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Summary
Background Human prion diseases are rare and usually rapidly fatal neurodegenerative disorders, the most common 
being sporadic Creutzfeldt-Jakob disease (sCJD). Variants in the PRNP gene that encodes prion protein are strong risk 
factors for sCJD but, although the condition has similar heritability to other neurodegenerative disorders, no other 
genetic risk loci have been confirmed. We aimed to discover new genetic risk factors for sCJD, and their causal mechanisms.

Methods We did a genome-wide association study of sCJD in European ancestry populations (patients diagnosed with 
probable or definite sCJD identified at national CJD referral centres) with a two-stage study design using genotyping 
arrays and exome sequencing. Conditional, transcriptional, and histological analyses of implicated genes and proteins 
in brain tissues, and tests of the effects of risk variants on clinical phenotypes, were done using deep longitudinal 
clinical cohort data. Control data from healthy individuals were obtained from publicly available datasets matched 
for country.

Findings Samples from 5208 cases were obtained between 1990 and 2014. We found 41 genome-wide significant single 
nucleotide polymorphisms (SNPs) and independently replicated findings at three loci associated with sCJD risk; 
within PRNP (rs1799990; additive model odds ratio [OR] 1·23 [95% CI 1·17–1·30], p=2·68 × 10–¹⁵; heterozygous model 
p=1·01 × 10–¹³⁵), STX6 (rs3747957; OR 1·16 [1·10–1·22], p=9·74 × 10–⁹), and GAL3ST1 (rs2267161; OR 1·18 [1·12–1·25], 
p=8·60 × 10–¹⁰). Follow-up analyses showed that associations at PRNP and GAL3ST1 are likely to be caused by common 
variants that alter the protein sequence, whereas risk variants in STX6 are associated with increased expression of the 
major transcripts in disease-relevant brain regions.

Interpretation We present, to our knowledge, the first evidence of statistically robust genetic associations in sporadic 
human prion disease that implicate intracellular trafficking and sphingolipid metabolism as molecular causal 
mechanisms. Risk SNPs in STX6 are shared with progressive supranuclear palsy, a neurodegenerative disease associated 
with misfolding of protein tau, indicating that sCJD might share the same causal mechanisms as prion-like disorders.

Funding Medical Research Council and the UK National Institute of Health Research in part through the Biomedical 
Research Centre at University College London Hospitals National Health Service Foundation Trust.

Copyright © 2020 Elsevier Ltd. All rights reserved.

Introduction
Prion diseases are fatal neurodegenerative conditions in 
humans and animals caused by the propagation of prions: 
atypical infectious agents comprised solely or predomi­
nantly of host prion protein.1 Prions are thought to 
propagate through a process of binding to normal prion 
protein, induction of conformational change by templat­
ing, and fission of the polymeric assembly. Prion diseases 
can be acquired from exposure to prions in the diet, or 
through medical or surgical procedures, which can result 
in public health crises. The cattle prion disease, bovine 

spongiform encephalopathy (BSE), which transmitted to 
mostly young British and other European adults as variant 
Creutzfeldt-Jakob disease (vCJD),2 led to enhanced clinical 
surveillance for all prion diseases worldwide. Inherited 
prion disease, caused only by mutations of the prion 
protein gene (PRNP), causes approximately 10–15% of the 
annual incidence of all prion diseases in most countries.3 
The most common type of human prion disease is 
sporadic CJD (sCJD), a rapidly progressive dementia with 
a lifetime risk of approximately one in 5000, which occurs 
predominantly in older adults.4,5 Other than age and 
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polymorphisms at PRNP, no risk factors for sCJD are 
known, leaving only speculative explanations for sporadic 
prion formation.

Polymorphisms of PRNP at codons 127, 129, and 
219 alter amino acids and are strong genetic risk factors or 
modifiers of the disease phenotypes.3 Sibling or familial 
concurrence of sCJD has been reported, but not to the 
extent that chance concurrence can be eliminated as an 
explanation. There are no estimates of the heritability of 
sCJD based on family studies.6 Animal studies have 
identified acquired prion disease risk factors in Prnp and 
close by, and provided evidence for susceptible loci on 
other chromosomes, yet elucidating the causal genes has 
proven to be challenging.3 Many other neurodegenerative 
diseases are thought to share fundamental mechanisms 
with prion diseases, including template-based protein 
misfolding and spreading of pathology associated with 
abnormally aggregated proteins in diseased brain tissue. 
If shared mechanisms exist, this might implicate shared 
genetic risk factors for these diseases.

This study follows on from previous genome-wide 
association studies (GWAS) in human prion diseases, 
which have not been powerful enough to discover non-
PRNP risk factors.7–10 We aimed to identify specific causal 
genes at risk loci, to allow molecular causal mechanisms 
for sCJD to be proposed.

Methods 
Study design and participants 
We did a GWAS using samples from patients diag­
nosed with probable or definite sCJD according to 
widely accepted criteria, which were provided by special­
ist or national surveillance centres in countries with 

populations of predominantly European ancestries 
(appendix pp 2, 28–32). Diagnostic criteria for probable 
sCJD varied over the course of sample collection for the 
study. Using modern diagnostic methods, including real-
time quaking-induced conversion assay with CSF, a 
probable diagnosis refuted by post-mortem examination 
is extremely rare; but even more than 20 years ago, 
probable sCJD was a highly accurate term. Patient 
samples were distributed across a two-stage study design: 
samples were genotyped using Illumina Omniexpress 
arrays in the discovery stage, and additional samples were 
genotyped at the lead variant in each hit locus using 
minor groove binding probes in the replication stage. 
Control data from healthy individuals were obtained from 
publicly available datasets matched for country.

Research in context

Evidence before this study
The rarity of sporadic Creutzfeldt-Jakob disease (sCJD) has been 
limiting in previous genome-wide association studies (GWAS) 
for disease risk. We searched PubMed on April 9, 2020, with the 
terms (“prion” OR “creutzfeldt*”) AND (“genome wide 
association” OR “GWAS”), without language or date 
restrictions, and identified four relevant publications, including 
two directly investigating sCJD risk through genome-wide 
analyses. However, the sample sizes in these studies were not 
sufficient to identify statistically significant associations outside 
of the known risk at the prion protein gene (PRNP). Further 
studies into genetic risk factors for sCJD have primarily utilised 
targeted replication of putative risk variants or candidate gene 
studies to propose association.

Added value of this study
Through international collaboration of sample resources, 
this study is, to our knowledge, the first GWAS to identify 
genetic variants associated with sCJD risk outside of PRNP, at 
genome-wide significance. Two of these variants (within STX6 
and GAL3ST1) were statistically robust to replication in an 

independent cohort, with 5208 patients with sCJD in total 
included in the two-stage study design. Through statistical 
fine-mapping and analysis of exome sequencing and gene 
expression data, we propose genes that are likely to be causal, 
and mechanisms for both novel associations. We used patient 
brain samples and cell-based assays to further investigate the 
biological implications of these associations in relevant 
systems. Two further loci at PDIA4 and BMERB1 were also 
associated with sCJD risk in gene-based tests.

Implications of all the available evidence
Identification of two novel non-PRNP loci conferring sCJD risk 
will provide further avenues for research, with increased 
evidence to support a role of modified intracellular trafficking 
and sphingolipid metabolism within sCJD biology, providing 
the potential to inform new therapeutic approaches. With the 
shared genetic risk of variants within STX6 and those previously 
identified for the tauopathy progressive supranuclear palsy, this 
study also supports the notion of a common so-called 
prion-like causal mechanism for related neurodegenerative 
disorders and thus potential for shared treatments.

Figure 1: Manhattan plot for significant variants
The nearest gene to each genome-wide significant locus (significance indicated 
by the red horizontal line [p<5 × 10–⁸]) is labelled, as well as genes that were 
significant in gene-based tests.
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Procedures and statistical analysis 
Genotypes were imputed using the Michigan Imputation 
Server and standard sample and genotyping quality control 
measures were implemented, to generate 6 314 492 high-
quality autosomal single nucleotide polymorphisms 
(SNPs) for subsequent analysis (appendix pp 28–32). 
SNPTEST version 2.5.2 was used to perform the associ­
ation test using an additive logistic regression model. 
Association statistics for the replication stage were gen­
erated using PLINK version 1.9 in a fixed-effects meta-
analysis of each cohort. The same model was used to study 
genetic association for kuru resistance (older asymptomatic 
individuals who were exposed to kuru compared to 
patients with young onset and those born after kuru 
exposure). Additional exome sequencing was performed 
on 501 CJD samples using the Illumina HiSeq2000 platform.

Further gene-based analysis was performed using 
MAGMA version 1.06 and VEGAS2 version 2.02, and 
SNP heritability estimates were calculated using SumHer 
with standard specifications. CAVIAR and PAINTOR 
were utilised to generate a credible causal set for SNPs 
surrounding each significant locus based on linkage 
disequilibrium and functional annotations.11,12 eCAVIAR 
and eQTL colocalisation analysis was performed using 
48 tissues included in the GTEx portal version 7.13,14

Short-hairpin RNAs targeting Stx6 and Prnp were used 
to knockdown expression in N2aPK1/2 cells susceptible to 
infection with Chandler RML prions. Prion propagation 
was measured using the scrapie cell assay, as previously 

described.15 Expression of each proposed gene was 
measured by RT-qPCR in cerebellum from ten patients 
with sCJD and ten neurologically healthy controls. 
Immunohistology for syntaxin-6 and protein disulfide 
isomerase family A, member 4 was done on formalin-
fixed paraffin-embedded frontal cortex and cerebellum of 
19 patients with sCJD and 15 non-neurological disease 
controls.

Role of the funding source 
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report. The corresponding author had full access to 
all the data in the study and had final responsibility for 
the decision to submit for publication.

Results 
Between 1990 and 2014, we obtained 5208 sCJD samples, 
of which 4110 were used in the discovery stage and 
1098 were used in the replication stage.

In the discovery stage we compared genome-wide 
genotype data from 4110 patients with probable or defi­
nite sCJD from countries of predominantly European 
ancestries with 13 569 control samples from a similar 
range of countries (appendix pp 2–3). Imputation using 
the Michigan server resulted in 6 314 492 high-quality 
autosomal SNPs after quality control, which were used 
for downstream association tests in SNPTEST with 
ten population covariates. Genomic inflation (λ) was 1·026 
(appendix p 16), indicating no significant systemic bias 
related to population ancestry or platforms, so no further 
correction was done; the threshold for genome-wide 
significance was p<5 × 10–⁸. Estimated SNP heritability 
(LDAK model: h²SNP=0·26 [SD 0·014]; GCTA model: 
h²SNP=0·24 [SD 0·023]) was similar to that of common 
neurodegenerative diseases, in keeping with very rare 
reports of familial sCJD concurrence.6,16,17

Further to the known association at PRNP on chromo­
some 20p13, two loci achieved genome-wide significance 
mapping to 1q25.3 (STX6) and 22q12.2 (GAL3ST1; figure 1; 
table; appendix pp 17–19). Gene-based testing with VEGAS2 
additionally identified PDIA4 (p=0·040) and BMERB1 
(p=0·0014), although testing with MAGMA did not support 
these associations (appendix pp 20–21). No significant gene 
sets were found. A SNP in intron 1 of the BMERB1 gene 
achieved borderline significance (rs6498552, odds ratio 
1·27 [95% CI 1·16–1·38], p=5·75 × 10–⁸, appendix p 21). 
Although we acknowledge that data from multiple SNPs at 
a locus are needed to directly replicate gene-based test 
results, we selected a lead SNP from the three genome-
wide significant loci as well as from PDIA4 and BMERB1 
for the replication stage.

In the replication stage we generated genotype data 
using minor groove binding probes from 1098 patients 
with probable or definite sCJD, again from multiple 
countries of predominantly European ancestries, and com­
pared these with genotypes from 498 016 control samples 

rs1799990 rs3747957 rs2267161 rs9065 rs6498552

Nearest gene PRNP STX6 GAL3ST1 PDIA4 BMERB1

Location (in GRCh37) 20:4680251 1:180953853 22:30953295 7:148700849 16:15539901

Type of mutation Missense 
exonic

Synonymous 
exonic

Missense 
exonic

3ʹ-UTR exonic Intronic

Risk allele A A C T T

Minor allele G A T T T

Discovery stage (n=4110 cases, n=13 569 controls)

MAF cases 0·288 0·452 0·289 0·220 0·120

MAF controls 0·340 0·410 0·322 0·191 0·102

OR (95% CI) 1·23  
(1·17–1·30)

1·16  
(1·10–1·22)

1·18  
(1·12–1·25)

1·17  
(1·09–1·24)

1·27 
(1·16–1·38)

p value 2·68 × 10–¹⁵ 9·74 × 10–⁹ 8·60 × 10–¹⁰ 1·66 × 10–⁶ 5·75 × 10–⁸

Replication stage (n=1098 cases, n=498 016 controls)

MAF cases 0·294 0·450 0·302 0·203 0·105

MAF controls 0·328 0·420 0·326 0·204 0·097

OR (95% CI) 1·15 
(1·04–1·28)

1·15 
(1·05–1·26)

1·11 
(1·00–1·23)

1·01 
(0·90–1·13)

1·11 
(0·96–1·29)

p value; replication 
cohorts

0·0049 0·0034 0·042 0·88 0·17

p value; replication plus 
discovery meta-analysis

9·61 × 10–¹⁷ 1·23 × 10–¹⁰ 1·97 × 10–¹⁰ 8·49 × 10–⁵ 6·45 × 10–⁸

PRNP, STX6, and GAL3ST1 SNPs were successfully replicated in an independent cohort (p<0·05). OR is relative to the 
low-risk allele. GRCh37=Genome Reference Consortium human genome build 37. UTR=untranslated region. 
MAF=minor allele frequency. OR=odds ratio. 

Table: Association results of discovery and replication stages

http://dougspeed.com/sumher
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from the same countries (appendix pp 2–3). Association 
testing provided replication evidence for PRNP (rs1799990, 
heterozygous genotype and to a lesser extent the minor 
allele is protective), STX6 (rs3747957, minor allele con­
ferred risk), and GAL3ST1 (rs2267161, minor allele was 
protective; table). Additionally, we explored if those loci 
would show an association in related prion diseases. 
Genotype data was generated for vCJD (acquired from 
exposure to BSE), iatrogenic CJD (caused by exposure to 
cadaveric pituitary-derived human growth hormone), or 
kuru (and resistance to kuru; a former epidemic of orally 
transmitted prion disease among people who lived in the 
Eastern Highlands Province of Papua New Guinea). We 
found no evidence for association of rs3747957 in STX6, or 
rs2267161 in GAL3ST1 with these phenotypes (p>0·05), 
implying that these loci might confer risk specific to the 
sporadic form of human prion disease, although all tests 
were underpowered because of small sample size.7,9

sCJD is known to comprise a range of different 
clinical and pathological phenotypes, broadly correlat­
ing with prion molecular strain types, the latter includ­
ing categorisation by different proportions of three 
glycoforms and the apparent molecular weight of abnor­
mal prion protein by western blotting.18 The National Prion 
Clinic London, UK has done longitudinal observational 
cohort studies of CJD involving systematic clinical assess­
ments of patients, resulting in deep phenotype data.19,20 We 
tested rs1799990, rs3747957, and rs2267161 for association 
with age at clinical onset, clinical duration, and the slope 
of decline in a functional measure of disease severity, 
along with 27 other phenotypic variables (appendix p 4). As 
expected, rs1799990 in PRNP showed associations with 
several clinical and biomarker traits (ten associations in 
30 tested hypotheses). We found no evidence for epistasis 
between discovered loci and genotypes at rs1799990, which 
is known to be a major determinant of clinical phenotype.

Because association in a genomic region might not 
be mediated through the nearest gene, we investigated 
the potential mechanisms underlying associations with 
PRNP, STX6, and GAL3ST1. We used CAVIAR to fine-
map the association signal at a locus through joint 
modelling of association statistics for all variants at a 
locus and estimation of a conditional posterior probability 
of causality while allowing for multiple plausibly func­
tional SNPs.12 Around PRNP most of the SNPs identified 
tagged rs1799990. Unexpectedly, a cluster of SNPs located 

Figure 2: Statistical fine-mapping using CAVIAR
CAVIAR utilises summary statistics and LD structure to predict the probability of 

each variant being causal, producing a causal set with 95% probability of 
containing the causal SNP, while allowing for the possibility of multiple 

causal SNPs. Each locus was defined as 100 variants upstream and downstream 
of the top SNP. Plots show causal posterior probability of each variant at 

PRNP (A), STX6 (B), and GAL3ST1 (C), coloured by LD (derived from 
1000 Genomes Project European populations data) with the top SNP. Circles 

indicate variants within the 95% causal set. Triangles highlight other SNPs not 
predicted to be in the causal set. Mb=megabases. LD=linkage disequilibrium. 

SNP=single nucleotide polymorphism.
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5′ to those tagging rs1799990 (lead SNP rs12624635, not 
an eQTL) with low levels of linkage disequilibrium to 
rs1799990 were also putatively causal, suggesting a 
potential additional signal at this locus (figure 2A). 
Previous studies have reported that variants at the PRNP 
locus might confer an increased risk for sCJD, inde­
pendently of rs1799990.21–24 To further delineate the 
genetic architecture of the PRNP risk locus, we first 
performed an association analysis under a heterozy­
gous model, which is more appropriate for the known 
mechanism, and confirmed rs1799990 as the lead SNP 
(p=1·01 × 10–¹³⁵; appendix p 22). In a conditional analysis, 
adjusting for heterozygosity at rs1799990, the lead SNP 
was rs6139515 (p=8·98 × 10–⁴). This SNP, which is in 
low linkage disequilibrium with rs1799990 (r²=0·04), is 
correlated with PRNP transcript levels in tibial nerve in 
the GTEx eQTL database14 (p=1·8 × 10–⁶; appendix pp 5, 23). 
The conditional analysis provided no substantive evidence 
of an independent association signal at the CAVIAR lead 
SNP, rs12624635 (p=0·03; appendix pp 5, 23).

The region of high linkage disequilibrium surrounding 
rs3747957 in STX6 resulted in a large causal set, making 
identification of a single causal variant more difficult 

(figure 2B). Subsequently, using eCAVIAR13, GTEx14, and 
other eQTL databases, we identified a strong correlation 
between sCJD risk and increased expression of STX6 
mRNA in multiple brain regions, particularly in the caudate 
and putamen nuclei of the brain (putamen: rs3747957, 
p=2·3 × 10–¹³, GTEx; figure 3). Both the caudate and puta­
men nuclei are key regions implicated in sCJD and are the 
most commonly abnormal brain regions at diagnostic 
brain MRI.25 Correlations between lead SNPs in STX6, 
rs11586493 and rs3747957, and other genes at the locus or 
within other tissues were absent or less strong (figure 3, 
appendix p 12). These results suggest that increased 
expression of STX6 in brain regions confers an increased 
risk of sCJD. Using PAINTOR, a tool that integrates 
functional genomic annotation with association statistics, 
we next identified three SNPs (rs12754041, rs10797664, 
and rs6425657; each in strong linkage disequilibrium 
with lead SNP rs3747957) with high posterior probability 
of being causal because they were members of one of 
four functional annotation groups (RoadMap_Assayed_
NarrowPeak; Maurano_Science2012_DHS; RoadMap_
Enhancers; Roadmap_ChromeHMM_15state).11

As the GWAS signal is associated with only two SNPs at 
GAL3ST1 (in strong linkage disequilibrium with each 
other but low linkage disequilibrium with all surrounding 
variants), these SNPs define the causal set, yet they are 
statistically indistinguishable from each other (figure 2C). 
Using GTEx, neither SNP correlated with expression of 
genes at the locus in brain tissues. One of the SNPs, 
rs2267161, is a non-synonymous variant of GAL3ST1 
p.V29M. Close to p.V29M resides p.V34M (rs55674628, 
allele frequency=0·02; linkage disquilibrium with 
rs2267161, r²=0·01, Dʹ=1·00, discovery p=0·18), the only 
common non-synonymous variants in European ances­
tries populations. These polymorphisms form three 
common haplotypes, rs2267161-C/rs55674628-C (CC; 
frequency in the combined case-control dataset of 0·667), 
CT (frequency of 0·018), and TC (frequency of 0·315). We 
found no evidence of an association driven by the 
rs55674628-T allele using a haplotype-based test (appendix 
p 13). Furthermore, analyses of 501 CJD samples by exome 
sequencing26 did not identify additional rare variants in 
GAL3ST1 or STX6.

Expression of STX6, GAL3ST1, PDIA4, and 
BMERB1 mRNA was slightly reduced in bulk analysis of 
post-mortem cerebellar brain tissue from patients with 
sCJD, but only to a similar extent as genes that have 
been suggested as good comparators (appendix p 24).27 
Immunohistology of frontal cortex (in 19 patients with 
sCJD and 15 controls) showed that syntaxin-6 expression 
is restricted to neurons of different sizes, although other 
cell types, probably astrocytes or oligodendrocytes, were 
less consistently stained. In the cerebellum, syntaxin-6 
staining was observed in Purkinje cells and in large 
neurons of the dentate nucleus, and a fine granular 
staining was seen in the molecular layer (appendix p 25). 
In all neuron populations of cerebellum and forebrain, 

Figure 3: Colocalisation of GWAS results at STX6 locus with expression quantitative trait loci
Plot of –log10 of p values from the GWAS analysis at the STX6 locus (black) and the expression quantitative trait 
locus association analysis from the GTEx dataset (red) for: STX6 expression in the caudate (A), STX6 expression in 
the putamen (B), STX6 expression in the hypothalamus (C), and KIAA1614 expression in the tibial artery (D). Peaks 
correspond to the colocalisation posterior probability in the expression quantitative trait locus and GWAS CAVIAR 
analysis, with a higher degree of colocalisation with increasing colocalisation posterior probability (appendix p 12). 
GWAS=genome-wide association study. Mb=megabases.
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the staining pattern was fine granular, and was located in 
the cytoplasm, but did not extend into the processes. The 
staining pattern was compatible with the predicted target, 
the Golgi apparatus. The pattern for both syntaxin-6 and 
PDIA4 was indistinguishable between patients with CJD 
and controls (appendix p 26).

Based on GTEx data, we hypothesised that increased 
expression of STX6 in deep brain nuclei increases risk of 
prion disease. To test whether this might be conferred 
through facilitating prion propagation in mammalian 
neuronal cells, we depleted prion-susceptible mouse 
neuroblastoma-derived cells (N2aPK1/2)28 of Stx6 expres­
sion using RNA interference. Using the automated scrapie 
cell assay we measured the impact of Stx6 knockdown on 
prion propagation15,28 using Prnp knockdown cells, known 
to inhibit prion propagation in this assay, as positive 
controls.29 Figure 4 shows that Stx6 depletion, unlike 
Prnp depletion, does not consistently reduce the ability of 
N2aPK1/2 cells to propagate RML prions.

Discussion 
We report, to our knowledge, the first GWAS in a human 
prion disease powered to detect alleles with the modest 
effect sizes typical of complex diseases. We identified new 
risk factors for sCJD, including variants which appear to 
have pleiotropic effects in neurodegenerative diseases. 
Further to the known effects at PRNP codon 129, we 
report two independently replicated loci and evidence to 
support the conclusion that risk variants modify the 
primary sequence of the encoded protein (GAL3ST1) or 
increase expression in brain tissues (STX6). Although a 
multitude of potential binding partners for prion protein 
and mechanisms for the modification of prion infection 
have been proposed, GWAS discoveries have great value 
because risk variants identified are implicitly causal in 
the human disease.30 Therapeutic targets underpinned 
by genetic evidence have better chances of successful 
drug development, further encouraging research into the 
mechanisms that underpin these signals.30

Risk variants in sCJD might act at different disease 
stages: increasing the chance of the spontaneous generation 

Figure 4: Scrapie cell assay to measure prion propagation in N2aPK1/2 cells 
with modified Stx6 expression

N2aPK1/2 cells were transfected with pRetroSuper vectors containing 
Stx6 (shSTX6 1, shSTX6 2) or Prnp (shPRNP) targeting short-hairpin RNAs or a 

scrambled non-silencing shRNA sequence (shScramble 1, shScramble 2) for 
controls. Samples were taken before scrapie cell assay for immunoblot (n=3) and 

expression normalised to untransfected N2aPK1/2 (indicated by dashed line). 
(A, B) Knockdown of syntaxin-6 protein determined by immunoblot with anti-

syntaxin-6 antibody (A), with band intensity measured relative to β-actin loading 
control (Student’s t test; B). (C, D) Knockdown of cellular prion protein determined 
by immunoblot with anti-prion-protein antibody ICSM18 (C), with band intensity 
measured relative to β-actin loading control (Student’s t test; D). (E) Average spot 

count of infected cell number after fourth split in scrapie cell assay following 
infection with RML at 3 × 10–⁶ dilution (one-way analysis of variance with Tukey’s 

post-hoc test on log-transformed data). Statistical associations of knockdown 
lines relative to controls are indicated; other results have been omitted for clarity. 

All error bars show mean plus and minus SEM. kDa=kilodaltons. 
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of prions, reducing prion clearance, enabling prion 
propagation throughout brain tissue, or modifying the 
downstream toxic effects of prion propagation on brain 
cells. We did not find any evidence of a role for risk variants 
in the modification of clinical or pathological disease 
phenotypes, or in modified expression of risk genes at the 
end stage of the disease, but it is too early to draw confident 
conclusions in this respect. Altering the expression of Stx6 
in a cellular model of prion infection did not modify 
the susceptibility of mouse cells to infection or the 
accumulation of abnormal forms of prion protein. Our 
functional data therefore point to a role early in the disease 
process, perhaps in altering the risk of spontaneous 
prion formation in the brain, but studies in other models 
are warranted.

STX6 encodes syntaxin-6, an eight exon, 255 amino-acid 
protein that localises to the trans-Golgi network, and 
recycling and early endosomes. Syntaxin-6 is thought to 
form part of the t-SNARE complex involved in the decision 
of a target membrane to accept the fusion of a vesicle.31 
The intracellular location of abnormal prion protein in 
prion-infected cells involves the plasma membrane where 
conversion is primarily thought to occur,29 as well as 
early and recycling endosomes, late endosomes, and the 
perinuclear region.32 Other studies implicate the endocytic-
recycling compartment or multivesicular bodies as sites of 
generation of prions, and dysregulation of trafficking 
genes by sCJD.33,34 Intracellular trafficking has also been 
implicated in the degradation of prions.35 The modification 
of trafficking of normal or abnormal prion protein by 
syntaxin-6 might be a focus for future investigation.36

There has been considerable recent discussion about 
the extent to which neurodegenerative diseases associated 
with the accumulation of misfolded proteins or peptides 
are similar to prion diseases in their pathogenesis.37 This 
concept provokes the suggestion that prion diseases 
and prion-like disorders might share genetic risk factors. 
Progressive supranuclear palsy is an uncommon neuro­
degenerative cognitive and movement disorder associated 
with the accumulation of abnormal forms of microtubule-
associated protein tau with four repeats.38,39 Variants in 
STX6 are in a haplotype with SNPs previously identified 
as associated with progressive supranuclear palsy, with 
shared risk alleles (appendix p 14).39,40 Pleiotropic effects at 
this locus shared between prion diseases and a tauopathy 
lend support to the concept of prion-like disorders and 
indicate the possibility of genetically inspired interventions 
across multiple neurodegenerative disorders.

GAL3ST1 encodes galactose-3-O-sulfotransferase 1, a 
423 amino-acid protein that localises to the Golgi network 
in oligodendrocytes, and is the sole enzyme responsible 
for the sulfation of membrane sphingolipids to form 
sulfatides—a major brain lipid and component of the 
myelin sheath.41 Degradation of sulfatides is catalysed by 
ARSA in the lysosome; recessive defects in this enzyme 
cause metachromatic leukodystrophy: a lysosomal storage 
disorder associated with profound central and peripheral 

demyelination.42 Knockout of Gal3st1 in mice results in 
a neurological phenotype associated with abnormal 
myelin maintenance with age, histological abnormalities 
at the paranodal junctions, and abnormal diffusion tensor 
imaging.43 Furthermore, in a GWAS of UK Biobank 
participants, rs2267161 in GAL3ST1 was significantly 
associated with multiple changes in white matter micro­
structure measured using brain diffusion tensor imag­
ing.44 Sphingolipid metabolism and myelin maintenance 
have both been previously implicated in prion protein 
function and prion diseases.45,46 Multiple genes in the 
sphingolipid metabolic pathways are dysregulated early 
in the pathogenesis of mouse prion diseases, a finding 
consistent between inbred mouse lines and prion strains.47 
Knockout of prion protein in mice, or naturally in goats, 
results in a demyelinating neuropathy, which in goats is 
associated with abnormal sphingolipid metabolism.36,48–50

PDIA4 and BMERB1 loci, identified in the discovery 
stage by gene-based analysis, were not replicated at their 
lead SNPs; however, the replication sample was necessarily 
limited by the rarity of the disease, and the lead SNPs had 
a lower allele frequency than at other risk loci. Further 
attempts to replicate are justified as gene-based test results 
are driven by multiple SNPs at each locus.

In conclusion, we present the first evidence of statistically 
robust genetic associations in sporadic human prion 
disease that implicate intracellular trafficking and sphingo­
lipid metabolism as molecular causal mechanisms. Future 
work might further test the hypotheses derived from these 
discoveries in prion disease model systems, and examine 
the effects of genome-wide genetic variation on clinical, 
pathological, and molecular phenotypes in sporadic and 
inherited prion diseases.
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