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Abstract

Here we perform a large-scale study of the structural properties and the expression of proteins that constitute the human
Centrosome. Centrosomal proteins tend to be larger than generic human proteins (control set), since their genes contain in
average more exons (20.3 versus 14.6). They are rich in predicted disordered regions, which cover 57% of their length,
compared to 39% in the general human proteome. They also contain several regions that are dually predicted to be
disordered and coiled-coil at the same time: 55 proteins (15%) contain disordered and coiled-coil fragments that cover more
than 20% of their length. Helices prevail over strands in regions homologous to known structures (47% predicted helical
residues against 17% predicted as strands), and even more in the whole centrosomal proteome (52% against 7%), while for
control human proteins 34.5% of the residues are predicted as helical and 12.8% are predicted as strands. This difference is
mainly due to residues predicted as disordered and helical (30% in centrosomal and 9.4% in control proteins), which may
correspond to alpha-helix forming molecular recognition features (a-MoRFs). We performed expression assays for 120 full-
length centrosomal proteins and 72 domain constructs that we have predicted to be globular. These full-length proteins are
often insoluble: Only 39 out of 120 expressed proteins (32%) and 19 out of 72 domains (26%) were soluble. We built or
retrieved structural models for 277 out of 361 human proteins whose centrosomal localization has been experimentally
verified. We could not find any suitable structural template with more than 20% sequence identity for 84 centrosomal
proteins (23%), for which around 74% of the residues are predicted to be disordered or coiled-coils. The three-dimensional
models that we built are available at http://ub.cbm.uam.es/centrosome/models/index.php.
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Introduction

Since 1876, centrioles and centrosomes were shown to be

involved in organizing fibrillar structures, including the spindle

and mitotic asters within the cell as well as cilia and flagella in cells

of many tissues [1]. The centrosome is a remarkable molecular

machine capable of self-replication, whose core is constituted by

two centrioles [2], highly structured macromolecular complexes

typically consisting of nine microtubule-triplet-blades arranged in

a cylinder, which also form the basal bodies required for the

formation of cilia and flagella. Centrioles were probably present in

the common ancestor of all eukaryotes [3] but, contrary to what

was previously thought, they are not required for general mitosis,

cell migration, and axonal growth [4]. Instead, these processes

require pericentriolar material (PCM), a protein matrix that is the

main constituent of the centrosome and apparently lacks higher

order structure. Mutations in the centrosomes are related with

several human diseases, most notably cancer [5] and abnormal

brain development [6,7,8].

Recently, large-scale proteomic experiments have identified

proteins localized in the human [9,10] and the fly centrosome

[11]. Motivated by this study, Nogales-Cadenas et al. [12]

retrieved from public databases, such as the Human Protein

Reference Database (HPRD) [13], MiCroKit [14], Gene Ontol-

ogy [15] and Ensembl [16] a large number of genes annotated as

centrosomal from previous literature evidence as well as human

orthologs of mouse centrosomal genes. A total of 465 likely

centrosomal human genes, together with a rich set of biological

annotations and derived information, were organized into a

centralized resource named CentrosomeDB (http://centrosome.

cnb.csic.es/).

The Centrosome 3D consortium is committed to analyze from a

multidisciplinary point of view, including structural, cellular and
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computational approaches, the physiology of this organelle. From

the computational side, using bioinformatics predictions, we have

observed that proteins forming the centrosome tend to be longer,

more widely phosphorylated, and to contain a larger fraction of

disordered [17] and coiled-coil [18] residues than control proteins

of the same organism [19]. In particular, regions that are predicted

to be simultaneously disordered and coiled-coil constitute a

signature of centrosomal proteins. We have found that intrinsically

disordered regions increased during the evolution of the centro-

some through large insertions. Interestingly, insertions of disor-

dered regions occurred at a faster rate along branches of the

animal tree where the number of cell types of the organism

experienced a large increase [19]. This observation suggests an

intriguing relationship between the molecular complexity of the

centrosome and the cellular complexity of the organism. As part of

the effort of the Centrosome 3D consortium, we report here large-

scale homology modeling and expression assays of the human

proteins whose centrosomal localization has been experimentally

demonstrated.

Methods

Selection of the Data Set
From the 465 genes in the CentrosomeDB database [12], we

selected those genes whose evidence is based either in the

Andersen et al. proteomic experiment with the human centrosome

[9], or in the manually curated HPRD database [13], or in

literature evidence obtained by text mining and manually verified,

or it is supported by orthology with respect to experiments with the

mouse centrosome [12] or the proteomic experiment with

Drosophila [11]. We obtained 361 genes with solid evidence of

centrosomal localization, which are listed in Table S1, discarding

104 genes from the Centrosome DB that do not fulfill the above

criteria. We considered the longest isoform of each gene, whose

sequences are reported in Table S2. 500 control human genes and

the 1202 isoforms associated to them were randomly extracted

from the Ensembl database. Their Ensembl codes and sequences

are reported in Table S3.

Disorder, Coiled-coil and Secondary Structure Predictions
Disorder predictions were obtained with the DISOPRED2 [20],

FoldIndex [21], IUPred [22] and DisEMBL [23] programs. In

previous work, we tested that the first three algorithms have a large

overlap with each other and produce qualitatively equivalent

results. We present here predictions obtained with DISOPRED2,

which was evaluated as the best among these predictors [24].

Predictions of coiled-coil residues were obtained with the NCOIL

[25] and PCOILS [26] programs. Again, results are qualitatively

equivalent and we show those obtained with NCOIL. Secondary

structure was predicted with the PSIPRED program [27] and

assigned with DSSP [28].

Template Selection
Suitable templates were obtained using Hidden Markov Models

(HMM) [29] as implemented in the HHblits tool kit downloaded

from http://toolkit.genzentrum.lmu.de/hhblits/. Namely, we

used the HHblits software [30] to construct HMMs for the

28,020 representative protein chains in the PDB [31] clustered at

70 percent sequence identity. HHblits uses secondary structure to

improve the constructed HMM. We searched each query

sequence against these HMMs, keeping only highly significant

matches (i.e. probability of being a true positive higher than 95%)

with more than 30 residues and more than 20% sequence identity,

which is considered as the minimum identity for obtaining reliable

structural models. In order to retrieve structures with high

sequence identity that are not chosen as representative structures

to construct the HMMs, we searched with BLASTP [32] all

45,543 protein chains in the PDB clustered at 100 percent

sequence identity, keeping only matches above 70% sequence

identity. For each query sequence, we selected the templates

yielding the maximum number of identical residues. Overlapping

templates were kept if the less favored template contributes at least

30 new residues to be modeled.

Homology Modeling
For proteins with more than 20% and less than 95% sequence

identity with a template structure in the PDB, structural models

were built from the query-template alignment using the MOD-

ELLER program [33]. Model quality was assessed with the

empirical energy function DOPE, implemented in MODELLER

[34], with an empirical folding free energy function based on

contact interactions [35] and with the program ProCheck [36],

which checks the stereochemical quality of a protein structure,

analyzing its overall and residue-by-residue geometry. Models

were refined in order to avoid atomic clashes, allowing small

relaxation through the following protocol: (1) System preparation:

Hydrogen atoms and protons were added to the protein molecule

using the program PDB2PQR [37] with the AMBER10 force-field

[38] at pH 6.5; A water box of 10Å thickness was built around the

protein with the program TLEAP [39] using the TIP3P model of

water molecules [40]. Cl- and Na+ ions were added to neutralize

when necessary. (2) Relaxation: The structure was refined by

applying energy minimization followed by heating to 298 K,

equilibration and cooling. No molecular dynamics per se was

carried out due to the fact that, in many cases, models are quite

small or too fragmented to be stable on their own. We employed

NAMD 2.8 (Nano-scale Molecular Dynamics) [41] with the

AMBER10 force field for the protein and the TIP3P model for

water. First, the energy of the water molecules and ions was

minimized keeping the protein fraction fixed. Second, the whole

system was equilibrated at a constant temperature of 298 K,

slowly reducing the constraints on the protein structure. Finally,

the system was cooled, reducing the temperature from 298 K to

273 K with decrements of 1 K.

Cloning Centrosomal Genes
Cloning facilities at the CNIO in Madrid, at the IBMB and the

CRG in Barcelona, and the company GenCust, produced clones

of 138 centrosomal genes (Table S4), which are available upon

request for academic use. Centrosomal proteins were cloned into

pOPIN vectors using the In-FusionTM PCR cloning method, a

versatile ligation-independent cloning system engineered for high

throughput screening [42]. Three different pOPIN vectors were

used in this study: pOPINJ, pOPINS and pOPINM, utilizing the

cleavable fusion tags His-GST, His SUMO and His-MBP,

respectively. These vectors facilitate the expression of the cloned

gene in E. coli or human cells and they can also be used to generate

baculoviruses for insect cell infection.

Selection of Putative Globular Domains for Experimental
Study
Putative globular domains were predicted for 208 selected

centrosomal proteins of particular experimental interest by

combining domain predictions through the SMART web server

[43], disorder predictions [20], coiled-coil predictions [25] and

sequence alignments of query centrosomal proteins against

representative protein sequences in the PDB clustered at 50%

Structure and Non-Structure in the Centrosome
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sequence identity. Sequences were parsed into predicted SMART

domains, which were given higher priority, coiled-coil stretches

(consecutive stretches of more than 20 predicted coiled-coil

residues) and disordered stretches (consecutive stretches of more

than 20 predicted disordered residues). Regions longer than 40

residues that were not classified as none of the above were aligned

against representative sequences in the PDB using the program

SABERTOOTH [44], which performs accurate alignments

between distant homologs by aligning predicted structural profiles,

is minimally influenced by sequence identity, and measures the

significance of the alignment through a Z score.

Putative globular domains were identified if one of these

conditions holds: (1) SMART finds a significant match with a

known protein family over at least 30 residues; (2) SABER-

TOOTH finds a significant match with Z score .3 with a protein

in the PDB over more than 40 residues, and the sum of disordered

and coiled-coil residues is below 30%. Domains with more than

40% sequence identity with structures in the PDB were considered

of little interest and discarded from further experimental study. We

finally obtained 173 putative globular domains from which we

selected for experimental studies 65 constructs belonging to 50

proteins (Table S5). Note that these putative domains selected for

experimental study do not necessarily coincide with the structural

domains predicted through our homology modeling procedure,

since in this case we also used information about disorder, coiled-

coil, and functional domains.

Expression of Full-length Proteins and Predicted Globular
Domains
Full-length proteins corresponding to the longest isoform of

centrosomal genes and selected globular domains were expressed

and purified in three different labs (CNIO, IBMB and CRG), with

common standardized protocols. For the expression tests the

recombinant plasmids were used to transform E. coli B834(DE3)

and Rosetta(DE3) pLysS cells. Cells were grown in LB media

(2 ml) with appropriate antibiotics and induced at an OD600 of

0.8 with 0.3 mM IPTG. Two different temperatures were tested,

harvesting cells after 3 h at 37uC and after 20 h at 20uC. In

parallel, cells were also grown in auto-induction media and

harvested after 20 h at 20uC, with shaking at 210rpm. Cells were

lysed in standard buffers (50 mM Tris pH 8.5, 400 mM NaCl,

0.05% (v/v) Tween20) and overexpressed proteins purified either

using NTA Ni spin columns or paramagnetic beads. Expression

and solubility of the full-length proteins and the domains were

checked by SDS-PAGE or Western Blot technique. The soluble

proteins were confirmed by MALDI-MS analysis. Selected targets

were also tested using baculovirus expression system.

Antibody Production
The functional facility of the consortium at the CRG produced

44 antibodies against 40 centrosomal proteins. Furthermore, 38

antibodies against 27 centrosomal proteins were produced by the

company Eurogentech. These available antibodies are listed in

Table S6. We also report in Table S7 antibodies against

centrosomal proteins that were commercially available prior to

our study.

Results

Predicted Disordered and Coiled-coil Fragments
More than 57% of the residues in human centrosomal proteins

are predicted to be disordered in the native state. This fraction is

significantly larger than for control human proteins, for which the

fraction of predicted disordered residues, obtained with the same

method as for centrosomal proteins, is 39%. These results hold for

the longest isoforms. 72% of the centrosomal genes and 56% of the

control genes have more than one isoform. In both cases, for these

genes the shortest isoform is less disordered and less coiled-coil

than the longest one, although this difference is only marginally

significant (for instance, the disorder content is respectively 37.8%

and 40.5% for the shortest and longest isoform of control genes,

with a statistical error of 1%).

The distribution of the fraction of the longest isoform that is

predicted to be disordered is shown in Fig. 1, distinguishing

regions predicted to be disordered and coiled-coil and disordered

and not coiled-coil. There is a significant positive propensity to

predict a residue as coiled-coil if it is predicted to be disordered:

12.4% of the residues are predicted to be disordered and coiled-

coil at the same time, compared with only 0.7% that are predicted

to be coiled-coil but not disordered. Therefore, the propensity is

Prop(coil&disorder) = log(P(coil&disorder)-log(P(coil))-lof(P(disor-

der)) = 0.51. 55 proteins (15%) contain disordered and coiled-coil

fragments that cover more than 20% of their length. The

distribution of the fraction of the protein that is predicted as

disordered and coiled-coil is shown in Fig. 1A. The same

distribution for regions predicted to be disordered and not

coiled-coil is shown in Fig. 1B. For control human proteins the

fraction of residues predicted to be coiled-coil and disordered is

much smaller (3.3%), and only 0.7% of the residues are predicted

as coiled-coil and not disordered, resulting in a positive propensity

between coiled-coil and disorder, Prop(coil&disorder) = 0.75.

These residues predicted to be both disordered and coiled-coil

may represent disordered regions that lack stable structure unless

they interact with a binding partner, and take coiled-coil structure

only upon binding. The fact that coiled-coil proteins can be

disordered has been shown for several proteins, for example in the

case of the Myc protein interacting with a competitor of its natural

partner [45], and it is consistent with the finding that the sequence

complexity of coiled-coil proteins is typically lower than for

globular proteins [46].

Figure 1. Fraction of protein length that is predicted to be
disordered, coiled-coil, or modeled by homology. The plots
represent the distribution of the percentage of protein length that has
been (A) predicted to be disordered and coiled-coil at the same time;
(B) Predicted to be disordered and not coiled-coil; (C) modeled; (D)
Predicted to have regular secondary structure and not to be disordered
neither coiled-coil, but not modeled.
doi:10.1371/journal.pone.0062633.g001

Structure and Non-Structure in the Centrosome

PLOS ONE | www.plosone.org 3 May 2013 | Volume 8 | Issue 5 | e62633



Homology Modeling
We modeled or retrieved the structures of 384 domains

contained in 277 proteins. For 84 proteins (23%), no suitable

templates were found. For these proteins, on the average 74% of

the residues are predicted to be disordered in their native state and

only 19 proteins are predicted to possess secondary structure in

more than 30% of their residues. Globally, 27.6% of the residues

were modeled. The histogram of the fraction of protein length that

is modeled is shown in Fig. 1C, where one can see that, for most

proteins, less than 50% of the length could be modeled. This lack

of models is mainly due to structural disorder: 76% of the residues

that were not modeled were predicted to be either disordered or

coiled-coil, and the fraction of protein for which we could not

build structural models, and which we predicted to possess

secondary structure and to be neither disordered nor coiled-coil,

was at most 10% (see Fig. 1D).

The length distribution of the 361 proteins (longest isoform of

each centrosomal gene) is represented in Fig. 2A, where one can

see that some proteins are extremely long. By contrast, the number

of structural models built for each protein is almost in all cases

smaller than 5 (Fig. 2B). The mean length of modeled fragments is

211 residues, ranging from 31 to 2922 residues (Fig. 3A). The

distribution of sequence identity, plotted in Fig. 3B, is bimodal,

with peaks at low and high identity: 99 fragments have less than

30% identity and 174 fragments have more than 90% identity

with their PDB template. These templates with more than 95%

identity were downloaded from the PDB, whereas lower identity

templates were subject to the modeling procedure described in

Methods.

The maximum length of gap regions modeled without a

template was of 6 residues or fewer. Longer gaps cannot be

reliably built, and they were left as unresolved structure. The

DOPE energy, normalized so to transform it into a Z-score, is only

slightly higher for the modeled sequence than for the template

sequence (see Fig. 4A). Moderate energy structures could be

slightly improved through the refinement protocol, but no

improvement was achieved for high energy models, which may

correspond to incorrect alignments. Similar results were obtained

with the folding free energy function of Ref. [35], see Fig. 4B.

Model quality was also assessed with ProCheck, which shows that

the fraction of residues in disallowed regions of the Ramachandran

plot increases not more than 4% from the template to the model,

and that the number of residue pairs closer than 2.6Å (bad

contacts) is on the average the same in the templates and the

models. Based on these results, we conclude that the quality of

templates and models is similar enough. However, some models

had to be discarded by visual inspection, because they were very

fragmented or presented too little secondary structure.

Secondary Structure
Helices prevail over strands in modeled regions (44.8% against

16.8% as assigned by the program DSSP, which identifies

secondary structures based on structural information, and 46.3

against 16.6% as predicted by the program PSIPRED, which only

uses sequence information), and even more in the whole

centrosomal proteome (52.0% against 7.0%, as predicted by

PSIPRED), as expected due to the high incidence of coiled-coils

and disordered loops. The frequency of predicted secondary

structure classes is shown in Fig. 5.

For control human proteins, 34.5% of the residues are predicted

as helical and 12.8% are predicted as strands, which means that

centrosomal proteins are enriched in helical structures and

depleted in beta strands. This difference between centrosomal

and control proteins is mainly due to the large fraction of

centrosomal residues predicted to be at the same time disordered

and alpha-helical. In fact, of the residues predicted to be

disordered in centrosomal proteins, 53% are predicted to be

helical by PSIPRED and only 47% are predicted to be loops. In

contrast, the fraction of predicted disordered residues of control

human proteins that are predicted to be helical is only 25%, and

the fraction predicted to be loop is 73%. As a consequence, 30.0%

of the residues in centrosomal proteins are predicted to be

disordered and helical, whereas this fraction is 9.7% in control

proteins. This excess of residues predicted to be disordered and

helical (20.3%) accounts for the difference between centrosomal

and control proteins regarding helical residues (17.5%) and

disordered residues (19.5%).

Figure 2. Number of residues and number of models for each
protein. The plots represent the distribution of the number of residues
of the longest isoform of centrosomal genes (A) and the number of
structural models obtained for each protein (B).
doi:10.1371/journal.pone.0062633.g002

Figure 3. Summary of the structural models, either built by
homology or retrieved from the PDB. The plots represent the
distribution of the length (A) and sequence identity between query and
template protein (B) for the 362 modeled fragments.
doi:10.1371/journal.pone.0062633.g003

Figure 4. Empirical energy functions evaluated for each models
and for the corresponding region of the template show that
the predicted stability decrease is moderate.
doi:10.1371/journal.pone.0062633.g004
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Online Database
We stored at the web site http://ub.cbm.uam.es/centrosome/

models/index.php a database containing homology models and

disorder and coiled-coil predictions for 361 human centrosomal

proteins. For each protein there are available for online

visualization and download disorder, coiled-coil and secondary

structure predictions, homology models, and links to the UniProt

(www.uniprot.org) and Centrosomedb [12] page. The number of

modeled regions of each protein is indicated in parenthesis in the

summary page, and for each model the user can download or

visualize the three-dimensional structure superimposed with the

template, the sequence alignment with the template, and the

DOPE energy profile that identifies high energy regions that may

be not well modeled. Models are linked to the PDB page of the

template. The full set of models (only structures with less than 95%

sequence identity) can be downloaded from the url http://ub.cbm.

uam.es/centrosome/models/models_coordinates_95.tgz.

Modularity
Centrosomal proteins are highly modular. Besides coiled-coil

regions, by far the most common structural motif, SMART

identifies 719 evolutionary domains that belong to 239 types. The

most frequent domains are the WD40 domain (71 occurrences),

the IQ domain (65), the Serine Threonine Kinase domain (27), the

TPR and HEAT domains (25), the ARM (18), LRR (17), EFh (15)

and Tubuline binding (11) motifs. The number of occurrences for

each domain in centrosomal proteins is represented in Fig. 6.

Several modeled regions are constituted by multiple identical

domains.

Protein-protein Interactions
We retrieved from the public databases DIP [47], MINT [48],

INTACT [49], HPRD [50] and BOIGRID [51] the experimen-

tally known protein-protein interactions of proteins in the human

centrosome. We found 354 known interactions involving 167 of

the 361 proteins. The average degree is 3.65 and the clustering

coefficient is only 0.10. This low clustering coefficient suggests that

the network is incomplete. We represent the network with the

Cytoscape software [52] and we plot it in Fig. 7, representing in

color code the betweeness centrality of each protein, a graph-

theoretical measure of how central in the network is a node, which

measures the number of shortest paths connecting any pair of

nodes that pass through the given node [53]. Below, we list the

most central proteins. We indicate in the brackets after the protein

name the number of interaction partners and the fraction of the

protein that is predicted to be disordered: TP53 (27, 46.5%),

BRCA1 (20, 71.3%), YWHAG (13, 14.6%), APC (13, 84%),

TUBG1 (11, 2.4%), DCTN1 (10, 94.5%), PIK3R1 (10, 30.6%),

PLK1 (8, 31.4%), PAFAH1B1 (7, 5.2%). One can see that the

mean disorder of central proteins is not very different from the

average disorder of centrosomal proteins, but some of the central

proteins, such as DCTN1, APC and BRCA1, are extremely

disordered.

Full-length Proteins Expression and Purification
The length distribution of the 361 longest isoform of each

centrosomal gene, represented in Fig. 2A, shows that the most

populated length bin is for proteins slightly shorter than 500

residues, and a long tail of proteins longer than 1000 residues is

present. The average length is 796641 residues, which is

significantly longer than the average length of 599631 residues

for control human proteins. One of us and coworkers observed in

a previous work [19] that this difference is due to the fact that

exons in human centrosomal genes are more numerous (20.3

versus 14.6) than exons in control human genes.

Out of the total number of 138 available clones of centrosomal

genes (Table S4), 120 were successfully cloned in pOPIN

expression vectors. Of these 120 full-length clones, 71 were

subjected to high-throughput expression and purification methods,

resulting in 24 soluble proteins (34%, Table S4), and 5 full-length

proteins with unknown structure were expressed and purified to

continue with further structural studies. The remaining 49 full-

length clones were expressed and purified following a medium-low

throughput method. 34 of these clones showed over-expression but

only 15 were soluble and subjected to small-scale purification

(31%, Table S4). Combining the two methods, only 39 out of 120

full-length proteins (32.5%) were soluble or partly soluble, in the

sense that we found them both in the soluble fraction and in the

pellet fraction.

Overall, centrosomal proteins were extremely tricky to handle

and often the over-expression and solubility were highly sensitive

to many external factors including the growth media, E.coli

expression strains, the temperature and the induction time. Some

proteins were soluble 3 hours after induction, however, by

Figure 5. Frequency of the three main secondary structure
classes for modeled residues (gray: DSSP of the template;
yellow: PSIPRED prediction) and for all residues (pink). One can
see that the set of all residues is strongly diminished in beta structures.
doi:10.1371/journal.pone.0062633.g005

Figure 6. Number of occurrences of domains predicted by
SMART. Only domains with more than 3 occurrences are shown.
doi:10.1371/journal.pone.0062633.g006
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decreasing the temperature and increasing the induction time of

the same culture, they showed increased over-expression and

became insoluble. Furthermore, solubility was compromised in

several cases once the tag was removed indicating possible folding

problems.

Domain Expression and Purification
Of the 173 domain constructs designed on the basis of the

bioinformatics analysis and having unknown structure (see

Methods and above), 44 domains were cloned in pOPINJ vectors

and 22 in pOPINF and pOPINS vectors. All of them were

expressed in high throughput conditions. Of these, only 14 (21%)

were found to be soluble under the conditions tested and 5 were

purified at high enough concentration for crystallization screenings

(Table S5). Six additional domains were expressed in low-

throughput conditions in CNIO, and 5 of them were found to

be soluble and 4 were purified (see Table S5). Overall, we cloned

72 domains and found that 19 of them (26%) were soluble and 9

could be purified.

Discussion and Conclusions

Proteins in the centrosome tend to be long, modular, disordered

and coiled-coil, significantly more than control proteins of the

same organism. They are formed by a large number of exons,

mostly corresponding to disordered regions, coiled-coils, or short

domains such as the WD40 repeat, the IQ repeat and the HEAT

repeat.

Centrosomal proteins are difficult to express: only 39 of the 120

full-length proteins in our expression trials were soluble (32.5%).

Isoform length and disorder content can impact solubility. We

took into account the disorder and coiled-coil content for

predicting putative globular domains through a bioinformatics

Figure 7. Protein-protein interaction networks for interactions experimentally observed for human centrosomal proteins. The color
code represents betweeness centrality, a graph theoretic measure of the centrality of a node in a network, red representing the most central node.
doi:10.1371/journal.pone.0062633.g007
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analysis. We cloned and expressed these putative domains, but we

obtained a similarly low success rate: only 19 out of 72 cloned

constructs resulted in soluble proteins (26%). However, when

domain prediction was coupled with low-throughput expression,

the success rate greatly increased: 5 out of 6 domains cloned in

these conditions were found to be soluble.

Experimental structures in the PDB or the structural models

that we built through homology cover 27.6% of the length of

centrosomal proteins. These modeled regions distribute quite

unevenly in the predicted ordered and disordered regions. In

regions predicted to be neither disordered nor coiled-coil, which

represent 42.2% of centrosomal proteins, we could model 57.2%

of the residues, whereas in regions predicted to be disordered or

coiled-coil we could model only 5.4% of the residues. For 17.7% of

the residues predicted to be in globular regions we could not find

any suitable template, which demands further structural studies of

globular domains in centrosomal proteins.

The main characteristics of centrosomal proteins are the

numerous disorder and coiled-coil regions that make them

extremely flexible and able to interact with many partners,

forming intertwined coiled-coils. Interestingly, centrosomal pro-

teins contain 30% of residues that are predicted to be disordered

by DISOPRED and helical by PSIPRED, whereas this fraction is

only 9.4% in control proteins. This difference accounts for most of

the difference between centrosomal and control proteins concern-

ing disordered residues (57.2% against 39%) and helical residues

(52.0% against 34.5%). These regions are reminiscent of the

proposed alpha-helix forming molecular recognition features (a-
MoRFs), structural elements that mediate the binding events of

initially disordered elements [54]. The role of intrinsically

disordered protein regions in the interactions of centrosomal

proteins has been experimentally demonstrated in a few cases. For

instance, one of us and coworkers recently studied the N-terminal

domain of the centrosomal protein TBCC that is involved in

bipolar spindle formation. The TBCC-Nterm adopts a spectrin-

like fold topology, and remarkably its 30-residue N-terminal

fragment remains flexible and completely disordered in solution.

The interaction of TBCC-Nterm with tubulin involves this

unstructured region, which has been suggested to acquire structure

upon interaction [55].

This structural complexity of centrosomal proteins and protein-

protein interactions suggests that the centrosome will remain an

important subject of structural investigation, which will probably

require new experimental techniques.
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