  Nα,Nα-Bis(carboxymethyl)-L-lysine hydrate, N-

Ethyl-N′-(3-dimethylaminopropyl)carbodiimide (EDC), 1-Hydroxy-2,5-

pyrrolidinedione, (NHS), NiCl. MNPs and MNGs were synthesized using an 

Omni-Ruptor 400 or Bandelin UW 2070 sonicator. 

 

LB medium and LB Agar medium were purchased by Scharlab, S.L, SDS 

20% from Fischer Scientific and kanamycin and gentamicin from Apollo 

Scientific, Ltd. Protein concentration measurements were performed 

using a Thermo Scientific™ NanoDrop 2000c and the LPS-FITC supernatant 

measurements were carried out with the Thermo Scientific Multiskan® 

Spectrum microplate spectrophotometer. MiliQ® water was employed for 

the required solutions. 

 

 

3.3. Experimental procedure  
 
This experimental procedure for LPS sequestration consisted of two 

different steps i) particles functionalization with the synthesized LALF 

protein and ii) LPS binding. 

 

Agarose beads were employed as model particle system for 

functionalization and subsequent proof of concept for LPS uptake. As an 

alternative to be implemented in the micro-magnetophoretic system, 

magnetic nanogels (MNGs) have been synthesized and characterized as 

described in Appendix G as an initial approach in the search for a 

magnetic and biocompatible substrate. 

 

3.3.1. Agarose beads functionalization 
 
Initially, as agarose beads are suspended in ethanol, they were 

centrifuged to remove the alcohol, rinsed for 3 times and re-suspended 

in 50 mM Tris-HCl and 150 mM NaCl buffer.  Afterwards, the beads were 

contacted to the LALF protein in order to achieve the particles coverage 
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due to the ability of the histidine tail to coordinate metals such as the 

nickel present on the surface of the selected beads.  

 

The procedure started measuring the initial concentration of the protein 

(no beads presence) and then, it was contacted to the beads under gentle 

shaking in order to study the change of the concentration with time by 

Ultraviolet Spectrophotometry (280 nm) measurements of the 

supernatant (protein size 57.9 kDa and molar extinction coefficient; 

ɛ=104.5 mol L-1). We assume that the difference between the initial and 

the last measured concentration of the protein corresponds to the 

amount of protein on the beads surface.  

 

Besides, after every bead:protein contact, once the equilibrium was 

achieved and the beads capture ability was saturated, the unbound 

protein in the sample was removed as particles were washed 3 times and 

resuspended in the same buffer as before.  Ultraviolet 

Spectrophotometry measurements were performed for the washing 

solution to verify the protein absence and to confirm its presence on the 

beads surface. The detected protein concentration in the washing buffer 

was around 0.1 and 0.2 mg/mL for every bead:protein contact. To 

proceed with a rigorous study of this step, firstly, it was analyzed the 

protein uptake working with different bead:protein ratios as described in 

Table 3.2. 

 

Table 3.2. Experimental design to study the bead-protein ratio influence 
on the protein uptake. 

Bead-protein ratio (v) µL Beads Time (min) Objective 

0.5:1 100 1500 
Effect of the 

beads-protein 
ratio on the 

protein uptake 

1:1 200 1500 

2:1 400 1500 

5:1 1000 1500 

10:1 2000 1500 
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Then, the influence of the temperature on the beads-protein binding was 

also analyzed as described in Table 3.3. 

Table 3.3.Experimental design to determine the Influence of the 
temperature on the bead-protein contact stage 

Bead-protein 
ratio (v) 

Temperature  
(˚C) 

Time 
(min) 

Objective 

2:1 4 1500 Study the temperature 
effect on the bead-

protein contact  
2:1 20 1500 

2:1 37 1500 

 

3.3.2. LPS capture assay 

The washed and functionalized beads were contacted to a FITC-LPS 

solution to proceed to the endotoxin sequestration stage. The 

concentration of the FITC-LPS stock solution was 1 mg/mL but, after 

contacting the same volume of LPS and the functionalized beads solution, 

the initial concentration of LPS was 500 µg/mL. After a certain time, the 

functionalized beads-LPS solution was centrifuged and the supernatant 

was placed in a 96 well plate. As LPS contained fluorescent conjugates, 

variations of endotoxin supernatant concentration were analyzed by 

fluorometric techniques at constant excitation/emission wavelengths of 

495 nm and 525 nm respectively. Then, the supernatant was contacted 

again with the protein covered beads and the process was repeated until 

the protein-lipid A system was saturated to determine the LPS percentage 

able to be trapped by the covered beads. Moreover, all these experiments 

were contrasted to a negative control consisting of the same 

experimental conditions but in absence of the protein, to discard 

unspecific unions between the beads and the lipopolysaccharides. In a 

first approach, the influence of the temperature on the LPS capture was 

studied as detailed in Table 3.4. 
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Table 3.4.Experimental design to study the influence of the temperature 
on the LPS sequestration stage. 

[LPS] 
(mg/mL) 

Bead:protein 
ratio (v) 

Temperature  
(˚C) 

Time 
(min) 

Objective 

1 2:1 4 120 
Study the 

temperature 
effect on LPS 
sequestration 

stage 

1 2:1 20 120 

1 2:1 37 120 

 

Once the temperature effect was examined during the LPS sequestration 

stage, experiments with different protein-LPS ratios were carried out to 

determine the best ratio in order to achieve the desired removal as 

depicted in Table 3.5. 

 

Table 3.5.Experimental design to evaluate the optimum protein-LPS ratio. 

[LPS] 
(mg/mL) 

LPS-protein ratio 
(φ) 

Temperature  
(˚C) 

Time 
(min) 

Objective 

1 35 20 120 Effect of the 
LPS-protein 
ratio on the 
LPS removal  

1 50 20 120 

1 100 20 120 

1 400 20 120 
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3.4. Results 

3.4.1. Analysis of the protein support on agarose 

beads 

Once the protein was synthesized, the next step was to analyze if the 

histidine tail coordinated adequately to the nickel present on the agarose 

beads surface and to determine the optimum bead/protein ratio for the 

contact. The studied bead: protein volume ratios were 0.5:1, 1:1, 2:1, 5:1 

and 10:1 and the experiments proceeded by triplicate with an error, 

calculated as standard deviation, between 0.034 and 0.002.   

 

 

Figure 3.1. Supernatant protein concentration during the 
functionalization stage. 

The initial protein concentration contacted to beads was 5.35 mg/mL and, 

in Figure 3.1, it can be appreciated the decrease on the protein 

concentration in the supernatant with time as it was captured on the 

beads for the different tested ratios. For the smallest ratio (0.5:1), the 

protein adsorption was 34% whereas at 1:1 ratio, the uptake increased to 
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67%, approximately twice the previous value, but not enough int terms of 

protein use. On the contrary, the highest bead-protein ratios achieved 

94.6% (2:1) and 100% (5:1, 10:1) protein capture so that, the protein 

concentration in the equilibrium was similar for the three cases. 

In order to select the most convenient experimental condition, it was 

important to analyze the functionalization degree of the beads by 

calculating the mg of protein per mg of beads; Figure 3.2 depicts the 

kinetics of protein uptake on the agarose beads. 
 

 

Figure 3.2. Protein uptake (mg) per mg of beads during the bead-protein 
stage. 

The higher beads concentration in the sample (5:1 and 10:1 ratios), the 

less functionalization degree, 17.8 mg P/ mg beads and 8.9 mg P/ mg 

beads respectively. On the contrary, the lowest ratio achieved the same 

concentration of protein per mg of beads, 59.6 mg protein/mg beads 

corresponding to 0.5:1 and 1:1 ratio. In addition, the 2:1 ratio revealed a 

value of 42 mg of protein captured per mg of beads; thus, this ratio was 
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selected for further experiments as it required an adequate number of 

beads covered by the protein with a reasonable protein uptake time, 

contributing to a cost-effective stage and to an improved utilization of the 

protein. 

 

Figure 3.3. Influence of the temperature on the bead:protein interaction. 

 

Protein expression was performed at 18˚C. Thus, the influence of the 

temperature on the beads capture ability was studied. Bead-protein 

contacts were carried out by triplicate and the error between the 

different runs, calculated as standard deviation, ranged from 0.001 to 

0.014. Figure 3.3 gathers the behavior of the protein adsorption kinetics 

expressed in terms of mg of protein adsorbed per mg of beads with time 

at three different temperatures, 37˚C, 20˚C and 4˚C.  

 

Consequently, temperature for the bead-protein contact did not reveal 

influence in the range from 4˚C to 37˚C; 50% of the equilibrium was 

achieved at 30 minutes, 75% at 90 minutes and complete protein uptake 
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was obtained after contact for 3 hours for the three scenarios. In 

conclusion, the synthesized LALF protein was stable and functional in the 

range between 4˚C and 37˚C, where the bead:protein contact did not 

show substantial differences on the protein uptake and denaturalization 

did not occur. 

 

LALF-LPS Interaction isotherms. Influence of temperature 

and bead: protein ratio 

In order to study the ability of the functionalized beads to capture LPS, a 

solution of lipopolysaccharides of 1 mg/mL was prepared, and as 

previously performed with the solid-liquid contact, the influence of 

temperature on the LPS capture isotherms was studied.  

 

Figure 3.4.Influence of temperature on the LPS sequestration kinetics. 

The contact between the functionalized beads and the LPS solution was 

carried out under three different temperatures: 4˚C, 20˚C and 37˚C. 

Figure 3.4 shows the influence of temperature on the LPS sequestration 

at the explained temperatures as well as the behavior of the negative 
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control (no protein presence in the contact).  Initially, 6.8 mg of protein 

were contacted to the beads and, as a result of contacting those beads to 

the 1 mg/mL LPS solution, the protein: LPS resultant ratio was 61. 

Although this ratio may seem to be too high, as a reference, LPS 

concentration in septic patients is around 300 pg/mL while the lipid 

binding protein (LBP) presence is  30 µg/mL [25], a significative ratio that 

is even higher than the tried for the first protein: LPS contact. LPS 

percentage removed at 4˚C was 43%, at 20˚C was 50.2% and at 37˚C it was 

35%. Within these data the most favorable scenario for the LPS removal 

corresponded to 20˚C.  

 

Protein:LPS optimum ratio 

As the LPS captured in previous experiments was considered too low, and 

the protein concentration in a septic patient is 10000 times higher than 

that of LPS [25], the protein: LPS ratio (φ) was increased to promote LPS 

removals closer to 100% and was calculated with the expression below: 

𝐶𝐿𝑃𝑆 ∙ 𝑉𝐿𝑃𝑆 ∙ 𝜙 = 𝐶𝑃𝑟𝑜𝑡𝑒𝑖𝑛 ∙ 𝑉𝑃𝑟𝑜𝑡𝑒𝑖𝑛 

 

where CLPS corresponds to the LPS concentration (1 mg/mL for all the 

experiments) and the LPS volume (VLPS) was set on 75 µL. Protein 

concentration (CProtein) was already known from the binding stage and the 

functionalized beads were always resuspended in 75 µL.  

Based on that, several runs were carried out at different protein: LPS ratio 

(φ and the measured supernatant concentrations are shown in the graph 

below (Figure 3.5). As the negative control did not change, it is assumable 

that the concentration of the supernatant decreased as LPS were trapped 

on the beads surface. 

 

As expected, the LPS removal was significantly improved as φ factor 

increased as shown in Figure 3.5 a. In particular, 85% of LPS removal from 

the initial solution was reached when the protein:LPS ratio was 392, in 
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accordance to the 83.4% LPS removal using PMB cartridges (Toraymyxyn) 

and reported by Malard et al, 2018 [26].  The first sample measured for 

that ratio was taken at 5 minutes, when the equilibrium in the interaction 

between LALF and LPS had been already achieved, so that an in-depth 

study of the contact was conducted. In this case, the φ factor was 

slightly higher and, under those conditions, the system achieved 95% of 

LPS removal in less than 1-minute (Figure 3.5 b), pointing to an 

instantaneous binding between the bead-protein complex and LPS and 

achieving an acceptable percentage for LPS removal processes. 
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3.4.2. Apparent equilibrium constant  

Previous adsorption measurements results were plotted in Figure 3.6 

where, based on the previously described constant expression, eq. (4) the 

resulting complex between the protein and LPS [P-LPS] divided by the free 

protein [P] and the free LPS present in the supernatant [LPSSN] are 

represented. The obtained slope corresponds to the apparent equilibrium 

constant expression with a resulting value of 2.8 103 M-1. 

Figure 3.5. a) LPS concentration decrease in the supernatant at different 
protein-LPS ratios. b) LPS supernatant concentration change with time at 
φ factor of 456.4. 
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Figure 3.6.Adsorption isotherm for LPS-LALF protein interaction. 

Association constant values reported for PMB (KA= 2.1 106 M-1) based on 

FRET-based experiments) or the biomolecules involved in the cascade 

mechanisms (LBP, sCD14) were higher than the value we have obtained 

in this work.  This can be explained both by the determination method 

and also because of the characteristics of the synthesized LALF protein. 

While binding constants reported in the literature were obtained by 

immobilizing the protein on a chip surface and via binding analysis 

techniques, in this work an experimental procedure was carried out 

where the peptide was firstly immobilized on an agarose matrix through 

nickel coordination bonds and then contacted to LPS solution; 

furthermore, LPS capture was carried out at ambient conditions similar to 

those expected in extracorporeal treatment. Regarding the protein 

structure, although molecular tags can improve the solubility to target 

proteins, they can also generate steric hindrance [27] as our protein 

synthesis required an MBP tag to avoid formation of inclusion bodies and 

the 6x Histidines to covalently bond to the beads. These modifications 
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changed the molecular weight of our protein from 15 to 76 kDa so that 

this steric effect could prevent from better LPS removal.  Despite that fact, 

protein: LPS ratios of 400 satisfactorily removed 95% of the initial LPS in 

the contacted solution and, considering the higher protein:LPS ratios in 

septic humans (10000) our approach is a good starting point for LPS 

cleansing systems.  

In this regard, the aim here, is to advance on the state-of-the-art of the 

experimental evaluation of the LPS binding interaction through a 

methodological approach that combines protein and separation 

engineering. Thus, further work could consist of applying this advance to 

a continuous device to analyze the removal efficacy of the system as a 

potential alternative to the existing therapies that unfortunately, are not 

completely efficient as today one-third to one-half of all septic patients 

in-hospital die. 

 

3.5. Conclusions  

LPS toxicity has boosted the research on effective methods for its 

separation from biofluids where micro-magnetophoretic devices deserve 

special attention. In this process the first stage aims at LPS entrapment on 

functionalized MNPs followed by the removal of the loaded particles from 

the biofluid in a second stage. While the particles deflection in 

microdevices has been studied in detail with outstanding results, the LPS-

MNPs complex formation requires LPS easy to obtain selective binding 

agents and a quantitative and systematic methodology to experimentally 

determine the binding kinetics is fundamental for the rigorous and correct 

design of removal devices. In this regard, previously synthesized LALF 

protein has shown binding capacity to agarose beads selected as particle 

model system. Initial experiments were carried out to select the variables 

that provided the best LPS separation performance, i.e., bead-protein and 

temperature of the protein supporting process. With a bead:protein ratio 

2:1 the protein uptake on the beads surface reached 90% of the initial 
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concentration in 5 h and 94% in 22 h. The temperature in the range 4˚C 

to 37˚C did not exert influence on protein fixation. 

 Regarding the LPS sequestration stage, the experimental planning 

analyzed the influence of the temperature on LPS removal at 4, 20 and 37 

˚C reaching the highest value, ca. 50.2%, at 20 ̊ C. To increase LPS removal, 

runs with variable protein: endotoxin ratio (φ), were carried out, 

observing that with a protein: endotoxin ratio (φ), around 95% of LPS 

removal from the initial solution was achieved in the first minute of 

contact.  The obtained apparent association constant value was 2.8 103 

M-1, determined through an experimental approach based on a cost-

effective protein synthesis process contributing to the development of 

micro-magnetophoretic cleansing devices.  
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4                               
Design of flow-through 

microdevices. 

Methodological guidelines 
 

Abstract 

This chapter aims to provide the methodological guidelines for the 

implementation of the capture stage of dissolved solutes using selective 

agents and operating in continuous microdevices setting the grounds for 

the capture of LPS from biological fluids using LALF functionalized 

nanoparticles. As a first approach, the microdevices design for reactive 

liquid phase separation is carried out employing aqueous solutions of Cr 

(VI) flowing through a Y-Y shaped microchannel in a homogeneous system 

where water is the receiving phase, and in a heterogeneous system where 

the solute moves to an organic receiving phase and is removed by 

facilitated transport mechanism. In the homogeneous system, mass 

transfer took place essentially by diffusion and both phases reached half 

of the initial solute inlet concentration whereas 85% chromium extraction 

was achieved by the addition of the selective extractant at a residence 

time of 5s. Model simulations with ANSYS FLUENT based on multiphasic 

Eulerian-Eulerian model have been assessed against a set of experimental 

runs fitting with an error less than 10%.
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4.1. Introduction 

The biofluid detoxification process proposed in this Thesis is based on two 

stages; the first one in which endotoxins are captured on the surface of 

functionalized particles and a second one in which the decorated-bead-

LPS complex is removed from the target fluid. 

After the synthesis of the LALF protein and determination of its activity in 

the capture of LPS, the next step consists of developing an application to 

carry out the continuous capture step aimed at fluid detoxification.  

To this end, the advantages of microfluidics were addressed to propose 

the capture step as scaling down allows for handling smaller volume of 

fluids, which entails small quantities of reagents and samples, reducing 

waste products and hazardous substances and therefore, decreasing 

costs [1,2]. Besides, high surface-to-volume ratio enhances mass transfer 

and thermal dissipation, which makes liquid-liquid separation a suitable 

technique to be combined with microfluidic devices  [3,4]. 

In this regard, and as depicted in Figure 4.1, the basic process would be 

comprised of a step where an endotoxin solution flows in parallel to a 

receptor phase that contains the functionalized beads, allowing the LPS 

binding on the particles surface as a function of the residence time and 

the operating temperature. 

Although the objective to be achieved in the capture stage is well defined, 

the novelty of this approach requires of three essential steps: i) the design 

of microdevices for reactive L-L separation, ii) the design of microdevices 

for reactive L-S separation and finally, iii) its application to LPS capture.  
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Figure 4.1. Functionalized beads-LPS capture stage illustration. 

This Thesis addresses the first point concerning the design of 

microdevices for L-L separations. For this purpose, a system with chemical 

similarity consisting of the reactive separation of anionic solutions by 

means of functionalized amino groups has been chosen due to its fast 

kinetics. 

To approach the study, the references and applications of microfluidics 

have been taken into account, specifically those related to extraction 

systems. In fact, during the last few years, great expectations have been 

aroused about countless applications of micro-solvent extraction in 

diverse fields that range from food safety control in applications such as 

extraction and  pre-concentration of pesticides from juice samples [5] to 

forensics, detecting different antidepressant compounds in human urine 

and plasma samples [6].  

 

Besides, as many materials employed in microfluidics as PDMS or SU-8  

report biocompatibility [7], there are several studies focused on the 

development of microfluidic analytical techniques of biological 

substrates,  isolation of leukocyte and erythrocyte cells from blood cells 

[8], detection of cocaine and its derivatives in hair samples [9] or even 

tumor progression tracking [10].  
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The crux of solvent extraction (SX) techniques often lies in molecular 

diffusion. Since down scaling predominantly implies laminar flow (Re< 1) 

with no turbulences and a streamlined flow, net transport of molecules 

occurs due to their random motion (McNaught and Wilkinson 1997). 

Based on this principle, several studies regarding the separation of solutes 

have been applied in two differentiated systems: homogenous, where 

two aqueous phases are contacted, and solute transport occurs by simple 

diffusion, and heterogeneous systems, where an aqueous phase is 

brought into contact with an organic receptor phase and the separation 

is carried out by facilitated transport.  

Regarding homogeneous systems, since the pioneering work of Brody and 

Yager [13] reporting the diffusive transport of carboxifluorescein in an 

aqueous phase, different authors have contributed with interesting 

studies on molecular diffusion combining experimental runs and 

computational techniques as recently reported by Gómez-Pastora et al. 

[14] who studied the solute mass transport performance in Y-Y shaped 

microchannels as function of flow patterns and mass transport kinetics.  

Moreover, microfluidic techniques have been also applied to protein 

extraction in aqueous two-phase systems, Novak et al. [15]. In this 

context, mathematical models to characterize microchannels mixing and 

flow quality and models aimed to determine the necessary operation 

conditions to verify laminar flow and predicting diffusivity and 

concentration profiles of the solute have been already reported [16–19]. 

Different solutes such as glucose, benzoic acid, sucrose and glycine among 

others were contacted with water and the experimental results were 

satisfactorily validated with the predicted ones. Afterwards, Ciceri and co-

workers [20] focused on the diffusion of Co (II) from an aqueous feed 

solution to an aqueous buffer and validated the experimental diffusion 

study with model simulated results based on the previous work of  

McCulloch et al. [21] who, using “Instaspec” III software, developed an 

analytical solution starting from Fick`s second diffusion law in order to 

predict the target specie concentration in the receptor phase. 
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Concerning heterogeneous systems, Sato et al. [22] firstly experimentally 

demonstrated the molecular transport of Ni (II) into a chloroform 

reservoir and Bowden et al. [23] reported the rapid hydrocarbon 

extraction to an hexane phase. In addition, different  reports [12,20] 

developed a treatment to control the degree of hydrophilicity 

/hydrophobicity of the microdevices walls. They further reviewed 

stabilizing methods of stratified micro flows and studied the molecular 

diffusion to describe the solute transfer across the water/oil interface. 

Recently, experimental micro extraction has been applied by Kolar et al. 

[24] to validate the viability of rare earth elements extraction into 

Cyannex® 572.  

Furthermore, experimental work  coupled with computational techniques 

has been reported as in the work of Kuban et al. [25]  to determine the 

influence of physical parameters such as interfacial area, density, viscosity 

and flow velocity on the performance of micro-solvent extraction 

processes. Despite most solvent extraction processes are developed and 

simulated in 2 layer microdevices,  Surmeian et al. [26] and Tetala et al. 

[25] carried out the simultaneous forward and backward extraction steps 

in a water/oil/water system. While Surmeian et al. assured the stability 

between the 3 phases and achieved a rapid transport of methyl red into 

cyclohexane, Tetala et al. studied the extraction effectiveness of alkaloids 

from plants extracts. Phase stabilization in a 2 phase system was also 

reported by Žnidaršič-Plazl and Plazl. [29] who estimated the diffusion 

coefficients by correlations and mathematically described a non-linear 

equation system where the esterification of isoamyl acetate took place at 

the interface between n-hexane and an aqueous phase.   

Moreover, Mason et al. [30] focused on heterogeneous transport and 

developed a simplified model under steady state conditions; they 

assumed a stable interface and estimated the mass transfer coefficients 

by four different approaches to determine the best correlation to 

describe the solute transfer to a receptor phase. This analysis gave rise to 

a subsequent work carried out by Ciceri et al. [31] to determine the 

extraction kinetics of Co (II) into DEHPA. A numerical model was 
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constructed and solved using CFD techniques assuming a flat interface 

between the fluids in contact as well as a streamline flow along the device. 

In addition, a no-slip velocity condition was considered as boundary 

condition on the walls of the micro device and a pressure driven gradient 

set the flow rate of each phase. 

On the basis of previous studies, this work pursues the advance on micro-

extractors design solving the coupling between fluid dynamics and mass 

transfer kinetics and allowing the interface tracking along the complete 

geometry of the microdevice as an initial step in the methodological 

development for the implementation of the LPS capture stage in 

microdevices. 

 
The analysis has been developed for the transport of hexavalent 

chromium as target solute from an aqueous phase flowing through a Y-Y 

shaped microchannel and considering two different scenarios: i) a 

homogeneous system, where the solute is separated by simple diffusion 

across two aqueous phases and, ii) a heterogeneous system where 

facilitated transport promoted the solute transport across the aqueous-

organic interface.  

ANSYS FLUENT software was used to develop a flexible model that solves 

under dynamic conditions both Navier-Stokes and species balance 

equations; the model also implements the surface tension between the 

liquid phases that had been experimentally determined, and the fluid-wall 

interaction through the measurement of the contact angle.  

The main objective of the study was to address the hydrodynamics and 

flow patterns, analyzing the conditions that ensure the co-flow of the 

fluids in contact, guaranteeing a stable interface without mixing of the 

fluids. Besides, as a key variable in the design of microdevices, the 

influence of the residence time of the target solute diffusion along the 

device for the homogeneous system was also tackled. Likewise, the effect 

of the addition of the selective extractant to the process was also studied 

in terms of chromium removal performance as function of the residence 

time. Furthermore, a set of experimental runs was carried out for the two 
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cases of study and the results fitted satisfactorily to simulated data using 

CFD modelling together with physical-chemical parameters already 

reported [32].  

Consequently, the rigorous and flexible model developed here constitutes 

a useful tool for the design of micro-separators and is applicable to the 

subsequent study of reactive L-S separation prior to its application in the 

LPS capture stage. 

 

4.2. Materials  

4.2.1. Chemical reagents  

KCrO4 (99%, Panreac Quimica S.A.) was used to prepare the feed solution 

and Shellsol D-70® (Kremer) and Alamine 336® (BASF) were employed for 

the organic phase of the heterogeneous system. Hydrochloric acid (37%, 

Panreac) was also added to the initial solution to adjust the pH. 

Furthermore, in order to verify the interface stabilization of the 

homogeneous system, sodium fluorescein, C20H10Na2O5, (Scharlau) was 

employed as fluorescent tracer to better visualize the aqueous phases in 

contact. All aqueous solutions were prepared with milli-Q water. 

 

4.2.2. Y-Y microfluidic device  

A Y-Y shaped microdevice made of SU8 (MICRUX Technologies S.L.) as 

substrate was used to perform the experimental procedure. The contact 

zone after the Y-inlet was 2 mm long, 300 µm wide and 300 µm deep and 

the angle between both inlets was 60˚ (same angle as between the outlet 

branches) as shown in Figure 4.2. The cross-sectional shape was 

rectangular and the interfacial area between phases was approximately 

0.6 mm2. 
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Figure 4.2. Micro-device geometry and dimensions. 

 

4.3. Experimental procedure 

The micro device was placed in a polymethyl methacrylate (PMMA) 

holder (16 x 8.5 mm) with a magnetic closure and interchangeable inlets 

and outlets connections of ¼” UNF (MicruX Technologies). At the same 

time, two 50 mL stainless steel syringes (Harvard Apparatus) were loaded 

with their respective solutions, placed in two infusion pumps (KD 

Scientific Legato series 200) and connected to the micro device inlets 

through Tygon ® tubes of 0.8 mm of internal diameter (Saint-Gobain). For 

each scenario, the fluid phases were brought in contact along the 

microdevice and for both cases of study, fluids co-flow and the interface 

track were controlled on a stereo microscope (Nikon SMZ18) equipped 

with a green fluorescence filter (light wavelengths of around 550 nm) and 

a Jenoptik ProgRes C5 camera. Images were taken using the ProgRes® 

CapturePro software (CapturePro V2.10.0.0).  

 

Samples were collected in Eppendorf tubes (1 mL) and the chromium 

concentration of the aqueous phases was measured by atomic absorption 

spectroscopy (Perkin Elmer 3110). Absorption standards were prepared 

with a chromium standard solution of 1000 mg/L (PanReac). Experiments   

were executed in triplicate to verify their reproducibility. A schematic 

diagram of the experimental set-up is shown in Figure 4.3. 
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Firstly, the interface stability was experimentally verified. For the 

homogeneous case, as both fluids in contact were aqueous solutions, 

sodium fluorescein was employed as colouring agent to distinguish the 

two phases. For the heterogeneous system that involved the contact 

between an aqueous feed and an organic receptor, the colorant was not 

needed.  

 

 
Figure 4.3. Experimental set-up diagram. 

 
For both scenarios, an aqueous solution of hexavalent chromium of 20 

mgL-1 as feed phase was used.  Diffusive mass transport of the metal 

(homogeneous system) was determined by contacting the feed phase 

with water as receptor phase. Due to the symmetric geometry and similar 

properties of the phases in contact, with a viscosity (µaq) of 0.001 kg m-1s-

1, the same flow rate values (0.6 µLs-1 – 0.01 µLs-1) along the microchannel 

were applied for both streams. Furthermore, in the facilitated transport 

experiments, the aqueous chromium-based stream was contacted with 

an organic solution composed of Shellsol D-70® as solvent and Alamine 

336® (10% wt.) as selective extractant. The pH of the initial solution was 

adjusted to 1.5 with hydrochloric acid to protonate the amino functional 

groups present in the extractant agent. As fluids in contact for this 

scenario had different rheological properties (viscosity values of µaq 
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=0.001 kgm-1s-1, µorg = 0.0009 kgm-1s-1), different throughputs were 

applied in order to control the pressure drop along the microchannels (9.5 

µL/s – 0.003 µL/s). The residence time for both scenarios ranged from 

0.01s to 10s and the experimental operating conditions for homogeneous 

and heterogeneous experiments are detailed in Table 4.1.  

 

Table 4.1.Experimental flow- rates and residence time for both systems. 

Homogeneous system Heterogeneous system 

Ffeed                     
(µL/s) 

Freceptor                                    
(µL/s) 

τ (s) 
Ffeed               

(µL/s) 
F receptor       
(µL/s) 

τ (s) 

0.6 0.6 0.15 9.526 4.763 0.006 

0.105 0.105 0.573 0.263 0.132 0.228 

0.051 0.051 1.168 0.103 0.052 0.581 

0.025 0.025 2.353 0.012 0.006 4.81 

0.015 0.015 4 0.006 0.003 9.58 

0.01 0.01 5.968    

0.009 0.009 7    

0.006 0.006 9.285       

 

 

4.4. Theoretical background 
 
ANSYS FLUENT R17.0 was employed to simulate both the simple diffusion 

and the facilitated transport cases. The model was based on the Eulerian 

finite volume algorithm combined with Volume of Fluid (VOF) 

parameters, which allow defining the position of the interface as a result 

of the calculation of each phase volume fraction.  

The model is governed by mass and momentum equations (1-3). Eq. 1 is 

the general expression of the mass conservation equation applicable for 

both incompressible fluids, expressed as: 
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∂ρ

∂t
+ ∇(ρv⃗ ) = 0 (1) 

where ρ is the density and v⃗  the velocity vector. 

The VOF method solves a set of momentum equations in an inertial 

system (non-accelerating) throughout the computational domain, which 

depends on the volume fraction of all the phases through the density and 

viscosity [33]. The volume fraction of each fluid along the micro device 

can be calculated from:  

∂

∂t
(ρv⃗  ) + ∇ ∙ (ρv⃗  υ⃗ ) = −∇p + ∇ ∙ (τ̅) (2) 

τ̅ = μ [(∇v⃗ + ∇v⃗ T) −
2

3
∇v⃗ I] (3) 

where 𝑝 is the static pressure and (�̅�) is the stress tensor given by Eq. 3, 

which includes the molecular viscosity (𝜇), the unit tensor “𝐼” and the 

effect of volume dilatation. 

Due to the spatial distribution of the concentration values that change 

along the microchannel length, ANSYS FLUENT implements the Fick´s Law 

to model mass diffusion rate as: 

 

𝐽𝑖⃗⃗ = −𝜌𝒟𝑖,𝑚𝛻𝑌𝑖 − 𝐷𝑇,𝑖

𝛻𝑇

𝑇
 (4) 

In Eq. 4, 𝐽𝑖⃗⃗  represents the diffusive flux of the specie “i” and Yi is the 

predicted local mass fraction of each specie, DT,i is the thermal (Soret) 

diffusion coefficient and 𝒟𝑖m denotes the chromium diffusion coefficient. 

Due to the isothermal regime of our system, the energy contribution of 

the system was neglected. 

 

A conservation expression is also included to model the transport of 

different chemical species describing the convection, diffusion and 

chemical reaction phenomena previously reported by Bringas et al. [34], 

as follows: 
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∂(αqρqYq
i )

∂t
+ ∇(αqρqV⃗⃗ q Yq

i) = −∇(αqJ q
i ) + αqRq

i  
 

(5) 

Eq. (5) describes the variation of local mass fraction (αq) with time of the 

specie “i” in the feed phase (q), “�⃗� 𝑞” is the velocity of the feed phase and 

“ Ri
q ” is the net rate of production of homogeneous species “i” through 

chemical reaction in phase q. 

 
In order to simulate the single chromium diffusion, Equations (1-5) were 

solved including the diffusion coefficient for chromate in the aqueous 

phase with a value of 1.76 10-9 m2/s. For this simple diffusion scenario, the 

second term on the right-hand side of Eq. 5 was neglected; thus, the 

change in chromium concentration along the channel length was due to 

the diffusive flux 𝐽𝑖⃗⃗ . Facilitated transport was modelled in this work by the 

addition of chemical reactions, Ri
q as presented in Eq. 5. In this case, the 

diffusion coefficient for the organometallic complex in the organic phase 

takes the value of 7.39 10-11 m2/s. At the interface, the target specie reacts 

with the selective extractant agent (𝑅3𝑁𝐻̅̅ ̅̅ ̅̅ ̅̅ ) as detailed in Eqs. (6-8): 

 

HCrO4
−

k1
⇔ Cr2O7

2− + H2O (6) 

R3N̅̅ ̅̅ ̅̅ + 2H+ + HCrO4
−

K2
⇔ (R3NH) HCrO4

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (7) 

2R3N̅̅ ̅̅ ̅̅ ̅ + 2H+ + Cr2O7
2−

K3
⇔ (R3NH)2 CrO7

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (8) 

Chemical reaction takes place instantaneously at the interface so that, 

this phenomenon was included in the model by a molar concentration 

equilibrium ratio K>>103 [35] as reported in Eq. (9): 

 

Yq,e
i = Kqipj Yp,e

i  (9) 

In addition, the surface tension between the aqueous and organic phase 

was included by the expression proposed by Brackbill et al.  [36] as 

follows: 



 Design of Flow-through microdevices 
__________________________________________________________________________________________________________________________________ 

 

103 
 

𝑝2 − 𝑝1 = 𝜎 (
1

𝑅1
−

1

𝑅2
) (10) 

where p1 and p2 denote the pressure of both fluids, R1 and R2 is the surface 

curvature measured by two radii in orthogonal directions. Surface tension 

coefficient (𝜎) was experimentally determined in a Krüss K11 tensiometer 

using the method of the Wilhelmy plate with an estimated uncertainty of 

ca. 0.3 mNm-1 and its value is 3.55 mNm-1. This is a key feature of this work 

since it was not assumed a flat interface nor a fully developed profile for 

the entire pass length so that, the surface tension value between the 

fluids in contact was experimentally measured and implemented in the 

model. In Table 4.2, the values of all the parameters included in our 

simulations are presented. 

 

Table 4.2. Values of parameters employed in our computational model. 

Parameter 
(T=20˚C) 

Feed 
phase 

Receptor phase 

Homogeneous 
system 

Heterogeneous 
system 

Density (kg/m3)                  998.2 998.2 789 

Viscosity (cP)                    10-3 10-3 9 10-4 

Diffusion coefficient    
(m2/s) 

1.76 10-9 1.76 10-9 7.39 10-11 

Partition Coefficient - 1 >103 

Interfacial tension 
(mN/m)  

- - 3.55 
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4.5. Results 

 

4.5.1.  Interface stabilization 

 

The fluid co-flow for the simple diffusion case is presented in Figure 4.4. 

This figure gathers the volume fraction of each phase along the micro 

device: the feed phase flows through the upper part of the channel 

represented in blue and the receptor phase is coloured in red in the lower 

part of the device. This chart is referred to the receptor phase volume 

fraction, the blue colour of the upper microchannel denotes the absence 

of the receptor phase in the feed one verifying that each fluid flows 

through each branch without mixing. In this case, the co-flow results in a 

clear and straight interface when both fluids are introduced into the 

domain at the same velocity value. This is due to the similar fluid 

properties of both phases, which ensures the same pressure drop along 

the channel length and thus, the separation of the phases at the channel 

outlets.  

 
For the facilitated transport model, simulations run under the assumption 

of a non-stable interface between the phases in contact so that the 

interfacial tension value was implemented to avoid bulges along the pass 

length. To assess the accuracy of this assumption, simulated results with 

and without the interfacial tension were obtained to analyse its influence 

and to assure a flat interface along the micro device under the different 

studied conditions. The results are presented in Figures 4.4 b) and c). For 

both figures, the applied velocities at the micro-channel inlets were 

different for each stream in order to facilitate phase separation at the Y 

outlet. This is due to the different properties reported by the feed and 

receptor phase, as previously observed by other authors Gómez-Pastora 

et al. [14] and Ciceri et al. [20]. Figure 4.4 b), which corresponds to a 

simulation that does not include the interfacial tension coefficient, shows 

a dented interface between the feed and the organic phase where fluids 

come together at the initial part of the device. On the contrary, the 

stabilization of the interface was confirmed thanks to the implementation 
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of the interfacial tension value combined with the VOF method. Fluids 

flowed in the downstream x-direction and the interface was balanced in 

the centreline of the micro device as depicted in Figure 4.4 c).   

 

 
Figure 4.4.a) Simple diffusion simulation. b) Co-flow and interface 
simulation without implementing the interfacial tension value between 
the fluid phases of the heterogeneous system. c) Heterogeneous system 
interface verification showing a straight interface after including the 
interfacial tension model. 
 

As a fully developed profile along the micro device was not assumed, 

simulations provided velocity vectors of the phases through the pass 

length as well as fluids distribution at the micro device to prove this 

assumption. As depicted in Figure 4.5, for both the homogeneous (Figure 

4.5 a) and the heterogeneous (Figure 4.5 b) systems, it is appreciable a 

turbulent flow when the fluids converge and split up, coinciding at the 

inlet and outlet of the micro device where fluids collide with each other. 
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Despite this fact, both phases rapidly reach the laminar flow along the x-

direction of the microchip achieving the maximum velocity at the inlet of 

the branches and at the centreline and the minimum at the micro device 

walls.  

 

Figure 4.5. Velocity profiles of a) homogeneous system and b) 
heterogeneous system. 

Once simulations run satisfactorily, it was also necessary to 

experimentally verify the interface stabilization. For the homogeneous 

case, as fluids in contact were both aqueous phases, one of the phases 

was dyed with sodium fluorescein Therefore, due to the symmetric 

geometry and similar properties of the feed and receptor phases, the 

applied velocities along the microchannel were the same for both fluids 

as presented in Figure 4.4. On the other hand, as the heterogeneous 

system involved an aqueous feed contacted with an organic receptor, the 

applied velocities were different for each stream along the device as 

previously reported by Ciceri et al. [37]. As depicted in Figure 4.6 the fluid 

phases flow in parallel along the device separated by a stable interface at 

the microchannel centreline in good agreement with the simulated 

pathways presented in Figure 4.4.  

 

m/s  

m/s  

m/s  
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Figure 4.6. Experimental interface verification. a) Homogeneous system; 
b) Heterogeneous system. 

 

4.5.2. Single-solute removal by diffusion 

After studying the system hydrodynamics and the flow patterns, in this 

subsection the removal of chromium by simple diffusion in the 

homogeneous system is analysed. In this case, the removal of this 

component from the feed phase was studied as a function of the 

residence time of the feed phase in the microchannel. The results are 

presented in Figure 4.7, where it can be seen that both simulated and 

experimental results show a dependence of chromium migration from the 

feed to the receptor phase as function of the residence time. As 

previously studied by Bruss [38] it was observed that the lower the flow 

rate, the higher the chromium concentration in the receptor phase as 

detailed in Figure 4.7. Increasing the residence time benefits the 

separation as chromium diffuses along the device from the donor phase 

to the receptor phase. At larger residence times, the receptor phase is 

much more enriched in chromium that at shorter residence times where 

the metal is mainly present in the feed solution because the insufficient 

time for diffusion. Moreover, the process is controlled by the mass 

transfer kinetics, which means that the chromium outlet concentration of 

the feed phase is half of the initial inlet concentration. 
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Figure 4.7. Homogeneous simulated and experimental results 
comparison for the chromium removal by simple diffusion. Squares 
correspond to feed phase (aqueous chromium solution) and triangles to 
the receptor phase (water), whereas solid lines correspond to the 
simulated results. 

The system reaches the equilibrium after approximately 4 s. According to 

Bruus and Gomez-Pastora et al. [39], diffusion dominates convection 

when the diffusion time is larger than the residence time. Diffusion time 

is proportional to the square of the channel width and inversely 

proportional to the diffusivity of the target compound. Diffusion along the 

“x” and “z” axis was negligible and it was only taken into account in the 

direction perpendicular to the interface. For our case of study, the 

required time for the solute to diffuse from the wall to the interface is 

around 3.7 s, which is in good agreement with the experimental 

observations. Moreover, computational simulations verified this diffusion 

time as it can be appreciated in Figure 4.8 where the green colour 

indicates that chromium concentration in both phases is equalised as the 

system reaches the equilibrium. 
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Figure 4.8.Chromium concentration profile of the homogeneous system 
at τ=4s. 

In Figure 4.9, chromium concentration profiles of the feed and receptor 

phases along the microdevice for this system are provided at 

representative residence times of 0.1 and 10 seconds. As presented in 

Figure 4.9 a, for low residence times, where tdiffusion >> tresidence, chromium 

molecules do not reach the interface and go out with the feed water 

stream; therefore, the system is unable to reach equilibrium and as 

consequence, the feed solution concentration is substantially higher than 

the receptor phase concentration. However, increasing the residence 

time for situations where tresidence >> tdiffusion implies that chromium 

concentration in the receptor phase is much higher and the outlet 

concentration of both phases in contact is balanced at 10 ppm (Figure 4.9 

b). 

 

 
Figure 4.9.Chromium concentration profiles for the homogeneous system 
for different feed residence times. a) 0.1 s; b) 10 s. 
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4.5.3. Solute removal by facilitated transport 

 

In this subsection, we examine the chromium extraction by facilitated 

transport, for which a chemical reaction at the interface between the 

immiscible fluid phases was implemented [35,40]. Thus, facilitated 

transport was carried out by contacting the chromium-based feed phase 

with an organic solution containing a selective carrier (Alamine 336) to 

enhance the extraction of the target compound. The micro device 

aqueous outlet concentration of chromium was measured and compared 

to simulated results. Figure 4.10 reports a comparison between simulated 

and experimental results where it can be noticed the effect of the addition 

of the selective extractant to the process. Thus, the chromium outlet 

concentration of the receptor phase is much higher than the values 

reached in the homogeneous case presented in Figure 4.7, achieving 

extraction percentages between 85% and 97% for a residence time 

ranging from 5 to 10 seconds.  
 

 
Figure 4.10. Chromium extraction by facilitated transport as a function of 
the feed phase residence time in the heterogeneous system. Dashed lines 
correspond to simulated results whereas triangles represent 
experimental chromium concentration variation in the feed phase. 
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Furthermore, the benefits of the facilitated transport are provided by 

examining the chromium concentration profiles along the microdevice. 

Figure 4.11 represents the chromium contours of feed and receptor 

phase for the heterogeneous system at residence times of 0.1 (Figure 4.11 

a) and 10 (Figure 4.11 b) seconds. For this case, chromium concentration 

in both phases is different at the outlets of the microdevice contrary to 

what is observed in the homogeneous system and consequently, the 

higher the residence time, the higher chromium extraction percentage 

obtained: the feed outlet chromium concentration at 0.1s of residence 

time is around 17 mg/L (Figure 11 a) while at 10 s, the concentration 

decreases to less than 1 mg/L as presented in Figure 4.11 b).  Moreover, 

extraction percentages range from 20% to 96% within the residence time 

varying between 0.01s and 10s, whereas for the homogeneous system the 

maximum removal percentage was 50%, after the chromium 

concentration was equal in both phases. 

 

Figure 4.11.Chromium concentration profiles for the facilitated transport 
analysis at a) 0.1 s and b) 10 s. 
 

By comparing both scenarios, it is noticed that mass transport of 

chromium from the feed to the receptor phase is improved in the 

heterogeneous system with regard to the homogenous system. However, 

at low residence times there is a small difference in the behaviour of the 

chromium concentration present in the feed of both scenarios, as shown 

in Figures 7 and 10.  These results from the fact that both systems are 
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limited by diffusion phenomena, especially when the contact time is short 

(approximately less than 2 seconds). On the contrary, increasing the 

residence times avoids limitations of diffusion through the aqueous feed 

phase and enhances the chromium facilitated transport thanks to the 

chemical reaction equilibrium with the selective extractant. 

Consequently, higher extraction ratios are achieved and the chromium 

concentration of the feed phase decreases by 90% for residence times 

higher than 5 s. 

 

4.5.4. CFD theoretical analysis and experimental 

validation 

Although we presented the theoretical predictions along with 

experimental measured data in the previous subsection, we also 

calculated the standard deviation on the results for validating our 

computational model. We calculated the error between experimental and 

model predicted data with the following equation: 

E (%)=

∑ |(
[Cr]Sim − [Cr]exp

[Cr]sim
)|n

i=1

n
 × 100         

(11) 

where [Cr]Sim represents simulated chromium concentration, [Cr]exp 

represents the chromium concentration experimentally measured for the 

same conditions and n is the number of the experiments performed.  

 

Based on the previous equation, our model predictions fit with 

experimental results with an average error less than 10% for both 

scenarios, i.e., simple diffusion and facilitated transport. Furthermore, in 

Figure 4.12 we present a graphical comparison between the experimental 

and simulated results for the homogeneous and heterogeneous system. 

It could be seen that the simulated results satisfactorily predict the 

system performance within a 10% deviation.  
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Figure 4.12.Simulated and experimental results comparison. Triangles 
represent homogenous feed phase and diamonds correspond to 
homogeneous receptor phase while crosses denote the heterogeneous 
feed phase. 

 

4.6. Conclusions 

Previous studies and applications on solvent extraction at the micro-scale 

have motivated the work of this chapter whose main objective is to 

contribute to the design of microdevices to be applied at continuous LPS 

capture process. 

Therefore, a L-L reactive system using hexavalent chromium as a 

methodological example in a Y-Y shaped microchannel has been 

conducted as initial approach. Thus, a deep analysis of the fluid dynamics 

and mass transport phenomena involved in homogeneous and 

heterogeneous micro-separation systems has been carried out.  
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Firstly, a mathematical model solved using ANSYS FLUENT R17.0 was 

developed not restricted to previously adopted assumptions of flat 

interface and fully developed profile for the entire pass length, in order 

to analyze the fluids behavior and interface stabilization along the device. 

The fluid dynamic study disclosed that, for the homogeneous system, the 

applied velocities for both phases should be equal. However, phases in 

contact for the heterogeneous system were different due to the distinct 

rheological properties of each phase so that, the applied velocities were 

different for the feed and the receptor phase. Moreover, while fluids 

flowed under laminar conditions along the x-axis, it is appreciated 

turbulent regime where fluids meet and separate from each other. It 

means that, when fluids come into contact and when they branch into 

their respective channel, they experience a slight mixing. The interface 

stability was simulated as well as experimentally assessed for both cases 

of study and it was proven that, for the heterogeneous system, in order 

to avoid crumpling effects at the interface, it was necessary to implement 

the interfacial tension coefficient between the aqueous and the organic 

phase which was previously determined and whose value was 3.55 mNm-

1. 

Regarding the mass transport analysis, in the homogeneous system mass 

transfer took place essentially by diffusion and both phases reached the 

same solute concentration when the values of diffusion time and 

residence time matched each other, which occurred at 3.7 s in the 

experimental system of this work.  Nonetheless, the addition of Alamine 

336 as selective carrier for chromium (VI) enhanced the mass transfer rate 

and displaced equilibration of chromium concentration between both 

phases, minimizing its limitation and thereby the transport to the 

receptor phase was increased; it was achieved an extraction percentage 

of 84.75% at a residence time of 5 seconds in the experimental system. 

The model was validated through a set of experimental runs, fitting to the 

experimental data with an error less than 10%. Thus, this modelling effort 

constitutes a comprehensive tool for the design of microdevices as it 

points out the key variables that determine the separation performance. 



 Design of Flow-through microdevices 
__________________________________________________________________________________________________________________________________ 

 

115 
 

The achievement of the model represents the attainment of the first 

objective of the capture stage in the path towards the design of biofluids 

cleaning systems in which, the subsequent step would be its 

implementation in a reactive S-L system and finally, its application to 

continuous LPS sequestration. 
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5                               
Conclusions and challenges 

for future research 
 

 

 

 

Abstract 

The main objective of this thesis is the development of a new process for 

the capture of endotoxins present in biofluids by combining the capture 

of LPS in specifically designed biomolecules by genetic engineering with 

continuous separation in microfluidic devices. After having described in 

detail the main aspects of this work, this chapter summarizes the main 

results obtained, highlights the conclusions derived from its analysis and 

exposes the challenges and perspectives for future research in the design 

of efficient systems for LPS capture and separation from biological fluids.
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5.1. Conclusions 

This thesis focuses on the development of a new process for the 

detoxification of biological fluids contaminated with endotoxins in which 

genetic engineering is integrated with microfluidic technology. 

In this process, two main steps are distinguished; i) the capture of LPS on 

the surface of previously functionalized particles, and ii) the separation of 

the endotoxins, present in the target fluid using micro separators. 

The work focuses on the first stage corresponding to endotoxins capture. 

Initially, a literature review was carried out to identify the molecules with 

greater activity against LPS and it was decided to synthesize, by means of 

genetic engineering techniques, the LALF protein (anti-lipopolysaccharide 

protein from the Limulus Polyphemus species).  

The successful synthesis of LALF occurred when the genetic sequence was 

designed with a stability tail (Maltose Binding Protein) and subsequently 

expressed in the Artic Express strain, at 18˚C.  

Once the protein was obtained, its kinetic activity was studied. For this 

purpose, the surface of agarose particles was functionalized with the 

previously synthesized LALF protein. Subsequently, the functionalized 

particles were contacted to fluorescent LPS solution, which made it 

possible to quantify the adsorption of endotoxins by the difference 

between the initial and final fluorescence signal. 

At the same time, the variables that provided the highest performance in 

the separation of LPS were studied experimentally. In relation to the 

particle:protein contact, the optimal volume ratio was established at 2:1, 

achieving a retention of 90% of the initially contacted protein after 5 

hours. In addition, temperature in the range of 4˚C to 37 ˚C did not exert 

influence on LALF binding.  

Regarding LPS sequestration, the influence of the same temperature 

range was analyzed, reaching a maximum value of 50.2% capture at 20˚C. 

To increase endotoxin removal, tests were performed with a variable 
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protein: endotoxin ratio (φ), achieving about 95% removal of LPS from the 

initial solution in the first minute of contact for a ratio of 456.4. The results 

obtained in the adsorption measurements determined an apparent 

association constant value of 2.8 103 M-1 at a temperature of 20˚C. 

Once the protein:LPS equilibrium was studied and in view of its 

application, the realization of the capture stage requires continuous 

operation. For this and, considering the advantages of microfluidics and 

the background of the research group, the use of micro devices has been 

proposed in which the fluid containing the LPS is contacted with another 

phase carrying the solid with LALF attached, determining the degree of 

capture as a function of residence time and temperature. 

Considering the novelty and difficulty of the system under study, the 

design of the micro-fluidic capture has been structured in 3 stages, i) 

design of micro devices for L-L reactive separation, ii) design of micro 

devices for L-S reactive separation and finally, iii) application to the 

capture of LPS.  

Specifically, this thesis hosts the study of the first stage of L-L reaction in 

which a system that maintains the fluid-dynamic analogy and of which the 

behavior of both the kinetics and the equilibrium of the chemical reaction 

is known has been subject to study. For this purpose, it has been worked 

with an initial aqueous solution composed of Cr (VI) flowing through a Y-

Y microchannel in i) a homogeneous system in which the receiving phase 

is another aqueous phase and ii) a heterogeneous system in which 

facilitated transport promotes solute transport across an aqueous-

organic interface. 

As for the mass transport analysis, in the homogeneous system the mass 

transfer took place essentially by diffusion and both phases reached the 

same concentration at the exit of the microdevice corresponding to 50% 

of the initial concentration. However, the addition of Alamine 336 as a 

selective carrier for chromium (VI) improved the rate of mass transport 

and shifted the chromium concentration distribution between the two 
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phases, reaching an extraction percentage of 84.75% at a residence time 

of 5 s. 

In addition, a mathematical model has been developed using ANSYS 

FLUENT R17.0 with a Eulerian approximation for multiphase systems. This 

model solves under dynamic conditions, both ta set of momentum 

equations as well as conservation equations. In addition, it implements 

the experimentally determined surface tension between the liquid 

phases, and the fluid-wall interaction. The experimentally obtained 

results were compared with the simulated ones with a 90% agreement. 

Overall, the work reported in this thesis lays the foundations for the 

separation of endotoxins in fluids whose potential application represents 

an alternative to conventional endotoxin capture treatments and 

contributes to the development of new detoxification processes. 

 

5.2. Challenges for future research  

This thesis aims to open new ways for the microfluidic separation of 

endotoxins contained in biological fluids applicable, for example, to the 

treatment of patients with sepsis.  Despite the achievements described in 

this thesis, there are still improvements to be implemented to accomplish 

the desired system that lie in i) the improvement of the activity of the 

LALF protein, determinant in the efficiency (kinetics and equilibrium) of 

endotoxin capture ii) the functionalization of a magnetic substrate and iii) 

the application of the mathematical model for L-S systems. 

The activity of the protein could be improved by switching the synthesis 

and expression from bacteria to insect cells. This process requires the 

construction of recombinant baculovirus that serves as a vector to 

transfect the insect cells responsible for producing the LALF protein. Using 

this new expression system would allow the purification of an E. coli-free 

protein since the initial culture would not contain Gram-negative 

bacteria. Although the cost of working with insects is higher in both 
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material and equipment than working with E.coli, the activity of the 

protein of interest can be significantly improved. 

On the other hand, the synthesis and characterization of magnetic 

nanogels carried out in this work represents a first step towards the 

implantation of a magnetic substrate in the micro-magnetophoretic 

system. Its functionalization with the protein, as well as the study of the 

variables involved in its adsorption on its surface, could be approached 

analogously as described in this work with agarose particles.  

Finally, a robust mathematical model has been developed with ANSYS 

FLUENT to describe L-L reaction systems as a first approach for the 

improvement of the LPS capture step. To properly define the overall 

process, the model should be extended to the study of L-S reactive 

systems and once defined, it could be implemented in the endotoxin 

capture system. 
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 5                               
Conclusiones y retos para 

investigaciones futuras 
 

 

Abstract 

El objetivo del trabajo descrito en esta tesis es el desarrollo de un nuevo 

proceso de separación de endotoxinas (LPS) presentes en biofluidos 

conjugando la captura en biomoléculas con diseño específico mediante 

ingeniería genética con la separación en continuo en dispositivos 

microfluídicos. Después de haber descrito en detalle los principales 

aspectos de este trabajo, este capítulo resume los principales resultados 

obtenidos, destaca las conclusiones que se derivan del análisis de los 

resultados y expone los retos y perspectivas para futuras investigaciones 

en el diseño de sistemas eficaces para la captura de LPS y su separación 

de fluidos biológicos.  
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5.1. Conclusiones 

Esta tesis se centra en el desarrollo de un nuevo proceso de detoxificación 

de fluidos biológicos contaminados con endotoxinas en el que se integra 

la ingeniería genética con la tecnología microfluídica. 

En este proceso se distinguen dos etapas principales; i) la captura de LPS 

en la superficie de una partícula previamente funcionalizada, y ii) la 

separación de las endotoxinas presentes en el fluido objetivo utilizando 

micro separadores. 

El trabajo se centra en la primera etapa correspondiente a la captura de 

endotoxinas. Inicialmente, se realizó una revisión bibliográfica para 

identificar las moléculas con mayor actividad contra el LPS y de decidió 

sintetizar, mediante técnicas de ingeniería genética, la proteína LALF 

(proteína anti lipopolisacáridos procedente de la especie Limulus 

Polyphemus).  

La síntesis de LALF resultó exitosa al diseñar la secuencia genética con una 

cola de estabilidad (proteína de unión a maltosa) y posteriormente 

expresarse en la cepa Artic Express, a 18˚C.  

Una vez obtenida la proteína, se abordó el estudio de su actividad. Para 

ello, se funcionalizó la superficie de partículas de agarosa con la proteína 

LALF previamente sintetizada. Posteriormente, se llevó a cabo el contacto 

entre las partículas funcionalizadas y una disolución de LPS fluorescente, 

lo que permitió cuantificar la adsorción de las endotoxinas por diferencia 

entre la señal inicial y final de fluorescencia de la fase líquida. 

A su vez, se estudiaron experimentalmente las variables que 

proporcionaron el mayor rendimiento en la separación de LPS. En relación 

al contacto partícula:proteína,  la relación óptima se estableció en 2:1, 

consiguiéndose una retención del 90% de la proteína inicialmente 

contactada tras 5 horas. Además, la temperatura en el rango de 4˚C a 37˚C 

no ejerció influencia en la fijación de LALF.  
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Al respecto del secuestro de LPS, se analizó la influencia del mismo rango 

de temperatura, alcanzándose un valor máximo del 50.2% de captura a 

20˚C. Para aumentar la eliminación de endotoxinas se realizaron ensayos 

con una relación variable de proteína: endotoxina (φ), lográndose 

alrededor del 95% de eliminación del LPS de la disolución inicial en el 

primer minuto de contacto para una relación de 456.4. Los resultados 

obtenidos en las medidas de adsorción determinaron un valor de la 

constante de asociación aparente de 2.8 103 M-1 a una temperatura de 

20˚C. 

Una vez estudiado el equilibrio de captación de LPS en la proteína 

sintetizada y de cara a su aplicación, la siguiente etapa comenzó el estudio 

de la separación en continuo. Para ello y considerando las ventajas de la 

microfluídica y los antecedentes del grupo de investigación, se ha 

propuesto el uso de micro dispositivos en los que, el fluido conteniendo 

el LPS se contacta con otra fase que porta el sólido con LALF adherido, 

determinando el grado de captura en función el tiempo de residencia y la 

temperatura.  

Considerando la novedad y dificultad que entraña el sistema objeto de 

estudio, el diseño de la captación microfluídica se ha estructurado en 3 

etapas, i) diseño de micro dispositivos para separación reactiva L-L, ii) 

diseño de micro-dispositivos para separación reactiva L-S y finalmente, iii) 

aplicación a la captura de LPS.  

En concreto, esta tesis alberga el estudio de la primera etapa de reacción 

L-L en la que un sistema que mantiene la analogía fluidodinámica y del 

que se conoce el comportamiento tanto de la cinética como del equilibrio 

de la reacción química se ha sometido a estudio. Con este objetivo se ha 

trabajado con una disolución acuosa inicial compuesta de Cr (VI) que fluye 

a través de un micro canal en forma de Y-Y en i) un sistema homogéneo 

en el que la fase receptora es otra fase acuosa e ii) un sistema 

heterogéneo en el que el transporte facilitado promueve el transporte del 

soluto a través de una interfase acuosa-orgánica.  
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En cuanto al análisis de transporte de materia, en el sistema homogéneo 

la transferencia de materia tuvo lugar esencialmente por difusión y ambas 

fases alcanzaron la misma concentración a la salida del micro-dispositivo 

correspondiente al 50% de la concentración inicial. No obstante, la 

adición de la Alamine 336 como portador selectivo del cromo (VI) mejoró 

la velocidad de transporte de materia y desplazó el reparto de la 

concentración de cromo entre ambas fases, alcanzando un porcentaje de 

extracción del 84,75% a un tiempo de residencia de 5 segundos. 

Además, se ha desarrollado un modelo matemático realizado con ANSYS 

FLUENT R17.0 con una aproximación euleriana para sistemas multifásicos. 

Este modelo resuelve en condiciones dinámicas, tanto las ecuaciones de 

Navier-Stokes como las de equilibrio de especies. Además, implementa la 

tensión superficial entre las fases líquidas determinada 

experimentalmente, y la interacción fluido-pared mediante la medición 

del ángulo de contacto. Los resultados conseguidos experimentalmente 

fueron comparados con los simulados con una concordancia del 90%. 

En conjunto, el trabajo recogido en esta tesis sienta las bases de la 

separación de endotoxinas en fluidos cuya potencial aplicación supone 

una alternativa a los tratamientos convencionales de captura de 

endotoxinas y contribuye al desarrollo de nuevos procesos de 

detoxificación. 

 

5.2. Retos para investigaciones futuras 

Esta tesis pretende abrir nuevas vías para la separación microfluídica de 

endotoxinas contenidas en fluidos biológicos aplicable por ejemplo al 

tratamiento extracorpóreo de pacientes con sepsis.  A pesar de los logros 

descritos en esta tesis, todavía existen mejoras a implementar para 

conseguir el sistema deseado que radican en i) la mejora de la actividad 

de la proteína LALF, determinante en la eficacia (cinética y equilibrio) de 

la captura de la endotoxina ii) la funcionalización de un sustrato 

magnético y iii) la aplicación del modelo matemático para sistemas L-S. 
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La actividad de la proteína podría ser mejorada al pasar de obtenerse en 

bacterias y expresarse en células de insecto. Este proceso requiere la 

construcción de un baculovirus recombinante que sirve como vector para 

transfectar las células de insectos encargadas de fabricar la proteína LALF. 

El hecho de utilizar este nuevo sistema de expresión permitiría purificar 

una proteína libre de E.coli ya que en el cultivo inicial no habría presencia 

de bacterias Gram negativas. Aunque el coste de trabajar con insectos es 

mayor tanto en material como en equipamiento del que supone trabajar 

con E.coli, la actividad de la proteína de interés puede verse 

significativamente mejorada. 

Por otro lado, la síntesis y caracterización de nanogeles magnéticos 

llevada a cabo en este trabajo supone un primer paso hacia la 

implantación de un sustrato magnético en el sistema 

micromagnetoforético. Su funcionalización con la proteína, así como el 

estudio de las variables que intervienen en la adsorción de la misma en su 

superficie, podrían ser abordados de manera análoga a la descrita en este 

trabajo con las partículas de agarosa.  

Por último, se ha desarrollado un modelo robusto con ANSYS FLUENT para 

describir sistemas de reacción L-L como primera aproximación para la 

mejora de la etapa de captura de LPS. Para definir correctamente el 

proceso global, el modelo debería extenderse al estudio de sistemas 

reactivos L-S y una vez definido, se podría implementar en el sistema de 

captura de endotoxinas. 
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APPENDIX A: Lipid binding molecules 

Table A.1. Classification of LPS binding molecules. 

Type of 

molecule 
Example Source / localization Reference 

Organic 

solvent 

Triton X-114 

(-) 

Synthetic 

molecules 

[1] 

Tetra(ethyleneoxide) 

decyl ether 
[2] 

Butanol [2] 

Octanol [3] 

Polymer 

Polysulfone 

(-) 

[4] 

Polyamide [5] 

Polyetherimide [6] 

Antibiotic Polymyxin B 
Gram (+) 

bacteria 

Proteins 

extracted 

from other 

living 

organisms  

[7,8] 

Protein 

FhuA 

E.Coli 

membrane 

 

OmpT [9–11] 

MsbA  

Attacin 
Insect (Silk 

moth) 
[12] 

Sarcotoxin IA 
Insect (Fresh 

fly) 
[13] 

Melittin 
Insect (Honey 

bee) 
[14] 

Papiliocin 

Insect 

(Swallowtail 

butterfly) 

[15] 

Magainin 2 

Amphibians  

(African 

clawed frog) 

[16] 

Limulus factor C Horseshoe 

crab (Limulus 

Polyphemus) 

[17] 

LALF [18,19] 

TALF 

Horseshoe 

crab 

(Tachypleus 

tridentatus) 

[20] 
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 Continuation of Table A.1. Classification of LPS binding molecules. 

Type of 

molecule 
Example Source / localization Reference 

Protein 

Surfactant 

proteins 
Lungs 

Human 

proteins with 

potential LPS 

binding 

capacity  

[21,22] 

SLPI 
Human 

mucosa 
[23–25] 

Hystatins Saliva [26,27] 

Factor XII 

Human 

plasma 

[28] 

Tissue factor [29] 

PLTP [30,31] 

CETP [32] 

Complement 

components 
[33,34] 

HDL [35–37] 

Hemoglobin [38–40] 

BPI 

Human 

leukocytes 

[41–43] 

Lactoferrin [44,45] 

Heparin-

binding 

protein 

[46,47] 

Cathelicidins [48] 

Lysozyme [44,49] 

α-defensins 

Cells of the 

human 

immune 

system 

[48,50] 

Growth 

differentiation 

factor 5 

(GDF5) 

Membranes of 

human cells 
[51] 
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Continuation of Table A.1. Classification of LPS binding molecules. 

Type of 

molecule 
Example Source / localization Reference 

  

  

  

  

  

  

Protein 

  

  

  

  

  

sCD14 Human 

plasma 

Human 

proteins 

involved in 

the immune 

response 

[52,53] 

LBP [54–56] 

CD14 Human cells [57–59] 

NKL 

Porcine cells 

and human 

plasma 

[60] 

TLR2, TLR4 

Membranes of 

human cells 

[61–63] 

Heat shock 

proteins 

(HSP70, 

HSP90) 

[64] 

Chemokine 

receptor 4 

(CXCR4) 

[65] 

 

MD-2 [66,67] 

P2X7 Cytosol of 

human cells 

[68] 

Histones [51] 

Moesin Cytoskeleton 

of human cells 

[69] 

Tubulin [4,70] 

 

Synthetic molecules 

The removal of LPS from LPS-biomolecules complexes by solvent 

extraction has been studied mainly for analytical purposes. These 

methods involve the contact of Triton X-114 or tetra(ethyleneoxide) decyl 

ether with the sample under controlled conditions in order to maintain 

phase immiscibility [1,2]. Due to their inherent hydrophobic character, 

endotoxins partition favorably into the organic phase, while the desired 

molecules remain in the aqueous phase. A serious drawback of these 

methods is that the detergent has to be removed prior to reliable 

endotoxin determination since even at low concentrations, it interferes 

with endotoxin determination by the LAL test [19]. In order to overcome 

these limitations, Szermer-Olearnik and Boratyńskil reported that the 
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endotoxin can be effectively removed from a bacteriophage lysate by 

extraction with water immiscible solvents such as butanol or octanol 

[2,3]. 

Additionally, LPS unspecific adsorption on dialysis membranes has been 

observed, especially on polysulfone or polyamide materials (due to 

hydrophobic interactions and the large relative surface of the membrane 

compared to LPS concentration) [4].  This suggests that hydrophobic 

polymeric materials can be effectively used for the removal of endotoxins 

from biological fluids. Mitzner et al. evaluated the performance of an 

extracorporeal endotoxin removal system by immobilized 

polyethylenimine (PEI) [71]. The results obtained indicate that PEI, is an 

effective endotoxin-binding substance with good selectivity and 

biocompatibility performances. However, as the LPS-PEI interaction is an 

unspecific hydrophobic interaction, the binding selectivity towards LPS 

can be compromised in complex matrixes. 

Human proteins  

Proteins involved in the human immune system response 

Human LPS-binding proteins are involved in the recognition of LPS to 

signal the presence of potentially harmful bacteria and activate the 

immune system response. Among them, MD-2, a small secreted protein 

associated with TLR4, is largely responsible for the direct binding of LPS, 

an event that results in TLR4 homodimerization and proinflammatory 

gene expression [72]. LBP, a plasma protein which is mainly produced by 

hepatocytes and is by far the most extensively studied soluble protein 

with LPS-binding capacity [54,55]. LBP and CD14 are two proteins whose 

coordinate actions result in the disaggregation and delivery of LPS 

monomers to the TLR4·MD-2 complex.  

Recently, heat shock proteins 70 and 90 (HSP70 and HSP90) [64], 

chemokine receptor 4 (CXCR4) [65] and growth differentiation factor 5 

(GDF-5) [51] have been identified as cell surface proteins that bind LPS 

and are involved in LPS-induced signaling.  After binding to the cell 
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surface, LPS is internalized in the cytoplasm of macrophages [73]. Once 

there, it can also interact with other intracellular LPS binding molecules. 

Such molecules can belong to the cytoplasmic domain or may form part 

of the membrane proteins. This is the case of P2X7, a nucleotide receptor 

which potentiates the LPS-induced activation of macrophages [68]. 

Moesin, a cytoskeletal linker actin-binding protein [69] that interacts with  

tubulin [4,70], an heterodimer of the structural subunit of microtubules, 

can also bind LPS as well. Additionally, Chaby et al. recently found that 

histones (H1, H2A, H2B, H3 and H4) can all bind LPS  [51,74] .  

Other human proteins with potential LPS binding capacity 

In addition to lipid transport proteins, a wide variety of circulating 

proteins with LPS-binding capacity exists in human plasma like heparin, 

lipoproteins and hemoglobin [75]. Such is the case of polycationic 

molecules like heparin which interacts with a highly cationic region of LPS-

binding site [34,76–79]. Moreover,  LPS also binds all major plasma 

lipoproteins: HDLs, low-density lipoproteins (LDLs), very low density 

lipoproteins (VLDLs) and chylomicrons [80,81]. Besides, hemoglobin is an 

oxygen-carrying globular protein located in erythrocytes with proven LPS 

binding capacity. In this case the binding does not involve ionic 

interactions with lipid A, but rather hydrophobic and/or hydrogen 

interactions, with the lipid A acyl chains [38–40,82]. 

In some parts of the human body specially exposed to pathogens, such as 

epithelial tissues and mucosa, specific antimicrobial molecules are 

produced providing protection against infectious surfactant proteins, 

hystatins and secretory protease inhibitor (SLPI). The respiratory system 

is continuously exposed to LPS due to the inhalation of airborne particles. 

Lungs are provided with a protective layer composed by surfactant 

proteins; some proteins (SP-A and SP-D) are hydrophilic, whereas others 

(SP-C) are hydrophobic. It has been established that hydrophilic 

surfactant proteins bind phospholipids and LPS. However, there are some 

specificities: SP-D, binds to the core carbohydrates of LPS, whereas SP-A 

reacts with the lipid A region [23,25]. It has been reported that SP-C 



Appendix A 
__________________________________________________________________________________________________________________________________ 

140 
 

interacts with the lipid A region showing an effective LPS-binding capacity 

as well [24,25]. Other antimicrobial type of molecule is the secretory 

leukocyte protease inhibitor (SLPI), which was found to interact directly 

with different sulphated polysaccharides and with LPS [21,22]. Moreover, 

histatins are small histidine-rich peptides (HRPs), secreted by salivary 

glands that can bind LPS and neutralize its effects as they also repair oral 

tissues and defend against different microbes [26,27].  

Although neutrophils and epithelial cells are the main producers of 

soluble LPS-binding proteins, other cell types can also do the same. This 

is the case of natural killer (NK) cells, which produce a cationic 

polypeptide, NK-lysin (NKL); they were initially isolated from  porcine 

cells, but it has been also reported that human lymphocytes produce a  

counterpart that also exhibits LPS-binding and neutralizing activity [60]. 

The last important group of antimicrobial proteins is produced in the 

surface of the cells, especially in those responsible for executing the 

immune response, playing an essential role in the defense of the organism 

against estrange substances or infectious agents. This is the case of the 

bactericidal permeability-increasing protein (BPI), a cationic antimicrobial 

protein that is present principally in leukocytes and on the surface of 

human mucosal epithelia. BPI is toxic only towards Gram-negative 

bacteria [41–43] and has both heparin and LPS-binding capacity [42,43]. 

Other protein with multi-specific character is Lactoferrin that can be 

found at mucosal surfaces and in biological fluids and has the capability 

of binding iron, heparin, proteoglycan, DNA, oligodeoxynucleotides and 

LPS [44,45]. Heparin-binding protein (HBP) is a cationic antimicrobial 

protein produced by human neutrophils. This multifunctional protein has 

an ionic and hydrophilic pocket with strong affinity for binding the 

phosphate groups of lipid A and a hydrophobic pocket suitable for binding 

the fatty acid chains of lipid A [46,47]. Lysozyme, a major cationic protein 

present in leukocytes, did also bind LPS. Like polymyxin B, lysozyme binds 

to the phosphate groups of lipid A first electrostatically followed by a 

hydrophobic interaction [44,49]. Human neutrophils contain two 

structurally distinct types of antimicrobial peptides, defensins and 
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cathelicidins. Human α-defensins (HNP-1 to HNP-4) interact with LPS, 

although less efficiently than BPI [48]. Cathelicidins SMAP-29, rCAP18 and 

hCAP18 are antimicrobial peptides found in sheep, rabbit and human 

leukocytes, that show antimicrobial and LPS-binding activity [83].  

 

Proteins extracted from other living organisms 

Bacteria 

Bacterial proteins inserted in the outer membrane such as FhuA or OmpT 

interact with the lipid A region of LPS. FhuA is found on the surface of 

Escherichia coli and mediates the active transport of siderophores, small, 

high-affinity iron-chelating compounds (such as iron ions). OmpT is an 

outer-membrane protease found on the surface of E. coli. It contains an 

LPS-binding site that is strictly required for proper activity [10,11]. MsbA, 

located in the inner membrane, is a ‘lipid flippase’, involved in lipid A and 

glycerophospholipid export and therefore in the biogenesis of the outer 

membrane [9]. 

Similarly, other microorganisms, mainly Gram-positive bacteria, produce 

antibiotic-type structures with LPS recognition and binding capacity. An 

example is polymyxin B (PMB), which are cyclic lipopeptide antibiotics 

comprised of hydrophobic and hydrophilic domains that are critical for 

their antibacterial activity and bind to phospholipids present in the 

anionic outer cellular membrane of the LPS of  G(-) bacteria increasing 

membrane permeability, which triggers apoptosis that sometimes is 

related to nephrotoxic effects as reviewed elsewhere [8,84–87]. 

Invertebrates 

Antimicrobial peptides are naturally produced by different organisms 

such as insects, amphibians or crustaceans and have shown significant 

capacity to control and neutralize bacteria. Along their evolution, insects 

improved their resistance to bacterial infections by producing molecules 

able to interact with LPS. Among these antimicrobial cationic peptides, 

https://en.wikipedia.org/wiki/Iron
https://en.wikipedia.org/wiki/Chelation
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cecropins, constitute a main component of the innate immune 

system of insects. Cecropins are small proteins (31 - 37 amino acids) that 

electrostatically interact with the negatively charged phospholipid 

membrane surface causing leaky membranes in both Gram-positive and 

Gram-negative bacteria [88,89].  They were firstly isolated from the 

hemolymph of the silk moth as attacin, and similar antibacterial peptides 

such as sarcotoxin IA was found in the hemolymph of the fresh fly while 

melittin is a major component of the honey bee venom and Papiliocin was 

recently isolated from the swallowtail butterfly [12–15]. These 

antimicrobial insect peptides consist of two synthetic α-helical peptides 

that selectively bind LPS with an affinity equivalent to that of polymyxin 

B. Similar molecules have also been found in amphibians. It is the case, 

for example, of magainin 2, isolated from the skin of the African clawed 

frog [16].  

Invertebrates developed an innate immune system that recognizes 

minute amounts of surface components of potential pathogens. The 

horseshoe crab (Limulus Polyphemus) produces in its hemocytes a factor 

called Limulus factor C, a component of the serine protease cascade, able 

to interact with minute amounts of LPS leading to coagulation of the 

horseshoe crab hemolymph. This factor is used in the quantitative 

detection of LPS either by gelation or colorimetric assays [17]. Other 

proteins of this type are TALF [20], a similar anti-LPs factor produced by a 

Japanese variety of horseshoe crab or the Limulus anti-LPS factor (LALF), 

a small basic protein that inhibits the LPS-mediated coagulation cascade 

[18,19].

https://en.wikipedia.org/wiki/Innate_immune_system
https://en.wikipedia.org/wiki/Innate_immune_system
https://en.wikipedia.org/wiki/Insects
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APPENDIX B: Strains and oligosaccharides employed 

in this thesis  

Table B.1. Different strains used in this thesis. 

Name Genotype  Description Ref  

DH5α 

F-, endA1, gInV44, thi-1, recA1, 
relA1, gyrA96, deoR, nupG, 

φ80dlacZΔM15, Δ(lacZYA-argF) 
U169, hsdR17 (rK-mK+, λ-[NxR] 

Maximize 
transformation 

efficiency. 
[1] 

BL21 (DE3) 

F-, ompT, gal, dcm,Ion, hsdSB(rB
-

mB
-),λ(DE3[lacI lacUV5-T7p07 

ind1 sam7 nim5]), [malB+]K-

,12(λS) 

Reduce the 
degradation of 

heterologous proteins. 
(Lack of OmpT and Ion 

proteases) 
 

[2] 

Rosetta 
F-, ompT hsdSB (rB

- mB) gal dcm 
(DE3) 

Enhance eukaryotic 
proteins expression 
that contain codons 
rarely used in E.coli 

 

[3] 

Origami 

F- ompT hsdSB(rB
- mB

-) gal dcm 
lacY1 ahpC (DE3) gor522:: Tn10 

trxB (KanR, TetR) 
 

Facilitate proper 
disulfide bond 

formation 
[4] 

Artic Express 
F– ompT hsdS(rB

– mB
– ) dcm+ 

Tetr gal endA Hte [cpn10 cpn60 
GentR] 

Increase the yield of 
soluble protein 

produced in E. coli 
[5] 

P. Pastoris 
SMD1168H 

MutShis4- 
Avoid protein 
degradation 

[6] 
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Table B.2. Primers employed for E.coli plasmids construction. 

Name 
Sequence (5´> 3´) 

 pET_gen_F  TAGAAATAATTTTGTTTAACTTTAAGAAGG 

pET_gen_R  TAGCAGCCGGATCTCAGTG 

pET_vector_F  ATGTATATCTCCTTCTTAAAGTTAAAC 

pET_vector_R  GAGCACCACCACCACCA 

pET29c_LALF_TAG

sinsert_R 
TGTTATCCGCTCACAATTCCCCTA  

pET29c_LALF_TAG

sinsert_F 
ATGGATGGTATTTGGACACAGTTAATTTTCACC  

TAGsmplpET_pro

m 
CGATCCCGCGAAATTAATACGACTCAC 

 LALF+ SenP2 
TGACCAGGGTGAAAATTAACTGTGTCCAAATACCATCCATTCCA

CCGGTCTGCTGCTGGA 

LALF + TEV 
TGACCAGGGTGAAAATTAACTGTGTCCAAATACCATCCATGCCC

TGGAAGTAAAGGTTTTCGGTC 

MBP_seq CGATGAAGCCCTGAAAGACGCGCAGAC 

GALF_pET29c_F 
AATAATTTTGTTTAACTTTAAGAAGGAGATATACATATGCGTGTA

TCCGTGCTTGTATCTCTAG 

GALF_pET29c_R 
CTTTGTTAGCAGCCGGATCTCAGTGGTGGTGGTGGTGGTGCTCG

AGGGAACTCAACCATTGATT 

TRXout_TEVin 
TACCATCCATGCCCTGGAAGTAAAGGTTTTCGGTCGTTGGGATA

TCGGCCAGGTTAGCGTCGAGGA 

TEV_F GATATCCCAACGACCGAAAACCT 

TRX_pET3a_NdeI AAAAACATATGGGTACCAGCGATAAAATTATTCACC 
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Continuation of Table B.2. Primers employed for E.coli plasmids 
construction. 

TRX_pET3a_BamHI AAAAAGGATCCGCCCTGGAAGTAAAGGTTTTCG 

pET_iso_F CACCACCACCACCACCACTGAGATCCGGCTGCTAAC 

pDBHISGST_iso_R CGATATCCCAACGACCGAAAACCTTTACTTCCAGGGC 

Pgst_iso_F CGAATCTAGAGCCTGCAGTCTCGAGCGGC 

pGST_iso_R  CGATACGACCGAAAACCTGTATTTTCAGGGCGCC 

pET_iso_F CACCACCACCACCACCACTGAGATCCGGCTGCTAAC 

pHisMBP_iso_R GGATATCCCAACGACCGAAAACCTGTATTTTCAGGGCGCC 

pETSumo3_iso_R CGAGGACACCATCGACGTGTTCCAGCAGCAGACCGGTGGA 

Pet_iso_F CACCACCACCACCACCACTGAGATCCGGCTGCTAAC 

pHis_iso_R CGATATCCCAACGACCGAAAACCTGTATTTTCAGGGC 

 Underlined nucleotides indicate the restriction target for cloning through 

enzyme restriction. 

 

Table B.3. Primers utilized for Pichia Pastoris plasmids construction. 

Name Sequence (5´>3´) 

LBP_pPIC gen 
F 

TTGATTTTAACGACTTTTAAC 

LBP_pPIC gen 
R 

CAACTTGAACTGAGGAACAG 

LBP_pPIC_vect
or_F  

GTT TGT AGC CTT AGA CAT GAC   

LBP_pPIC_vect
or_R  

TTGATCTTCTCAAGTTGTCG 

LALF_pPIC 
AGAAGAAGGGGTATCTCTCGAGAAAAGAGAGGCTGAAGCT ATG 

GATGGTATTTGGACCCAACTG 
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pPICZ_vector AGCTTCAGCCTCTCTTTTC 

LBP_pPICZ 
AGAAGAAGGGGTATCTCTCGAGAAAAGAGAGGCTGAAGCTATG

GGCGCACTAGCTCG 

Bold nucleotides indicate the homology domains needed for cloning through 

isothermal assembly. 

 

Table B.4. Oligonucleotides employed for PCR and Sanger sequencing. 

Primer Sequence (5´>3´) Description 

T7 TAA TAC GAC TCA CTA TAG GGG 
Universal 

promotor T7 

pT7 GCT AGT TAT TGC TCA GCG G 
Universal 

terminator T7 

NdeI CAT ATG CAT CAC CAC CAC C 
Restriction 

enzyme  

XhoI CTC GAG AGG CGG ATG ATC  
Restriction 

enzyme  

BanHI AAAAAGGATCCGCCCTGGAAGTAAAGG 
Restriction 

enzyme  
Seq_pET_T
7 

CGATCCCGCGAAATTAATACGACTCACTATAGG
G 

Sequencing 
primer  

Seq_GST_F GTATATAGCATGGCCTTTGCAGGGCTGGC 
Sequencing 

primer  

Seq_pET_R CCACCGCTGAGCAATAACTAGCATAACCCC 
Sequencing 

primer  

Seq_Pgex_f GCGCCGACATCATAACGGTTCTGGC  
Sequencing 

primer  
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APPENDIX C: Polymerase Chain Reaction (PCR) 

The principles behind every PCR independently of the DNA sample are the 

same. It is required a DNA template to be copied that contains the target 

sequence. Primers are short pieces of single-strained DNA previously 

designed and complementary to the target sequence which initiate the 

reaction.  Besides, nucleotides (dNTPs or deoxynucleotide triphosphates) 

are also necessary to construct the new strand of DNA. Finally, a DNA 

polymerase enzyme with high fidelity is required as it synthesizes the new 

strands of DNA complementary to the target sequence. The first and most 

common used is TaqDNA (used in this work) as it can generate the new 

strand together with the DNA template and primers as well as it is heat 

resistant. 

PCR process involves three main stages depicted in Figure C.1: 1) 

denaturing where stranded DNA is heated to separate it into single news, 

2) annealing, when the temperature is lowered to enable the DNA primers 

to attach to the template DNA and 3) extension, when temperature is 

raised and the new strand of DNA is made by the Taq polymerase enzyme.  

 

Figure C.1. Polymerase Chain Reaction (PCR) required components and 
process stage
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APPENDIX D: Protein synthesis results 

As a sample of the multiple expression attempts, Figure D.1 shows the 

absence of protein bands from different overexpressions of pET29c_LALF 

and pET29c_LBP both in BL21 and Origami strains at different 

temperatures (37˚C, 25˚C, 20˚C, 18˚C). Protein production was induced 

with 1 mM IPTG when the OD600 was around 0.5-0.7.  

 

Figure D.1. pET29c_LALF overexpression test in BL21 and Origami at 
different temperature conditions. 

Besides, Figure D.2 depicts the unsatisfactory expression of pPICZ_LALF 

expressed in P. pastoris using two different mediums, BMGY and BMMY. 

Similar results were obtained when pPICZ_LBP was overexpressed in 

yeast cells.  

After introducing fusion vectors, the TRX_LALF construction seemed a 

suitable alternative for protein obtention. Since previous expressions 

indicated better performance at 18˚C, in this case, temperature was set 

and the influence of both BL21 and Origami E.coli-derived strains was 

analyzed. As depicted in Figure D.3, TRX_LALF protein was successfully 

expressed in BL21 but not in Origami. 
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Figure D.2. pPICZ_LALF protein expression in P.pastoris using different 
mediums at different temperatures. 

 

Unfortunately, TRX_LALF protein was found in the insoluble fraction. This 

means that its conformation was not correct and therefore, it was non 

active as it tends to aggregate with each other and form the so-called 

"inclusion bodies". As an example, samples of TRX-LALF in BL21 

(expressed at 18˚C) electrophoresis gel results are shown in Figure D.4.  

The culture was resuspended in lysis buffer and sonicated before 

separating the soluble (SN) and insoluble (P) fraction through 

ultracentrifugation. It can be observed a wider band corresponding to the 

insoluble fraction (P), that contains 90% of the protein, while the SN 

protein band was almost unappreciable, indicating the absence of soluble 

protein.  
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Figure D.3. Protein analysis through SDS-PAGE of BL21 and Origami E.coli 
strains of TRX_LALF fusion protein at 18˚C. 

 

Figure D.4. Insoluble TRX_LALF protein visualized in the pellet (P) fraction 
after the expression at 18˚C in BL21. 
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In an attempt to partially solubilize the aggregates, a detergent was added 

to the lysis buffer to decrease the interaction between the proteins. 

Attending to the work of Sun et al. 2014 [1], between 1% and 5% Triton 

X-100 was added to the lysis buffer but, in combination with the 

sonication, undesired bubbles generation occurred and consequently, the 

lysis method was insufficient. Accordingly, enzymatic lysis was introduced 

to assure the complete cells rupture by adding 100 µg/mL lysozyme to the 

buffer.  

Solubility test were carried out and SN and P samples previously treated 

with different concentrations of Triton X-100 and enzymatically lysed 

were visualized in an SDS-PAGE gel. Results are depicted in Figure D.5 

where it can be observed that the addition of 1% Triton X-100 improved 

protein solubility whereas the higher concentrations did not show any 

improvement.  However, despite 1% Triton X-100 sample implied the 

better results, most of the protein still remained in the insoluble fraction. 

 

Figure D.5. Influence of Triton X-100 on protein solubilization. 

Another addressed strategy was to synthesize the binding domain of the 

LBP, also known as LBD, both BL21 and Origami and Artic express to 

compare their yields as illustrated in Figure D.6. Induction was carried out 

with 1 mM IPTG and overexpression took place at 18˚C. As appreciable, 
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protein expression in Origami did not succeed whereas BL21 and Artic 

Express production showed protein but in the insoluble fraction. 

 

Figure D.6. TRX_LBD expression in Artic express, origami and BL21 where 
protein production in BL21 and Artic express was found in the insoluble 
fraction. 
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APPENDIX E: Kinetic parameters determination 

techniques 

Kinetic studies, whose main objective is the determination of the 

equilibrium constant from the kinetic parameters of the direct and 

reverse binding reactions, employ either surface plasmon resonance 

(SPR), micro calorimetry (ITC), or fluorescence resonance energy transfer 

(FRET). 

Surface Plasmon resonance (SPR) 

Surface Plasmon Resonance is a mass-sensitive transductor procedure 

that monitors in real-time the association and dissociation events 

between a binding molecule immobilized on a surface and a partner 

injected on the surface. The sensor surface is composed of a thin gold film 

on a transparent material illuminated by a polarized light as depicted in 

Figure E.1. Once the wavelength, angle and refractive indices are 

adjusted, a resonance takes place between the light and the free 

electrons clouds (plasmon wave). Binding and dissociation between the 

immobilized compound and its partner change the refractive index and 

allows the real-time tracking of the resonance conditions [1,2]. 

 

Figure E.1. Surface Plasmon Resonance detection system. 



Appendix E 
__________________________________________________________________________________________________________________________________ 

 

170 
 

SPR screening offers detailed binding characteristics such as kinetic 

measurements, thermodynamic parameters and binding stoichiometry 

[3]. The kinetics measurement procedure implies the injection of different 

samples of analyte with already known concentrations on a surface with 

low ligand level in order to favor kinetic conditions. The main instrument 

of SPR is the BiacoreTM biosensor, where k1 (M-1 s-1) is the rate of analyte-

surface binding and the K-1 (s-1) is the analyte removed from the surface. 

As result, it is generated a primary sensogram that allows calculating 

interaction parameters like association (KA) or dissociation (KD) constants 

as well as the maximal binding capacity of the surface (Rmax) [4,5].   

 

Isothermal titration calorimetry (ITC). 

 

Isothermal titration calorimetry (ITC) is playing a key role in the 

exhaustive study of protein-ligand interactions. Measuring protocol 

involves two different cells: a cell with around 1 mL of the reactant and a 

second cell for temperature reference. A syringe that also serves as stirrer 

injects the ligand to the sample cell. Initially, both cells are equilibrated at 

the desired temperature but, when the experiment is started, a constant 

power is supplied to the reference cell and a compensating one is also 

supplied to the other cell in order to equilibrate temperatures. Based on 

pre-set intervals, the ligand is added and the associated absorbed or 

released heat is compensated thanks to the power supplied to the initial 

cell as depicted in Figure E.2. The feedback-supplied power is directly 

proportional to the heat-flow (dQ/dt) [6,7] . As a result of this procedure, 

different panels show relevant information about the interaction as the 

association constant (KA), the enthalpy change (AH) and the stoichiometry 

(n) for the reaction.   
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Figure E.2. Isothermal Titration Calorimetry measurement system. 

 

Fluorescence resonance energy transfer 

Fluorescence resonance energy transfer (FRET) is a useful technique 

based on the distance dependent transfer of energy between a donor 

fluorophore (D) and an acceptor fluorophore (A) whose absorption 

spectrum must overlap partially with the emission spectrum of D [8,9]. 

When both fluorophores are approached, the donor excited-stage energy 

is transferred through a dipole-dipole coupling. As a result of FRET, the 

fluorescence of the donor decreases and the fluorescence of A increases 

by means of the rate of energy transfer, KT, from D to A,  

Fluorescence techniques allow determining kinetic rate constants under 

stopped-flow techniques of fast reactions. Stopped flow is a type of flow 

injection analysis where reactants are rapidly driven from syringes into a 

high efficiency mixer as shown in Figure E.3. To perform a run, two 

syringes are filled with the reagent, the content is expelled into the flow 

circuit, and a small volume of each reagent is displaced through the mixer 

observation cell. When the flow is stopped, the reaction initiated by 

mixing proceeds in the observation cell and the change in absorbance is 

monitored by the spectrophotometer following the absorbance change in 
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the millisecond time range. The flow is stopped with the reactant stream 

in the flow cell photometric detector that usually is fluorescence detector 

as it is more sensitive. The sensitivity of the fluorescence detection is very 

useful to limit the amount of the material needed by the technique. 

Kinetic determination is obtained by monitoring the concentration of the 

reactants over time using absorption or fluorescence spectroscopy 

[10,11]. 

 

Figure E.3. Stopped flow injection analysis system. 
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APPENDIX F: Affinity and kinetics of lipid- ligand 

interactions 

As lipid A, one of the most potent stimulators of the innate system, 

induces a wide spectrum of biological effects, which may be harmful for 

the host, theoretical, experimental and combined studies have been 

developed to analyze the interaction between the lipid A and different 

binding molecules. These approaches contribute to clarify the binding 

mechanism and make progress on advanced therapies for sepsis control. 

In this context, some authors focused their investigation on the kinetics 

and reaction mechanisms as they play an important role in the design and 

optimization of the analytical or treatment devices. Kinetic studies have 

been carried out by surface plasmon resonance (SPR), isothermal titration 

calorimetry (ITC), or fluorescence resonance energy transfer (FRET).  

Table F.1 collects the information on the kinetics and affinity constants of 

the reaction between Lipid A and different receptor molecules specifying 

the technique that has been used in the reported studies; moreover, in 

order to facilitate the comparison of the data provided in the literature, 

Table F.1 gives the association constant of the interactions calculated as 

the reverse of the dissociation constants (KA=1/KD) given by the authors. 

Along the text, the values of the original reported constants are provided.
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Table F.1. Kinetic constants of the interaction between lipid A and 
different receptor molecules. 

Lipid A-
Receptor 
molecule 

k1 x 10-4 
(M-1 s-1) 

k-1 (s-1) KA x 10-6 

(M-1) 
Technique Ref 

FITC-LPS-LBP     286 

FRET [1] 

FITC-LPS-sCD14     34.5 

LPS-dansylPMB 
10.3  - 55   0.336 0.3-1.63 

Stopped 
flow 

[2] 

  2.3 FRET 

LPS-PMB 9.3  - 11  0.07 1.33  - 1.58     SPR 

[3] 

LPS-PMBN 

2.8  - 3.2   0.08 0.34 – 0.39   SPR 

  0.21 ITC 

LPS-cyclic 
decapeptide 

4.8  - 5.2 0.09 0.51  - 0.58    SPR 

  0.35  ITC 

LPS-cyclic 
heptapeptide 

0.2 1 0.002 SPR 

   0.002  ITC 

FITC LPS- CD14 
wild type     

13.5 

FRET [4] 

FITC LPS- CD14 
DDED delection   

58.8 

FITC LPS- CD14 
PQPD delection   

58.8 

FITC LPS- CD14 
DDED/PQPD 
delection   

500 

FITC LPS- CD14 
AVEVE delection   

30.3 
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FITC LPS- CD14 
DPRQY delection     

< 1 

FITC LPS- MD-2     15.4 FRET [5] 

LPS- Dansyl-
magainins 
analogs 

2-89 
0.078-

0.7 
0.002-1.14 SPR 

[6] 
2-83 

0.071-
0.73 

0.002-1.18 
Stopped 

flow 

  0.21-1.2 ITC 

LPS-rLBP 

123 0.004 288 SPR 

[7] 

  140 
Scatchard 

plot 

LPS-rsCD14 

2.9 0.07 0.42 SPR 

  0.98 
Scatchard 

plot 

LPS-rLBP-rsCD14 

1300 0.06 216 SPR 

    100 
Scatchard 

plot 

LPS-TLR4-MD-2     333 FRET [8] 

LPS-TLR4 0.323  0.045 0.07 

SPR [9] LPS-CD14 0.286  0.025 0.115 

LPS-MD-2 0.561   0.013 0.429 

 

In this context, Tobias et al. reported the characterization of LPS-LBP and 

LPS-CD14 complexes using sucrose density gradients and fluorescent 

assays [1]. Rabbit LBP was isolated from rabbit serum, human 

recombinant soluble sCD14 was obtained by immunoaffinity 

chromatography and lipopolysaccharides were fluorescinated with 

fluorescein isothiocyanate (FITC-LPS). Equilibria and kinetic experiments 

were carried out by tracking the fluorescence signal for FITC-LPS-LBP and 

FITC-LPS-sCD14 complexes. For the first complex study, 4.2 10-9 M of FITC-
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LPS was reacted with 4.2 10-8 M of LBP achieving a dissociation constant 

value (KD) of 3.5 10-9 M. On the other hand, 10 ng/mL sCD14 were 

contacted with 10 µg/mL sCD14 but no color-changes were appreciated 

until addition of 0.04 µg/mL LBP as catalyst of the FITC-LPS-sCD14 

complex formation who’s averaged KD was 2.9 10-8 M. 

Afterwards, in 1998 and for the first time, Thomas et al. [2] reported the 

elementary steps involved in the recognition of lipopolysaccharides by 

polymyxin B (PMB). The amphiphilic nature of PMB is supposed to be a 

key factor in the specific interaction with LPS as its binding affinity was 

studied by displacements of fluorescence techniques. In order to 

elucidate the kinetics and mechanisms involved in the complex formation, 

Thomas et al. studied the LPS-PMB reaction attempting to contribute to 

the design of more potent LPS neutralizing agents through stopped flow 

analyses using N-dimethylaminonaphthalene-5-sulfonyl-PMB (dansyl-

PMB) as common indicator.  Therefore, by means of FRET-based 

experiments, the association constant yielded a value of 2.1 106 M-1 while, 

by stopped flow techniques, LPS (1 µM) was contacted to different 

concentrations of dansyl-PMB (10-75 µM) yielding a k1 range of 1.03 105- 

5.5 105 M-1s-1 while k-1 remained invariant in 0.336s-1; these kinetic 

constants provide values for the association constant in the range of 3.06 

105  to 1.63 106 M-1. 

Staying on this subject, Thomas and Surolia  investigated the interaction 

between LPS (from Escherichia Coli, 055:B5) and PMB, Polymyxin B 

nonapeptide (PMBN), and a cyclic hepta and decapeptide on-purpose 

synthetized using a solid phase peptide synthesizer (NovaSyn) [3]. Binding 

kinetics were analyzed by SPR using a BIAcore 2000 biosensor system. The 

association rates of the interaction of LPS to the peptides except the cyclic 

heptapeptide, ranged from 2.8 104 M-1s-1 to 11 104 M-1s-1, whereas 

dissociation rates were 0.07 - 0.09 s-1, Table F.1. Moreover, ITC measures 

performed as described by Srimal et al. [10] provided binding affinities 

using an OMEGA high sensitivity microcalorimeter and the obtained 

binding constants (KA) for each peptide complex were in good agreement 

with the ones obtained by SPR [3]. 
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In 2000, Viriyakosol and coworkers based on their studies, constructed 

different CD14 mutants making 4-5 amino delections [11]. They analyzed 

the activity of those mutants and CD14 wild type by means of fluorescent 

assays of FITC- LPS binding after contact of 7 different concentrations of 

each ligand with 10ng/mL LPS. The apparent dissociation constant value 

(KD) ranged from 7.4 10-8 M-1 to  < 10-6 M-1 [4]. Hence, in 2001, Viriyakosol 

et al.  produced a recombinant human MD-2, which is a protein associated 

to toll-like receptor 4 (TLR-4), to study the viability of LPS binding in the 

absence of other associated binding proteins. Fluorescence assays gave 

an apparent dissociation constant value of KD=  6.5 10-8 M [5]. 

As displayed in Table F.1, Thomas et al. [6] studied the interaction 

between LPS (E. Coli 55:B5, 111:B4) with synthesized magainins analogues 

with improved amphiphilicity. Isothermal Titration Calorimetry (ITC) 

provided a binding constant kA ranging between 1.2 106 and 2.1 105 M-1. 

Furthermore, fast reaction kinetic studies were performed by stopped-

flow apparatus measuring the influence of the ionic strength on the 

kinetic parameters and suggesting the influence of ionic forces in the 

recognition of LPS by this kind of designed peptides. The association rate 

(k1) values ranged from 0.2 103 M-1s-1 to 8.3 103 M-1s-1 and dissociation (k-

1) rates were between 0.071 s-1 and 0.730 s-1 resulting in association 

constant kA (calculated as kA=k1/k-1) ranging from 0.02 105 M-1 to 11.8 105 

M-1. 

In addition, surface plasmon resonance SPR analysis with LPS 

concentration that varied from 25 nM -125 nM flowing at a rate of 5 

µL/min. Association rate constants (k1) values between 0.2 103 - 8.9 103 

M-1s-1 and dissociation (k-1) rates in the range of 0.078 and 0.7 s-1 resulted 

in affinity constant values in the range of 0.02 105 to 11.4 105 M-1, standing 

in the same order of magnitude than the values previously measured with 

ITC and stopped flow techniques.  

Besides kinetic studies on the formation of LPS complexes with antibiotics 

and different peptides, several studies have also been carried out to 

clarify the binding mechanisms between lipid A and LBP. Although the 

progress made on describing the interaction mechanisms of LPS-LBP is 
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significant, fundamental details of the LPS binding site of LPB are missing 

and the crystal structure of the LPS-LBP complex is still lacking. Focused 

on this specific interaction, Thomas et al. [7]  analyzed the kinetics of 

interactions between LPS, LBP and recombinant soluble CD14 (rsCD14) 

based on the ability of LPS to interact with a variety of target cells. SPR 

assays at 25˚C with immobilized rLPB on a CM5 sensor chip at 40 µgm/L 

and LPS flowing over the surface of the chip at concentrations between 6 

nM and 35 nM and a flow rate of 10 µLmin-1 were carried out. This 

interaction yielded k1 and k-1 values of 1.23 106 M-1s-1 and 4.26 10-3 s-1 

respectively, and KA value of 2.88 108 M-1, in good agreement with the 

association constant value obtained from the Scatchard plot (KA= 1.4 108 

M-1).  

Furthermore, these authors studied the LPS-rsCD14 binding. The same 

concentration of rsCD14 (40 µg/mL) was also covalently immobilized on a 

different sensor chip and LPS (200 nM) mixed with increasing 

concentrations of LBP (5, 10, 15, 80, 140 nM) was passed over the rsCD14 

to study the interaction of the ternary complex. k1 and k-1 values for the 

binding of LPS to immobilized rsCD14 were 2.9 104 M-1s-1 and 0.07 s-1, 

yielding KA of 4.2 105 M-1; this constant had the same magnitude order as 

the KA calculated from the Scatchard plot (9.8 105 M-1). 

 Moreover, the interaction between LPS-rLBP and immobilized rsCD14 

was studied in order to analyze the influence of LBP presence on the 

complex formation. After incubating a constant amount of LPS with LBP 

and once the complex was formed, it was passed over previously 

immobilized rsCD14. Data related to the binding LPS-LBP complex with 

CD14 displayed k1 of 1.3 107 M-1s-1 whereas k-1 was 0.06 s-1, obtaining an 

overall binding constant value of 2.16 108 M-1. Subsequent data treatment 

by Scatchard analysis of the SPR data yielded KA of 1 108 M-1 entailing a 

binding enhancement thanks to the LBP presence which, increased not 

only the association rate but also the association constant for the 

interaction between LPS and CD14 by three orders of magnitude.  
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APPENDIX G: Synthesis and characterization of 

magnetic nanogels (MNGs) 

MNGs synthesis  

MNGs synthesis comprises three main steps; i) magnetic particles 

fabrication followed by ii) MNGs synthesis and iii) MNGs surface 

decoration. 

Synthesis of magnetic nanoparticles (MNPs) 

The synthesis of iron oxide MNPs was carried out by coprecipitation of 

iron salts. Briefly, 16.14 g FeCl3.6H2O and 5.56 g FeCl2.4H2O were placed 

in a 250 mL round bottom flask together with 130 mL of MilliQ water. 70 

mL of 3 M NH4OH were added dropwise and left under magnetic stirring 

for 15 minutes. Then, the nanoparticles were magnetically separated, and 

the supernatant was discarded. MNPs were resuspended in 20 mL of 2M 

HNO3 and stirred for 15 minutes more. To purify, several washes and 

magnetic separation were carried out using acetone and finally water. 

 

Surface modification of MNPs with vinyl moieties 

(MNP@MEMO) 

To perform the surface functionalization of the nanoparticles, 50 mg of 

MNPs were suspended in 26 mL of an EtOH: H2O (1:1) mixture. Then, a 

silanizing gent (MEMO) was added to provide methacrylic groups on the 

particle surface. The influence of this agent was analyzed as depicted in 

Table G.1. 

 

Different volumes of MEMO were added to the MNPs and the resulting 

dispersion was sonicated 5 times for 2 minutes (70% power). The reaction 

mixture was purified by magnetic separation and washed 3 times with 

acetone. Afterwards, MNP@MEMO were resuspended in MilliQ water.
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Table G.1.Experimental design to study the influence of the MEMO 
silanizing agent on the MNPs size and polydispersity. 

VMEMO (mL) MNPs (mg) Objective  

0.5 50 
Study the silanizing 

agent effect on MNPs 
size and polydispersity  

1 50 

1.5 50 

2 50 

 

 
Once the best silanizing condition was determined, and as MNP@MEMO 

were resuspended in water, samples were lyophilized to dry them and 

measure their spectra by FTIR. 

 

Synthesis of magnetic nanogels (MNG) 

When the silanization stage was satisfactorily completed, different 

monomers that give shape to the nanogel (DEGMA and OEGMA) and 

HEMA, which provides the OH groups to the surface, are added to the 

previously synthesized MNPs as shown in Figure G.1. 

 

 
Figure G.1. MNGs formation from MPs@MEMO and DEGMA, OEGMA and 
HEMA monomers. 

As an initial step, it was studied the optimum %HEMA that involved the 

desired shape of the MNGs as explained in Table G.2. 
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Table G.2. Experimental design to study the influence of % HEMA 
monomer on the MNGs size and polydispersity. 

HEMA (%) Objective  

4 Study the influence of 
HEMA monomer on the 

MNGs shape and 
polydispersity  

8 

15 

20 

 

To synthesize the MNGs, 0.8 mmol DEGMA, 0.2 mmol OEGMA, together 

with the optimal determined amount of HEMA, 1.8 mg of SDS and 1.6 mg 

of APS and MiliQ water to a total volume of 10 mL were added in a 20 mL 

flask. (It is advisable to prepare aqueous solutions of both SDS and APS 

and add 500 µL of each to the target solution due to the small amounts 

required for this step). 

The monomer solution was stirred and homogenized for half an hour. 

Then, the mixture was heated up to 60˚C and once this temperature was 

reached, 0.3 mL of 0.25 M TEMED and 1.5 mg MNP@MEMO were added 

simultaneously. The reaction mixture was ultrasonicated discontinuously 

(6 times, 1 min) at 70% of power during 15 minutes. Finally, the nanogels 

were purified by magnetic separation and subsequent dialysis against 

water for 3 days at room temperature using a 50 kDa MWCO membrane 

(Figure G.2). 

 

Figure G.2. Illustration of the overall process of MNGs synthesis. 
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MNGs surface functionalization 

 

The aim of synthesizing MNGs was to anchor the LALF protein to its 

surface. For this to occur, it was necessary to functionalize the surface 

with nickel cations and thus, facilitate the nickel-protein coordination. 

This surface modification requires different steps. 

Initially, succinic anhydride was used during the functionalization process 

to get an acid group on the surface of the MNGs and subsequently bind 

the linker. Since succinic anhydride has a cyclic structure, it was dissolved 

in DMF so that it opens up and can be anchored to the MNGs. In 

sequence, the nanogels had also to be dissolved in DMF so, after MNGs 

dialysis, the water was removed from the solution by magnetic separation 

and 50 mL of DMF were added and sonicated for 30 minutes in a bath 

with ice to avoid a temperature increase.  

Once MNGs were dissolved in DMF, a previously prepared and stirred 

solution of succinic anhydride in DMF (0.2 g/mL, 10 mL) was added. This 

solution was then placed in contact with the nanogels in a round bottom 

flask under inert atmosphere (N2) and stirred for 10 hours. After this time, 

the sample was centrifuged at 13,500 rpm for 25 minutes and the 

supernatant was discarded. To eliminate remains not anchored to the 

surface, 3 washes with methanol (30 minutes of resuspension by 

sonication, 30 minutes of centrifugation and supernatant removal) were 

carried out. Subsequently, this last rinsing process was performed twice 

with water and the nanogels were finally resuspended in 40 mL of 

deionized water. 

In summary, what was achieved in terms of the nanogel´s surface was a 

linearization of the succinic anhydride getting an acid at the end of the 

chain to carry out the successive steps (Figure G.3). 
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Figure G.3.MNGs surface decoration to obtain an acid at the end of the 
chain. 

Before anchoring nickel particles to the MNGs surface, a prior step of 

linker (Nα,Nα-Bis(carboxymethyl)-L-lysine hydrate) addition was 

required. Since this compound has an amine group (Figure G.4) and the 

nanogels have an acid at their end, it was necessary an active ester to 

facilitate the binding between the two functional groups (Figure G.5). 

 

Figure G. 4. Linker chemical structure. 

 This process started with the resuspension of the MNGs to ensure good 

dispersion. Next, 100 mg EDC and 100 mg NHS were added and stirred for 

30 minutes at room temperature. Then, 10 mg of the linker were added 

and allowed to react for 24 hours at room temperature. Subsequently, 

the sample was centrifuged for 30 minutes and the supernatant was 

removed. Lastly, it was resuspended in water and washed 3 times until 

final resuspension in 20 mL of deionized water. 
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Figure G.5. MNGs surface structure after the linker addition. 

 
 

Immobilizing Ni (II) Ions onto the Surface MNGs 

 
The previously water resuspended MNGs were sonicated again to avoid 

aggregates. Then, they were vortex-mixed in aqueous nickel chloride 

solution (0.1 M, 200 µL) for 1 h. MNGs were separated from the solution 

under a magnetic field, and the MNGs-Ni(II) conjugates were three-times 

rinsed with deionized water (200 µL) and resuspended in 200 µL  

deionized water before use. 

 

MNGs synthesis characterization  

Initially, the influence of the silanizing agent (MEMO) was studied to 

determine the most suitable amount to ensure the desired particle size 

(around 200 nm) and polydispersity index (PDI) around 0.2, 0.3.  

Attending to both size and PDI criteria (both measured through dynamic 

light scattering, DLS), and as shown in Figure G.6, the appropriate amount 

of MEMO to be added was determined to be 1 mL, since the previously 

mentioned requirement were accomplished. Higher values of MEMO 

implied ten times larger sizes and PDI three times greater than desired. 

 

 

 

 

 

 

 

EDC, NHS, linker 
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Figure G.6. MEMO influence on MNPs size and PDI. 

Having determined the volume of MEMO, the silanization was 

corroborated by IR, and the peak corresponding to the Si-O-Si bond was 

observed in all the spectra measured as depicted in Figure G.7. 

 

Figure G.7. MNP@MEMO spectrum obtained by IR where SI-O-Si desired 
bond is highlighted in red color. 

When the synthesis of MNGs started, the influence of the HEMA 

monomer in the process was studied (4mol%, 8mol%, 15mol%) since it is 

the monomer in charge of providing the OH groups to the surface of the 

nanogel.  
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Particle size was measured by DLS for each percentage of HEMA and, as 

appreciable in Figure G.8, higher HEMA percentages entailed aggregates 

formation and very non-homogeneous and large nanogels. In conclusion, 

HEMA was decided to be added at 4 mol% since the obtained nanogels 

met size (200 nm) requirements. 

 

Figure G.8. HEMA percentage influence on MNGS size. 

 

Plotting the percentage of HEMA as a function of nanogel size and PDI 

(Figure G.9), it is again observed that the appropriate amount of HEMA 

for optimal synthesis of MNGs is 4 mol%. 
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Figure G. 9.Influence of HEMA monomer on MMGs both size and PDI. 

Afterwards, it was proceeded to the synthesis of MNGs by characterizing 

them using different techniques for which each sample was diluted and 

sonicated before performing the relevant measurements. 

The morphology of the nanogels was studied by Transmission Electron 

Microscopy (TEM) and Atomic Force Microscopy (AFM). Due to the 

magnetic character of the nanogels, sometimes they stuck to the AFM tip 

and, consequently, obtaining images by this technique was harder. Even 

so, the structure of the nanogels can be appreciated and it was 

corroborated that they were dispersed and not aggregated in the sample 

(Figure G.10). 

At the same time, TEM was used to measure the size of the nanogels and 

compared to the data previously obtained by DLS, which were coincident 

(Figure G.11). 
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Once the different variables that can affect MNPs and MNGs (MEMO, 

HEMA) have been studied, and having verified that the size, polydispersity 

and shape of the nanogels are as desired, the next step would be to carry 

out the MNGs-LALF contact. This, is planned to be carried out at later step, 

hence only the synthesis and characterization has been be detailed in this 

section. 

Figure G.10. AFM images of the dispersed MNGs. 

Figure G. 11. TEM image of a 200 nm MNG. 
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