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 

Abstract— This contribution presents a detailed nonlinear 
analysis of a high-power oscillator that is inductively coupled to an 
external resonator for power transfer applications. The analytical 
formulation of a cubic nonlinearity oscillator enables the 
derivation of the maximum transferred power and the value of the 
coupling factor at which the oscillation is extinguished. Then, a 
simple procedure to obtain a Class-E oscillator from an initial high 
efficiency oscillator is presented. The solution curves versus the 
coupling factor and the elements of the external resonator are 
easily obtained from the extraction of a bi-variate nonlinear 
admittance function accounting for the oscillator circuit, which is 
combined with the passive admittance of the coupled resonator. 
Very good correspondence has been obtained between simulation 
and measured results. 

Index Terms— Oscillator, inductive coupling, bifurcation. 

I. INTRODUCTION 

EVERAL recent works propose the use of a high-power 
oscillator as the excitation source of near-field inductive 

power transfer systems [1]-[4], which avoids the need of both 
an independent generator and an amplifier. The transferred 
power and efficiency depend on the distance between the coils 
[5], which will affect the robustness of the coupled system. 
Most previous works [1]-[4] are devoted to analyze/optimize 
the efficiency of the transfer process, and, to the best of our 
knowledge, no detailed investigation has been carried out yet of 
the variations in the oscillator solution (maximum power 
transfer, oscillation hysteresis, multivalued operation, etc.) 
versus the coupling factor. Because in the power transfer 
application, the output resistive load is located in the external 
resonator, one can expect the behavior to be different from that 
of the voltage-controlled oscillator in [6],[7], which had its own 
output load and was coupled to a high-quality factor resonator. 

To investigate the behavior, we will initially consider a 
simple cubic-nonlinearity oscillator. We will analyze the 
variation of the oscillation frequency and power transfer versus 
the coupling factor. Using the derived formulation, we will 
determine the maximum transferred power and obtain the 
coupling conditions for the oscillation extinction. Then, a 
practical transistor-based oscillator will be considered. With 
this aim, we will use a simple feedback procedure to transform 
a Class-E amplifier into a high power and high efficiency 
oscillator. The solution curves (in terms of output power and 
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efficiency) versus the coupling factor or any other parameter of 
the external resonator will be obtained after the extraction of a 
bi-variate nonlinear admittance function describing the 
uncoupled oscillator circuit and a bi-variate DC current 
function, enabling the efficiency calculation. The methods have 
been applied to a practical power transfer system operating at 
12 MHz, obtaining an experimental DC efficiency DC = 83%.  

II. OSCILLATOR POWER TRANSFER TO AN 

EXTERNAL RESONATOR 

Fig. 1 presents the cubic nonlinearity oscillator considered in 
the analytical formulation. At the fundamental frequency, the 
complex equation providing the circuit periodic solution is: 
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where YT is the total admittance function, the nonlinear element 
is represented with its describing function a+3/4bV2, having 
a < 0 and b > 0, k is the coupling factor, Li, Ci, with i = 1, 2, are 
the inductor and capacitor of the first and second resonator and 
R2 is the resistor in the secondary (Fig. 1). To facilitate the 
analysis, and considering that k is smaller than 1, we will 
perform a Taylor-series expansion of the second term, which 
will be valid up to a relatively high k. The resulting equation is:  
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where the linear admittance ( )LY   shown in Fig. 1 has been 

introduced. The above equation can be split into real and 
imaginary parts: 
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As gathered from (4), the oscillation frequency varies with 
the coupling factor and thus with the distance between the coils. 
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If the external-resonator frequency agrees with the oscillation 
frequency in standalone operation, that is, o = (L1C1)-1/2 

= (L2C2)-1/2, the oscillation frequency will be o . When 
analysing the circuit at the fundamental frequency only, it will 
keep this value for all k. Then one can simplify (3) as: 
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Fig. 1.  Simple oscillator used in the analytical study:  C1 = C2 = 9.7 pF, 
L1 = 5.6 nH, R2 = 10  and i(v) = av + bv3 (a = –0.01 A/V and b = 0.01 A/V3). 

And the transferred power is given by: 
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where YL is the admittance seen from the oscillator inductor 
when looking into the coupled resonator as shown in Fig. 1. 
Obviously, for k = 0, there is no power transfer. From a simple 
extreme calculation, the maximum power transfer will be 
obtained for the k value: 

    2
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Fig. 2.  Variation of the transferred power versus k for different load resistances, 
i.e. R2 = 10 , 30 and 50. Validation of the analytical results (solid line 

and square markers) with HB simulations (dashed lines). 

The maximum transferred power is: Pout,max = a2/(6b). Thus, 
under perfectly tuned conditions, the maximum transferred 
power depends on the oscillator only. For identical inductors, 
the coupling coefficient at which this maximum takes place 
increases with the ratio between the magnitude of the oscillator 
small-signal conductance |a| and the conductance 1/R2 of the 
external resonator. It does not depend on the coefficient b 
affecting the nonlinear behaviour. From (5), a lower resistor R2 
will allow increasing the distance for the maximum power 
transfer. Fig. 2 presents the variation of the output power versus 
k, considering different values of R2. For R2 = 30 (blue 
curve), the results are overlapped with those obtained with 
harmonic balance (HB), at the fundamental frequency, up to 
k = 0.42. Above k = 0.42, the Taylor expansion in (2) becomes 
less accurate. As easily derived from (1), the accuracy is higher 
for a larger R2, which justifies the better agreement in Fig. 2 

when increasing this resistor. On the other hand, the oscillation 
will be extinguished in an inverse Hopf bifurcation [8] when (5) 
is fulfilled for V = 0, that is, for the k value: 

 1
2
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Thus, in this approximate analysis, the oscillation is 
extinguished at kH = 21/2kmax. If the oscillator and external 
resonator frequencies are detuned, one can have more complex 
solutions and even disconnected solution curves under certain 
combinations of parameters. This is because (4) provides a 
cubic equation in 2. 

III.  TRANSISTOR–BASED HIGH–POWER OSCILLATOR 

A. Oscillator design 

The Class-E oscillator design is carried out with an original 
method in two stages. Initially, a Class E amplifier is obtained 
(Fig. 3), terminated with a coupled resonator, considering an 
intermediate coupling factor k = 0.2. For convenience, we set 
R2 = 50  and calculate L1 and C1 for class-E operation. The 
two coupled inductors are equal to Ls, slightly optimized in HB 
to maximize the efficiency. With the transistor MOSFET 
IRLML0040TRPbF, excited at the frequency fo = 12 MHz, a 
drain efficiency of DC = 81% was obtained (VDD = 6V). To 
transform the amplifier into an oscillator, we connect an ideal 
box with the reflection coefficient  = 0.999ej in series at the 
source terminal (Fig. 3). Then we perform a sweep in  and, 
keeping the frequency constant at fo, calculate the small-signal 
input admittance YN seen from the gate terminal (Fig. 3). The 
results are shown in Fig. 4. We take the  value providing the 
largest negative conductance and implement it with a capacitor 
(for 180º <  < 360º) or an inductance (for 0º <  < 180º). In 
the case of Fig. 4a, the chosen value is  = 187º, which at 
fo corresponds to the capacitor Cfb = 4 nF. Obviously, an 
analogous procedure can be followed considering a parallel 
feedback. Next, we connect an auxiliary generator (AG) [8]–
[10] at the gate terminal with the amplitude VAG = Vg, leaving 
the input network in open circuit (in practice, it is loaded with 
a high resistor), and obtain the large-signal admittance 
YN(Vg, o) as the ratio between the AG current and voltage. 
Then, we calculate the input network to fulfill 
YT(Vg, o) = Yin(o) + YN(Vg, o) = 0, which, in this case, 
corresponds to an inductor in parallel with a resistor. The 
resistor will be useful if an injection-locked operation is desired 
but can be eliminated in free-running conditions. The resulting 
total admittance function YT(Vg, ) is presented in Fig. 4b, and 
shows the fulfilment of the steady-state oscillation condition at 
Vg, o. Note that the fulfilment of both the oscillation start-up 
condition and stability of the steady-state solution must also be 
verified, what has been done here with pole-zero identification 
[8]. The resulting oscillator output power and efficiency 
(without any optimization) are Pout = 0.5 W and  = 83%.  

B. Oscillator behavior versus the coupling factor 

The oscillator behaviour versus the coupling factor k can be 
insightfully predicted extracting the oscillator nonlinear 
admittance function from its output terminals. This is calculated 
in HB with the aid of an AG, using as many harmonic terms as 
desired. A double sweep is carried out in  and V, providing 
Y(V,) (Fig. 3), accounting for the whole oscillator. From the 
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same double sweep, one obtains also the oscillator drain 
current, given by IDC(V,). At the fundamental frequency, the 
oscillation condition is given by:  
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Fig. 3.  Class-E oscillator. (a) Schematic with series feedback. An ideal box 
with  = 0.999ej is connected in series at the source terminal. The value that 
maximizes the negative conductance is implemented with a reactive element. 
(b) Experimental setup.  

 
Fig. 4.  Transformation of a Class–E amplifier into an oscillator. (a) Variation 
of the input admittance with . (b) Variation of the total admittance after 
implementing the input network to fulfill Yin(o) + Y (Vg, o) = 0. 

Note that one must subtract the inductance susceptance since 
oscillator admittance includes this susceptance term. Due to the 
filtering effects of the output network of the Class–E oscillator, 
(9) at the fundamental frequency will provide sufficient 
accuracy (HB curves are overlapped). The two functions are 
extracted from HB only once. Then, to obtain the variation 
oscillator solution versus k, one performs a sweep in k (in in-
house software) and, at each k step, calculates the intersections 
of the contours Re{YT(V,,k)} = 0 and Im{YT(V,,k)} = 0, 
which will provide one or more solution points Vo, o. The 
output power and drain efficiency are calculated interpolating 
the following functions at the solution points resulting from the 
intersection: 
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As expected, for k = 0, there is no power transfer. Applying 
this method to the oscillator in Fig. 3, for three different values 
of the feedback capacitor, we obtain the results shown in Fig. 5. 
In the three cases there is an oscillation extinction after a certain 
k value. Moreover, the oscillation is extinguished for a k2 value 

that approaches twice the one at which the maximum power is 
obtained, in agreement with the theoretical derivations. The 
simplicity of (10) allows a simple evaluation of the oscillator 
behaviour under any change in the parameters of the coupling 
network. The condition for the oscillation extinction is:
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where Y(0,) indicates the oscillator admittance in small-signal 
conditions. Sweeping R2 and solving for k and  one obtains 
the locus for the oscillation extinction. 

 
Fig. 5.  Variation of the oscillator (a) output power and (b) efficiency versus k 
for three different values of the feedback capacitor. HB results are overlapped. 
The distance between the inductors is indicated in the upper axis. 

 
Fig. 6.  Locus for the oscillation extinction in the plane defined by k and R2. 
Three different values of the feedback capacitor have been considered. 
Experimental results for the load resistor R2 = 50  are superimposed.  

IV. CONCLUSION 

An in-depth investigation of the power transfer of an oscillator 
to an external resonator has been presented. An analytical study 
demonstrates the extinction of the oscillation from certain value 
of the coupling factor. A simple feedback method to obtain a 
high-power oscillator from a Class-E amplifier has been 
provided. The oscillator solution curves versus the coupling 
factor and the elements of the external resonator are obtained 
with a bi-variate nonlinear admittance function accounting for 
the oscillator circuit, combined with the passive admittance of 
the coupled resonator. Very good results have been obtained in 
comparison with the measurement results.  
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