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Abstract Global Climate Models (GCMs) generally exhibit significant bi-
ases in the representation of large-scale atmospheric circulation. Even after
a sensible bias adjustment these errors remain and are inherited to some ex-
tent by the derived downscaling products, impairing the credibility of future
regional projections. In this study we perform a process-based evaluation of
state-of-the-art GCMs from CMIP5 and CMIP6, with a focus on the simula-
tion of the synoptic climatological patterns having a most prominent effect on
the European climate. To this aim, we use the Lamb Weather Type Classifi-
cation (LWT, Lamb, 1972), a subjective classification of circulation weather
types constructed upon historical simulations of daily mean sea level pressure.
Observational uncertainty has been taken into account by considering four
different reanalysis products of varying characteristics. Our evaluation unveils
an overall improvement of salient atmospheric circulation features consistent
across observational references, although this is uneven across models and
large frequency biases still remain for the main LWTs. Some CMIP6 models
attain similar or even worse results than their CMIP5 counterparts, although
in most cases consistent improvements have been found, demonstrating the
ability of the new models to better capture key synoptic conditions. In light of
the large differences found across models, we advocate for a careful selection of
driving GCMs in downscaling experiments with a special focus on large-scale
atmospheric circulation aspects.

Keywords Lamb Weather Type Classification · Comparison CMIP5-CMIP6 ·
Process-based evaluation

J.A. Fernández-Granja∗ · Ana Casanueva · J. Bedia · J. Fernández
Meteorology Group, Dept. of Applied Mathematics and Computer Science, University of
Cantabria, 39005 Santander, Spain
∗E-mail: juan.fernandez@unican.es

Climate Dynamics (DOI:10.1007/s00382-021-05652-9)



2 J.A. Fernández-Granja et al.

1 Introduction1

The seasonal variability of large-scale mean sea level pressure patterns exerts2

a direct influence on the regional European climate. Different mechanisms ex-3

plain this relationship, such as the influence of the North Atlantic Oscillation4

pattern (NAO, Hurrell et al, 2003; Folland et al, 2009) or blockings character-5

ized by persistent high pressure systems (Rex, 1950; Jury et al, 2019). These6

are related, for instance, to extreme seasonal temperature events (Buehler7

et al, 2011; Barriopedro et al, 2011; Favà et al, 2015), precipitation dry/wet8

spells and extremes (Busuioc et al, 2001; Casanueva et al, 2014; Sousa et al,9

2017) or droughts (Bladé et al, 2011) due to their capability to disturb the10

predominant cyclonic westerly flow (Sillmann and Croci-Maspoli, 2009). As11

a result, an adequate representation of atmospheric circulation and high/low12

pressure variability becomes essential for a proper representation of the main13

regional climate features, although current Global Climate Models (GCMs)14

exhibit substantial errors in this sense (Vial and Osborn, 2012; Dawson et al,15

2012; Masato et al, 2013).16

Circulation biases affect the centroids location and spatial patterns as well17

as the frequency and duration of the main Euro-Atlantic wintertime weather18

regimes (Dawson et al, 2012; Fabiano et al, 2020) and Atlantic and Euro-19

pean winter blocking events (Vial and Osborn, 2012; Anstey et al, 2013). For20

instance, the frequency of the latter are systematically underestimated, also21

by the state-of-the-art simulations of the 5th Coupled Model Intercompar-22

ison Project (CMIP5, Taylor et al, 2012). The representation of Northern23

Hemisphere storm tracks has improved in CMIP5 GCMs with respect to pre-24

vious model versions (Zappa et al, 2013), but they still underestimate cyclone25

intensity and present location biases (Chang et al, 2012; Colle et al, 2013).26

Likewise, CMIP5 GCMs are able to capture eastern Mediterranean weather27

regimes qualitatively, although they fail in reproducing quantitative features28

(Dawson et al, 2012; Hochman et al, 2019). The most recent generation of29

GCMs (CMIP6, Eyring et al, 2016) shows substantial improvements with re-30

spect to CMIP5 in the representation of the frequency and persistence of31

circulation types worldwide (Cannon, 2020), although more focused analyses32

are still needed to adequately assess the implications at a regional scale for33

downscaling purposes (Addor et al, 2016; Perez et al, 2014; Otero et al, 2018).34

GCM uncertainty emerges as an important source of uncertainty in re-35

gional future climate projections. To date, coordinated downscaling experi-36

ments over Europe have explored uneven combinations of global and regional37

climate models (RCMs), favouring certain GCMs and being biased towards38

large ensembles of few RCMs (Fernández et al, 2019). In light of the new39

EURO-CORDEX activities (Jacob et al, 2014, 2020), decisions must be taken40

towards the implementation of an optimal experimental design, including the41

selection of driving GCMs from the CMIP6 ensemble. GCM selection is usually42

a two-step process (McSweeney et al, 2015), requiring, first, the plausibility of43

the GCMs climate and, second, that the selected GCMs cover a large fraction44

of the climate alternatives spanned by the full CMIP ensemble. The selection45
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of GCMs based on their ability to adequately simulate particular surface vari-46

ables, such as temperatures and/or precipitation, is inadequate and may result47

in a non-optimal selection of driving GCMs. The idea of evaluating GCM per-48

formance by means of atmospheric patterns and weather types started long49

time ago (Jones et al, 1993; Hulme et al, 1993), although process-based GCM50

performance assessments have recently come into focus particularly within the51

downscaling community (Maraun et al, 2017). Such evaluation, which relies52

on GCM variables used by subsequent downscaling, is preferred (Brands et al,53

2013; McSweeney et al, 2015; Addor et al, 2016). A sensible bias correction54

approach can substantially improve raw model fields from a statistical point of55

view, and it is advised for specific variables and threshold-dependent climate56

indices (see e.g. Dosio, 2016; Iturbide et al, 2020). However, it is problem-57

atic to circumvent fundamental model errors, such as the misrepresentation58

of large-scale atmospheric circulation (Addor et al, 2016; Maraun et al, 2017).59

Even though RCMs can add value in this sense by improving the misrepre-60

sentation of the driving data defining their lateral boundary conditions (Jones61

et al, 1995), this improvement is incomplete, particularly when large errors are62

present in the driving GCM (Diaconescu and Laprise, 2013). Moreover, even63

when bias correction methods improve the applicability of climate simulations,64

in general it cannot improve low model credibility, and may even hide the lack65

of credibility of model outputs when applied inadequately (Maraun et al, 2017)66

resulting in ill-informed adaptation decisions. As a result, the selection of the67

driving GCM has a large effect on the skill of RCM simulations (as shown68

e.g. by Prein et al, 2019, in North America), which also has an impact on the69

projected signals (Turco et al, 2013), the GCM choice thus being an issue of70

paramount importance in GCM-RCM intercomparison experiments.71

In this study, we categorize the circulation patterns of the new-generation72

CMIP6 GCMs over Europe according to the Lamb Weather Type (LWT)73

classification (Lamb, 1972). We systematically compare each new model with74

respect to the previous CMIP5 counterpart. We focus over Europe to address75

specifically the selection of GCMs for downscaling exercises in the context76

of EURO-CORDEX. In particular, we aim to (1) assess the potential im-77

provement of CMIP6 over CMIP5 GCMs regarding the representation of the78

frequency and transition probability between relevant circulation types and79

(2) provide a quantitative ranking of models, to aid in the plausibility step of80

model selection over Europe. This work updates earlier work on the ability of81

GCMs to represent circulation types in this region (Perez et al, 2014; Otero82

et al, 2018) and introduces transition probabilities as a stringent test on model83

performance.84
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2 Methodology and Data85

2.1 Lamb Weather Type Classification86

The LWT classification is a subjective clustering approach where the weather87

type classification is based on a number of rules relying on meteorological88

expert knowledge (Lamb, 1972). This differs from objective clustering algo-89

rithms, which are data driven. Therefore, LWT classification is deterministic90

and it has a straightforward and well defined physical interpretation. This is91

an advantage for the aims of this study, since the results obtained can be in-92

terpreted in terms of actual meteorological conditions, and there is no source93

of added uncertainty as in stochastic clustering algorithms, whose results are94

initialization-dependent.95

Following previous studies using the LWT scheme we classify all days in96

26 classes that are assigned to a specific circulation type (see e.g.: Trigo and97

DaCamara, 2000; Brands et al, 2014; Ramos et al, 2014; Pereira et al, 2018). In98

order to produce the LWTs, we follow the formulation developed by Jenkinson99

and Collison (1977) and Jones et al (1993) using daily mean sea level pressure100

(MSLP) over a grid of 16 points, centered in the British Isles (55◦N, 5◦W)101

and with a separation of 5◦ latitude by 10◦ longitude between each couple of102

points (Fig. 1). The model grid cells corresponding to each reference point are103

located using nearest neighbours (Jones et al, 2013; Pereira et al, 2018).104

The formulation of the LWTs uses 6 parameters related with wind-flow105

characteristics: southerly flow, westerly flow, total flow, southerly shear vor-106

ticity, westerly shear vorticity and total shear vorticity. Depending on their107

values, the daily MSLP is classified in a given weather type. There are 26108

LWTs representing pure cyclonic (C) and anticyclonic (A) circulation over the109

center point, 8 pure directional types (N, NE, E, . . . , NW) and hybrid types110

(mixing A or C with any of the directional types). As an example, Figure 1111

shows composite MSLP maps of the 8 most common LWTs over an extended112

European domain as derived from the ERA-Interim (Dee et al, 2011) reanal-113

ysis. These 8 LWTs gather 74% of the days and are consistent with previ-114

ous studies (Trigo and DaCamara, 2000; Brands et al, 2014; Fealy and Mills,115

2018). In this study, we use the implementation of the LWTs in the R package116

transformeR (v1.7.3, Iturbide et al, 2019), illustrated in the companion paper117

notebook (see Section “Availability of data and materials”).118

One salient feature of a weather type is its probability of occurrence, which119

can be estimated by the relative frequency of occurrence in a sample. Not sur-120

prisingly for a mid-latitude region, the A and C types are the most common121

types in Europe (Fig. 1), followed by all westerly types (W, SW and NW).122

LWT persistence probabilities (understood here as the probability of staying123

in the same weather type as the previous day), or more generally, transition124

probabilities between two different LWTs are also important, since they de-125

termine key temporal features such as spell duration, serving as an effective126

tool for the assessment of the model ability to reproduce atmospheric circu-127

lation patterns (Hochman et al, 2019). Let the discrete random variable Xt128
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A: 20.35% C: 13.44%

W: 11.44% SW: 10.46%

NW: 5.82% S: 4.88%

AW: 4.13% N: 3.49%

995 1001 1007 1013 1019 1025 1031

Fig. 1 Composite maps of Lamb Weather Types (LWTs) derived from MSLP (hPa) from
ERA-Interim for the period 1981-2010. A subset of the 8 (out of 26) most frequent LWTs
annually is displayed. Sub-panels are labelled with their LWT abbreviation (frequency in
%) and sorted in decreasing frequency order from top to bottom and from left to right.
Colorbar is centered on average sea level atmospheric pressure (reds are highs and blues
are lows). Lamb’s grid coordinates are also indicated over the British Isles domain. Similar
composite maps are calculated for the GCMs and reanalyses gathered in Table 1; their
spatial correlations with the ERA-Interim pattern are shown in Fig. A17 in the Electronic
Supplementary Material.

represent the LWT at time step t, whose values xt ∈ {1, . . . ,K}, with K = 26129

the total number of LWTs. We consider this variable at two consecutive days,130

Xt−1 and Xt, to construct the K ×K transition probability matrix A, where131

Aij = p(Xt =j|Xt−1 = i), representing the probability of going from LWT i to132

LWT j. Hence, each row of the matrix sums to one,
∑
j

Aij = 1. The transi-133

Climate Dynamics (DOI:10.1007/s00382-021-05652-9)
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tion probability matrix (TPM) thus provides a visual “fingerprint” on how a134

given model represents the LWT classification, which can be compared to the135

observational reference through specific evaluation measures (see Sec. 2.3).136

2.2 Data137

We applied the LWT methodology to classify daily MSLP patterns from138

GCMs, run under the CMIP historical experiment, and from reanalyses, as139

quasi-observational reference. In all cases, we considered the 30-year period140

1981-2010, which follows the World Meteorological Organization (WMO) guide-141

lines on the calculation of climate normals (WMO, 2017) and represents a142

typical historical period in climate projections assessments. This period leads143

to a sample of ca. 11000 days per data set.144

2.2.1 GCM data145

GCM simulations from CMIP5 and CMIP6 historical experiments were used146

to evaluate different model generations. A set of 9 model pairs (Table 1) was147

selected to specifically account for model improvement as a factor in our anal-148

yses. Each GCM pair was developed in a different modelling center, although149

this does not guarantee model independence (Boé, 2018). As CMIP5 histori-150

cal experiment ends in 2005, we used the period 2006-2010 from the RCP8.5151

scenario run to fill the common 1981-2010 analysis period. This has been done152

in previous studies (e.g. Casanueva et al, 2020) and there is not an expected153

impact on the results, since the difference in the forcing across scenarios is154

very small for the filled period.155

CMIP5 Grid (◦) CMIP6 Grid (◦) Modelling Center (CMIP5) CMIP6
CanESM2 2.81 CanESM5 2.81 Canadian Centre for Climate Modelling and Analysis
CNRM-CM5 1.41 CNRM-CM6-1 1.41 Centre National de Recherches Météorologiques - Cen-

tre Européen de Recherche et de Formation Avancée en
Calcul Scientifique

EC-EARTH 1.13 EC-EARTH3 0.70 (Irish Centre for High-end Computing) EC-EARTH
Consortium

GFDL-ESM2M 2.26 GFDL-ESM4 1.00 NOAA - Geophysical Fluid Dynamics Laboratory
HadGEM2-ES 1.59 UKESM1-0-LL 1.59 Met Office Hadley Centre
IPSL-CM5-LR 2.96 IPSL-CM6A-LR 1.98 Institut Pierre-Simon Laplace
MIROC5 1.41 MIROC6 1.41 (Japan Agency for Marine-Earth Science and Technol-

ogy, JAMSTEC) JAMSTEC, AORI, NIES and R-CCS
MPI-ESM-LR 1.88 MPI-ESM1-2-LR 1.88 Max Planck Institute for Meteorology
NorESM1-M 2.21 NorESM2-LM 2.21 Norwegian Climate Center - Norwegian Meteorological

Institute
Reanalysis Grid (◦) Modelling Center
ERA-Interim 0.75 European Center for Medium Range Weather Forecasts
JRA-55 0.56 Japanese Meteorological Agency
NCEP 2.5 National Centers for Environmental Prediction / Na-

tional Center for Atmospheric Research
ERA-20C 1.13 European Center for Medium Range Weather Forecasts

Table 1 Set of CMIP5 and CMIP6 models used in the study, their nominal resolution at
the equator (in ◦) and modelling center (top). Reanalysis products used (bottom).
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2.2.2 Reanalysis data156

We used the European Center for Medium Range Weather Forecasts (ECMWF)157

ERA-Interim reanalysis (Dee et al, 2011) as the main quasi-observational ref-158

erence to evaluate the model simulations. This state-of-the-art reanalysis is159

commonly used to evaluate model performance and also provided initial and160

lateral boundary conditions for CORDEX evaluation simulations. Therefore,161

it is also natural to use it here to evaluate GCM boundary conditions over162

Europe.163

Moreover we considered three additional reanalysis products (Table 1) to164

account for observational uncertainty: the Japanese Meteorological Agency165

55-year reanalysis (JRA-55; Kobayashi et al, 2015; Harada et al, 2016), the166

National Centers for Environmental Prediction / National Center for At-167

mospheric Research (NCEP–NCAR) reanalysis products (hereafter NCEP,168

Kalnay et al, 1996), and the ECMWF ERA-20C (Poli et al, 2016). The latter169

assimilated only surface pressure and marine winds, so it is not exactly com-170

parable to the others, which assimilate a wider range of surface, upper-air and171

satellite observations.172

2.3 Evaluation measures173

In order to evaluate the accuracy of GCMs from different generations some174

indices are used such as Kullback–Leibler divergence (KL), Relative Bias,175

Two-proportions Z-Test and Transition Probability Matrix Score (TPMS).176

With these metrics, we provide a direct comparison between the GCMs and177

the ERA-Interim reanalysis and a quantitative value of the degree of similar-178

ity/agreement between them.179

Kullback–Leibler Divergence This measure (KL; Kullback and Leibler, 1951),180

also known as relative entropy, is used to quantify the degree of disparity be-181

tween the GCMs and the reanalysis in the representation of the different LWT182

probabilities. For this purpose, the LWT classifications obtained by the GCMs183

and reanalysis are handled as discrete Probability Mass Functions (PMFs),184

whose dissimilarity is measured through KL divergence (see e.g. Jiang et al,185

2011; Sharma and Seal, 2019). The use of KL divergence in the comparison of186

two PMFs is more appropriate than using a distance function on a metric space187

(e.g. Euclidean distance) due to multiple facts: the PMFs may be differently188

distributed, have different sample sizes, different geometric centers or contain189

extreme probabilities that may disrupt the comparison negatively (Weijs et al,190

2010; Jiang et al, 2011). Therefore, the KL divergence is not symmetric, and it191

is not affected by any biases derived from the probability of the samples, thus192

avoiding the more frequent LWTs unduly influencing the evaluation results.193

The KL divergence of a discrete probability distribution, P (x), with respect194

to another, Q(x), both defined on the same probability space X (in our case,195

Climate Dynamics (DOI:10.1007/s00382-021-05652-9)
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spanned by the LWTs) is defined within the Information Theory (Cover and196

Thomas, 2006) as:197

KL(P ‖ Q) =
∑
x∈X

P (x) log
P (x)

Q(x)
(1)

We use it as a measure of the statistical “distance” of the model distri-198

bution (P (x)) with respect to the reanalysis one (Q(x)), which is zero for a199

perfect match (P (x) = Q(x)∀x ∈ X ) and takes positive values with no upper200

bound for increasingly different distributions. Here, we use the KL divergence201

implementation of the R package phylentropy (v0.4.0, Drost, 2018)202

Relative Bias From the historical record of observed weather types occurring203

at discrete time steps X1, X2, . . . , XT , with T days, the frequency of occurrence204

of the LWT ` per season s is denoted as f(`, s) and calculated as the number205

of days falling in type ` divided by the total number of days in the season s ∈206

{DJF,MAM,JJA, SON}. Thus we consider the relative bias ε to compute207

the deviation of the LWT frequency with respect to a reference data set:208

εm(`, s) =
fm(`, s)− fo(`, s)

fo(`, s)
(2)

where fm(`, s) refers to the frequency in the model m and fo(`, s) is the209

reference observed frequency (in this case, derived from the ERA-Interim re-210

analysis). The model (m) can be any of the list of 21 models conformed by211

the 9 CMIP5 GCMs, the 9 CMIP6 GCMs and the reanalysis products: JRA,212

ERA-20C and NCEP (Table 1). The relative bias is a non-dimensional mea-213

sure, which is zero for a perfect agreement of frequencies.214

Two-Proportions Z-Test The Two-Proportions Z-Test is used to assess the215

statistical significance in the differences between models and ERA-Interim.216

It is used for proportions, which in this case arise from relative frequencies217

(proportion of days classified in a given LWT) and transition probabilities218

(proportion of days in LWT i with transition to LWT j). The test statistic219

takes into account the potentially different sample size in the model and re-220

analysis data, and the implementation used (prop.test function from the R221

package stats (v3.6.3, R Core Team, 2020)) includes an exact test for small222

samples. This test was performed for each combination of LWT `, season s and223

model m, using a 95% confidence to establish significant probability/relative224

frequency differences.225

Transition probability matrix score In order to summarize the TPM informa-226

tion (Sect. 2.1) we introduce a TPM score (TPMS), that allows ranking model227

performance based on its TPM fingerprint, defined as:228

TPMS =
∑
p∈A∗

|pm − po| (3)

Climate Dynamics (DOI:10.1007/s00382-021-05652-9)
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where pm and po are the transition probabilities in the model and in the229

observational reference, respectively, whose (absolute) difference is calculated230

considering the subset of transition probabilities A∗ from the full matrix (A),231

that are significantly different from the reanalysis, following the two-proportion232

Z-Test. In order to include the “missing” transitions in the score (i.e. either233

transitions that exist in the reanalysis but are never simulated by the model, or234

transitions that are simulated by the model but do not occur in the reanalysis),235

these are assigned a zero probability (i.e. either pm = 0 or po = 0) and included236

in the A∗ subset. As a result, the larger the departure from zero (perfect237

agreement), the larger the dissimilarity of the TPM fingerprints between the238

GCM and the reanalysis.239

3 Results240

3.1 Observed LWTs241
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Fig. 2 Comparison of the seasonal relative frequencies of Lamb Weather Types (LWTs)
obtained from the four different reanalysis (ERA-Interim, JRA, NCEP and ERA-20C) fol-
lowing the LWTs definition of Lamb 1972. The LWTs are sorted in decreasing order of their
annual frequencies in ERA-Interim, indicated with horizontal segments as reference.
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We first assay the resulting frequencies of the observed LWTs, as repre-242

sented by the four reanalysis products. In Fig. 2, we show the LWT seasonal fre-243

quencies, sorted in decreasing order according to annual ERA-Interim LWTs.244

In general, small differences in the frequencies are found between the reanaly-245

sis for all seasons. The common set of prevailing LWTs has, however, different246

frequencies among seasons. In winter (DJF), Westerly (W) and Southwesterly247

(SW) flow types are more frequent than the Cyclonic (C) type, and they both248

exceed the annual time-scale reference. Westerly flow decays in spring and249

summer, and the Anticyclonic (A) type becomes more prevalent in summer.250

Types A, C , W and SW are the four most frequent LWTs in all seasons. Types251

S (South), NW (Northwesterly) and AW (Anticyclonic Westerly) are among252

the 8 most dominant in all seasons. Pure-directional type N (North) is also in253

the top-8 except in winter, when it is less frequent than type ASW (Anticy-254

clonic Southwesterly). However, N type represents close to 5% of the days in255

all seasons and also appears among the first 8 LWTs for annual ERA-Interim.256

In light of these results, we consider the following LWT subset hereinafter for257

a more detailed analysis of model biases (Sec. 3.2): A, C, W, SW, NW, S, AW258

and N.259

The observational uncertainty in the LWT relative frequencies is small,260

as their magnitudes are similar among the different reanalysis datasets, with261

the exception of ERA-20C (Fig. 2). This reanalysis shows lower LWT rela-262

tive frequencies as compared to ERA-Interim, JRA and NCEP, especially in263

the two most frequent types (A and C), which is compensated mainly by an264

increased frequency in the S and SW flow types. This fact could be due to265

the different data sources of the ERA-20C reanalysis in comparison with the266

other available reanalysis products, which, in turn, might lead to differences267

in the LWTs classification. The ERA-20C reanalysis only assimilates sea level268

pressure data from surface-only observations in order to maintain consistency269

over time (Poli et al, 2016). In contrast, the rest of the reanalysis products270

–showing a more consistent LWT frequency distribution– assimilate many sur-271

face, upper-air and satellite observations (Fujiwara et al, 2017). Our findings272

are in line with previous literature, which highlights the poor representation273

of upper atmospheric processes because data from the free atmosphere are not274

available in surface-only input reanalyses. For example, lower cyclones in the275

Northern Hemisphere (Wang et al, 2006), fewer northern high-latitude block-276

ing frequency (Rohrer et al, 2018), and lower occurrence of westerly circulation277

types (Stryhal and Huth, 2017) have been detected for ERA-20C and other278

surface-only input reanalyses.279

Figure 3 (left panel) depicts the similarity between the models (GCMs,280

ERA-20C, JRA and NCEP) with respect to ERA-Interim by using the KL281

Divergence. Again, among the reanalyses, ERA-20C shows the largest dif-282

ferences with respect to ERA-Interim (KL = 0.008) compared to the other283

reanalyses (0.003 for both the JRA and NCEP). Given the good agreement in284

the LWTs classification regardless of the use of ERA-Interim, JRA and NCEP,285

in the following we use ERA-Interim as reference. Further results considering286

the other reanalyses as reference are provided in the Electronic Supplemen-287

Climate Dynamics (DOI:10.1007/s00382-021-05652-9)
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tary Material for a more comprehensive picture of the reanalysis uncertainty.288

Interestingly, JRA and NCEP present a better agreement with ERA-20C than289

ERA-Interim in terms of KL divergence (Fig. A5 in the Electronic Supplemen-290

tary Material). This aligns well with Chang and Yau (2016), who found that291

major storm tracks in the Northern Hemisphere in ERA-20C and JRA are in292

good agreement with radiosonde observations.293

DJF MAM JJA SON Year

NCEP

ERA−20C

JRA

Reanalysis

NorESM1−M

MPI−ESM−LR

MIROC5

IPSL−CM5−LR

HadGEM2−ES

GFDL−ESM2M

EC−EARTH

CNRM−CM5

CanESM2

DJF MAM JJA SON Year

CMIP5

DJF MAM JJA SON Year

CMIP6

0.00 0.05 0.10 0.15 0.20

NorESM2−LM

MPI−ESM1−2−LR

MIROC6

IPSL−CM6A−LR

UKESM1-0-LL

GFDL−ESM4

EC−EARTH3

CNRM−CM6−1

CanESM5

Kullback-Leibler divergence

Fig. 3 Kullback–Leibler Divergence (KL) (seasonal and annual values, in columns) for the
different reanalyses (left) and GCM experiments (right, CMIP5 and CMIP6). The 26 LWTs
are considered in the calculation of KL. The 26 LWTs need to be considered as the KL
formulation expects PMFs where the sum of the probabilities of the samples is equal to 1.

3.2 Modeled LWTs frequency294

Model agreement with ERA-Interim reanalysis is analyzed first in terms of the295

KL divergence (Fig. 3, right panels). However, as annual KL divergence can296

hide the compensation of large biases, both annual and seasonal timescales are297

later considered for the analysis of relative biases. Overall, there is a clear im-298

provement from CMIP5 to CMIP6, although large KL divergences in CMIP5299

in specific seasons only slightly diminish or move to another season in CMIP6.300

Similar conclusions hold when the other three reanalyses are used as reference301

(see Figs. A1, A3 and A5 in the Electronic Supplementary Material). At annual302

timescales, CMIP6 EC-EARTH3 exhibits the lowest deviation (KL = 0.007),303

followed by UKESM1-0-LL (0.009), HadGEM2 (0.009), EC-EARTH (0.022)304

and IPSL-CM6A-LR (0.026). EC-EARTH3 shows also slightly better perfor-305

mance than ERA-20C at the annual scale, which deteriorates in the seasonal306

analyses (e.g. KL = 0.046 in DJF, KL = 0.031 in MAM) probably due to bi-307

ases in the timing along the year and the persistence of the weather types. The308

largest KL divergences occur in winter for most CMIP5 and CMIP6 models,309

followed by summer and spring. To explain such differences we next look at the310

seasonal GCM biases for the main LWTs. The KL divergence of the CMIP5311
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MIROC5 (14, 14, 21, 16)
GFDL−ESM2M (16, 18, 11, 21)

NorESM1−M (21, 15, 7, 20)
CanESM5 (19, 20, 9, 18)

NorESM2−LM (12, 21, 20, 17)
IPSL−CM5−LR (20, 19, 16, 19)

CNRM−CM5 (15, 12, 19, 14)
MPI−ESM−LR (13, 11, 17, 13)

CanESM2 (18, 17, 15, 15)
CNRM−CM6−1 (8, 8, 18, 12)

MIROC6 (11, 13, 13, 10)
MPI−ESM1−2−LR (9, 16, 14, 6)

GFDL−ESM4 (7, 9, 6, 11)
IPSL−CM6A−LR (17, 10, 10, 9)

EC−EARTH (10, 5, 5, 7)
UKESM1−0−LL (4, 4, 8, 5)
HadGEM2−ES (5, 6, 12, 8)

ERA−20C (3, 3, 3, 3)
EC−EARTH3 (6, 7, 4, 4)

JRA (2, 1, 2, 1)
NCEP (1, 2, 1, 2)

A C W SWNW S AW N

DJF

A C W SWNW S AW N

MAM

A C W SWNW S AW N

JJA

A C W SWNW S AW N

SON

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

Relative bias

Fig. 4 Relative Bias of LWT frequencies for the different reanalyses and GCM experiments
(in rows: reanalyses in black, CMIP5 GCMs in red, CMIP6 GCMs in blue) for the four
seasons (DJF, MAM, JJA and SON in columns). The rows are sorted following the ranking
given by the annual KL Divergence in Fig. 3 (the seasonal rankings are given in brackets).
Crosses indicate statistically significant values following a Z-test of proportions (Sect.2.3).

and CMIP6 models allows to rank them according to their ability to reproduce312

synoptic conditions with respect to their agreement with ERA-Interim. The313

general improvement of CMIP6 considering the annual KL divergence (Fig.3)314

is also evident in terms of relative biases (Fig. 4). Overall, smaller biases are315

found for CMIP6, except for IPSL-CM6A-LR in winter, NorESM2-LM and316

CanESM5 in spring, and NorESM2-LM in summer. All models present the317

worst performance for the two most frequent LWTs (namely anticyclonic and318

cyclonic) in winter (in agreement with Fig. 3), with opposite sign biases. Along319

the four seasons, most models overestimate cyclonic type frequencies whereas320

they simulate too few anticyclonic conditions. The latter might be associated321

with the general underestimation of the frequency of the European winter322

blocking, which is a well-known drawback of CMIP5 models (see e.g. Masato323

et al, 2013). Overall, CMIP6 GCM reduce biases in the frequency of the A and324

C types compared to the CMIP5 counterparts, especially NorESM2-LM and325

GFDL-ESM4, although statistically significant differences with ERA-Interim326

still remain.327

Results are not conclusive for the other main LWTs, for which different328

magnitude and sign of biases are found depending on the model. The fre-329

quency of W and SW types is overestimated by NorESM2-LM and CanESM5330

in spring (also NorESM2-LM in summer), performing worse than their CMIP5331

counterparts. AW type is underestimated by most models in spring, regard-332

less of the CMIP experiment. Most GCMs do not exhibit significant differences333

with respect to ERA-Interim for the least frequent weather types, especially334
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in spring and autumn. GCM evaluation with respect to the three other reanal-335

yses leads to similar conclusions and similar rankings (see Figs. A2, A4, A6 in336

the Electronic Supplementary Material).337

Despite the improvement of CMIP6 models upon their CMIP5 predeces-338

sors, some biases still remain, which might be due to the limitations in simulat-339

ing the most frequent conditions (such as A and C types) and the transitions340

from one type into another.341

3.3 LWT transition probabilities342

In order to shed some light on the biases found, we investigate the transition343

probabilities from one type to another, which might explain the misrepresen-344

tation of the synoptic conditions and their frequencies by most GCMs already345

depicted in Fig. 4. The TPM of ERA-Interim (Fig. 5a) provides the reference346

fingerprint of the transitions among LWTs and the persistence probability of a347

given LWT (diagonal cells). As expected, the largest probabilities of remaining348

in the same state are associated with the most frequent LWTs. In particular,349

more than 60% (50%) of the days with type A (C) stay in the same LWT,350

followed by persistent SW, W, SE and E types (all above 30%). The most fre-351

quent transitions to a different state are from ANE, AN and ANW to A type352

and from CSE, CS, CSW to C type, all with probabilities above 40%. ASE353

to SE and AS to S type complete the picture of most common transitions.354

This pattern is in general very similar in the remaining reanalyses used as355

alternative references, with the largest deviations occurring in ERA-20C (see356

Figs. A7 and A8 of the Electronic Supplementary Material).357

Overall, the ability of the GCMs to reproduce qualitatively the reference358

TPM regardless of the CMIP generation is remarkable (see example in Figs.359

5b-c and also A9-A16 in the Electronic Supplementary Material). All GCMs360

fingerprints are able to capture fairly well the pattern of the reference ERA-361

Interim, although there are important departures in the magnitude of their362

probabilities in some cases. As a result, most GCMs fail to achieve the high363

persistence probabilities of the most frequent cyclonic and anticyclonic LWTs.364

In particular, attending to statistical significance of their probabilities, the365

high persistence probability of the anticyclonic LWT is only adequately repro-366

duced by a few models, namely CMIP5 EC-EARTH and HadGEM2-ES (Figs.367

A9 and A10 of the Electronic Supplementary Material), and the CMIP6 mod-368

els IPSL-CM6A-LR (Fig. 5c) and UKESM1-0-LL (Fig. A10 of the Electronic369

Supplementary Material). The persistence probability of the purely cyclonic370

LWT (the second most frequent in the historical record) is significantly re-371

produced by the CMIP5 models EC-EARTH, HadGEM2-ES, MPI-ESM-LR,372

as well as their CMIP6 counterparts (Figs. A9, A10 and A13, respectively,373

Electronic Supplementary Material), CMIP5 CanESM2 (Fig. A15, left panel)374

and CMIP6 NorESM2-LM (Fig. A14, right panel).375

The TPM information of each GCM (and reanalysis) is quantitatively sum-376

marized with the TPMS in Figure 6. The improvement in the TPMS of CMIP6377
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over CMIP5 is especially remarkable for IPSL-CM6A-LR and GFDL-ESM4378

models. Both GCMs are able to capture more correctly the transition proba-379

bilities between the principal LWTs (such as A, C, SW or W types) than their380

CMIP5 counterparts, but not yet the persistence probabilities of A and C types381

(Fig. 5 and A16, Electronic Supplementary Material, respectively). Interest-382

ingly, the TPMS spread associated with the observational uncertainty is much383

reduced in the case of the CMIP6 ensemble, pointing to a better general agree-384

ment in their representation of atmospheric circulation, with the exception of385

two out-lying, poor-performing models, namely NorESM2-LM and CanESM5,386

which deteriorate in CMIP6 (Fig. 6). Although NorESM2-LM improves on the387

persistence probability of the cyclonic type, the transitions from CNE to C388

and from ASW to SW get worse in CMIP6 (Fig. A14, Electronic Supplemen-389

tary Material), in line with the reduced bias of C type in winter and the large390

biases found for SW type in spring and summer (Fig. 4). Similarly, CanESM5391

presents too persistent C type and too high transition probabilities from AW392

and SW to W (Fig. A15, Electronic Supplementary Material), which might393

be related to the overestimation of the frequencies of W type in winter and394

spring (Fig. 4).395

As for the LWTs frequencies (Fig.2), very similar TPMs are found for JRA396

(TPMS = 0.71) and NCEP (TPMS = 0.76) compared to ERA-Interim and a397

larger TPMS for ERA-20C (TPMS = 1.11, see also Fig. A7 of the Electronic398

Supplementary Material). The improved performance of CMIP6 with respect399

to CMIP5 is independent of the reanalysis used as reference (Fig.6), in line400

with the results of Cannon (2020). Overall, the differences due to the reference401

dataset are smaller than model and experiment uncertainties.402

4 Summary and conclusions403

The present work shows an evaluation of the last two generations of global cli-404

mate models (CMIP5 and CMIP6) over Europe, in which their ability to rep-405

resent the atmospheric circulation is assessed by means of the Lamb Weather406

Type Classification. A set of nine GCM pairs from CMIP5 and CMIP6 are eval-407

uated with respect to four reanalysis products, in order to analyze the sensitiv-408

ity of the results to the observational dataset. This qualitative, process-based409

evaluation is intended to help in the design of future downscaling experiments,410

which are constrained by the boundary conditions provided by GCMs.411

A general improvement of CMIP6 over CMIP5 is found in terms of sev-412

eral statistics related to the simulated frequencies of the LWTs and to their413

temporal sequences (persistence probability and transition probability from414

one type to another). Well-performing GCMs in CMIP5 (e.g. EC-EARTH and415

HadGEM2-ES) also exhibit a good performance in CMIP6. Large improve-416

ments are found for IPSL-CM5A-LR and GFDL-ESM4, whereas important417

biases remain or move along the year in other CMIP6 GCMs (e.g. NorESM2-418

LM). Such remaining biases relate to their inaccuracies in representing ob-419

served transition probabilities, that in general tend to occur for specific sea-420
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(b) CMIP5 IPSL-CM5A-LR (TPMS=4.17)
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(c) CMIP6 IPSL-CM6A-LR (TPMS=1.93)
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Fig. 5 Example of transition probability matrix (A) of Lamb Weather Types for ERA-
Interim (a), the CMIP5 model IPSL-CM5A-LR (b) and its new version CMIP6 IPSL-
CM6A-LR (c) for the historical period 1981-2010. Aij = p(Xt = j|Xt−1 = i) represents
the probability of going from LWT in row i to LWT in column j. Therefore, the persistence
probability of a LWT can be found by looking at the diagonal of the matrix. Non observed
transitions have been blanked to differentiate them from low-probability ones. Transition
probabilities significantly different from those observed in ERA-Interim, obtained from a
two-proportions Z-Test (Sect. 2.3), are indicated by crosses. In addition, LWT transitions
simulated by the model but not observed in ERA-Interim are indicated by empty circles.
Likewise, solid circles indicate LWT transitions not simulated by the model, but that occur in
ERA-Interim. The corresponding TPMS values attained against ERA-Interim are indicated
in parenthesis in the titles of panels (b) and (c).

sons. Overall, GCMs show a remarkable ability to represent transition proba-421

bilities between LWTs. Despite some significant differences for particular tran-422

sitions, the GCM TPM fingerprints are generally able to faithfully represent423

the pattern of most likely transitions as represented by the reanalysis, even for424

the worse performing models. Furthermore, these results are consistent across425
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Fig. 6 Transition probability matrix scores (TPMS) attained by the CMIP5/CMIP6 models
(red/blue symbols), considering as reference different reanalysis products. The results are
presented as CMIP5-CMIP6 GCM pairs, in ascending order of TPMS from left to right,
attained by CMIP5 models and ERA-Interim as reference (solid circles). Boxplots on the
right summarize the results for each individual observational reference (see legend symbol
indicating the median) and CMIP project (color).

reference reanalysis products (the extended evaluation results considering al-426

ternative reanalysis products are included in the Electronic Supplementary427

Material).428

A general recommendation about the use of specific GCMs is difficult to429

make, since it depends on the applications of interest, which are usually focused430

on a given season or might be more sensitive to some weather types (e.g. those431

leading to extreme events in a particular area). In this sense, based on our432

results, a user could identify specific seasons and LWTs which particular GCMs433

fail to reproduce. This application-dependent selection is feasible for statistical434

downscaling. However, for dynamical downscaling a general performance (all435

LWTs, all seasons) should be seeked.436

While there is a general increase in spatial resolution and an integration437

of more complex components in CMIP6, these developments take place un-438

evenly for each GCM. For instance, EC-EARTH which is a skillful CMIP5439

model improves upon most CMIP6 GCMs, partly due to its rather high reso-440

lution (Table 1). A substantial improvement is found for GFDL and IPSL in441

CMIP6, which have been developed at higher resolutions than their CMIP5442

predecessors. Conversely, CanESM and NorESM, which keep a coarse resolu-443

tion in CMIP6 (the only ones above 2◦), deteriorate their TPMS in CMIP6.444

All the above suggests that the increase of spatial resolution is a factor of im-445

provement in the representation of the atmospheric circulation in the GCMs.446

Previous studies also find that increasing horizontal resolution of the GCMs447

leads to a large improvement in the model simulation of the main Euro-Atlantic448

wintertime weather regimes (Dawson et al, 2012; Strommen et al, 2019) and,449

particularly, Northern Hemisphere (D’Andrea et al, 1998) and European win-450

ter blocking (Matsueda et al, 2009; Berckmans et al, 2013; Davini et al, 2017).451

The better performance of higher resolution simulations can be attributed to452
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the more realistic orography (Jung et al, 2012) and more realistic representa-453

tion of Rossby wave breaking processes, which are known to be important in454

maintaining persistent anomalies (Woollings et al, 2008; Masato et al, 2012). A455

recent work based on results of the PRIMAVERA project (Fabiano et al, 2020)456

shows that the weather regimes tend to be more tightly clustered in the in-457

creased resolution simulations, thus resembling more closely the observed ones.458

However, increased resolution does not improve all aspects in the same way. For459

instance, Fabiano et al (2020) find an improvement of the spatial pattern, but460

limited impact on the frequency of occurrence and persistence of the weather461

regimes. While resolution stands as a relevant factor, it is not decisive, since462

some models (here CNRM, HadGEM, MIROC and MPI) improve on TPMS463

in CMIP6 even though they keep the same resolution. According to Dawson464

and Palmer (2015) the simulation of spatial and temporal aspects of weather465

regimes at low resolution can be significantly improved by the introduction of a466

stochastic physics scheme, highlighting the importance of small-scale processes467

on large-scale climate variability. Indeed further improvements are needed to468

remove remaining biases, for instance, better location of the winter blocking469

is associated with a realistic Gulf Stream sea surface temperature (O’Reilly470

et al, 2016).471

We also show that observational uncertainty stands as a minor source of un-472

certainty compared to model and experiment uncertainties. With this regard,473

our results are robust to the selected reference reanalysis and the improve-474

ment of CMIP6 over CMIP5 is independent of this choice (in agreement with475

Cannon, 2020).476

Note that we did not take into account model internal variability in this477

study and we use observational uncertainty as reference for substantive changes478

in the ability of the models to represent the circulation types. Other sources of479

uncertainty related to the LWT classification remain. For instance, the use of480

other temporal granularities, 12 UTC (Brands et al, 2014) or 6-hourly (Jones481

et al, 2013), different from daily-mean data for the LWT classification. This482

stands as another source of uncertainty and as a very interesting aspect to483

tackle in future work. Another aspect would be the position of the grid of484

16 points considered for the LWT classification, which might shed light on485

location biases, not addressed in this study. Our results might be sensitive to486

the circulation classification algorithm used and, therefore, rankings, model487

performance and even CMIP6 quantitative improvements are particular for488

the Lamb Weather Types. Cannon (2020) also found an overall improvement489

in CMIP6 models when using two objective classification algorithms. Thus, a490

qualitative improvement of CMIP6 is noteworthy regardless of the classifica-491

tion algorithm and evaluation metrics.492
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Fernández J, Fŕıas MD, Cabos WD, Cofiño AS, Domı́nguez M, Fita L,629
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