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SIMPLIFIED ERROR BOUNDS FOR TURNING POINT
EXPANSIONS

T. M. DUNSTER*, A. GIL', AND J. SEGURA

Abstract. Recently, the present authors derived new asymptotic expansions for linear dif-
ferential equations having a simple turning point. These involve Airy functions and slowly varying
coefficient functions, and were simpler than previous approximations, in particular being computable
to a high degree of accuracy. Here we present explicit error bounds for these expansions which only
involve elementary functions, and thereby provide a simplification of the bounds associated with the
classical expansions of F. W. J. Olver.
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1. Introduction. In this paper we obtain error bounds for a recent form of
asymptotic expansions for linear differential equations having a simple turning point.
The differential equations we study are of the form

(1.1) dPw/dz? = {W*f(2) + g(2) } w,

where u is a large parameter, real or complex, and z lies in a complex domain which
may be unbounded. Many special functions satisfy equations of this form. The
functions f(z) and g(z) are meromorphic in a certain domain Z (precisely defined
below), and are independent of u (although the latter restriction can often be relaxed
without undue difficulty). We further assume that f(z) has no zeros in Z except for
a simple zero at z = zg, which is the turning point of the equation.

From standard Liouville transformations we have two new variables, namely &
(for Liouville-Green expansions involving elementary functions) and ¢ (for turning
point expansions involving Airy functions). These are given by

(1.2) e= 3= [ prar

We choose the branch here so that ¢ is positive when ¢ approaches 0 through positive
values, and by continuity elsewhere. Note ( is an analytic function of z at z = zg
(¢ =0) whereas £ has a branch point at the turning point.

With ¢ defined as above and

(1.3) W (u,¢) = (V44 (2)w(u, 2),
the differential equation (1.1) is transformed to

(1.4) dPW/de? = {v*C+ ()} W,
where

(1.5) $(¢) = F(C2 +¢0(2),
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in which

41 () f"(2) — 5f2(z 2
(1.6) B(z) = f( )fléfl(z) G ?Ez))

The turning point z = 2z of (1.1) is mapped to the turning point ¢ = 0 of (1.4).
If near z = zg the functions f(z) and f(z) have the following Taylor expansions

n=1

(1.7) @)= falz—20)", 9(2) =D gn(z—2)",
n=0

where f1 # 0, then from (1.2), (1.5) and (1.6) we find that

(L8) lim 9(O) = ()™ { & ufs = &5 (2 + () a0}

We define 1(0) to take this value, hence rendering ¢ (¢) analytic at the turning point
(which otherwise would be a removable singularity).
Following [15, Chap. 11, Sect. 8.1] we define three sectors

(1.9) S; = {C: ‘arg (CeiQﬂ.j/?’)‘ < %77} (j=0,£1).
We also define T; to be S; rotated negatively by the angle %arg(u), so that
(1.10) T, = {g: ‘arg (uz/BCe_Q”ij/3)’ < %7?} (j =0,£1).

Neglecting 1(¢) in (1.4) we obtain the so-called comparison equation d>W/d(? =
u?¢W. This has numerically satisfactory solutions in terms of the Airy function,

namely Ai; (u¥3(¢) := Ai (u2/3C6*27Tij/3
terized as being recessive for ¢ € T; and dominant elsewhere.

In [13] and [15, Chap. 11, Theorem 9.1] Olver obtained three asymptotic solutions
to (1.1) in the complex plane, of the form

) (j =0,£1). For large |u| these are charac-

(1.11)  wopsr;(u, 2) = {%}M {Aij (uz/sé) i Ajg(f)

s=0
Al 2/3C —
u4/3 Z + Ean+1,5 (W C) ¢
s=0

and explicit bounds on the error terms €2,,41,; (u, ¢) were given. However these bounds
are quite complicated since they involve the coefficients A5(¢) and B(¢) which them-
selves are hard to compute (due to iterated integration). An added complication is
that the bounds involve so-called auxiliary functions for Airy functions (see [15, Chap.
11, Sect. 8.3]).

In [8] new asymptotic expansions were derived for solutions of (1.1) that involved
coefficients which are much simpler to evaluate. In this paper we obtain error bounds
for these expansions, and these too are much easier to compute than Olver’s. Our new
bounds only involve explicitly defined coefficients, along with elementary functions,
and in particular do not require complicated auxiliary functions or nested integration.
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Let us present the main results from [8]. In the following the use of a circumflex
(") is in accord with the notation of this paper, and is used to distinguish certain
functions and paths that are defined in terms of z rather than &.

Firstly we define the set of coefficients

(1.12) Fi(2) = 39(2), Fa(2) = -3/ 7*(2)'(2),
and
(1.13) Fopi(z) = =3 fY2(2)Fl(2) - %i Fi(2)Fs_j(2) (8 =2,3,4--).

The odd coefficients appearing in the asymptotic expansions are then given by
(1.14) Eosy1(2) = /F‘23+1(z)f1/2(z)dz (5=0,1,2,--"),

where the integration constants must be chosen so that each (z — 20)1/2 Eogy1(2) is
meromorphic (non-logarithmic) at the turning point. As shown in [8], the even ones
can be determined without any integration, via the formal expansion

(L15) e L, {HZFQS;;;} Py

s=1 s=1

where each aw; is arbitrarily chosen. These too are meromorphic at the turning point.
We remark that the coefficients Fi () can be obtained explicitly, along with the even
terms Ey(z), with each of the odd terms Esy1(z) requiring just one integration of
an explicitly determined function, either explicitly with the aid of symbolic software,
or by quadrature.

We next define two sequences {as}oc; and {as}.o; by a1 = as =

5. =z, _ =
ﬁaal_a/Q_

—7—72, with subsequent terms as and as (s = 2,3, --) satisfying the same recursion
formula
s—1
(1.16) bor1=3(s+1)bs+ 5> bbsj.
j=1
Then let
(1.17) Es(2) = Es(2) + (—1)%ass71€7%,
and
(1.18) g‘s(z) = Es(z) + (=1)%ass~ e,

where ¢ is given by (1.2).
In [8] it was then shown that there exist solutions of the form

(119)  wilu,2) = fV/4)C Al (w3¢) Au,2) + A (w¥%¢) B(u,2)
where

(1.20) A(u, z) ~ exp {Z 5?:2(52) } cosh {Z gi%i(lz) }7

s=1 s=0
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and

1 — Eas . > &
R

s=1 s=0

in certain complex domains, which we describe in detail in section 2.

In this paper we truncate the expansions appearing in (1.20) and (1.21) after a
finite number of terms, and obtain bounds for the resulting error terms. So rather than
the one error term of (1.11) and its associated complicated bound, we derive separate
error bounds for both the A(u, z) and B(u, z) approximations, and this obviates the
need for Airy auxiliary functions, since these functions are slowly-varying throughout
the asymptotic region of validity.

We remark error bounds without auxiliary functions were obtained by Boyd in
[2], but like Olver’s expansions (1.11) his bounds involve the complicated coefficients
As(¢) and Bs((¢), and required successive approximations. They are consequently
more complicated and not easy to compute beyond one term in an expansion. In [5]
convergent expansions were derived for the A(u, z) and B(u, z) coeflicient functions,
but again these are difficult to compute because they also involve coefficients that
are hard to evaluate due to iterated integration. In [6] asymptotic solutions of (1.4)
were derived which involved just the Airy function alone (and not its derivative), and
where an asymptotic expansion appeared in the argument of this approximant. Error
bounds were given, but as in [2] and [15, Chap. 11, Theorem 9.1] these are hard to
compute.

The importance of explicit error bounds for asymptotic approximations was dem-
onstrated in an expository paper by Olver in [14]. Olver noted how explicit error
bounds can provide useful analytical insight into the nature and reliability of the
approximations, enable somewhat unsatisfactory concepts such as multiple asymp-
totic expansions and generalized asymptotic expansions to be avoided, and lead to
significant extensions of asymptotic results.

On the other hand, from a computational point of view, turning point uniform
asymptotic expansions are important tools which have been considered for the efficient
computation of a good number of special functions. Examples are the algorithms for
Bessel functions of real argument and complex variable of [1] (based on expansions
from [15]), the methods for modified Bessel functions of imaginary order of [11] (with
expansions from [4]) and the algorithm for parabolic cylynder functions of [12] (see
also [17]).

In the algorithms [1, 11, 12], no error bounds are used for establishing the accuracy
of the uniform expansions; instead this is certified by checking consistency with other
methods of evaluation. The reason for this lies in the difficulty of computing error
bounds for these expansions. The use of error bounds for asymptotic expansions in
numerical algorithms is in fact very rare, and we only find examples for expansions
of Poincaré type (see for instance [10]). In this paper, we develop computable error
bounds for turning point expansions, thus opening the possibility of using strict error
bounds for the numerical computations with turning point asymptotics. A related
effort in this direction is that of [16].

The paper is organized as follows. In Section 2 we use the new results given in [7]
which provide explicit and simple error bounds for Liouville-Green (LG) expansions of
exponential form. These rarely-used expansions were used in [8] to obtain (1.20) and
(1.21). We apply Dunster’s new results to obtain three fundamental LG asymptotic
solutions of (1.4) complete with error bounds (which are easy to compute). Also in
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this section we derive an important connection relation between the three solutions.
In addition, we obtain similar expansions, with error bounds, for the Airy functions
of complex argument that appear in (1.19). Both these new connection relations and
Airy expansions are used in the subsequent sections, but it is worth remarking that
they are interesting and useful in their own right.

The results of Section 2 are then applied in Section 3 to obtain the desired error
bounds for the expansions (1.20) and (1.21) for z not too close to the turning point.
These in turn are used in Section 4 to obtain error bounds for z lying in a bounded
domain which includes the turning point. As in [8], the method is to express the
asymptotic solutions as a Cauchy integral around a simple positively orientated loop
surrounding the turning point, and bounding the error along the loop.

In Section 5 we illustrate the new results of Section 3 with an application to
Bessel functions of large order. We show how the new simplified expansions and
accompanying error bounds can be constructed, how these can then be matched to
the exact solutions, and include some numerical examples of the performance of the
bounds.

2. Liouville-Green expansions and connection coefficients. Here we pre-
sent, Liouville-Green expansions of exponential form for three numerically satisfactory
solutions of (1.4), complete with error bounds. To do so we shall employ the new
results given in [7]. We then use these expansions to obtain a connection relation
between the three solutions, which will be used in our subsequent error analysis for
the expansions (1.19) - (1.21).

We begin by defining certain domains. Firstly, we partition each of the sec-
tors in (1.10) by T; = T, UT,; (4, k,1 € {0,1,-1}, j # k # | # j), where
T, 1, is the closed subsector of angle 7/3 and adjacent to Ty; for example T =
{C: 0 < arg (u2/3C) < %71'} We denote T (respectively T ) to be the region in the z
plane corresponding to the sector T (respectively T} ) in the ¢ plane. See Figure 1
for some typical regions in the right half plane for the case zy and w positive.

Next, let Z be the z domain containing z = 2 in which f(z) has no other zeros,
and in which f(z) and g(z) are meromorphic, with poles (if any) at finite points, at
z=w; (j=1,2,3,---), say, such that at z = w; (see [15, Chap. 10, Thm. 4.1]):

(i) f(2) has a pole of order m > 2, and g(z) is analytic or has a pole of order less
than %m + 1, or

(i) f(2) and g(z) have a double pole, and (z — w;)” g(z) — —Lasz— w;.

We shall call these admissible poles. In some applications the parameter v in
(1.1), and hence g(z), can be redefined by a translation to make a pole admissible
(which would not be otherwise).

For j = 0,+1 choose an arbitrary z0) ¢ T; N Z. These can be chosen at an
ordinary point, at an admissible pole, or at infinity if f(z) and g(z) can be expanded
in convergent series in a neighborhood of z = oo of the form

o0 oo
(2'1) f(z) :Zmz.fsz_s7 g(z) = szgsz_87

s=0 s=0
where fo # 0, go # 0, and either m and p are integers such that m > —2 and
p < %m —l,orm=p=—-2and gy = —%. For details and generalizations of (2.1) see
[15, Chap. 10, Sects. 4 and 5]. In this paper we assume that each 2() is chosen at
infinity satisfying the above conditions, or at an admissible pole.

For each j = 0,41 the following LG region of validity Z;(u,z)) (abbreviated

Z;) then comprises the z point set for which there is a path ﬁj linking z with 2() in
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F1G. 1. Regions T} in z plane for u positive.

Z and having the properties (i) ﬁj consists of a finite chain of Ry arcs (as defined in
[15, Chap. 5, sec. 3.3]), and (ii) as v passes along fj from zU) to z, the real part
of (—1)ué(v) is nonincreasing, where £(v)is given by (1.2) with 2z = v, and with the
chosen sign fixed throughout. Following Olver [15, Chap. 6, sec. 11] these are called
progressive paths.

Typically one would choose each z(9) to maximize the size of Zj(u,z(j)); for
example, if § = arg(u) and the positive sign is chosen in (1.2), one might choose 2z
corresponding to & = £U) := coexp {—if + ij7}; in this case 1) would either also be
at infinity (provided (2.1) holds), or be an admissible pole.

We now apply [7] to (1.4), and this leads to the following.

THEOREM 2.1. Let three solutions of (1.4) be given by

n—1 r o — “S Z(O)
(2.2 Wo<u,<>=ﬁexp{—us+2<—1>sEs() i )}{1+77n,0(u72)},
and
B, (++0)

uS

L E(z) —
(2.3)  Wii(u,Q) = # €xp {“5 + 2

s=1

} {1+ mn,+1(y, 2)},

where the root in (2.2) is such Re(uf) > 0 in To and Re(uf) < 0 in T_1 UTy; the
branch in (2.3) for W;(u,¢) (5 = £1) is such Re(u) < 0 in T; and Re(u§) > 0 in
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ToUT-;. Then each solution is independent of n, and for z € Z; (u,z)) (7 =0,%1)

(24) [0 2] < ol "wns(,2) 30 { Jul " 5 (0, 2) + ful om0, 2) )

where

Fn<t>f1/2<t>dt]

*Z |u|s/

(2.5) wpj(u,2) = Q/Z

2(3)

ZFk s+n k— 1(t)f1/2()dta

()

and

n—2
1 z
2.6 wWni(u,2) =4 —/
(2.6) ) =a e/,

Here the paths of integration are taken along ﬁj,

Proof. From the definition (1.2) of ¢ and letting Y (u, &) = ¢(/*W (u, ) we trans-
form (1.4) to

20 fl/Q(t)dt‘.

(2.7) ?Y/de? = {u*+®(2)} Y,

where ®(z) is given by (1.6). Then we apply [7, Theorem 1.1], in particular (1.17)
yields W (u,(), and (1.16) yields Wiy (u,() (with different branches of £ in the z
plane, as described above). The constants E (2(?)) in (2.2) were chosen so that

(2.8) lim ¢Y4e“Wo(u,¢) =1,

z—2(0)
since from (2.4) - (2.6) lim,_, o) 1n,0(u, ) = 0, and hence Wy (u, ¢) is independent of
n. Similarly for the constants E (z(il)) in (2.3) and the resulting independence of n
for W11 (u, (). O

REMARK 1. Note all three solutions are analytic and hence single-valued near
¢ =0 even though & and the coefficients Es(z) are not.

2.1. Connection coefficients. We now obtain a connection formula relating
the three solutions W;(u, () (j = 0,=£1). For this, and also throughout this paper, we
assume the following.

Hypothesis 2.2. Let each z\9) € T; N Z; (j = 0,+1) either be at infinity with
(2.1) holding, or an admissible pole. Furthermore, assume 2(®) € Z; N Z_; and
2ED e Zgn Z+1, i.e. for j,k = 0,%1 there is a path consisting of a finite chain of Ry
arcs, linking z(9) with z(*) in Z such as z passes along the path from z() to z(*) the
real part of u€ is monotonic.

LEMMA 2.3. Under Hypothesis 2.2
(29) )\—1W—1(u7 C) = iWO(u7 C) i )‘1W1 (’LL, <)7

where (with Ao :=1)

-1z (J)
(2.10) )\exp{ EE } pin (W) {140 j(w)} (5 =0,%1),
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in which

n—1 A z(o)
(211) Mn(u) :exp{_Z(_l)s%},
(2.12) Ont1(u) = Mn,0 (u z(qﬁl)) T ( Z(;l))7

14 1,21 (u, 2FD)

and 0p0(u) = 0.

REMARK 2. From (2.4) and (2.12) we note that 6, ;(u) = O (u™"), and hence
from (2.10) and (2.11)

-1 2 (]) n—1 Z(k)

(2.13) )\jexp{ ZE }ZNseXP{—Z%}{l"'O(%)}’
s=1 s=1

for j,k € {0,1,—-1}.

Proof. The result is trivial for j = 0 since by definition A\g = 1 and 6§, o(u) = 0.
For j = —1let z — 2= in (2.9) (correspondingly & — €= and ¢ — ¢(=V). For
Wo(u, ) and W_1 (u, {) we can use (2.2) and (2.3), and the latter function vanishes ex-
ponentially in the limit. For W1 (u, () we cross a branch cut as z — 201 and as such
in (2.3) we have & — —£(=1) so that Re(ug) — 4o00. Thus Wi (u, (), like Wy (u, ¢), is
exponentially large in this limit. As remarked earlier, Eg,(z) and (z — zo)l/ 2 Brer1(2)
are meromorphic in Z, and hence single-valued, since they are analytic in that domain
except for a pole at the turning point z = 29. Thus we have for the coefficients in (2.3)
for Wi (u, () that Egs(2) = Eas (2(71) and Easy1(2) = —Fasr1 (207Y) as z — 271,

and in addition ¢~Y/* — —i {C(_l)}_1/4. We then have from (2.9)
(2.14) lim {/\1W1(u C) +ZW()(U C)} = 0

z—2z(=1)
and hence

n—1

(2.15) A\ exp{ Z 2 (1)) } {1 + M (u, z(—l))}
— exp{ Z( 1) ¥ ——= AS (0)) } {1 + Mn.o (u,z(_l))} =0.

Similarly letting z — 2(1) in (2.9) yields

- 1exp{ 2E <1>)}{1+%1 (u.20))

— exp {—Til (—1)SW} {1 + Mn,0 (U,Z(l))} =0.

Then (2.10) follows from (2.11), (2.12), (2.15) and (2.16). O

REMARK 3. The change in integration constants does not affect the error bounds.
Thus for ny, ;(u, &) we can still use (2.4).
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2.2. Airy functions. We complete this section by presenting similar LG expan-
sions, complete with error bounds, for the Airy functions appearing in (1.19). The
proof is given in Appendix A. We note that the regions of validity of the following
asymptotic expansions are not maximal, but they suffice for our purposes.

THEOREM 2.4. Let ’arg (u2/3§)’ < %71’ (or equivalently, from (1.2), |arg(ug)| <
m). Then

(2.17) Ai( 2/3g) mexp{ u§+z ——5 o }{1+n(0)(u,€)},

and

/6174
(2.18) AY (u2/3C>= - f/Z exp{—uf—l-z )* usgs}{H"(o)(“’f)}’

where

(2.19) [0, )] < ful =" (1, €) exp {Jul B (1,€) + il " (1,€)}
and
(2.20) )| < ul ™ (u,€) exp {Jul B, €) + ful T, €) },
where
2anAn+1 = 2 n+s+2 L

2.21 n(u, &) = s+n—k
( ) Y (’LL 5) |£|n lu| |§|n+l Z |U£|S kgl ApQstn—k
2.22 aS“AS*Z,
(2.22) (8 =1g 2 Z "

~ n—1
(2.23) n(u,€) = 2|a"|ﬁ”“ — Z ”“s” S ardsin-r,

€] \u||§| gl 2=

|as+1|As+2
2.24 ,
(2.24) w8 =g 2 Z fug®
and
1/2 1 1

(2.25) A= —F (n—3)

20 (3n)

On replacing ¢ by (e¥2™/3 we have the following, assuming the same branches
for £(2) as in Theorem 2.1.
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COROLLARY 2.5. For |arg (u2/3Ce¢27”'/3)‘ < %w

) 2/3 exmi/6 n-1 (£1)
(226) Alj:l ( C) m exp u€ + Z 553 {1 + T, (uvf)} )

and

etmi/6 1/641/4

(2.27)  Ail, (u2/3C) 5z P {u{ + Z sgs } { + 73D (u, E)}

where the error terms are given by 77n 1)(u &) = 17(0) (u feq:m) and n(il)(u,g) =
(O) (u,&e¥™), and satisfy the bounds (2.19) and (2.20), respectively.

3. Error bounds away from the turning point. The main result is given by
Theorem 3.4 below. In leading to this, we present some preliminary results.
We begin, following [8], by defining A(u, z) and B(u, z) by

1

(B 5o Walu,¢) = Al (u2/3<) A(u, 2) + Al (u2/3g> B(u,2),
and

7ri/6>\ ;
(32 sz Wi(uQ) = Air (u¥°C) Alu2) + At (u2/%C) Bu, 2).

This leads to the following identity.
ProprosiTiON 3.1. Under Hypothesis 2.2
e ™52, . 2/3 y 2/3
(33) Ww_l(u, C) = A1_1 (u C) A(U,Z) + Al_l (U C) B(U7Z)

Proof. This follows from (2.9), (3.1), (3.2) and the Airy function connection for-
mula ([15, Chap. 11, Eq. (8.03)])

(3.4) iAi (’U,Q/ 3c) Femi/OAL, (u2/3g) — e™/OAT_, (u2/3g) . O
COROLLARY 3.2. Let z € Z; N Zy, (j # k). With Ao =1

"€y (2) — B, (D)

(3.5) 2A(u,z) = A; exp {Z } {1+ 1nj(u, 2)} {1 + 78 (u, g)}

n—1 _ (k) )
+ A exp {Z (- 1)8“"'()—ES()} {1 e, 20} {14 70w, 6)}

where j = £1, k =0 for z € Ty 41 UT410, and j = £1 , k = F1 for z € T4 51.
Under the same conditions

(3.6) 2u'/3¢2B(u, z)

nmle(2)— By (20

—Ajexp{Z %}{1+77n,j(u,Z)}{1+77§f)(u,£)}
— B (z® ‘

—Akexp{Z( 1)3”—?()}{1+nn,k<u,z>}{1+n53><u,s>}.
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Proof. Let z € Ty,—1 UT_1,9. Solving (3.1) and (3.3)

(3.7) A(u,z) = 7/2u~1/6 {e”/ﬁWo(u, QAL (u2/3()
AL Wi (u, O)ATY (u2/3<)} ,
and
(3.8) B(u,z) = /246 {em/GWO(u,C)Ai/_l (u2/3()
—e™/ Wy (u, ¢)Ai_y <u2/3§)} .
Then use (2.2), (2.3), (2.17), (2.18), (2.26) and (2.27). For the other sectors we repeat

this procedure, starting by solving an appropriate pair of (3.1) - (3.3) for A(u, z) and
B(u, z). O

We define explicit error terms associated with the expansions in our main theorem
below. To do so, first let

(3.9) 1) (1w, 2) = Mg (1, 2) + 15 (0, €) + 7 (u, 2)1 (w, €),
(3.10) 78w, 2) = Mg (u, 2) + 78 (u, €) + 1, (u, 2P (u, £),
(3.11) Asmia(u, 2) = [amea(w)] ! F7Y4(2)CHY4 Ay, 2),
and

(3.12) Bomta(u,2) = [pami2(w)] ™" f74(2)¢"* B(u, 2),

where p,(u) is given by (2.11).
Then using (2.10), (3.5), (3.10) with n = 2m + 2, and (3.11) we have

3 1/4 2m+1 & 3
(3.13) 2{%} A2m+2(u,z)=eXp{ Z 55( )}

uS

uS

2m—+1 =
+ exp { > (—1)355(2) } + Eam2(u, 2),
s=1

where

2m+1 g (Z) *)
~ s ~(k
(3.14)  Eam2(u,z) =exp { > 7} Eamt2,5 (s 2)

s=1

2m—+1 g (Z) )
+exp{ Z (—1)°= }ég}mﬁ,k(u,z),

s=1

in which

(3.15) &, 2) = G (u, 2) + O () + 7o) (1, 2)0n,5 (1)
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and &gppyo(u,2) =0 (u_Qm_Q) uniformly for z € Z; N Z.
Similarly from (2.10), (3.6), (3.9) with n = 2m + 2, and (3.12)

us
s=1

1/3 p1/4 1/4 2m+15s(z)
(3.16)  2u'/3fY4(2) ¢4 Bamia(u, 2) = exp Z —_—

2m—+1
— exp { Z (71)552(52) } + €2ma2(u, 2),

where

2m—+1 f,' (Z) *)
(3.17)  e2m+2(u,z) = exp { Z ?} €am+2,j (U 2)

s=1
2m+1
sgs(z) ]
~ exp{ 3 (1) }eéi,LQ,k(u,z),

us
s=1

with

(3.18) ) (u, 2) = 1) (u, 2) + 63 () + 08 (4, 2)8n 5 (w)

n,j J

and 9, 42(u, 2) = O (u_zm_Q) uniformly for z € Z; N Z,.
In order to simplify our error bounds we shall make use of the following elementary
result.

LEMMA 3.3. Let a, b, ¢, and d be real and non-negative. Then if
(3.19) a<c+d+cd,

it follows that

(3.20) a+b+ab§(b+c+d){1+%(b+c+d)}2.

Proof. We have from (3.19)

(321) (b+c+d){1+L0b+c+d)}’ - (a+b+ab)
>b+ctd){1+10+c+d)) —{b+ct+d+cd+b(c+d+cd)}.

On expanding the RHS it is easy to verify that all the negative terms cancel out, and

the result follows. a

REMARK 4. If the constants are small and of the same order of magnitude the
bound (3.20) is quite sharp; more precisely, if each constant is O (¢) where e — 0 then

(3.22) at+btab=(b+ct+d) {1+10b+c+d)} +0().
This is easily verifiable by examining the negative terms appearing in the expansion
of the RHS of (53.21).

Now from (3.9)

(k)

(3.23) M (Us z)‘ < | (u, 2)| +

10 (u,€)] + s s 2)| [ (1, )]
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Then on identifying the corresponding terms of (3.23) with those of (3.19) we deduce
from (3.20) that for z € Z; (j =0,=£1)

(3:24) [l (u, )| + 16,3 w) | +
< (160 (@) + 0.3, 2] + [0 ()
x {1+ 3 (1605 ()] + 1,5 (u, 2)

k
A (1, 2)] 16 )

1w}

and hence from (2.4) and (3.18)
k n n
(3.25) ) (u,2)| < ful"en i, 2) {1+ Sl "en(u, )},

where e, ;(u,z) is given by (3.32) below. A similar bound can be established for
~(k) ) (u, 2).

Collecting together (1.19), (3.11) - (3.17), and (3.25) we have arrived at the main
result of this section:

THEOREM 3.4. Assume Hypothesis 2.2 and let z € Z; N Zy (j,k € {0,1,—1},
Jj # k). Then for each positive integer m there exist three solutions of (1.1) of the
form

(3.26) wmi(u, 2) = Aiy (u2/3<) Aomsa(u, 2) + Al (u2/3g) Bomaa(u, 2) (1 =0,£1),

where
(3.27) Azmiz(u,2) = ¢ 1 @) | [ Eaen(2)
L am+2(u, 2) = 72 exp Z ws (%8 Z w251
s=1 s=0
1 1/4
+ 5 {%} 52m+2(uv2)7
and
B 1 ¢ Eas(2) | . - Es+1(2)
52m+2(u72)
2ul/3 {¢f(2) )
such that
(3.29)
i 2ndl ot (1, 2
|E2m+2(u, 2)| < [upmr? eXP{ ; Re u( )}52m+2,j(u,2) {1+ %ﬁfzz)}

2m+1 = 2
ex mZ (—1)® ) é (u,2) {1+ 762m+2’k(u’ ?)
| |2m+2 P 2m+2,k 2"U,|2m+2 1)
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in which

(3:30)  nj(u 2) = [ul™ 185 0)] + (1, 2) exp {0, 2) + ul w3, )}
+ (11, €) exp { [ul ™ Ba(u, €) + Jul ™ An(w, ) }

and

(3.31)

2m+1 9
le (u,2)| < ———ex i: Reg (Z) e (u,2) {1+ eam+2,j (U, 2)
2m+2(U, | |2m+2 p 2m+2,5 (U, D[t

2m+1 . R 8( ) . 62m+2’k(u,z) 2
+| |2m+2 exp Z (=1)° e2m+2,k (U, 2) +W J

where

(3:32)  enj(u, 2) = [ul" |0, ()] + wn,j(u, 2) exp {Jul " @n,;(u, 2) + |u| "wn,;(u, 2)}
+n(u, §) exp {Jul ™ B (u, §) + |ul T yn ()}

In (3.29) and (3.31) j = £1, k=0 for z € Ty 41 UT41,0, and j = £1, k = F1 for
z € T:tl,:FL

REMARK 5. Here £,(2) and E5(2) are given by (1.17) and (1.18), wn ;(u,z) and
@ ;i(u,2) are given by (2.5) and (2.6), yn(u, &), Bn(u, &), An(u,€) and Bn(u,&) are
given by (2.21), (2.22), (2.23) and (2.24), dno(u) = 0, and 0n,+1(u) are bounded
using (2.12); in the common situation where the connection coefficients Ax1 of (2.9)
are known we instead use the exact expressions

n—=1/, \sf Z(O) _ As Z(:l:l)
(3.33) 6n7i1(u)—)\ilexp{z( 1)°E, ( u) E ( )}1.

s=1

Since §p j(u) = O(u™™) we observe that &, ;(u,z),en j(u,z) = O(1) as u — oo
uniformly for z € Z;, and hence the bounds for Eam42(u, 2) and eomi2(u, z) are both
O (u=2m~2) um’formly for z € Z; N Zy.

REMARK 6. If the series on the RHS of (3.16) are expanded and combined as an
inverse series of u then only (inverse) odd powers remain. Hence one would expect
that eam+2(u, z) = O (u‘Qm_?’) , and consequently our error bound for the Bapy,12(u, 2)
expansion overestimates the true error by a factor O(u). With a more delicate analysis
it is possible to sharpen the above bounds to reflect this (and also for the corresponding
bounds in section 4 below). This will be pursued in a subsequent paper.

4. Error bounds in a vicinity of the turning point. We now consider the
case where z is close to zg, so that the bounds of the preceding section can no longer
be directly applied. As shown in [8] the coefficient functions of (3.26) can be computed
to high accuracy by Cauchy integrals in the present case.

Here we use the same idea to bound the error terms in (3.27) and (3.28). The
idea is quite simple: we express the error terms as Cauchy integrals around a simple
positively orientated loop I' (say) which encloses the turning point zp and the point
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z in question (but is not too close to these points), and which lies in the intersection
of Zy, Z1, and Z_;. We then bound the integrand of each integral along its contour
using the results of the previous section, from which a bound for the error terms
follow. The main result is given by Theorem 4.2 below
Our choice of T is the circle {z : |z — 29| = o} for 79 > 0 is arbitrarily chosen but
not too small, and such that the loop lies in the intersection of Zy, Z1, and Z_;.
The following result will be used.

LEMMA 4.1. For |z — zo| <19

t 4ro K (k
(4.1) ?{ * - lo(2) := o (k) ;
l—stlero [T =2 |z — zo| + 70
where
4.9) k= 24/7o |z — 20|
' |2 — 20| + 70’

and K (k) is the complete elliptic integral of the first kind defined by ([3, §19.2(ii)])

/2 1

_ dr B dt
K(k) = O/ m_o/\/(l_tz)(l_kztz)

REMARK 7. K(k) ~ —1In(1—k) as k — 1— ([3, BEq. 19.12.1]), and hence from
(4.1) and (4.2) we find that lo(z) ~ —21n(rg — |z — 20]) as |z — z0| = 10— i-e. lp(2)
becomes unbounded (logarithmically) as z approaches T' from its interior. This means
that z should not be too close to I' in our subsequent error bounds.

(4.3) O0<k<1).

Proof. Let z = 2+ ae’ where a = |z — 29|, and then with the change of variable
t = 29 + o€’ we find that

(4.4) ﬁ L

Now let ¢ — ¢ + 60, and using 27 periodicity of the integrand, we get

27
rodp rodp
|roei® — aet| ’roei(%"—e) —al’
0 0

dt
t—2

o 2m—0 27
_— rodeg B / rody 7/ rodep
. 0 [roeite=0) — ] , [roe? —al ) \/rg —2argcos (¢) + a?’

Then from symmetry of the integrand about ¢ = m, followed by using the identity
cos(p) = 1 — 2sin?(7) where 7 = /2, we obtain

27 s
wo [t ] o
) /12 — 2arg cos () + a2 ) /12 + 2arg cos (¢) + a2
T w/2

rody rodT
=2 =4 .
5 \/(a+7"0)2 — dargsin® (3¢) 5 \/(a—f—ro)Q — darg sin’(7)

The result then follows from (4.3) - (4.6) and recalling that a = |z — 2. O
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We now bound terms appearing in Theorem 3.4 on I' and on certain paths con-
taining parts of this loop. Firstly, let «;; be the union of part of the loop I' that lies
inT;,; (j,1 € {0,1,—1},j # 1) with an arbitrarily chosen progressive path in T} con-
necting T to 2U) (if possible a straight line). There are six of these paths to consider.
See Figures 2 and 3 for examples with Rez > 0, u > 0, zg > 0, 29 an admissible
pole at the origin, and z(1) at infinity.

A

FiG. 2. Path v9,—1 in the z plane.
We then define
(47) wn(u) = Qm_alux{ / ‘Fn(t) f1/2(t)dt‘}
7 Vil
n—1 n—1
Ey(t)Fyympn(t 1/2tdt‘
+;|u|skgn}?jx{[hl‘ k() +n—k 1()f () ’

and likewise

n—2
(4.8) wp(u) =4 Z &n}ﬁx {/

where the maxima are taken over all six paths v, ;.
We next define

(4.9) On(u) = max [dn; (u)]
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A

FiGc. 3. Path v1,—1 in the z plane.

(4.10) Y = inf [Cf(2)]*, T =sup|¢/f(2)"*,
zel zel

and

(4.11) p = infg].

Let 8 = arg(u) we further define

(4.12) M = supRe {e‘isgé’s(z)} , Ns =supRe {(—1)56_“985(2)} ,
zel zel

and likewise ]\;[S and Ns where &; is replaced by S~s,
From these definitions we note that on the contour I'

(4.13) wWn,j (U, 2) < wn(u), wn,j(u,z) < wp(u) (j=0,%1),
(4.14) exp{ig;—(f)} Sexp{i IJZ}

and

(4.15) exp {z_: (—1)882(5) } < exp {Z_: |]ISS } .

17
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Next we define

(4.16) d2m+2(u)
B 2m+1 2m+1 €2m+2(u) 2
) [p{ 2 |S}+€Xp{ 2 WH et {4

where e, (u) = O(1) as u — oo and is given by
(4.17)  en(u) = u|™dn (u) + wy (u) exp {|u| ™ wn (w) + |u| " wy (u) }
+ 7 (u, p) exp { [ul = Ba(u, p) + [ul " yn(u, p) } -

Recall v, (u, §) is given by (2.21), and S, (u, &) is given by (2.22).
Similarly we define

(4.18) d~2m+2(u)
B 2m—+1 2m+1 } é2m+2(u) 2
) [p{ 2 |s}+exp{ 2. |u|sH et {14 58

where €, (u) = O(1) as u — oo and is given by

(4.19) & (1) = |u|™ O (w) + wn(u) exp {|ur1 (1) + |u|_"wn(u)}
+ F (s p) exp {Jul ™ Bau, ) + ful ™" Au(u,p)

in which 4, (u, £) and B, (u, £) are given by (2.23) and (2.24), respectively.
We now present the main result of this section.
THEOREM 4.2. Assume Hypothesis 2.2 and let T' be the circle as described at the

beginning of this section, with z lying in its interior. Three solutions of (1.1) are then
given by (3.26) where

1 “ g2s(t)
(4.20)  Azpio(u,2) = o ?{_ZO[_TO exp{z us }

s=1
™ Ereri®) | (¢ dt 1.
xcosh{z Z;:r(l)}{%} PR 5 ' Z),s

s=0

and

1 " Eas(t)
(421) 82m+2(u Z) Wﬁ s exp {Z u23 }

s=1

5 825+1 (t) dt Rom+4-2 (’U/, Z)
h )
o {Z w2 } KOOy i —s) | 27
such that
(4.22) ‘g2m+2(u’ Z)| < ML(U)ZO(Z)

or[umt?



SIMPLIFIED ERROR BOUNDS FOR TURNING POINT EXPANSIONS 19

and

dom+2(uw)lo(2)

4.23 Komaa(u, 2)| < .
(4.23) rama(i, )| < S22

Proof. Consider (4.21). Since Bam+2(u, z) is analytic on and inside I" we have by
Cauchy’s integral formula

1

(4.24) Bam2(u, 2) = _f M
|t7z0|:ro

271 t—z

On substituting (3.16) into the integrand of (4.24) and then comparing with (4.21)
we deduce that

1 €2m+2(u,t)dt
4.25 Roam42(U, 2) = 5— 1/4 2
= #2lh%) ﬁ_z(ﬂ:m {COFOY* (- 2)

27
(even though eg,,4+2(u, z) is not analytic at the turning point). Therefore from the
definition of T we have from (4.1), (4.10) and (4.25)

dt
t—2z

SUp.er [E2m+2(u, 2)|
(4.26) |kom+2(u,2)| <
2rinfaer |C(2) £ (2)[M* Jit=zol=ro

_ SUP.er leam+2(u, 2)| lo(2)
27T -

Now for z € I we have from (4.11) that |{] > p and hence from (2.21) and (2.22)

(4.27) Bn(u, &) < Bulu, p), Yu(u, &) < n(y, p).

Thus from (3.32), (4.9), (4.13) and (4.17) we have e, j(u, z) < ep(u) for z € I' and
j = 0,£1. Hence (4.23) follows from (3.31), (4.14), (4.15), (4.16) and (4.26). The
bound (4.22) is similarly proved. O

5. Bessel functions of large order. We illustrate our new error bounds in an
application to Airy expansions for Bessel functions, therefore providing error bounds
for the uniform asymptotic expansions obtained in [8]. For a classical monograph
on Bessel functions see [18]. See also [3], chapters 9 and 10, for a compendium of
important properties of these functions. Similar ideas can be used for bounding the
errors in other cases as for example for Laguerre polynomials and Kummer functions
[9].

The first step for Bessel functions is to apply the Liouville transformations de-
scribed in §1 to Bessel’s equation. To this end, we first note that functions w =

2Y27,(vz), w = 2Y2H (vz) and w = 2V/2HP (v2) satisfy

d*w s1—22 1

Here z is real or complex, and v plays the role of our parameter u, which we assume
is real and positive. On comparing with (1.1) we have

2
(5.2 fe) =1 o) =~ 15
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For brevity we only consider case §3, i.e. z bounded away from the turning point
zo = 1. In a subsequent paper we shall show how our error bounds can be sharpened,
including those of §4 near the turning point.

The Liouville transformation is

o172
(5.3) §=§c3/2=1n{w}_(1_zz)l/z,
and
1/4
o (&) -

The transformed variable ¢ is real for real z € (0,1) (¢ € (0,400)), and {(z) can be
defined by analytic continuation in the whole complex plane cut along the negative
real axis. ¢ is positive for z € (0,1) and defined continuously elsewhere.

We then obtain (1.4) where

&8} v = 16542 - C: <z(22_+1>?'

We find from (1.6), (1.12) - (1.14), and (5.2) that the coefficients are given by

(5.6) Ei(z) = /wt—l 1—2) P Bt (s=1,2,3,--),
Here
5.7 Ao =280 poy - — 2 R
' 8(z% —1)3’ 2(1—22)/2 17
and
X z . 1 s=1 & &
(5.8) Foi(z) = mz«;(z) -5 ;Fj(z)Fs_j(z) (s=2,3,---).

As shown in [8] these coefficients can be explicitly computed, and in particular
they have the form

6.9) B = o

where P;(z) are polynomials of degree s in z.
We note for the odd terms that

1 Pyj11(2?)
(1—2)" | (1 - 22)3+ (1 +2)"/?

(5.10) E2j+1(2) = (j=0,1,2--),

where the term in the square brackets is meromorphic at z = 1 as desired.
The polynomials Ps in (5.9) have the properties

(5.11) Py5(0) =0, Pogy1(0) = Cogya,
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where Cys41 are the coefficients in the Stirling asymptotic series

oo

C s
(5.12) P(v) ~ 2m) e =2 exp { S ij.jll (v — ).
j=0
Defining Cy; =0 (j =1,2,3,---) we then have
(5.13) E, (z<0>) = £,(0)=C,,
and from (5.9)
(5.14) E, <z<i1>) = B, (Fioco) = 0.

Next, from (2.2) and (2.3), the following asymptotic solutions are obtained

(5.15)  Wo(w,() = Cl—l/“ exp {—ug 3 i (_1)s%} {1+ mo(v,2)}
and
(5.16) Wii(v,¢) = Cllﬁexp{yf—i—z—:Ei—(sz)}{1+77n,i1(y,z)}.

s=1

Let us now match these with the corresponding Bessel functions having the same
recessive behavior at the singularities. Firstly, for the one recessive at z = 0, we note
as z — 0 that

(5.17) Tolw) =~ ﬁ (%)V

and hence using
(5.18) E=In(2/z) — 14+ O(2),

we deduce that

v ¢ 1/4
(5.19) J,(vz) = T+ D) <1 — z2> Wo (v, Q).
Next, for the solution that vanishes as z — 100, we use
2 \/? 1 1

(1) aa | =2 D
(5.20) H}(vz) <7wz> exp {wz 5V 47m} ,
along with
(5.21) E=iz—3imi+0(z7"),

and we arrive at the identification

(5.22) HO (vz) = —i <3) v <L> o,

TV 1-—22
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We similarly find that

(5.23) H®z2) =i <3> v < f22>1/4 Wi(v, Q).

TV 1

We now plug these into the general connection formula (2.9), and this yields

12
(5.24) A_lHy)(uz):<i) eT(v+1)

v

J,(vz) — MHP (v2).

Vl/
On comparing this with the well-known connection formula for Bessel functions
(5.25) J(vz) =3 {Hﬁl)(yz) + H,EQ)(VZ)} ;

we deduce that

12 ,
(5.26) =K 4= (L) M
2mv vv
We note from (5.12) that
— Caj11
(5.27) As1 ~ exp Z RS (v — o0),
3=0

in accord with (2.13), (5.13) and (5.14).
For z € Tp,_1 UT_1 0 (see Figure 1) we use (3.7), (3.8), (5.19), (5.22) and (5.26)
to obtain the exact expressions

(5.28) A(v,z) = 7/2e"T (v + 1) (1 _ Z2> 1/4

yv+(1/6) ¢
x {em/ONILy (v¥3¢) J(v2) - BiAl (v/3¢) HD(w2)}

and

T2 T +1) 1 —2° 14
(5.29) B(v,z) = H(1/6) < c )

X {%z’Ai (1/2/3() HM (vz)—e™/CAi_y (1/2/3<> JV(I/Z)} ;

Now from (2.11), (3.11), (3.12), (5.2) and (5.13) we have

5.30 A = v~ Ozt % 1/414

( . ) 2m+2(V,Z) = exp _Z 2j+1 1 — 22 (VVZ)’
§=0

and
m Co ZQC 1/4

(5.31) Bomaa(v,z) = exp ¢ — Z y;ﬂjj:ll <1 — 22> B(v, 2),

=0
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and hence
__1/2 v, —u+(5/6) N Caji1
(5.32) Agmia(v,2) = 7/2e"v T(v)expq — Y i
3=0
% g2 {e”/GAiL1 (1/2/3() Ju(vz) — SiAT (1/2/3§) Hﬁl)(yz)} ,
and
__1/2 v, —v+(5/6) o Cojtr
(5.33) Bomia(v,z) =72y I'(v)exp{ — Z IEs
=0

x z1/2 {%iAi (V2/3C) HWM (vz)—e™/CAi_y (V2/3<) JV(VZ)} .

These are exact expressions, and can be used to compare numerically the coeffi-
cient functions with their approximations, and in particular the exact errors with our
bounds (see below).

Next, we have from an application of Theorem 3.4

(534) A2m+2 (I/7 Z)

22 1/4 =& z = & 1(%
(%) oo { S N e[S B L),

s=1 s=0

and
1 2 1/4
(5:35) Bamia(2) = =73 {ﬁ}

1—22
T E2e , o B 1
X lexp {Z i2(sZ) } sinh {Z %:_(12)} + §€2m+2(l/, z)] ,
s=0

s=1

where &,(z) and &(z) are given by (1.17) and (1.18), and for v > 0 and z € Ty _1 U
T 10

(5.36)  |E2mq2(v, 2)]

2m+1 ~d i 2
1 Reé&s(z) | - €2m+2,-1(V, 2)
= mexp{ 2, [Famean () 14 T

§=1
2m+1 = ~ 2
1 Reé&s(z) | - €2mt2,0(V, 2)
+ I/2m+2 exXp { Z (_l)s l/: } €2m+2,0(1/7 Z) {1 + n;l/2m+2 )

s=1

in which (for j =0, —1)

(5.37) é2m+2’j (V, z) = V2m+2(52m+27j(u)

+ wam42,; (v, 2) exp {y’lemH’j(y, 2) + v 2 2040, (v, z)}

+ Fom 420, €) exp {1 Boms2(t €) + ™" a2 (1 6) }
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Here d21m42,0(v) =0, and from (3.33), (5.13) and (5.26)

m

1 /2 e”F(y) Czj.;,_l
(538) 62m+2’i1(V) = <%> m exp — Z m — 1,
7=0

in addition
Fomya(t) (1—2)"?
t

dt

(539) WQm+2,0(V, Z) = 2/
0

2§1 BB s () (1 — )
t

2m+1

1 z
+82=;;/0

dt

I

k=s

Fua(t) (1—2)"?
t

dt

R

2m
1 z
(5.40) Tomi20(V,2) =4 = /
s=0 0

and w2 —1(v, 2) and wam42,—1(v, 2) are the same except the paths of integration

are from z to infinity in the upper half plane. These can be taken as straight lines in

both cases, in the latter case vertical lines from z to infinity in the upper half plane.
Similarly

(541)  Jezmra(v,2)
2m+1

1 Re&s(z) eam+2,-1(V; 2) ?
S otz eXP{ Z Qs eam+2,-1(,2) {1+ o pmir

s=1

2m+1 2
1 Reé&s(z) €am+2,0(V, 2)
+ mexp{ > (—1)5—3} camina() {1+ 2L

Us
s=1

where
(5:42)  eamt2,5(v,2) = V" 2b040,5(v)

+ Wamq2,5 (v, 2) exp {V_1w2m+2,j(l/a z)+v2 _2w2m+2,j(7/7 Z)}

+ Yamt2(v, €) exp {v ™ Bamy2(v, €) + v P yamia(v,€)} -

m

Before proceeding with numerical computations, let us illustrate how the above
asymptotic solutions can be matched with the exact solutions. We do so we consider
solutions recessive at z = 0, with the other solutions done similarly. Now, by unique-
ness of such solutions we immediately deduce from the [ = 0 solution of Theorem 3.4
that

(5.43) J,(v2) = cmo(v)2z~Y/? {Ai (1/2/3() Aomaa (v,2) + AV (V2/3C) Bomaa(v, z)} ,

for some constant ¢, o(v). Letting z — 0 in (5.34) and (5.35) and referring to (5.3)
and (5.21) we have

(5.44) Agma(v, 2) ~ 2% | cosh

=0

02j+1 1

l/2j+l G §é2m+2<y7 0) 9
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and

21/2 . i ng+1 1
(545) BQ»,n,+.2(l/7 Z) ~ m sinh Z y2j+1 + 562m+2(1/, 0) .
7=0

Although we don’t know £a,,42(v,0) and eg,,4+2(v,0) explicitly we can bound these
values. Specifically, from the above bounds we see that
(5.46)

m

. 1 Cojt1 | - Eamy2,1(1,0))
|€2m+2(ll, 0)| = m exp Z V2§+l 62m+2),1(l/, 0) 1+ m2y27m+2 ,
=0

since €am42,0(v,0) =0, and in this

(5.47) égm+27_1(y, O) = l/2m+252m+2,_1(l/)

+ womt2,—-1(v, 0) exp {V71w2m+2,,1(u, ) ey 2m—2

wamt2,-1 (1,0)} .

Similarly eg,,42(v,0) satisfies the same bound, since egp,42,0(v,0) = 0 and the
analogously defined egp42,—1(v,0) is the same as €ap42,—1 (v, 0).
On using (5.43) - (5.45), (A.20) and (A.23) we arrive at

(%I/)V _ cmo(v)exp(—vin(2)+v)

5.48 =
( ) F'v+1) 2ml/2p1/6
~Cajt1 i, 1
X | exp —Z V2jj.j:1 + §€2m+2(ll, 0) — §€2m+2(l/,0) ,
=0

and therefore the desired value of the proportionality constant is given by

27.‘_1/21/1/7(5/6)

(5.49) cmo(v) = T (v)

-1
“ Cojii 1. 1
X | exp —Z y2jji_1 + §€2m+2(V, O) — 552m+2(l/, O)
j=0

The identification of the Hankel functions can be done similarly. We omit details.

5.1. Numerical examples. Examples of the performance of the error bounds
given in (5.36) and (5.41) are shown in Figures 4 and 5.

In the figures, these bounds are compared with the true numerical accuracy ob-
tained when using (5.34) and (5.35) to approximate (5.32) and (5.33), respectively,
for a fixed value of m (m = 5) and two different values of v (v = 10, 100). The
computation of (5.32) and (5.33) is made using Maple with a large number of digits.

For the bounds, two different types of numerical quadrature methods have been
considered to evaluate the integrals: (i) a Gauss-Legendre quadrature with 30 nodes
for the integrals in (5.39) and (5.40); (ii) an adaptative quadrature method over a
truncated interval for the integrals for wom42,—1(v, z) and wom42,—1(v, 2).

As can be seen in the figures, the bounds (5.36) and (5.41) track the exact errors
quite well even for moderate values of v. Also, the accuracy of the bound (5.36) is
better than the accuracy of (5.41), as expected (see Remark 6).
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4078 - 1015

102 102 o

10% 10%

—=—True error —=—True error
—© -Bound — © —Bound
1030 10%0
0

0.1 0.2 03 04 0.5 0.6 0 0.1 0.2 03 04 0.5 0.6

F1G. 4. Comparison of the bounds given in (5.36) and (5.41) with the true numerical accuracy
obtained when using (5.34) and (5.35) to approzimate (5.32) and (5.53), respectively, for a fized
value of m (m =5) and v (v = 100).

154
10
—=—True error —=—True error
—© -Bound — © - Bound

0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 04 0.5 0.6
z z

Fic. 5. Comparison of the bounds given in (5.56) and (5.41) with the true numerical accuracy
obtained when using (5.34) and (5.35) to approzimate (5.32) and (5.53), respectively, for a fized
value of m (m =5) and v (v = 10).

Appendix A. Exponential-type Liouville-Green expansions for Airy
functions.  Let |arg (u?/3¢)| < 27 (or equivalently, from (1.2), |arg(uf)| < ).
Now V = z1/4Ai (u?/3() satisfies

vV [, 5
- it

From [7, Theorem 1.1] where (1.14) we obtain a solution

(4.2) Vi () = exp {i (_1)362@} {ee+e®w o)},

where from from (1.14) of that paper the coefficients are found to be

(A.3) €s (5)

with a1 = a2 = % and subsequent terms satsfying the recurrence relation (1.16).

From this we apply [7, (1.20)] to provide the bound

p— as
“

(A.4)

1S
20,6 < fume| [ [ )t

3 ¢
X exp 4/ ‘ufng(’)(u,t)dt‘Jr/ ‘u*”xg(”(u,t)dt
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(A.6)
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(-1 S
X, &) = Tt {2% + Z we)® Zaka&knfkfl )

s=1 k=s

n—2
s Qs+1
TO w6 = 3 (-1 et
s=0

In (A.4) the paths for the three integrals is the ray

(A7)

t=7 (1<7<00),

if Re(u§) > 0, and the ray

(A.8)

t=¢FiéT (0<7<00),

27

if Re(u€) < 0 and +£Im(u&) > 0. These are chosen as the simplest paths satisfying
the requirement that Re(ut) is increasing as t runs along the path from £ to oo, for
each fixed ¢ in the cut plane |arg(uf)| < 7.

LEMMA A.1. Forp>2

(A.9)

where

(A.10)

¢ ﬂ _ Ap(uf)
/oo A
ﬁ (Rez > 0)
M= B ()
2T (Lp) (Rez < 0)

Proof. 1If Re(u&) > 0 we have from (A.7)

(A.11)

dt
7

/.

1 * dr 1
B |§|p‘1/1 ™ (p— 1)1

and for Re(u) < 0, using (A.8),

(A.12)

dt
P

/.

_ ! /°° dr 7T (3p-3)
et e (1) 2 () P

Combining these two gives the result.

Then from the triangle inequality applied to (A.5) and using (A.9)

(A.13) /‘X(O)(u,t)dt’§

2anAn+1 (’U,f)
14k

n— 2

1 n—+s
! [ 2 +|u4§(“§) Z Bels-+n—k;

s=0 k=s+1



28 T. M. DUNSTER, A. GIL, AND J. SEGURA

and
< 1 2 aar1Aaya(ug)

(A14) [ |0 tiar] < g - Srmelet)
- gl = |ug|

Now for Rez < 0 we have from (A.10) and Stirling’s formula [15, Chap. 3, Eq.
(8.16)] that Ap(z) ~ {m/ (2p)}1/2 as p — 0o , which suggests the simplification

/2T (1p— 1
I og) ),
2r (3p)

for all z. The following lemma establishes this to be true.

LEMMA A.2. Forp>2

(A.15) Ap(z) < Ay =

2 (1, _ 1
(A.16) L T F(le 5)
p—1 2F(§p)
Proof.
2r (3p) _TEPT(G) 1,
D e A ) a )

where B (p, q) is the Beta function [15, Chap. 2, Sect. 1.6]

L'(p)T (q) /1 1 1
A.18 B(p,q) = ——= = P11 =) " dv (Rep >0, Reqg > 0).
(A1) Bl = Fr D= [ty )

From its integral representation we see that this function is monotonically decreasing
as a function of (positive) p for each fixed ¢ > 0. Therefore for p > 2

2T (4p) il riE) 2
Al 2 = 1 2) _ 2
A Gy SR Y Ty TRt
and the stated result follows. 0

Now by uniqueness of recessive solutions Ai (u?/3¢) = c(u){~Y 419 (4, ¢). Then
using
e ué

2w L/21/601/4 (u€ = +00),

(A.20) Ai (w?3¢) ~

we find c(u) = Ju1/6771/2, and as a result (2.17) follows from (A.2) with
(A.21) ) (u,€) = el (u, €).

The bound (2.19) on this error term follows from (A.4), (A.13), (A.14) and (A.15).
For the derivative of the Airy function we note that V = ¢~ 1/4Af’ (ug/ 3¢ ) satisfies

d*V 7 1o
A.22 Z =i — )
() " we)
Then using
) ul/G 1/46—u§
(A.23) Ai’ (u2/3C) ~ 72€T—1/2 (u€ = +00),
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we obtain in a similar manner

1/6 +1/4 n—1 ~
./ 2/3 _ _’LL C _1)\s Gs —ug =(0)
(A.24) Ai (u C) 5 17z OXP SEZI( 1) o {e + &, (u,ﬁ)},
where @, = @y = —+5 and subsequent terms given by (1.16), and &9 (u, ¢) satisfies

the same bounds (A.4), (A.13) and (A.14) as e® (u, &) but with as replaced by |as|
throughout. This establishes (2.18).
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