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Abstract: The interaction of arbitrary three-dimensional light beams with 
optical elements is described by the generalized Jones calculus, which has 
been formally proposed recently [Azzam, J. Opt. Soc. Am. A 28, 2279 
(2011)]. In this work we obtain the parametric expression of the 3 3×  
differential generalized Jones matrix (dGJM) for arbitrary optical media 
assuming transverse light waves. The dGJM is intimately connected to the 
Gell-Mann matrices, and we show that it provides a versatile method for 
obtaining the macroscopic GJM of media with either sequential or 
simultaneous anisotropic effects. Explicit parametric expressions of the 
GJM for some relevant optical elements are provided. 
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1. Introduction 

In the widely-used Jones calculus, completely polarized light beams are characterized by the 
Jones vector. Such description assumes transverse plane waves traveling along a fixed 
propagation direction parallel to the z  axis, which is a valid approach in a broad range of 
physical situations. However, during the last years there is a growing interest in applications 
that entail propagation direction changes and/or non-transverse electric fields. Some of these 
applications are light propagation in turbid media, high numerical aperture focusing, near-
field optics and light interaction with nanoparticles [1–3]. Completely polarized light beams 
in such situations can be characterized by the generalized Jones vector (GJV), also called 3D 
Jones vector [4,5]. A generalized 3 3×  Jones calculus has been recently proposed for 
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describing the interaction of GJVs with anisotropic optical media and devices [5]. However, 
no generalized Jones matrices for optical devices or media have been given so far. 

In this work we present a method for obtaining the generalized Jones matrices (GJMs) of 
arbitrary optical media and devices. Our development is based on the differential formulation 
of the generalized Jones calculus, and assumes transverse light waves. We present the explicit 
form of the differential generalized Jones matrix (dGJM), which extends the well-known 
differential Jones matrix to the three-dimensional framework. The GJM of samples with 
either sequential or simultaneous optical effects can be readily obtained from the dGJM. In 
order to illustrate the applicability of the proposed method, we provide explicit expressions of 
the GJM for the major types of optical devices, namely linear retarders and dichroic 
absorbers, and optically-active rotators. 

2. Generalized Jones calculus and the differential generalized Jones matrix 

According to the generalized Jones calculus [5], the equation that describes the elastic 

interaction of an input generalized Jones vector iE


 with a sample is: 

 ,=o iE GE
 

 (1) 

where oE


 is the output GJV and G  is the generalized Jones matrix of the sample, a 3 3×  
complex matrix that determines the linear relationship between the input and output GJVs. 
Both GJVs are specified in the same right-handed Cartesian coordinate system xyz . From 
now on, we assume that both the input and output GJVs correspond to transverse totally 
polarized light waves, and therefore G  models the linear relationship between input and 
output transverse waves. 

The GJM characterizes an optical element as a whole, basically modeling light-sample 
interactions as an input-output mechanism. The differential formulation enables to further 
describe the continuous evolution of polarized light propagation through anisotropic media. In 
the conventional Jones calculus, the 2 2×  differential Jones matrix j  completely 
characterizes the anisotropic properties of an infinitesimal slab of the medium [6]. The 
differential Jones matrix is intimately connected with the Pauli matrices [7,8], the generators 
of the group SU(2), due to the fact that the Jones matrix constitutes a representation of the 
Lorentz group [9]. Specifically, the differential Jones matrix can be expressed as: 

 
3

0

1
,

2 l
l

if
=

=  lj σ  (2) 

where the four coefficients lf  are: 

 ( )0 2 2 ,i i if iγ η κ= = −  (3) 

 1 ,q q qf iγ η κ= = −  (4) 

 2 ,u u uf iγ η κ= = −  (5) 

 3 ,v v vf iγ η κ= = −  (6) 

each of them being associated to the corresponding Pauli matrix [7,8]. The well-known 
general expression for the differential Jones matrix is thus: 

 
( ) ( )
( ) ( )

2 21
.

2 2 2

i q i q v u u v

v u u v i q i q

i i

i i

κ κ η η η κ η κ

η κ η κ κ κ η η

 + + + + + −
 =
 − + + + − + − 

j  (7) 
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The 8 differential parameters included in this matrix are directly related to the complex 
propagation constant of the medium [6], which we denote here as iγ η κ= − . In particular, 

iη  and iκ  are the isotropic retardation and absorption, while parameters , ,q u vη  and , ,q u vκ  

account for birefringence and dichroism effects. Subscripts indicate the specific type of 
anisotropy, where the convention , , , 45º, ,45º,q u v y lcr x rcpx x x−= −  has been adopted. 

From this theoretical approach, the differential calculus can be extended to the three-
dimensional formulation. In order to do that, it is necessary to replace the Pauli matrices by 
the Gell-Mann matrices [4,8], which form the complete set of infinitesimal generators of the 
Lie group SU(3): 

 

1 0 0 1 0 0 0 1 0

0 1 0 0 1 0 1 0 0

0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 1
1

0 0 0 1 0 0 0 0
3

0 0 0 0 0 2 1 0 0

0 0 0 0 0 0 0 0
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i i

     
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
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 (8) 

Taking these matrices into account, the differential generalized Jones matrix g  can be 
expressed as the following linear combination: 

 
8

0

1
,

2 m
m

ip
=

=  mg O  (9) 

where the nine coefficients mp  are: 

 { } { }0...8 2 , , , , 2 3 , , , , .xy xy xy z xz xz yz xz
i q u v q u v u vp γ γ γ γ γ γ γ γ γ=  (10) 

The differential GJM is thus: 
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 (11) 

The dGJM involves a total of 18 differential parameters that completely characterize the 
polarimetric properties of the sample. Isotropic retardation and absorption are denoted in the 
same way ( iη  and iκ ). Parameters , ,

xy
q u vη  and , ,

xy
q u vκ  are the linear xy , linear 45±   and 

circular birefringence and dichroism in the xy  plane respectively. They correspond to those 
involved in Eq. (7). The rest of parameters complement the three-dimensional anisotropy 
characterization: ,

xy
u vη  and ,

xy
u vκ  are the linear 45±   and circular birefringence and dichroism 

in the xz  plane, while ,
yz

u vη  and ,
yz

u vκ  are analogously defined for the yz  plane. Finally, z
qη  

#182162 - $15.00 USD Received 19 Dec 2012; revised 7 Feb 2013; accepted 7 Feb 2013; published 12 Mar 2013
(C) 2013 OSA 25 March 2013 / Vol. 21,  No. 6 / OPTICS EXPRESS  6897



and z
qκ  quantify the difference in linear retardance and absorption between the z  direction 

and the xy  plane. 
The dGJM presents some remarkable characteristics. Firstly, comparing Eq. (7) and Eq. 

(11), it can be observed that the upper-left 2 2×  block coincides with j , apart from 

parameters z
qη  and z

qκ , which contribute to the expression in the three-dimensional 

framework. Additionally, the symmetries of the dGJM are similar to those shown by the 
differential Jones matrix. In the extended matrix g , the positions occupied by the differential 

parameters for anisotropic effects in the xz  plane are restricted to elements ( )1,3g  and 

( )3,1g , while those for the yz  plane are contained in ( )2,3g  and ( )3, 2g . 

The equation describing the GJV evolution of a transversally polarized light wave along 
the propagation direction n̂  is: 

 ,d dl =E gE
 

 (12) 

where l  is the distance traveled in such direction. Assuming that the medium is 
homogeneous, the GJM can be directly obtained from the dGJM by: 

 ( )exp .l=G g  (13) 

The previous equation is in full parallelism with those involved in both Jones and Mueller 
calculus [8,10,11], and enables to obtain the GJM of media showing multiple simultaneous 
optical effects. In the case of sequential optical elements, each of them characterized by ig , 
the total GJM is given by: 

 ( )exp ,i
i

l= ∏G g  (14) 

which is applicable to a train of elements with either single or multiple optical effects. 

3. Generalized Jones matrices of basic polarization devices 

The presented approach is now applied to obtain explicit expressions of the GJMs for the 
most relevant classes of optical elements. A right-handed laboratory Cartesian coordinate 
system xyz  is assumed (Fig. 1). According to the convention used in [5] and adopted in this 

work, any other local coordinate system x y z′ ′ ′  is univocally defined by ( ),z θ φ′  (i.e. by the 

polar and azimuthal angles of the z ′  axis), being ( )2, 2x π φ π′ −  and y z x′ ′ ′= × . The 

effect of the coordinate system transformation on the GJV is: 

 ( ), ,x y z xyzθ φ′ ′ ′ =E C E
 

 (15) 

where the subscript indicates the coordinate system in which the GJV is specified, and the 
coordinate system transformation matrix ( ),θ φC  is: 

 ( )
sin cos cos sin cos

, cos cos sin sin sin .

0 sin cos

φ θ φ θ φ
θ φ φ θ φ θ φ

θ θ

 
 = − 
 − 

C   (16) 

We first consider the case of a linear retarder (LR). In general, birefringent media possess 
three different principal refractive indices, which define the characteristic index ellipsoid of 
the sample [12]. However, a vast number of optical devices and samples are made of uniaxial 
materials. Uniaxial media show two equal refractive indices (the ordinary indices) different to 
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the third one (called the extraordinary index). In such situations, the index ellipsoid becomes 
an ellipsoid of revolution, whose orientation can be completely defined by the optic axis 

( ),b bz θ φ′  (which is aligned with the extraordinary principal axis) as shown in Fig. 1. 

 

Fig. 1. Index ellipsoid of a uniaxial medium with the optic axis parallel to the laboratory z  

axis (left) and aligned with the direction ( ),b bz θ φ′  of local coordinate system x y z′ ′ ′  

(right). 

Considering a linear birefringent medium in which the optic axis is parallel to the z  axis 
(Fig. 1, left), the dGJM in the laboratory system is the following diagonal matrix: 

 ( )diag 3, 3, 2 3 ,
3

z z z z z
q q q qxyz

i
i i iη η η η= = −LR 4g O  (17) 

as the only non-null differential parameter is z
qη , which simply quantifies the difference 

between the extraordinary and ordinary propagation constants, z
q e oη η η η= Δ = − . 

Substituting Eq. (17) into Eq. (13), the GJM of this device is readily obtained: 

 ( )3 3 2 3diag , , .
z i i i

xyz
e e eδ δ δ−=LRG  (18) 

In this equation, lδ η= Δ  is the linear retardance of the sample. At this point, we consider a 

medium in which the optic axis is arbitrarily oriented along z ′  (Fig. 1, right). Obviously, the 

GJM in the local coordinate system verifies 
z z

x y z xyz

′

′ ′ ′ =LR LRG G . As a consequence, the 

simplest way to find the GJM of an arbitrarily oriented LR is to perform a coordinate system 

change, multiply by 
z

xyzLRG , and finally apply the inverse coordinate change: 

 ( ) ( )1, , .
z

b b b bxyz
θ φ θ φ−= ⋅ ⋅LR LRG C G C  (19) 

This expression enables to obtain the GJM of a uniaxial LR with any optic axis orientation, 
and constitutes the core of a general method for obtaining the GJM of arbitrary elements in 
the generalized Jones calculus. Note that Eq. (19) parallels the approach used in Jones 
calculus [8]. As a particular example, the GJM of such device for ( )2, bz π φ′  is: 
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( )
( )

2 3 2 3 2 2 3 3

2 3 3 2 3 2 3 2

2

3

cos sin cos sin 0

cos sin sin cos 0 .

0 0
b

i i i i
b b b b

i i i i
b b b b

i

e e e e

e e e e

e

δ δ δ δ

δ δ δ δ
θ π

δ

φ φ φ φ

φ φ φ φ

− −

− −
=

 + −
 
 = − +
 
 
 

LRG (20) 

The same method can be developed for a uniaxial linear dichroic (LD) absorber. In the basic 
scenario, and according to the same considerations made for the linear birefringent medium: 

 ( )1
diag 3, 3, 2 3 ,

3

z z z z z
q q q qxyz

κ κ κ κ= = −LD 4g O  (21) 

where z
q e oκ κ κ κ= Δ = − . The corresponding GJM for the LD is given by: 

 ( )3 3 2 3diag , , .
z

x y z
e e eα α α−

′ ′ ′ =LDG  (22) 

where lα κ= Δ .The GJM of a LD absorber with arbitrary orientation of the extraordinary 
axis can thus be straightforwardly obtained by introducing Eq. (22) into Eq. (19). The GJM of 
this optical element for ( )2, dz π φ′  is hereby provided for illustrative purposes: 

 

( )
( )

2 3 2 3 2 2 3 3

2 3 3 2 3 2 3 2

2

3

cos sin cos sin 0

cos sin sin cos 0 .

0 0
d

d d d d

d d d d

e e e e

e e e e

e

α α α α

α α α α
θ π

α

φ φ φ φ

φ φ φ φ

− −

− −
=

 + −
 
 = − +
 
 
 

LDG  (23) 

Finally, optical rotators (OR) made of isotropic optically active materials are considered. The 
non-null differential parameters for this type of medium are xy xz yz

v v v vη η η η= = = , and its 
dGJM can be expressed as: 

 ( )
0

1 1
0 .

2 2
0

v v

v v v

v v

i

η η
η η η

η η

 
 = + + = − 
 − − 

OR 3 6 8g O O O  (24) 

Defining 3 2vlψ η= , the explicit expression of the GJM for the OR is: 

 

2cos 1 cos 3 sin 1 cos 3 sin 1
1

cos 3 sin 1 2cos 1 cos 3 sin 1 .
3

cos 3 sin 1 cos 3 sin 1 2cos 1

ψ ψ ψ ψ ψ
ψ ψ ψ ψ ψ
ψ ψ ψ ψ ψ

 + + − − + +
 

= − − + + − 
 
− − + − − +  

ORG (25) 

4. Conclusion 

In this work, a method for obtaining the GJM of non-depolarizing anisotropic samples has 
been presented. Our approach is based on the dGJM, which is obtained by the extension of 
the differential Jones matrix to the three-dimensional framework. The dGJM provides a 
versatile method for obtaining the GJM of arbitrary anisotropic optical elements in a simple 
and elegant way. Explicit parametric expressions of the GJM for some relevant devices have 
been given. Transverse totally polarized light waves have been assumed. Such approach is 
useful for applications that entail propagation direction changes (e.g. scattering in the far 
field), and constitutes a necessary first step toward the development of the 3 3×  generalized 
Jones calculus, which presents a foreseeable potential for a wide range of applications. 
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