
UNIVERSIDAD DE CANTABRIA

PROGRAMA DE DOCTORADO EN CIENCIA Y TECNOLOGÍA

TESIS DOCTORAL

MECANISMOS DE BAIPÁS EFICIENTES

PARA REDES EN CHIP DE BAJA LATENCIA

PHD THESIS

EFFICIENT BYPASS MECHANISMS FOR

LOW LATENCY NETWORKS ON-CHIP

Realizada por: Iván Pérez Gallardo

Dirigida por: Julio Ramón Beivide Palacio

 Enrique Vallejo Gutiérrez

Escuela de Doctorado de la Universidad de Cantabria

Santander 2021

Resumen

Hace casi dos décadas, se produjo un cambio de paradigma en el diseño de procesadores
por la aparición del Power Wall. El Power Wall es la creciente dificultad para disi-
par la potencia consumida por los procesadores dado el rápido aumento de su frecuen-
cia de operación, gracias al proceso de miniaturización de los transistores. Este efecto,
desencadenó el tránsito de procesadores secuenciales mono-core a procesadores parale-
los multi-core. Desde entonces, el desarrollo de procesadores multi-core no ha parado de
crecer y en la actualidad podemos encontrar procesadores comerciales con varias dece-
nas de cores, comúnmente denominados many-core. Para poder aprovechar la capacidad
de procesamiento paralela de estos procesadores, es necesario introducir una serie de el-
ementos adicionales. Estos elementos están relacionados principalmente con el sistema
de memoria y son la implementación de instrucciones de acceso a memoria atómicas, un
modelo de consistencia y un protocolo de coherencia. Para habilitar la comunicación entre
cores, impĺıcita en los accesos a memoria de datos compartidos, los procesadores multi-
core disponen de una red de interconexión dentro del chip o Network on-Chip (NoC).
Estas redes comenzaron siendo simples buses de datos, dado el bajo número de cores a
interconectar, pero poco a poco han ido siendo reemplazados por otras redes con mejor
escalado en ancho de banda. En un primer paso los buses fueron reemplazados por anillos
y cada vez es más frecuente el uso de mallas a medida que va creciendo el número de cores
a interconectar.

En un procesador many-core, con decenas de cores, es esencial que la latencia de la
NoC sea lo más baja posible, ya que esta constituye un elemento más dentro de la jerarqúıa
de memoria y por tanto su latencia afecta al tiempo medio de acceso a memoria o Average
Memory Access Time (AMAT). De esta forma, los criterios que se tienen en cuenta a la
hora de escoger una NoC habitualmente son que tenga el suficiente ancho de banda para
que la red opere fuera de la zona de saturación, mientras se minimiza la latencia base de
los paquetes y el coste de la propia red.

Basándonos en nuestras observaciones a partir de ejecuciones de aplicaciones reales
en simuladores Full-System (FS), el tráfico generado por los cores tiene un volumen muy
bajo en promedio. Como consecuencia, la latencia está determinada fundamentalmente
por dos factores: la latencia de atravesar un router de la NoC y la distancia entre nodos
que determina el número de saltos (routers atravesados) a realizar por los paquetes.

Las soluciones tradicionales para minimizar estos dos factores consisten en, por una
parte diseñar routers de baja latencia o bien implementar topoloǵıas de alto grado, es
decir con baja distancia máxima. Sin embargo, ambas soluciones presentan problemas
que las hacen no recomendables para su uso en NoCs. La primera, diseñar routers de
baja latencia, implica t́ıpicamente diseñar routers mono-etapa, es decir, sin segmentar
el camino de datos mediante un pipeline. Esto puede implicar diseñar routers con un
tiempo de ciclo muy grande, o con arquitecturas muy simples para lograr la frecuencia
de operación deseada lo que repercute negativamente en el ancho de banda. La segunda,
diseñar topoloǵıas de alto grado, suele implicar la implementación de routers con un gran
número de puertos para poder establecer los enlaces necesarios. Sin embargo, aumentar
el número de puertos significa replicar la lógica de cada puerto, aśı como incrementar la
complejidad de los allocators (lógica de asignación de recursos) y el corssbar de los routers.

Es aqúı donde entran en juego las NoC con bypass, las cuales son el tema central de
esta tesis. Los routers con bypass son una solución eficiente para reducir la latencia de
los routers en topoloǵıas simples como la malla. La idea fundamental de esta clase de

Page III

NoC consiste en saltar algunas etapas del pipeline de los routers, reduciendo el número
de ciclos por salto. Para ello se pre-asigna el crossbar de los routers antes de recibir
los paquetes, para que estos avancen directamente al crossbar del router, evitando los
buffers de entrada. Esto permite ahorrar algunos ciclos en caso de que la pre-asignación
sea satisfactoria, sin limitar la frecuencia de operación por la falta de un pipeline y sin
degradar el ancho de banda máximo. Dentro de los routers con bypass distinguimos entre
dos grupos: single- y multi-hop bypass. Por una parte, single-hop bypass es la propuesta
inicial de router con bypass y la denominamos aśı porque trata de pre-asignar únicamente
el crossbar del siguiente router en la ruta del paquete. Por otra parte, multi-hop bypass
es una propuesta posterior presentada con el nombre de SMART. En este tipo de NoC
los paquetes pueden solicitar la pre-asignación de los crossbars de múltiples routers en su
ruta para después atravesarlos en un único ciclo, lo que denominamos como multi-hop.
Volviendo a los dos factores que determinan la latencia en este tipo de NoCs, single-hop
bypass reduce la latencia de los routers, mientras que multi-hop bypass reduce el número
efectivo de saltos realizados por los paquetes.

Si bien este tipo de solución es una forma eficiente de reducir la latencia, la incorpo-
ración del bypass introduce una serie de conflictos adicionales que hay que resolver para
evitar posibles deadlocks. Las propuestas originales, tanto para single- como multi-hop
bypass implementan duras restricciones al control de flujo, permitiendo que los paquetes
únicamente utilicen el bypass cuando los buffers a evitar están vaćıos. Multi-hop bypass re-
quiere adicionalmente que el buffer del siguiente router esté vaćıo a la hora de retransmitir
paquetes. Esto conlleva la necesidad de usar configuraciones con varios canales virtuales
o Virtual Channels (VC), para sacar provecho de los caminos de bypass y del ancho de
banda que ofrece la topoloǵıa. El uso de VCs es algo muy extendido en redes por diferentes
motivos como pueden ser reducir Head of Line Blocking (HoLB), implementar ciertos algo-
ritmos de enrutamiento o evitar deadlocks, por ejemplo. Sin embargo, su implementación
introduce costes considerables y a medida que se incrementa el número de VCs se hace
más compleja la lógica de control y asignación de los mismos.

Las contribuciones de esta tesis se centran en desarrollar mecanismos de bypass efi-
cientes que relajen las condiciones necesarias para la transmisión de paquetes. A contin-
uación se resumen las cuatro contribuciones de esta tesis:

BST

La evaluación y análisis de NoCs, y en general en arquitectura de computadores, se basa en
técnicas de simulación en sus etapas iniciales debido a los altos costes y tiempo necesario
de desarrollo de prototipos. Dentro de este contexto, Bypass Simulation Toolset (BST) es
un conjunto de herramientas open-source para la simulación de NoCs con bypass. Dada
la falta de simuladores de NoC con este tipo de router, desarrollar estas herramientas ha
sido clave durante el transcurso de la tesis para evaluar el resto de contribuciones de la
misma. BST esta compuesto por 4 elementos:

1. Una versión personalizada de BookSim que incluye una gran variedad de modelos
de router con single- y multi-hop bypass. BookSim es un simulador funcional open-
source con un modelo de router tradicional pero detallado y preciso. Este tipo
de simulación es ideal para realizar un gran volumen de experimentos en un plazo
de tiempo relativamente corto, aśı como facilitar el desarrollo de nuevas ideas y
su depuración, gracias a su nivel de abstracción. Los modelos de NoCs con bypass
incluidos en nuestra versión, implementan con detalle el pipeline y han sido validados
frente a diseños reales HDL, demostrando que son precisos a nivel de ciclo.

Page IV

2. Una versión actualizada de OpenSMART que incluye implementaciones de
SMART++, y S-SMART++ (contribuciones de la tesis). OpenSMART es un diseño
HDL open-source de una red SMART, multi-hop bypass, escrita en Bluespec System
Verilog. Este tipo de diseño tiene gran valor en las etapas intermediadas y finales del
desarrollo ya que por una parte permite validar los modelos funcionales, y por otra
sintetizar en FPGAs o crear prototipos para estimar área, potencia y la frecuencia
máxima de operación entre otras cosas.

3. Un Application Program Interface (API) para integrar BookSim en simuladores
Full-System (FS). Las simulaciones FS, simulan el sistema completo como indica su
nombre. Esto se traduce en que se simula en detalle todos los componentes de un
procesador como son los cores y la memoria entre otros, pero también el sistema
operativo donde se ejecutan las aplicaciones a evaluar. En lo que respecta a la
evaluación de NoCs, esto es de gran utilidad para alimentar la red con tráfico real,
es decir tráfico generado a partir de los fallos de cache derivados de la ejecución de
aplicaciones. Con esta API proporcionamos un complemento al tráfico sintético de
BookSim, útil para evaluar de manera rápida y efectiva las NoCs, pero alejado de
las caracteŕısticas estrictas que podemos encontrar en un sistema real.

4. Un conjunto de scripts para facilitar ciertas tareas como la creación de experi-
mentos, la generación de gráficas de resultados o la depuración de los modelos de
NoC. Los scripts más relevantes son los orientados a la creación de experimentos y
generación de gráficos dado que son los usados con mayor frecuencia. Estos scripts
proporcionan bastante flexibilidad al usuario y han sido utilizados para generar los
resultados y gráficas de esta tesis.

NEBB

Como se ha mencionado anteriormente, las propuestas de router con bypass originales
tienen unas restricciones muy estrictas a la hora de transmitir paquetes. Esto se debe a
que al introducir el bypass pueden entremezclarse dos paquetes en el mismo buffer provo-
cando comportamientos inesperados o corrompiendo datos. Para evitarlo, estas propuestas
necesitan que los buffers de destino estén vaćıos a la hora de enviar los paquetes.

Non-Empty Buffer Bypass (NEBB) [Perez2018; Perez2020a] es una propuesta para
aliviar estas restricciones en routers single-hop bypass. Como su nombre indica, NEBB
permite el bypass aunque los buffers a saltar no estén vaćıos aumentando las oportunidades
para transmitir paquetes y tomar el bypass. Proponemos tres variantes dependiendo de
las reglas establecidas para el uso del bypass:

• NEBB-WH: esta versión está pensada para su uso en redes WormHole (WH), cuya
caracteŕıstica principal es que el arbitraje y asignación de los puertos del router se
realiza flit a flit1. Los flits pueden ser enviados al siguiente router siempre y cuando
haya un VC libre con al menos hueco para un flit. Al igual que en la propuesta
original, cualquier paquete puede tomar el bypass de un router cuando su buffer de
entrada está vaćıo. Sin embargo, NEBB-WH también permite que los paquetes de
un único flit puedan tomar el bypass cuando el buffer a evitar no está vació.

• NEBB-VCT: está versión se basa en Virtual Cut-Through (VCT), donde la asig-
nación de los puertos del router se hace paquete a paquete. Los routers pueden

1El flit, flow control unit, es la unidad mı́nima de control de flujo en la que se fragmentan los paquetes
de red. En NoCs suelen tener t́ıpicamente un tamaño igual a la anchura de los enlaces.

Page V

mandar paquetes al siguiente router siempre y cuando haya un VC con hueco para
el paquete completo. En este caso no importa la ocupación del buffer que se pretende
evitar ya que el puerto de salida se mantiene asignado para todo el paquete.

• NEBB-Hybrid: esta variante combina las dos anteriores para maximizar las posi-
bilidades de bypass cuando el control de flujo es WH, es decir, flit a flit. En este
caso, los routers pueden transmitir los paquetes siempre y cuando haya un VC libre
con al menos hueco para un flit en el siguiente router. En canto al bypass, el único
caso a destacar es en el que un paquete con varios flits trata de tomar el bypass en
un router con el buffer de entrada ocupado. En esta situación se necesita espacio
para todo el paquete en el siguiente router y el puerto de salida queda bloqueado
para el paquete, hasta que el flit de cola de éste no es retransmitido.

Además de incrementar la utilización del bypass, NEBB permite usar mecanismos orig-
inalmente propuestos para routers tradicionales dado que su control de flujo es similar.
En [Perez2020a] presentamos como ejemplo la adaptación de Flit Bubble Flow Control
(FBFC) [Ma2015] a este tipo de routers para evitar deadlock en toros, lo que supone
una alternativa más eficiente a los routers con bypass estándar en toros basados en Date-
line [Dally2003].

Los resultados obtenidos de la evaluación muestran que NEBB, y especialmente NEBB-
Hybrid, aumenta el uso del bypass a cargas medias-altas, lo que reduce la latencia y la
potencia consumida. La reducción de potencia se debe a la baja utilización de buffers de
los routers ya que son uno de los elementos que más enerǵıa consumen. Además NEBB
es capaz de conseguir el mismo rendimiento que las propuestas originales, pero usando
configuraciones más austeras con la mitad de tamaño de buffer y sin necesidad de usar
VCs.

SMART++

SMART++ es una versión mejorada de SMART que utiliza de forma eficiente los buffers
y el bypass de los routers de la NoC. Al igual que ocurre con los routers single-hop bypass,
SMART únicamente retransmite paquetes cuando los buffers del siguiente router están
vaćıos. Por su parte, SMART++ elimina estás restricciones aplicando los siguientes tres
mecanismos sobre SMART:

1. Multi-Packet Buffers (MPB): permite que los buffers acumulen flits de diferentes
paquetes. Esta es una técnica muy común en routers tradicionales que permite re-
transmitir paquetes mientras haya espacio en los buffers del siguiente router. Depen-
diendo del control de flujo implementado, el espacio requerido es para un flit (WH)
o un paquete completo (VCT). Pero, al usar esta técnica en routers con multi-hop
bypass, hay que añadir restricciones adicionales al asignar el bypass, como comprobar
que los buffers sobre los que se toma el bypass estén vaćıos.

2. NEBB : al aplicar NEBB, inicialmente NEBB-WH porque el arbitraje es flit a flit,
permitimos que paquetes de un único flit puedan tomar el bypass independiente-
mente de la ocupación de los buffers sobre los que actúa el bypass.

3. Packet-by-Packet Arbitration (PPA): este es el tipo de arbitraje usado en VCT.
Como se ha mencionado anteriormente SMART usa arbitraje flit a flit lo que puede
provocar que los flits de paquetes multi-flit no se retransmitan en ciclos consecu-
tivos. Al usar PPA evitamos este problema, permitiéndonos aplicar NEBB-VCT, lo

Page VI

que a su vez permite que paquetes con múltiples flits puedan tomar el bypass inde-
pendientemente de la ocupación del buffer, siempre y cuando el buffer del siguiente
router tenga espacio para todo el paquete. En el caso de multi-hop bypass, puede
ocurrir que un paquete adquiera el bypass pero que el paquete correspondiente no
llegue a usarlo, debido a que el paquete se ha detenido en un router previo. Por ello,
el bypass sólo se bloquea para el paquete si llega el flit de cabecera y se libera al
pasar el flit de cola.

Los resultados muestran que SMART++ no necesita VCs para obtener el mismo
rendimiento de SMART, o incluso mejor. El no usar VCs reduce drásticamente la lógica
necesaria para su gestión, lo que a su vez mejora considerablemente el consumo energético
y el camino cŕıtico de los routers.

S-SMART++

Speculative-SMART++ (S-SMART++) es un diseño de NoC multi-hop bypass, orientado
a reducir los dos factores que afectan a latencia mencionados anteriormente: la latencia de
los routers y el número de saltos. SMART reduce el número de saltos efectivo en topoloǵıas
sencillas como la malla al permitir que los paquetes puedan hacer múltiples saltos en un
único ciclo. Sin embargo, después de cada salto, los paquetes son almacenados en los
buffers y tienen que pasar por todo el pipeline de los routers, lo que requiere como mı́nimo
3 ciclos en SMART o SMART++.

Para reducir la latencia de los routers después de cada multi-hop, S-SMART++ hace
uso de la especulación, suponiendo que los paquetes van a completar todos los saltos
asociados a un multi-hop, para solicitar la preparación del siguiente multi-hop antes de
que se reciba el paquete. En caso de que la especulación acierte, únicamente transcurre
un ciclo entre que el paquete es recibido y es retransmitido, en vez de los tres ciclos de
SMART. En caso de fallar, no hay ninguna pérdida de rendimiento ya que a este tipo de
solicitud tiene menos prioridad que las peticiones normales.

Los resultados experimentales obtenidos, muestran que S-SMART++ reduce la la-
tencia base notablemente llegando a estar muy cerca del rendimiento de SMART 2D.
SMART 2D es la versión de SMART con menor latencia, pero a cambio de incremen-
tar drásticamente la lógica de control y arbitraje. Y más importante aún, S-SMART++
reduce muy significativamente la dependencia de la latencia con el número máximo de
saltos que se pueden realizar dentro de un multi-hop, factor denominado Maximum Hops
Per Cycle (HPCMax). HPCMax es un parámetro de diseño fundamental para las redes
SMART. El reducir la dependencia de este factor con la latencia flexibiliza los parámetros
de diseño a la hora de integrar este tipo de redes en sistemas reales.

Por último, también se ha demostrado que gracias al uso de un control de flujo tradi-
cional como es VCT permite que tanto SMART++ como S-SMART++ utilicen mecan-
ismos originalmente pensados para NoCs tradicionales. En este caso, nos centramos de
nuevo en la evitación de deadlocks en el toro, mostrando que tanto SMART++ como
S-SMART++ son compatibles con Bubble Routing [Carrion1997], un mecanismo eficiente
que no requiere de VCs y no introduce asimetŕıa en el uso de los buffers.

Page VII

Abstract

Computer architecture has taken advantage of the technology process miniaturization and
frequency scaling to build more complex architectures with higher performance. The
emergence of the Power Wall and the higher difficulty of extracting performance from
sequential processors was the turning point in computer architecture in favor of multi-core
processors. This change affected fundamentally the memory sub-system in the hardware
architecture part, requiring additional mechanisms to share data between cores. One
key feature is a new interconnection layer to enable the communication between cores.
The demands for these interconnections grow with the number of cores, requiring more
bandwidth while constraining costs and latency, as they are part of the memory hierarchy.
For this reason, there has been a growing interest in using Networks on-Chip (NoCs) to
interconnect cores for the last 15 years, as they are relatively easy to implement in tile-
based arrangements. Nowadays, commercial processors are replacing traditional buses and
rings with meshes, as they are NoCs topologies that scale better.

Nevertheless, meshes have an important issue: their latency grows with the number
of nodes at a relative fast pace, and it can become comparable to the access time of
the last-level cache. In a multi- or many-core CPU, the traffic generated by the cores
is typically very low as most of the requests are filtered by the private caches, and only
misses (including coherence misses) produce data requests to the shared levels that travel
through the network. Thus, the main factors that determine the latency of packets in a
NoC are the delay of the routers and the distance between nodes. The router delay is
defined by the router architecture, which is typically implemented in a pipeline to increase
frequency. The distance between nodes is mostly defined by the topology, because this
kind of networks commonly use minimal routing. The most common solutions to minimize
latency consist in simplifying the router architecture to minimize the pipeline stages of
the router or use high-degree topologies to reduce the distance between nodes. However,
the former usually limits the performance of the network in terms of bandwidth, and the
latter implies high-radix routers, which shoot up costs.

In this thesis we focus on NoCs with bypass routers, which reduce latency while main-
taining the low costs of mesh-like topologies. The idea of bypass routers is skipping pipeline
stages to reduce latency by pre-allocating the switch of the routers before the arrival of
packets. We distinguish between two types of bypass mechanisms: single-hop and multi-
hop bypass. Single-hop bypass focuses on minimizing the delay of routers by skipping
allocation stages in each hop. Multi-hop bypass focuses on minimizing the effective num-
ber of hops (topological distance) by pre-allocating and traversing multiple routers at a
time to traverse (bypass) multiple routers in a single cycle. Our contributions to bypass
routers are the following.

Starting with single-hop bypass, we analyze the implications of introducing a bypass
path in the routers and determine that the original conditions to use the bypass are
unnecessarily conservative. We propose three alternative implementations called Non-
Empty Buffer Bypass (NEBB), that increase the bypass utilization to maximize its benefits
in terms of latency and power. The most advanced NEBB mechanism, called NEBB-
Hybrid, is able to match the performance of the baseline without using VCs, the baseline
requires numerous VCs, and with half the total buffer space.

Following with multi-hop bypass, we perform the same analysis for the bypass condi-
tions and flow control mechanism of SMART, the original multi-hop bypass proposal. We
propose an improved version of SMART called SMART++ that combines three mecha-

Page IX

nisms: multi-packet buffers, NEBB and packet-by-packet arbitration. SMART++ removes
the requirement of using multiple VCs of SMART and takes advantage of the topology’s
bandwidth, without degrading performance. Thus, SMART++ enables low cost configu-
rations with few or no VCs giving better performance than SMART.

The third contribution, called S-SMART++, combines the underlying ideas of single-
and multi-hop bypass to reduce both the delay of routers and the effective number of hops.
S-SMART++ stands for Speculative-SMART++ because it relies on speculative allocation
of multi-hop bypass paths to minimize the router delay after each multi-hop. In this
way, S-SMART++ almost reaches the latency of SMART 2D, the most performant but
costly version of SMART, without incurring in its costs. More importantly, S-SMART++
reduces the dependency of the latency with the maximum length of multi-hops, relaxing
the requirements to integrate multi-hop bypass in real designs.

The final contribution is a set of tools to simulate bypass NoCs called Bypass Simu-
lation Toolset (BST). BST is open-source and is mainly based on BookSim, a functional
NoC simulator, and OpenSMART, an HDL SMART design. BST contains most of the
tools that we have used to evaluate our proposals, including the aforementioned contri-
butions. Besides the custom versions of BookSim and OpenSMART, BST includes an
API to integrate BookSim in Full-System simulators such as gem5 and a set of scripts to
facilitate the generation of experiments and result charts.

In summary, these contributions extend bypass routers with more efficient, performant,
and diverse architectures, which may help to address latency and power consumption
challenges in the future.

Page X

Acknowledgments

First and foremost, I would like to acknowledge my advisors, Ramón Beivide and Enrique
Vallejo, for their support and guidance through these years. It has been a privilege to
learn from your vast knowledge and experience, not forgetting all the opportunities you
have given me to expand my knowledge, experiences, and skills. Most of all, I am grateful
for the friendly atmosphere. I have felt like at home.

I am grateful to all the members of the Computer Architecture and Technology group
of the University of Cantabria for providing a stimulating and fun work environment for
the past six years. We have shared a lot of experiences, and I have learn a lot from you.
Special thanks to Esteban Stafford for the English revision of this thesis. For my colleges
at the office: Borja, we have traveled a lot together; Cristobal, thank you for enduring
my silly questions; Mariano, we have some (virtual) car races pending; Pablo, thanks
for your guidance and our chit-chat sessions; Raúl, we need a regressive timer for future
conversations...

I want to thank also my hosts during my internships in Barcelona Supercomputing
Center and ARM: Miquel Moretó, Marc Casas, and Roxana Rusitoru. I do not have
enough space to write the names of all my colleagues during practice, but I sincerely
appreciate your hospitality. However, I want to make a special mention to Emilio and
Adrián for all the time we spent together.

Finally and most importantly, I thank my family back home for their unconditional
support and encouragement. Without you, this long journey would not have been possible.
I hope to have your support during the next ones.

This work was supported by the Spanish Ministry of Science, Innovation and Uni-
versities, FPI grant BES-2017-079971, and contracts TIN2010-21291-C02-02, TIN2013-
46957-C2-2-P), TIN2015-65316-P, TIN2016-76635-C2-2-R (AEI/FEDER, UE) and TIC
PID2019-105660RB-C22; the European HiPEAC Network of Excellence; the European
Community’s Seventh Framework Programme (FP7/2007-2013), under the Mont-Blanc 1
and 2 projects (grant agreements n◦ 288777 and 610402); the European Union’s Horizon
2020 research and innovation programme under the Mont-Blanc 3 project (grant agree-
ment n◦ 671697). Bluespec Inc. provided access to Bluespec tools.

Page XI

Para mis padres, Maŕıa Jesús y Benicio, por todo su apoyo y sacrificio.

Page XII

Contents

Resumen . iii

Abstract . ix

Acknowledgments . xi

Contents . xiii

List of Tables . xvii

List of Figures . xix

Acronyms . xxiii

1 Introduction to NoCs 1

1.1 Introduction . 1

1.2 CMPs . 3

1.2.1 Software implications . 3

1.2.2 Hardware organization . 3

1.2.3 Architectural support for parallel programming 4

1.3 Cache coherence protocol . 5

1.4 NocS . 6

1.4.1 Network design parameters . 6

1.4.1.A Topology . 6

1.4.1.B Routing . 9

1.4.1.C Flow control . 10

1.4.1.D Router architecture . 11

1.4.1.E Link architecture . 13

1.4.2 Deadlock avoidance . 14

1.4.3 NoCs in CMPs . 15

1.5 Motivation . 17

1.6 Organization . 17

2 Background 19

2.1 Single-hop bypass routers . 19

2.1.1 Router micro-architecture . 20

2.1.1.A Changes in standard units 20

2.1.1.B New bypass units . 21

2.1.2 Router pipeline . 21

2.1.2.A Pipeline walk-trough . 23

2.1.3 Implementation details . 25

2.1.3.A Conditions to use the bypass 25

2.1.3.B Arbitration policies . 25

Page XIII

2.1.3.C Virtual Channel Implementation 26
2.1.3.D Switch Allocator . 26
2.1.3.E LookAhead signaling . 26
2.1.3.F Buffer management . 27

2.2 Multi-hop bypass routers . 27
2.2.1 Router micro-architecture . 28

2.2.1.A LookAhead Routing Computation 28
2.2.1.B Switch Allocation . 29
2.2.1.C Output unit . 29

2.2.2 Pipeline organization . 30
2.2.2.A Pipeline walk-through . 31

2.2.3 Implementation details . 32
2.2.3.A Virtual Channel Selection 32
2.2.3.B SA-G arbitration policies 32
2.2.3.C Multi-hop traversal in multi-dimensional networks. 33
2.2.3.D Bypass at the destination router 35
2.2.3.E Buffer bypass vs router bypass 35

3 BST 37
3.1 NoC modeling and evaluation tools . 37

3.1.1 Type of model: RTL vs software . 37
3.1.2 Type of traffic . 38
3.1.3 Performance vs Costs . 39

3.2 Bypass Simulation Toolset . 39
3.2.1 BookSim . 40

3.2.1.A Flow control mechanisms 41
3.2.1.B Bypass routers . 41
3.2.1.C Single-hop Bypass . 41
3.2.1.D Multi-hop Bypass . 42

3.2.2 OpenSMART . 43
3.2.3 API . 44

3.2.3.A API functions . 44
3.2.3.B Topology mapping . 45

3.2.4 Scripts . 46
3.3 Other NoC evaluation tools . 47

4 NEBB 51
4.1 Packet interleaving in bypass routers . 51

4.1.1 Packet-interleaving . 51
4.1.2 Avoiding packet-interleaving: empty buffer bypass 52

4.1.2.A Empty VC Forwarding . 54
4.1.2.B Empty Buffer Bypass . 55

4.2 Non-Empty Buffer Bypass . 55
4.2.1 NEBB-WH . 56
4.2.2 NEBB-VCT . 57
4.2.3 NEBB-Hybrid . 58
4.2.4 NEBB summary . 60

4.3 NEBB in tori with bubble-based flow control 61
4.4 Implementation details . 63

4.4.1 Credit management using shared buffers 63

Page XIV

4.4.2 VC Selection in NEBB . 63
4.4.3 Bypass in torus using Flit Bubble Flow Control and shared buffers . 64

4.5 Evaluation . 64
4.5.1 Experimental setup . 64
4.5.2 Synthetic traffic analysis . 66

4.5.2.A Empty VC Forwarding vs Empty Buffer Bypass 66
4.5.2.B NEBB using Single-Flit Packets 67
4.5.2.C NEBB Flow Control and Hybrid 68
4.5.2.D NEBB in Torus networks 69
4.5.2.E Sensitivity analysis: buffer depth and number of VCs . . . 70
4.5.2.F Sensitivity analysis: crossbar priority to buffered or by-

passed flits . 71
4.5.3 Real traffic analysis . 71

4.6 Conclusions . 72

5 SMART++ 75
5.1 Packet-interleaving in multi-hop bypass . 75
5.2 SMART: Empty VC Forwarding . 76

5.2.1 Virtual Channel Selection: flow control and buffer size 77
5.2.2 Virtual Channel Selection: management of multi-flit packets 77

5.3 SMART++ . 79
5.3.1 Multi-packet buffers . 79
5.3.2 NEBB . 80
5.3.3 Packet-by-packet arbitration . 81
5.3.4 Comparative analysis of the mechanisms 82
5.3.5 SMART++ input unit architecture 83

5.4 Evaluation . 84
5.4.1 Methodology . 84

5.4.1.A Simulation Infrastructure 84
5.4.2 Cycle-level Performance Results . 86

5.4.2.A SMART++ without VCs 86
5.4.2.B SMART++ with multiple VCs 87
5.4.2.C Partial implementations of SMART++ 88

5.4.3 Synthesis results . 89
5.4.3.A Model Validation . 89
5.4.3.B Resource Analysis . 89
5.4.3.C Timing and Power Analysis 90
5.4.3.D Scaled SMART++ performance results 91

5.5 Conclusions . 92

6 S-SMART++ 95
6.1 Speculative SSR broadcast . 95

6.1.1 S-SMART overview . 96
6.1.2 Router architecture . 97

6.1.2.A SSR priority scheme . 99
6.1.2.B Bypass control . 99

6.1.3 Speculative bypass walk-through . 99
6.1.4 Speculative bypass in SMART and SMART++ 100
6.1.5 Speculative-SMART++ in torus NoCs 101

6.2 Evaluation . 101

Page XV

6.2.1 Simulation Infrastructure . 101
6.2.2 Cycle-level Performance Results . 103

6.2.2.A Bypass mechanisms comparison 103
6.2.2.B S-SMART++ with different traffic patterns 104
6.2.2.C HPCMax analysis . 104
6.2.2.D Evaluation with real traffic 105
6.2.2.E SMART and S-SMART++ in tori 105

6.2.3 Synthesis results . 107
6.2.3.A Model Validation . 107
6.2.3.B Resource Analysis . 108
6.2.3.C Timing and Power Analysis 109
6.2.3.D Scaled performance results 110

6.3 Conclusions . 111

7 Related Work 113
7.1 BST . 113

7.1.1 Simulation time of Full-System simulations 113
7.1.2 Simulation of large-scale parallel applications 115
7.1.3 Analytical models . 115

7.2 NEBB . 115
7.2.1 Single-hop bypass architectures . 116
7.2.2 Ordered message NoCs . 117
7.2.3 Hybrid flow controls . 117

7.3 SMART++ . 117
7.3.1 SMART related works . 117
7.3.2 Low-diameter topologies . 118

7.4 S-SMART++ . 118

8 Conclusions 121

Bibliography 139

Page XVI

List of Tables

1.1 Summary of the most relevant topology properties. 7
1.2 Properties of most common NoC topologies for N nodes. The equations of

2D topologies are for square networks, i.e., k is the same in both dimensions. 8

2.1 LA signal bits for a k-ary 2-mesh without concentration and with DOR
encoded with remaining hops per dimension and next output port. 26

3.1 Common synthetic traffic patterns. Notation: si, di are the source and
destination nodes of a packet. N is the number of nodes, i identifies the bit
in position i of the node index and b = dlog2Ne, i.e., the total number of
bits in a node index. k only applies to k-ary n-topologies such as the mesh,
the torus or the FBFLY, representing the dimension size. 38

3.2 Representative parameters related to bypass routers in BookSim from BST. 42
3.3 Current state of NoC simulators . 48

4.1 Bypass buffer conditions for different mechanisms. VCT and NEBB-VCT
require buffers of size, at least, equal to the maximum packet size. NEBB-
Hybrid can work with buffers even of just 1 flit, but packets with a greater
size than the buffer can not take the bypass following NEBB-VCT. 60

4.2 Default simulation parameters. 65
4.3 Parameters for each simulation type. 66

5.1 Bypass activation depending on the buffer status. Bypass and Dest. buf.
refers to the buffers in the bypass router and in the next router. When
multiple routers are bypassed, intermediate buffers are both bypass and
dest. buffers. They may need to be completely empty, or may accommodate
at least a whole packet. 83

5.2 Simulation parameters. 85

6.1 Network simulation parameters. 102
6.2 gem5 configuration parameters . 103

Page XVII

List of Figures

1.1 Evolution of high performance CMPs since 1999. 2

1.2 Basic organization of a Symmetric Multi-Processor (SMP) and Distributed
Shared Memory (DSM) multi-processor according to [Hennessy2019]. 4

1.3 16-core DSM multi-processor with tile-based organization. 6

1.4 Common NoC topologies with 36 routers. 7

1.5 Topology metrics of rings and square 2D- meshes, tori and FBFLYs for
different interconnected nodes (N). 9

1.6 Average distance of each node in a 4×4 mesh and torus, supposing uniform
traffic. And, execution trace of an embarrassingly parallel program with a
perfect workload distribution among the threads. The program has two
phases separated by a barrier: the first contains the parallel region; the
second part is a sequential region executed by the master thread (CPU 0
in this case). 10

1.7 Router micro-architecture following [Dally2003]. Input unit control regis-
ters: Global state (G) can be inactive, routing, waiting for a VC, active,
waiting for credits; Route (R) holds the output port after RC; Output VC
(O) holds the output VC after VA; Pointers (P) to the head and tail flit
of the current packet; Credits available (C) for the output VC assigned.
Output unit control registers: Global state (G) can be inactive, active or
waiting for credits; Input VC (I) holds the input VC, including the input
port, that is forwarding a packet; Credit count (C) stores the number of
free flit slots of this VC in the next router. 12

1.8 5-stage router pipeline. The diagram shows four flits (F0-F3) that share the
input and output of a router, crossing the router and a link. 14

1.9 At the top, normal wire of length L without repeaters. At the bottom, wire
segmented in m parts of length L/m with asynchronous repeaters. 14

1.10 Sequence of messages generated after a load and store misses when the
data requested is in shared state. The meanings of the commands are the
following: GETS is a read data request; DATA is a data response; UP-
GRADE indicates that a shared data has been modified; INV are messages
that invalidate the copies of data sharers; ACK indicates that a requested
action has been completed; EXC. UNBLOCK indicates to the directory
that a transaction has been completed. The meaning of the main cache
states represented in tState−State are: I, Invalid; S, Shared; M, Modified; B,
Blocked; The rest are transient states between the previous ones. 16

Page XIX

1.11 Average packet latency vs offered load curve of a network. The green region
represents the operation range of a CMP NoC. The red region represents
the saturation region. 17

2.1 Single-hop bypass router architecture. 20

2.2 LookAhead Arbiter (LA-Arb) organization. New units and signals are rep-
resented in red. Fn are flit requests to SA from input n. LAin n are LA
requests to LA-Arb from input n. SAout m are Switch Allocation out-
puts for output m. LA− Aout m are LA-Allocation outputs for output m.
LA − ARBout m are LA-Arbitration outputs for output m. Selout m con-
tains the control information to set up the switch and select the path at the
input unit, from input n to output m. 22

2.3 Pipeline of single-hop bypass routers. Example of a flit using the traditional
pipeline in router 0 and the bypass pipeline in router 1. Stages executed by
an LA are highlighted in red. 22

2.4 Single-hop bypass pipeline walk-through example. 24

2.5 Overview of SMART’s multi-hop bypass. 28

2.6 Multi-hop bypass router architecture. 29

2.7 SMART pipeline. 30

2.8 SMART’s pipeline walk-through. The SSR+SA-G stages highlighted in red
depict conflicts between SSRs of the green and blue packets. 31

2.9 SA-G arbitration policies. Boxes represent routers; arrows illustrate SSRs;
circles within the routers indicate the packet initial location; shadowed
boxes represent that the packet corresponding to the color has won SA-
G in that router. 33

2.10 SSR propagation on SMART 1D and 2D in a 7-ary 2-mesh with DOR-XY. 34

2.11 SMART 2D examples of Straight > Turn Left > Turn Right. 35

2.12 Schematics of buffer bypass and router bypass. 36

3.1 BST tools. 40

3.2 Example of 16-tile network mapped as a 2 × 2 mesh with concentration
4 in BookSim. The only relevant information in the Ruby domain is the
location of the caches (L1 and L2), memory directories (DIR), and DMA
controllers (DMA). The interconnection topology is ignored. 46

3.3 Experiment and chart generation workflow. 47

4.1 Incorrect packet-interleaving example caused by misconfigured bypass re-
strictions. 53

4.2 Buffer state of Figure 4.1 showing a packet-interleaving example. 54

4.3 Empty VC Forwarding (EVCF) example. 54

4.4 Empty Buffer Bypass (EBB) example. 55

4.5 Examples of NEBB-WH. 56

4.6 Examples of NEBB-VCT. 57

4.7 Bypass path lock or hold for the packet. 58

4.8 Examples of NEBB-Hybrid. 59

4.9 Switch allocator deadlock in Torus (ring) using FBFC. Packets have two
flits. They are represented with different colors and letters (Xsrc,dst, where
X the packet identifier, src the source router and dst the destination router). 62

4.10 Packet latency in an 8× 8 mesh with Empty VC Forwarding (EVCF) and
Empty Buffer Bypass (EBB), using bimodal traffic. 67

Page XX

4.11 8× 8 mesh performance and efficiency with single-flit random-uniform traf-
fic, a DAMQ of 6 flits and 2 VCs. 68

4.12 Performance of bypass routers in an 8 × 8 mesh with single-flit random-
uniform traffic, and minimal buffering without VCs. 68

4.13 8×8 mesh performance and efficiency with bimodal uniform-random traffic,
a DAMQ of 12 flits and 2 VCs. 69

4.14 Buffered flits in an 8 × 8 mesh for different traffic patterns, using bimodal
traffic, a DAMQ of 12 flits and 2 VCs. 69

4.15 Performance of an 8× 8 torus with bimodal uniform traffic, a DAMQ of 12
flits and 2 VCs. 70

4.16 Buffered flits in an 8 × 8 torus for different traffic patterns, using bimodal
traffic, a DAMQ of 12 flits and 2 VCs. 70

4.17 Buffer utilization for a mesh with different number of VCs and buffer sizes
using bimodal traffic. 71

4.18 NEBB-Hybrid buffer utilization, throughput and network latency his-
tograms prioritizing buffered flits or LAs in case of conflicts. Histograms
show latency distribution at 50% of offered load. 72

4.19 Real-traffic performance. 73

5.1 Buffer state of multi-hop bypass packet-interleaving example. 76

5.2 Buffer state of multi-hop bypass using SMART’s empty VC forwarding. . . 78

5.3 Buffer signaling mechanisms in SMART and SMART++. 80

5.4 Activation of availability signals (avail) when using flit-by-flit and packet-
by-packet arbitration. 82

5.5 Stop router of each mechanism in SMART++ for single-flit (up) and multi-
flit (bottom) packets. R4 is the destination of the blue packet inR0. Routers
only have one buffer. 83

5.6 SMART++ router: input unit organization and pipeline. 84

5.7 Packet latency for different packet sizes in SMART and SMART++.
SMART++ only employs 1 buffer (no VCs). The size of buffers is rela-
tive to the maximum packet size. 86

5.8 Latency of SMART and SMART++ without VCs for bit-complement,
transpose, tornado and hotspot (in the corners of the meshes) traffic, with
bimodal traffic. The size of buffers is relative to the maximum packet size
which is 5 flits. 87

5.9 SMART vs SMART++ packet latency with multiple VCs and minimal
buffer size per VC. 87

5.10 Performance of the partial implementations of SMART++ using bimodal
traffic. 88

5.11 Comparison of packet latency and throughput of the SMART++ models
implemented in BSV and BookSim. 90

5.12 FPGA resources employed by each configuration. 91

5.13 FPGA frequency and dynamic power results. 92

5.14 Frequency-scaled latency of SMART and SMART++ using different packet
sizes. 92

6.1 Comparison of single-hop bypass, SMART and S-SMART, the last two with
HPCMax = 2. The boxes placed together with the arrows indicate the cycle
when the flit advances through the router paths. 97

Page XXI

6.2 S-SMART router implementation. The additional elements included with
respect to SMART are highlighted in green. 98

6.3 Implementation of SA-G for Win to Eout. S-SMART additional elements
are highlighted in green. XBselW−>E is the selection signal of XBar to
enable the path between input West and output East; BypMux, BypDem,
SpeMux, and SpeDem are the selection signals of BypassMux, BypassDem,
SpecMux, and SpecDem, respectively. 98

6.4 Example of speculative SA-G arbitration in S-SMART. HPCMax is 2. . . . 100
6.5 Latencies of single-hop bypass, SMART 1D, SMART 2D and S-SMART++

for different mesh sizes. 103
6.6 Latency for various traffic patterns in an 8 × 8 mesh with HPCMax = 7

and packet sizes of 1 (ps-1) and 5 flits (ps-5). 104
6.7 Packet latency varying HPCMax. 105
6.8 S-SMART++ performance on full-system simulations. 106
6.9 Packet latency of 8×8 and 16×16 tori with bypass. Single-hop bypass uses

NEBB-Hybrid with FBFC-L and 1 VC; SMART employs dateline with 8
VCs; and S-SMART++ relies on Bubble flow control with 1 VC. 107

6.10 Packet latency of 8× 8 and 16× 16 meshes and tori varying HPCMax. . . . 108
6.11 Comparison of packet latency and throughput of the S-SMART++ models

implemented in BSV and BookSim. 109
6.12 FPGA resources employed by SMART and S-SMART++. 110
6.13 FPGA frequency and dynamic power results of SMART and S-SMART++. 111
6.14 Frequency-scaled latency of SMART with different VC configurations and

S-SMART++ without VCs. 111
6.15 Frequency-scaled latency of SMART++ and S-SMART++ varying HPCMax.112

Page XXII

Acronyms

ALM Adaptive Logic Module

ALUT Adaptive Look-Up Table

AMAT Average Memory Access Time

AMBA Advanced Micro-controller Bus Architecture

BB Bisection Bandwidth

BST Bypass Simulation Toolset

BSV Bluespec System Verilog

BW Bisection Width

BW Buffer Write

CAS Compare-And-Swap

CMP Chip-MultiProcessor

CPU Central Processing Unit

CSV Comma Separated Values

DAMQ Dynamically-Allocated Multi-Queue

DOR Dimension Order Routing

DSM Distributed Shared Memory

EBB Empty Buffer Bypass

EVC Express Virtual Channels

EVCF Empty VC Forwarding

FBFC Flit Bubble Flow Control

FBFC-L Flit Bubble Flow Control Localized

FBFLY Flatted Butterfly

FPGA Field-Programmable Gate Array

FS Full-System

GPU Graphics Processing Unit

HDL Hardware Description Language

HoLB Head-of-Line Blocking

HPC Hops Per Cycle

HPC High Performance Computing

ILP Instruction Level Parallelism

IQ Input Queue

ISA Instruction set architecture

LA LookAhead

LA CC LookAhead Conflict Check

LA-Arb LookAhead Arbiter

LA-Gen LookAhead Generator

LA-LT LookAhead Link Traversal

LA-RC LookAhead Route Computation

LL/SC Load-Linked/Store-Conditional

LT Link Traversal

MIMD Multiple Instructions Multiple Data

MPB Multi-Packet Buffer

MPI Message Passing Interface

MUSA MUlti-level SimulAtion methodology

NEBB Non-Empty Buffer Bypass

Page XXIII

NEBB-VCT Non-Empty Buffer Bypass - Virtual Cut-Trough
NEBB-WH Non-Empty Buffer Bypass - WormHole
NIC Network Interface Controller
NoC Network on-Chip
NUCA Non-Uniform Cache Access
O3 Out-Of-Order
OS Operative System
PPA Packet-by-Packet Arbitration
pthreads Poxis Threads
QoS Quality of Service
RC Routing Computation
ROI Region Of Interest
RR Round-Robin
RTL Register Transfer Logic
S-SMART Speculative-SMART
SA Switch Allocation
SA-G Switch Allocation Global
SA-I Switch Allocation-Input
SA-L Switch Allocation Local
SA-O Switch Allocation-Output
SC Sequential Consistency
SMART Single-cycle Multi-hop Asynchronous Repeated Traversal
SMP Symmetric Multi-Processors
SN Slim NoC
SoC System on-Chip
spec-SSR speculative Switch Setup Request
SSR Switch Setup Requests
ST Switch Traversal
TFC Token Flow Control
TLP Thread Level Parallelism
TSO Total Store Ordering
VA Virtual channel Allocation
VC Virtual Channel
VCD Value Change Dump
VCT Virtual Cut-Through
VN Virtual Networks
VS Virtual channel Selection
WH WormHole
WiNoC Wireless Network on-Chip
WPF Whole Packet Forwarding

Page XXIV

Chapter 1
Introduction to Networks on Chip

Networks on-Chip (NoCs) are a fundamental part of multi-core processors. Research in
NoCs has been growing for the last 15 years and it is expected to be more relevant in
the future due to their impact on the overall performance and power consumption of
processors.

This chapter starts with an introduction to the evolution of commercial multi-core pro-
cessors to motivate the importance of NoCs (Section 1.1). It continues introducing some
computer architecture concepts that are relevant in NoC design (Sections 1.2 and 1.3).
The main part summarizes the main NoC concepts and terminology relevant to the con-
tributions of this thesis (Section 1.4), and motivates the utilization of bypass routers
to improve performance and power consumption in future Chip-MultiProcessors (CMPs)
(Section 1.5). The final part describes the organization of the reminder of the thesis
(Section 1.6).

1.1
Introduction

CPU performance has been characterized by a fast evolution during the last 5 decades
in a large extent due to steady advances of semiconductor technology. Each generation
of semiconductors has reduced the feature size, leading to improvement transistor speed
and efficiency, as well as integration density. As a result, CPU performance improve-
ments were mainly a consequence of higher clock frequencies, wider data paths, cache
memories to overcome the Memory Wall, and more complex mechanisms to increase the
instruction execution rate through Instruction Level Parallelism (ILP). Some examples
of these mechanisms are branch prediction, superscalar processors or out-of-order execu-
tion. However, increasing the operation frequency significantly has not been possible since
the Dennard scaling [Dennard1974] breakdown, around 2005. The Dennard scaling states
that the power density of transistors stay constant when reducing their size. This effect,
in combination with the frequency scaling derived from reducing the size of transistors,
involves power consumption increments that lead to the Power Wall, where increasing
the frequency in not possible due to power dissipation issues. The combination of the
stagnation in frequency scaling and the diminishing returns of ILP (ILP Wall) made CPU
designers focus on Thread Level Parallelism (TLP) with CMPs.

Since the appearance of CMPs, the growth of the transistor integration density has
mainly been used to increase the number of processing units. With more concurrent

Page 1

processing units, parallel computing has become the dominant programming paradigm,
increasing software and hardware complexity. Figure 1.1 shows how the number of cores in
CMPs have grown since 1999. The trend line shows that the number of cores approximately
duplicates every 4 years.

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024
Year

1

2

4

8

16

32

64

128

N
u
m

b
e
r

o
f

co
re

s

Intel Pentium III Xeon

Intel Xeon Paxville DP

Intel Xeon Clovertown

Intel Xeon Dunnington

Intel Xeon Bleckton

Intel Xeon Ivy Bridge-EX

Intel Xeon Haswell-EX

Intel Xeon Broadwell-EX
Intel Xeon Skylake-SP

AMD Threadripper (1st gen)

Intel Xeon Cascade Lake
AMD Threadripper (3rd gen)

IBM POWER4

IBM POWER7

IBM POWER8

IBM POWER10

Oracle T5

Fujitsu 64 Xifx Cavium Thunder X2

Fujitsu A64FX

Cavium Thunder X3

Trend line

x86

PowerPC

SPARC

ARMv8

Figure 1.1: Evolution of high performance CMPs since 1999.

This type of product has mainly been guided by the demands of the server and super-
computing markets. Supercomputers have used CMPs since their arrival as they perfectly
fit their philosophy of massive parallelism. Some historical top-1 supercomputers of the
TOP500 list [Strohmaier2020] are: IBM’s Blue Gene/L [Gara2005], listed in 2004 with
PowerPC CMPs of 2-cores; Cray’s Jaguar XT5 [Bland2009], listed in 2009 with 6-core
AMD Opteron 2435 CMPs; Fugitsu’s K Computer [Miyazaki2012], listed in 2011 with
SPARC64 VIIIfx CMPs [Yoshida2012] of 8-cores; Sunway TaihuLight [Fu2016], listed in
2016 with Sunway’s SW26010 CMPs of 256 lightweight compute cores plus 4 auxiliary
cores; IBM’s Summit [Kahle2019], listed in 2018 with POWER9 [Sadasivam2017] CMPs
with 22-cores. More recently, supercomputers with ARM-based CMPs have broken in the
market. For example, Cray’s XC50 supports Cavium ThunderX2 processors. And the
latest Fujitsu’s supercomputer, the Fugaku, has become the first ARM-based supercom-
puter that leads the TOP500 list in November 2020. This supercomputer uses Fujistu’s
48-core A64FX CMPs [Yoshida2018] for a total of 7,299,072 cores and 415,530.0 TFlops/s.
It is nevertheless noteworthy that the MontBlanc projects [Rajovic2016] are precursors of
ARM-based supercomputers.

Page 2

1.2
Chip-Multiprocessors (CMPs)

According to Flynn’s taxonomy [Flynn1972], CMPs are Multiple Instructions Multiple
Data (MIMD) processors. Dealing with MIMD processors that exploit TLP parallelism
is not easy and complicates the design of both software and hardware. This section
summarizes the software implications (Section 1.2.1), the hardware organization of CMPs
(Section 1.2.2) and the architectural support to use parallel programming (Section 1.2.3).

1.2.1) Software implications

In the software layer, the easiest way to exploit TLP is to run multiple independent
tasks in different hardware threads (or cores) of the processor, which is known as multi-
programming. Our daily basis multi-task Operative System (OS) uses multi-programming
to distribute the active programs among the threads of the processors. This increases the
responsiveness compared to running all the processes in a single core using time-sharing.

However, exploiting TLP to increase the performance of individual programs is more
complicated. Programmers have to explicitly define the parallelism in the application
code, which involves the use of synchronization and communication routines to manipu-
late shared data between threads. There are numerous programming models that abstract,
to a greater or lesser degree, the complexity of parallel software development. The most
well-known model is Posix Threads (pthreads) [Butenhof1997] that implements a set of
mechanisms to synchronize and manage logical threads that are mapped to the physical
threads of the CMP. Other popular models are OpenMP [Chandra2001; Chapman2008]
and OmpSs [Duran2011] which offer similar mechanisms but at a higher abstraction level.
One of the key features of OpenMP is the automatic parallelization of regular loops.
Regarding OmpSs, its abstraction allows defining tasks and data dependencies between
them. Then, a runtime is in charge of monitoring the dependencies and scheduling the
tasks for their execution in the cores of the CPU, as well as other devices like GPUs,
accelerators, FPGAs, etc. This programming paradigm is commonly known as task-based
parallelism. OpenMP also includes this paradigm since version 3.0. Another well-known
programming model is the Message Passing Interface (MPI) [Gropp1999], which defines a
communication protocol between a set of processes. MPI is widely extended in supercom-
puting as it enables the communication between compute nodes in distributed-memory
parallel machines, but it can be used to exploit TLP in CMPs as well [Krawezik2003;
Graham2008].

1.2.2) Hardware organization

CMPs are basically processors with multiple CPUs, each with one or more levels of private
cache, and generally a shared level of cache besides main memory. There are two classes
of shared-memory multiprocessors. The first class is known as centralized shared-memory
processors because they share one or more centralized levels of memory. They are also
known as Symmetric Multi-Processors (SMP) because their shared memory levels provide
uniform memory access for all the processors.

Figure 1.2a shows the basic organization of a SMP. SMPs generally have a few cores
since centralized resources, such as the shared level of cache, become a bottleneck if the
number of cores grows excessively. Buses or crossbars are typically used to connect and

Page 3

arbitrate the access to centralized resources. The second CMP class is called Distributed
Shared Memory (DSM) multi-processors. In this case, the shared cache is distributed into
multiple banks to increase the available bandwidth, which allows the interconnection of
more processors. An example of a DSM organization is depicted in Figure 1.2b. The
distribution of shared caches in banks typically uses set-interleaving. Set-interleaving uses
the set index bits of a given address to map addresses to banks. The set index bits
are the lowest bits in the address after the offset bits that address within the memory
blocks. Therefore, contiguous memory blocks are assigned to different cache banks. Thus,
accesses from different private caches are evenly distributed to avoid hotspots. As shown
in Figure 1.2b, it is common that the on-chip interconnect also connects the shared cache
with main memory. Nonetheless, distributing the cache complicates data communication
and may follow a Non-Uniform Cache Access (NUCA) architecture [ChangkyuKim2003],
i.e., the access time depends on data location.

Shared
Cache

CPU0

Private
Caches

CPU1

Private
Caches

CPU2

Private
Caches

CPU3

Private
Caches

Main
Memory

I/O sub-system

M
e
m

o
ry

 s
u
b

-s
y
st

e
m

Bus

(a) SMP.

CPU0

Private
Caches

CPU1

Private
Caches

CPU2

Private
Caches

CPU3

Private
Caches

Main
Memory

I/O sub-system

M
e
m

o
ry

 s
u
b

-s
y
st

e
m

Shared
Cache

Shared
Cache

On-Chip Interconnection

Main
Memory

(b) DSM.

Figure 1.2: Basic organization of a Symmetric Multi-Processor (SMP) and Distributed
Shared Memory (DSM) multi-processor according to [Hennessy2019].

1.2.3) Architectural support for parallel programming

Almost all CMP designs are provided with a set of atomic instructions, a consistency
model and a cache coherence protocol. The design of each element depends on the design
of the rest and has an important influence on the behavior and performance of the memory
sub-system.

First, atomic instructions, like load-link/store-conditional (LL/SC) or compare-and-
swap (CAS), are used to implement thread synchronization routines needed to develop
multi-threading programs.

Second, the consistency model specifies a set of rules for memory operations to ensure
the correct global order of reads and writes to shared memory addresses. The simplest
example of consistency model is Sequential Consistency (SC), in which all the memory
operations are executed following the program order. A more relaxed example is Total
Store Ordering (TSO) or processor consistency, which can be found in x86 processors and
enforces the sequential execution of stores. The most aggressive scheme called Relaxed
Consistency allows the reorder of almost any memory operation, requiring the use of
fences to synchronize and order memory operations. This increases the implementation
flexibility of synchronization routines, which maximizes the potential benefit of out-of-
order execution. This type of model is used in ARMv8 and RISC-V processors.

Page 4

Third, cache coherence protocols are in charge of maintaining the coherence among
the multiple copies of shared data in different caches. In other words, if a thread modifies
the value of a shared data, the cache coherence protocol is in charge of updating and
notifying modifications to the rest of the sharers. The cache coherence protocol is key in
how on-chip communication takes place trough the memory sub-system elements.

1.3
Cache coherence protocols

Cache coherence protocols are bound to NoCs as they define how is the communication
between the elements that conform the memory hierarchy. There are two classes of cache
coherence protocols that will determine how the communication interconnect is imple-
mented [Nagarajan2020]: snooping and directory-based protocols.

Snooping protocols: are those where private caches monitor their cached memory ad-
dresses to detect changes in their data values. They rely on broadcast communication.
For this reason, the interconnects usually are point-to-point networks (dedicated wires),
or shared-medium interconnects such as buses or crossbars. This kind of design is sim-
ple but lacks scalability. For example, in point-to-point networks the number of wires
grows quadratically with the number of interconnected elements, becoming prohibitive.
Traditional buses have low bandwidth because only one controller can use the medium
at a time, becoming a bottleneck when interconnecting many cores. Crossbars solve the
bandwidth problem of buses, but they have a high growth ratio in terms of footprint area
and power consumption.

Directory-based protocols: rely on monitoring the state of data in directories, which
are typically distributed among the shared cache banks. Like with the distributed shared-
memory banks, this increases the number of operations at a time, overcoming the lack
of scalability of snoopy-based protocols. In this kind of protocol, the data modification
in a cached address is notified to the directory that tracks its state. Directories are
responsible for sending invalidation or update messages with the new values to the rest
of sharers. However, this introduces overhead in terms of the number of messages in the
communication sequences. DSM multi-processors typically use this type of protocol.

In this case, the typical interconnect is a Network on-Chip (NoC) instead of a bus or
crossbar. NoCs are switched-media that scale in terms of throughput, area footprint and
power. By multiplexing the communication, they achieve high bandwidth while making an
efficient use of the wires. One of the key characteristics of NoCs for DSM multi-processors
is that they fit well in their tile-based organization with directory-based protocols. In this
type of organization each tile is composed by: one or more CPUs with their private levels
of cache; one or more banks of shared cache; a router that interconnects the tile with the
rest of the memory system. Some tiles also have memory controllers.

Figure 1.3 shows an example of a 16-tile CMP with 2 levels of cache. The first level is
private while the second is shared with its banks distributed among the tiles. There are 4
memory controllers in the corner cores of the layout.

Page 5

MEM MEM

MEMMEM

(a) Layout.

CPU

L1

Memory
Controller

L2

I/O

Network Interface

(b) Tile.

Figure 1.3: 16-core DSM multi-processor with tile-based organization.

1.4
Networks-on-Chip (NoCs)

A network on-chip (NoC) is a switched communication medium on an integrated circuit.
NoCs can be found in a wide range of systems and are not limited to many-core CMPs.
One of the most common uses is to interconnect modules of a System on-Chip (SoC).

The first part of this section describes the most fundamental NoC design parame-
ters (Section 1.4.1). The second part summarizes the most common deadlocks in NoCs
(Section 1.4.2). The final part analyzes the role of NoCs in DSM multi-processors (Sec-
tion 1.4.3).

1.4.1) Network design parameters

Networks have five main design parameters: the topology, the routing, the flow control,
the router architecture and link architecture. These are described next.

1.4.1.A) Topology

The topology defines the number of routers and channels and how they are interconnected
to offer the desired connectivity among nodes or terminals. The topology sets the the-
oretical limits of latency and throughput of the network. The main characteristics of a
topology are its diameter, bisection width, degree and symmetry. There are other impor-
tant properties such as the average distance or the path diversity. Table 1.1 contains the
definitions of the most relevant topology properties.

The most common NoC topologies used in CMPs are rings [Chrysos2014; Yoshida2018]
and 2D-Meshes [Bell2008; Vangal2008; Sodani2016; ARM2018; Pellegrini2020]. The 2D-
Torus [Dally1986], 2D-Flattened Butterfly [Kim2007] (2D-FBFLY) and 3D-Mesh [Rah-
mani2010] have been proposed too. Figure 1.4 shows a visual representation of some of
these topologies with 36 routers.

All of them are direct topologies, i.e., each terminal node is associated to a router.
Rings1 and tori are also known as k -ary n-cubes, where k is the number of routers along

1Rings are k-ary 1-cubes, i.e., unidimensional tori.

Page 6

Table 1.1: Summary of the most relevant topology properties.

Property Definition

Degree (δ) number of links connected to each router

Diameter (Hmax) maximum distance (hops) between any pair of routers

Average distance (H) average distance between pairs of routers

Bisection Width (BW) number of links across the smallest section that divides the
network in two equal parts

Bisection Bandwidth (BB) minimum bandwidth across the links of the BW

Node-symmetry a node-symmetric network has no distinguished routers, i.e.,
the inter-connectivity of a router with the rest of the routers
is the same for every router

Path diversity minimal number of disjoint shortest paths between any two
routers

(a) Ring (b) 2D-Mesh (c) 2D-Torus (d) 2D-FBFLY

Figure 1.4: Common NoC topologies with 36 routers.

each dimension and n the number of dimensions. Similarly, meshes are known as k -
ary n-meshes. Presumably the future trend will be using topologies with more bisection
bandwidth, as the number of cores in processors grows.

Table 1.2 summarizes the topology metric equations for the previous topologies and
Figure 1.5 shows their evolution with the number of interconnected nodes. The evolution
of each metric is described next.

The degree (or router radix) is one of the main factors that determines the footprint
area and power consumption of the network. A larger degree implies larger routers, with
more buffers and more complex allocators and crossbars. The more complex the router,
the longer the critical path and therefore the lower the maximum operation frequency.
Figure 1.5a shows that the degree is constant in the ring, 2D-mesh and 2D-torus (it only
depends on the number of dimensions, n), but it grows following a square root law with
the number of nodes in the FBFLY.

The diameter and average distance are indicators of the latency of a given topology
at low traffic loads. The lower the distances, the shorter the paths and therefore the
latency. Figures 1.5b and 1.5c show that both metrics grow linearly with the number of
nodes in the ring, following a square root law in the 2D-mesh and 2D-torus, and they are
practically constant in the 2D-FBFLY.

The bisection width and the bisection bandwidth are indicators of the worst-case
performance of the network, as they set the maximum number of packets traveling from
one half of the network to the other at a given time. Therefore, in terms of performance

Page 7

Table 1.2: Properties of most common NoC topologies for N nodes. The equations of
2D topologies are for square networks, i.e., k is the same in both dimensions.

Property Ring 2D-Mesh 2D-Torus 2D-FBFLY

Degree (δ)23 2 4 4 2(
√
N − 1)

Diameter (Hmax) N/2 2(
√
N − 1)

√
N 2

Average distance (H) N/4 ≈ 2
√
N/3 ≈

√
N/2 2− 2/

√
N

Bisection Width (BW) 4 2
√
N 4

√
N N3/2/2

Node-symmetry Yes No Yes Yes

the higher the better. However, in terms of costs they are indicators of the number of
physical links deployed. Figure 1.5d shows that the bisection width is constant in the ring,
grows following a square root law with the number of nodes in the 2D-mesh and 2D-torus,
and a 3/2-power law in the 2D-FBFLY.

Rings, tori and FBFLYs have node-symmetry, while meshes do not. Node-symmetry
is a property commonly forgotten but very important for two reasons.

Firstly, it improves the balance in the utilization of the buffers and routers, distribut-
ing the load through the network, which has positive benefits in performance and heat
distribution. This is especially true under uniform traffic, which is the purpose of using
set-interleaved shared-cache in DSM processors since it seeks to distribute the traffic uni-
formly among its tiles. The mesh is an example of the opposite: its lack of symmetry
increases the utilization of the links and routers in the center of the chip.

Secondly, it homogenizes the average distance of each node with respect to the rest of
the network. In other words, the average distance of a node does not depend on the location
of the node. In non node-symmetric topologies like meshes, the average latency of a node
depends on its position in the network, causing load imbalance. Which, in turn, causes
heterogeneity in the Average Memory Access Time (AMAT), leading to performance loss
if not addressed properly. Edge-symmetry is another network property but is out of the
scope of this work.

Figure 1.6 shows an example of load imbalance. The scenario represents the execution
of a hypothetical embarrassing parallel program with a workload perfectly divided among
the cores and a barrier at the end of the parallel region. It also supposes that all the NoC
traffic is between the private caches and the shared-cache, which follows a set-interleaved
bank distribution to produce uniform traffic. The workload is executed in a CMP with
a 4-ary 2-mesh (4 × 4 mesh) and a 4-ary 2-cube (4 × 4 torus). Figure 1.6a shows the
heterogeneity of the average distance (H) depending on the location of the node in a
mesh. This heterogeneity causes the performance imbalance shown in the execution trace
depicted in Figure 1.6c. In this case, the execution time in each core is proportional to
its H. The execution time is determined by the cores with the highest H, which are the
ones located in the corners of the mesh. Besides, the sequential region after the barrier
is executed in CPU0 (common master thread ID), which in this case is located in one of
the corners. In the 2D-torus all the nodes see the same H, 2 in this case (Figure 1.6b),
improving the overall performance while the CPU binding of the master thread is not
relevant (Figure 1.6d).

3Without injection/consumption ports.
3The 2D-Mesh is irregular, the routers in the periphery have 3 ports and the ones in the corners have

2 ports.

Page 8

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Ring 2D-Mesh 2D-Torus 2D-FBFLY

4 9 16 25 36 49 64 81 10
0

12
1

14
4

16
9

19
6

22
5

25
6

Nodes (N)

10

20

30
D

eg
re

e
(δ

)

(a) Degree

4 9 16 25 36 49 64 81 10
0

12
1

14
4

16
9

19
6

22
5

25
6

Nodes (N)

0

50

100

D
ia

m
et

er
(H

m
a
x

)

(b) Diameter

4 9 16 25 36 49 64 81 10
0

12
1

14
4

16
9

19
6

22
5

25
6

Nodes (N)

0

20

40

60

A
ve

ra
ge

d
is

ta
n

ce
(H

)

(c) Average distance

4 9 16 25 36 49 64 81 10
0

12
1

14
4

16
9

19
6

22
5

25
6

Nodes (N)

102

105

108

B
is

ec
ti

on
W

id
th

(B
W

)

(d) Bisection width

Figure 1.5: Topology metrics of rings and square 2D- meshes, tori and FBFLYs for
different interconnected nodes (N).

In summary, rings do not scale, meshes and tori scale moderately, and FBFLYs scale
well but are unfeasible for a large number of nodes. Between the mesh and the torus, the
torus presents better topological metrics without incurring in a higher degree. However,
as it is discussed in Section 1.4.1.C, their wraparound links make necessary additional
mechanisms to avoid deadlocks.

1.4.1.B) Routing

The routing of the network determines the path between two nodes. The routing depends
on the topology, which defines the available paths between the nodes. It has effect over
the path length and the traffic balance among links and routers. There are two types
of routing: oblivious and adaptive routing. Oblivious routing allows selecting between
multiple routes independently of the network state. Deterministic routing is a particular
case of oblivious routing that only defines a single route for each pair of nodes. Adaptive
routing decides the route between two nodes depending on the traffic in the network. The
route decision can be done in origin or in transit.

NoCs commonly use shortest-path deterministic routing. Shortest-path or minimal
routing only selects paths that require the smallest number of hops to reach the destination,
which is essential to minimize the average distance. Deterministic routing offers simplicity,
which minimizes the computation cost required to determine the next hop.

Page 9

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

H=3 H=2.75 H=2 Sequential

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

(a) Mesh: Avg. distance of each node.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

(b) Torus: Avg. distance of each node.

0 20 40 60

Time (s)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

C
P

U
#

(c) Mesh: execution trace.

0 10 20 30 40 50

Time (s)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

C
P

U
#

(d) Torus: execution trace.

Figure 1.6: Average distance of each node in a 4× 4 mesh and torus, supposing uniform
traffic. And, execution trace of an embarrassingly parallel program with a perfect workload
distribution among the threads. The program has two phases separated by a barrier: the
first contains the parallel region; the second part is a sequential region executed by the
master thread (CPU 0 in this case).

1.4.1.C) Flow control

Flow control coordinates when data can move forward to the next router. It defines
the packet transmission protocol between routers based on the status of the network
resources. The typical network resources are the buffers and the crossbar of the routers,
which are described in Section 1.4.1.D. Ideally, the flow control mechanism must assign
the resources efficiently, without incurring in computation overheads. It may also include
additional restrictions to guarantee deadlock freedom in some topologies like the torus as
it is described in Section 1.4.2.

Flow control can allocate the resources for different size units. Messages are fragmented
into packets, and packets may be divided into flits (flow control units). In addition,
if the link width has fewer bits than the flit size, these can be fragmented into phits
(physical units). The cache coherence protocols of CMPs have two types of messages:
control and data. Control messages are data requests, invalidations, acknowledgments
and other commands, and are small packets of typically 1 flit. Data messages are the
longest messages and usually have only one packet of multiple flits that contain a cache
line. For that reason NoCs message-based flow controls [Jerger2017] like circuit-switching
are not used in general. The most common packet-based flow controls are Store-and-
Forward and Virtual Cut-Through (VCT). Both require space for the whole packet in the
buffer of the next router. In Store-and-Forward, the head flit of a packet has to wait until

Page 10

the tail flit arrives to the router before advancing to the next. In contrast, with VCT
the head does not have to wait for the tail flit. As for flit-based flow controls, WormHole
(WH) and Virtual Channel (VC) are the most common. Both allow flits to advance when
there is space for a flit in the next router. The difference is that in WH the links are
assigned for whole packets. Whereas VC adds extra buffering resources per router input.
So while the flits of packet are waiting for free space in the next router, the link can be
used for flits of another packet. Thus interleaving flits of different packets assigned to
different VCs (buffers).

VCs can reduce Head-of-Line Blocking (HoLB) and are also used to implement other
mechanisms like adaptive routings and deadlock free techniques. For this reason, when
we use the term VC, we refer to the buffering resources of the router. We also use terms
VCT and WH to refer to VC flow control with packet-based restrictions (space for the
whole packet) or flit-based restrictions (space for a flit), respectively.

The most frequently used flow control mechanisms in NoCs are VCT and WH. VCT
is simpler than WH as it only computes allocation for head flits. However, the buffer has
to be large enough to host the longest packet class in the network. Under low available
space, WH is superior in terms of performance. This is because in WH, flits of different
packets can be interleaved in a channel when there is not space to continue forwarding a
packet. With enough space for packets both techniques are similar.

1.4.1.D) Router architecture

The router is the main component of a NoC, because links are common lanes in the metal
layers of the chip used to interconnect the different modules of the circuit. Figure 1.7
depicts the 5-stage router micro-architecture presented in [Dally2003].

The router micro-architecture has 6 main elements:

1. Input unit is composed by Virtual Channels (VC) and a set of registers per VC
(G, R, O, P, C) that monitor their state. Global state (G) tracks the state of the
VC, which can be inactive, routing, waiting for a VC, active or waiting for credits.
Route (R) holds the next output port granted in Routing Computation. Output VC
(O) holds the output VC granted in VC Allocation. The head and tail flit pointers
of the current packet are recorded in (P). Credits available (C) has the remaining
empty slots in the output VC assigned.

2. Route Computation unit (RC) computes the direction (output port) of a
packet’s next hop. In multi-dimensional topologies like the mesh or the torus, the
head flit of a packet typically carries the remaining hops per dimension. For example
in DOR, RC decrements the remaining hops in the traveling dimension until it is 0,
in which case it changes the traveling dimension.

3. VC allocator (VA) allocates an available VC in the next router to an input VC.
This allocator has the same number of inputs and outputs: #V Cs×#Ports.

4. Switch allocator allocates a path in the switch to a flit. This allocator has the
same number of inputs and outputs: #Ports.

5. Switch (or crossbar) conforms paths between the different combinations of input
and output ports.

6. Output unit contains a latch to store flits after traversing the switch and registers
to control (G, I, C) the state of the next router VCs. Global (G) tracks the state

Page 11

Routing
Computation

VC
Allocation

Switch
Allocation

G R O P C

G R O P C

Input unit

Input unit

Switch

Output unit

Output unit

G I C

G I C

Figure 1.7: Router micro-architecture following [Dally2003]. Input unit control registers:
Global state (G) can be inactive, routing, waiting for a VC, active, waiting for credits;
Route (R) holds the output port after RC; Output VC (O) holds the output VC after
VA; Pointers (P) to the head and tail flit of the current packet; Credits available (C) for
the output VC assigned. Output unit control registers: Global state (G) can be inactive,
active or waiting for credits; Input VC (I) holds the input VC, including the input port,
that is forwarding a packet; Credit count (C) stores the number of free flit slots of this
VC in the next router.

of the output VC which can be inactive, active or waiting for credits. Input VC (I)
holds the input VC (including the input port) assigned after a match in VA. Credit
count (C) stores the number of free slots of the VC in the next router.

From these elements, the most relevant in the context of this thesis are the VC buffers
and the allocators.

Buffers hold packets or flits when a packet cannot advance to its next hop. This occurs
when there are conflicts with other packets, i.e., various packets request the same resources
or there is no available space in the buffers of the next hop. There are three common
buffer organizations: single private buffers, multiple private VC buffers and shared buffers
between multiple VCs. In single private buffers, routers only have one buffer per input
port. In multiple private VC buffers (represented in Figure 1.7), routers have one buffer
per VC in each input port. In shared buffers between multiple VCs [Tamir1992], routers
have one buffer per input port, which is shared among all the VCs.

As mentioned before, VCs have multiple uses like, avoiding deadlocks, implementing
Quality of Service (QoS), reducing HoLB, etc. However, buffers are one of the most area
and power demanding parts of the router. For example, the buffers of the TRIPS NoC
prototype [Gratz2006] require 75% of all the area used by routers. Increasing the number

Page 12

of VCs does not only increase the number of buffers, but also complicates the logic of their
allocation and management. For these reasons, there are alternative designs that focus
on reducing or eliminating buffers like in bufferless NoCs [Requena2008; Moscibroda2009]
or centralized buffer routers [Hassan2013; Hassan2014]. Bufferless NoCs deflect packets
when there are conflicts (deflection routing), so packets are always traveling through the
network and adapting their route. Centralized buffer routers, replace the VC buffers at
the input ports with a centralized buffer shared by all the input ports.

Allocators are in charge of assigning the resources of the router. In a traditional router
like the one described in this section the resources are the output ports of the switch
(SA) and the VCs of the next router (VA). Allocators combine multiple arbiters. Each
arbiter assigns one resource to one of several possible requests. An allocator has as many
arbiters as required to match all the resources. For example, the SA of a typical 5-port
router of a 2D-mesh has 5 arbiters and each one assigns 1 output port to one of the 5
possible requests. There many arbitration policies [Dally2003] like round-robin or matrix
arbitration, and allocators types like separable or wavefront allocators.

5-stage router pipeline. The router micro-architecture presented in [Dally2003] has a
pipeline with 5 stages:

1. Routing Computation (RC). Flits arrive to the router and are written in the
VC buffer assigned in the previous router (Buffer Write, BW). In parallel, routing
computation obtains the next hop output port for head flits at the front of the VC
buffers. RC is only done by head flit packets in multi-flit packets.

2. Virtual channel Allocation (VA). Packets request an idle VC in the next router
with space for a flit when using flit-based flow controls like WH or for the packet size
when using packet-based flow controls like VCT. This stage is only done by head flit
packets in multi-flit packets.

3. Switch Allocation (SA). Flits request the setup of the switch to interconnect the
packet’s input port with the output port obtained in RC.

4. Switch Traversal (ST). Flits traverse to the output unit through the path con-
formed in SA.

5. Link Traversal (LT). Flit traverse the link towards the next router.

Figure 1.8 depicts the pipeline of a router retransmitting 4 flits. The diagram shows
the optimal operation considering a specific input unit of the router. With ideal traffic
(without conflicts between packets) and allocators, all the input units can follow the same
pipeline (without stalls) at the same time. The pipeline length determines the router
delay, which is 5 cycles in this example.

1.4.1.E) Link architecture

Links are the wires that interconnect two routers. NoCs commonly use conventional full-
swing logic in which signal levels go from 0 V to the supply voltage to transmit a 0 and
1, respectively. There is at least one NoC prototype [Krishna2010] that uses low-swing
signaling to reduce the power consumption of the crossbar and links in bypass routers.

Page 13

RC VA SA ST LT
RC VA SA ST LT

RC VA SA ST LT
RC VA SA ST LT

F0

F1

F2

F3

Cycle
1 2 3 4 5 6 7 8

Figure 1.8: 5-stage router pipeline. The diagram shows four flits (F0-F3) that share the
input and output of a router, crossing the router and a link.

Another common technique used to reduce the cost of long links uses asynchronous
repeaters. The delay of a wire grows quadratically with its length [Rabaey2003], preventing
the interconnection of distant nodes. Asynchronous repeaters divide long wires in multiple
smaller ones, as shown into Figure 1.9, avoiding the quadratic increase.

Vin Vout

L/m L/m L/m L/m

Vin Vout
L

Figure 1.9: At the top, normal wire of length L without repeaters. At the bottom, wire
segmented in m parts of length L/m with asynchronous repeaters.

1.4.2) Deadlock avoidance

Designing a deadlock free NoC is essential to guarantee the correct operation of the system.
Deadlocks occur when there are dependency cycles between the paths of different packets.
The typical deadlock [Dally2003] occurs when packets have freedom to choose the order
in which they travel through the dimensions of a multi-dimensional network such the
ones considered in this thesis. Defining a Dimension Order Routing (DOR) algorithm in
which packets can travel through the networks is enough to avoid this type of deadlock.
This is a shortest-path deterministic routing algorithm that guarantees deadlock freedom
among dimensions [Duato2003; Dally2003] and is the one used through this thesis. DOR
is enough to make meshes and flattened butterflies free from deadlock.

Designing deadlock free NoCs that implement torus topologies is more complicated.
Their wraparound links may generate cyclic dependencies between packets when traveling
through the same dimension. To avoid this kind of deadlock it is necessary to imple-
ment additional restrictions in the flow control mechanism. The most common types of
restrictions are Dateline and Bubble flow controls.

Dateline [Dally1987] breaks cyclic dependencies by dividing dimensions in two parts
and enforcing a specific order in the utilization of the VCs. The dateline is the dividing
line between the two parts of a dimension, for example crossing the wraparound links.
The set of VCs is also divided in two subsets, the first one is assigned only to packets that
start to travel through the dimension until they cross the dateline. After, only VCs of the
second subset can be used.

Bubble Flow Control [Carrion1997] prevents deadlock by avoiding filling up all the
buffers of the dimension by leaving empty spaces called bubbles. The main restriction

Page 14

consists in requiring space in the buffer of the next router for the packet being forwarded,
plus a bubble when there is a change of dimension (the injection of a packet in the net-
work is also considered a change of dimension). Thus, packets already in a dimension can
advance occupying the bubble reserved and freeing space in their previous buffer like in a
sliding puzzle. There are multiple implementations of Bubble Flow Control [Carrion1997;
Chen2011; LizhongChen2013; Wang2013; Hassan2014; Ma2015; Parasar2019] with differ-
ent types, sizes and number of bubbles. The number of bubbles can be minimized by
globally checking that there is at least one bubble in the dimension like in Critical Bubble
Scheme [Chen2011].

The original Bubble Flow Control is based on VCT. It checks for local bubbles whose
size is that of the longest packet class. For NoCs, one of the most suitable implementations
is Flit Bubble Flow Control (FBFC) [Ma2015] which is based on WH and the bubble size
is one flit. The authors propose two versions of FBFC, one with local bubbles and other
with a global bubble per dimension.

Dateline requires multiple VCs but underutilizes part of them. Bubble flow control
sets a minimum buffer size and underutilizes some buffer space. However, requiring more
space for individual buffers is usually simpler in terms of logic than requiring multiple
VCs.

Another type of deadlock may occur when the network traffic has request-replay mes-
sages, like in the case of CMPs with cache-coherence protocol. This type of deadlock is
caused by dependencies between both classes of messages attempting to acquire the ejec-
tion queues of the nodes, which may not be able to consume packets because it is waiting
for a replay message. This is typically solved by segregating the different classes of traffic
in several sub-networks, either physical or virtual.

1.4.3) NoCs in CMPs

As shown in previous sections, NoCs play a key role in the memory sub-system of DSM
multi-processors. NoCs are in charge of transporting messages between the different levels
of the memory hierarchy. These messages are generated when there are cache misses,
which trigger the communication defined in the cache coherence protocol.

Figure 1.10 shows two examples of the messages produced by a cache coherence pro-
tocol. The protocol presented in this case is a directory-based MESI with two levels of
cache. Both examples have the same memory configuration: private L1-Data caches and
a shared L2 distributed among 16 tiles. The first example (Figure 1.10a) shows the exe-
cution of a load instruction in CPU0 that misses in L1. The miss in L1 produces a read
data request message (GETS) to the L2 directory in tile 15 that responds with a data
message (DATA). The second example (Figure 1.10b) shows an example of the execution
of a store from CPU0 to a shared memory address used by two other CPUs, of tiles 5
and 8. L10 sends a control message (UPGRADE) to the L2 directory in tile 15 to inform
to the rest of the sharers that the data has been modified. The L2 sends invalidations
(INV) to L15 and L18, who send acknowledgment (ACK) messages to L10 to inform that
they have invalidated the corresponding cache lines. Finally, L10 sends a last message
(EXCLUSIVE UNBLOCK) to the directory in L215 to inform that the rest of the copies
have been invalidated so it can exit the blocking state (SS MB).

Both examples illustrate the fundamental role of the NoC in memory operations, firstly
because the latency of the NoC is part of the total memory access time, and secondly
because the cache coherence protocol produces multiple messages per operation. Thus,
the NoC should have the minimum latency without incurring in prohibitive costs.

Page 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

t I
-I
S

t I
S
-S

t S
S

tL2-L1

L10 L215

tL1-L2

GETS

DAT
A

(a) Load to address in shared state.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15
t S

-S
M

tL1-L2

t S
M

-M

L10 L215 L1Sharers

tL2-L1

tL1-L1

tL1-L2
tSS_MB-MB

tSS-SS_MB

t S
-I

UPGRADE

INV

ACK

EXC. UNBLOCK

tL1-L2

ACK

(b) Store to address in shared state.

Figure 1.10: Sequence of messages generated after a load and store misses when the data
requested is in shared state. The meanings of the commands are the following: GETS is a
read data request; DATA is a data response; UPGRADE indicates that a shared data has
been modified; INV are messages that invalidate the copies of data sharers; ACK indicates
that a requested action has been completed; EXC. UNBLOCK indicates to the directory
that a transaction has been completed. The meaning of the main cache states represented
in tState−State are: I, Invalid; S, Shared; M, Modified; B, Blocked; The rest are transient
states between the previous ones.

To provide low latency the NoC has to operate outside the saturation region, where
the throughput reaches its peak but the latency skyrockets. Figure 1.11 shows the latency
curve versus the offered load of a network. The region in green shows the acceptable
operation range of a CMP NoC while the undesirable saturation region is painted in red.
The saturation point is typically located where the latency is 3 times the zero-load latency
(T0).

One of the key factors that determine the traffic load is the miss ratio of the caches,
which usually is very low. Therefore, focus on minimizing the zero-load latency, which
defines the base latency of the NoC when there is no traffic, is critical when designing a
NoC for a CMP. Equation 1.1 evaluates the zero-load latency (T0) when using minimal
routing.

T0 = Hmin × Tr + Ts (1.1)

T0 is function of the number of hops following minimal routing (Hmin), the router delay
(Tr) and the packet serialization time (Ts). The number of hops is given by the topology

Page 16

Offered Load

La
te

n
cy

T0

Figure 1.11: Average packet latency vs offered load curve of a network. The green region
represents the operation range of a CMP NoC. The red region represents the saturation
region.

of the network. The router delay is given by the pipeline length of the architecture. The
serialization time depends on the packet size in flits, which is given by the link width.

The main goal of bypass routers is the reduction of the zero-load latency by improving
the router delay (Tr, single-hop bypass) or the number of hops (Hmin, multi-hop bypass).
Improving these mechanisms is the main target of the thesis and are described in Chap-
ter 2.

1.5
Motivation

Traditional NoC routers have long pipelines, which make latency quickly increase with
the network size. High degree topologies like the FBFLY [Kim2007] or the Slim
NoC [Besta2018] have low average distances at the expense of using high degree routers,
which increase the complexity of allocators, the crossbar size and the buffer area. A way of
reducing the buffer area is to use centralized buffers [Hassan2013], however this does not
reduce the allocation complexity and crossbar size in such topologies. The more complex
the router, the more area, power consumption and delay of some pipeline stages. The area
and power of the NoC cannot be underestimated as it may represent a large portion of
total CMP area and power budget [Li2009].

The objective of this thesis is the design of efficient low latency NoCs for future
many-core processors. This thesis introduces efficient router architectures based on bypass
routers, which reduces the two main factors of the zero-load latency. We segregate bypass
routers in singe- and multi-hop bypass. Single-hop bypass focuses on reducing the router
delay (Tr) while multi-hop bypass focuses on reducing the effective number of hops (Hmin).
The proposed mechanisms improve the bypass and buffer utilization, attaining substantial
savings in terms of VC count which reduces the complexity of routers. The final proposed
mechanism, combines both types of bypass to reduce, even further, the zero-load latency.
Additionally, we adapt some of these mechanisms to torus topologies as they provide more
throughput, have symmetry and have similar costs than the mesh.

1.6
Organization

This thesis is structured as follows. Chapter 2 presents the required background on what
are bypass routers. We describe the fundamentals of single-hop and multi-hop bypass

Page 17

routers, including their micro-architecture and pipeline. Chapter 3 describes BST (By-
pass Simulation Toolset), a simulation toolset developed to carry out the experimentation
required in the pursuit of this thesis. Chapter 4 presents NEBB (Non-Empty Buffer By-
pass), a proposal that relaxes the restrictions to forward packets and use the bypass in
single-hop bypass routers. NEBB achieves better performance than the original archi-
tecture with smaller buffers and saving energy thanks to increasing the utilization of the
bypass. Chapter 5 describes SMART++, a multi-hop bypass network with an efficient
flow control mechanism that adapts NEBB to multi-hop bypass routers. SMART++ in-
crements the utilization of the bypass and uses buffers efficiently, not requiring VCs to
achieve the same performance as SMART, drastically reducing router complexity. Chap-
ter 6 outlines S-SMART++, another multi-hop bypass network that reduces the router
delay of SMART by means of speculative allocation. S-SMART++ efficiently reduces the
latency giving a performance similar to the most costly and prohibitive implementations
of SMART. Chapter 7 lists the most relevant related work. Finally, Chapter 8 summarizes
the conclusions of the thesis.

Page 18

Chapter 2
Background

This chapter presents the required background to understand what are NoCs with bypass
routers, why they are useful to minimize latency and how to implement them.

Minimizing the NoC latency is critical for a CMP as it directly affects the AMAT of
the processor. The router architecture and the topology are the most important factors
that determine the latency of a NoC. The router architecture, particularly the router
pipeline, defines the router delay. The topology establishes the distance between nodes
and therefore the number of hops done by packets. Therefore, to reduce latency, one has
to reduce the router pipeline length and the average distance between nodes.

Decreasing the pipeline stages by merging them incurs in lower operation frequencies,
and simplifying the functionality of routers reduces throughput. Nonetheless, there have
been multiple single-stage router architectures used and proposed [Hoskote2007; Olofs-
son2016; Bohnenstiehl2017; Kwon2017; Rovinski2019]. Decreasing the distance between
nodes typically incurs in increasing the router degree, which increments and complicates
logic. Examples of this kind of solution are the flattened butterfly [Kim2007], express cube
topologies [Grot2009a] or ruche channels [Ou2020].

To reduce both factors we instead focus on bypass routers. The key idea of this type of
routers is to try to allocate router resources before packets arrive to them. In this way, once
packets arrive, they have already set a destination VC and configured the switch, so they
can skip some pipeline stages by traveling through a bypass path, reducing latency. We
distinguish between two different types of bypass: single-hop and multi-hop bypass. The
first reduces the router delay without merging pipeline stages, while the second reduces the
effective number of hops without increasing the degree of the routers. Single-hop bypass
is described in Section 2.1 and multi-hop bypass in Section 2.2.

2.1
Single-hop bypass routers

Single-hop bypass routers, also known as LookAhead bypass routers, takes advantage of
lookahead routing [Galles1997] to skip some stages of the router pipeline. Lookahead
routing calculates the route of the next hop in the previous router (upstream router).
The main idea of bypass routers is to forward the lookahead routing information before
forwarding a packet. This information is sent in a signal called LookAhead (LA), or
advance bundle in [Kumar2007], which requests a destination VC and an output port
in the downstream router one cycle before the arrival of the packet. As occurs with

Page 19

flits, LAs request the router resources (including the bypass paths) in the allocators to
resolve possible conflicts. In case of success, the downstream router prepares a bypass
path so the packet can advance directly to the switch, skipping the initial pipeline stages.
Besides reducing the router delay, the mechanism also reduces power consumption by
reducing the utilization of buffers. Buffers are one of the most consuming element of the
NoC [Gratz2006; Kahng2009; Sun2012], thus reducing the number of writes and reads in
them results in important dynamic energy savings.

This section starts describing the router micro-architecture (Section 2.1.1), continue
with the pipeline (Section 2.1.2), and ends with some implementations considerations
(Section 2.1.3).

2.1.1) Router micro-architecture

Single-hop bypass routers are built on the architecture of traditional routers described in
Section 1.4.1.D. The architecture of single-hop bypass introduces changes in some units of
the traditional router and adds two new units.

Figure 2.1 depicts a diagram of the router architecture with the changes highlighted
in red. This architecture follows the fundamentals of the bypass NoCs proposed in [Ku-
mar2007; Kumar2008; Krishna2010]. The changes made to support bypass are described
next.

RouterLookahead
Routing

LookAhead
 Arbiter

Switch

Switch Allocator
Lookahead
Generator

G R O P C

Input unit

Flit
Bypass

G R O P C

Input unit

Flit
Bypass

G I C

Output unit

LA

G I C

Output unit

Flit

LA

VC Allocator

Figure 2.1: Single-hop bypass router architecture.

2.1.1.A) Changes in standard units

The changes in the units of traditional routers affect the input unit and the routing
computation:

Input Unit. The input unit of single-hop bypass routers includes the bypass path formed
by a pair of multiplexer and demultiplexer. These are controlled by the LookAhead Arbiter

Page 20

(describer later). The bypass path connects the input port directly to the switch of the
router. Every packet has an associated VC despite not using the corresponding buffer
when taking the bypass. Consequently, the VC registers of the input unit still track the
status of the resources for every packet.

LookAhead Route Computation (LA-RC). Single-hop bypass routers require LA
routing to generate the LA signals that request the switch of the downstream router
before the arrival of flits. LookAhead (LA) routing computes the route, i.e., the next
output port, in the previous upstream router, instead of doing it when the packet is at
the head of the input VC. Thus, when this information arrives at a router, it already
carries the next output port to request in VA and SA. Implementing LA routing with
deterministic minimal routing does not imply any complication. The only difference with
respect traditional RC consists in including an RC unit in the Network Interface Controller
(NIC) to obtain the route of the initial hop. Otherwise, the initial router has to compute
two routes, the next hop route and the LA route for the LA signal. The logic of the RC
units does not change when using DOR, and the packet head has the same fields to keep
track of the remainder hops in each dimension. These units compute the next hop output
port based on these fields and decrease the corresponding one to the traveling dimension.

2.1.1.B) New bypass units

The two additional units in single-hop bypass are the LookAhead Arbiter (LA-Arb) and
the LookAhead Generator (LA-Gen):

LookAhead Arbiter (LA-Arb). Routers can receive multiple LAs from different input
ports in the same cycle. LA-Arb is an allocator that matches the bypass and output ports
of the router to the input ports of those LAs. In other words, it is equivalent to SA but for
LAs instead of flits or packets. In addition, it is in charge of arbitrating among flits and
LAs that competes for the same output port. Figure 2.2 depicts the organization of LA-
Arb in a router with N inputs and M outputs. While SA assigns output ports to flits, LA
Allocator does the same with LAs. Once both assignments are complete, the multiplexers
at each output port resolve possible conflicts between LAs and flits following one of two
policies: priority to local flits or to bypass requests. These policies are described later in
Section 2.1.3.B and shown in form of pseudo-code in Figure 2.2.

LookAhead Generator (LA-Gen). LA-Gen produces LA signals to acquire the switch
in the next router. The generation of LAs starts when the router grants an out-port to a
flit. One LA-Gen unit is integrated in each of the output units. LAs are forwarded to the
downstream router when the associated flits are traversing the switch.

2.1.2) Router pipeline

Single-hop bypass routers have two pipelines. These are shown in Figure 2.3. The first
pipeline uses the standard path in which flits pass through 4 stages, which is used by R0

in the figure. This pipeline is similar to the pipeline of the traditional router described in
Section 1.4.1.D, but with one stage less due to LA routing. The second pipeline uses the
bypass path in which flits only traverse the switch and link. This is used by R1 in the
figure. The pipelines are described next.

Page 21

Multiplexer Selector

 Option A) priority to local
 if SAout_m not Null:
 Selm = SAOut m
 else:
 Selm = LA-AOut m

Option B) priority to bypass
 if winner in LA-A for Outm:

 Selm = LA-AOut m
 else:
 Selm = SAOut m

LA-ARB

...

Fin_0

Fin_1

...

SAout_0

SAout_1NxM
Switch Allocator

(SA) SAout_M-1Fin_N-1

...

LAin_0

LAin_1

LAin_N-1

...
NxM

LA Allocator
(LA-A)

LA-Aout_0

LA-Aout_1

LA-Aout_M-1

Selout_0

Selout_1

Selout_M-1

...

LA-ARBout_0

LA-ARBout_1

LA-ARBout_M-1

Figure 2.2: LookAhead Arbiter (LA-Arb) organization. New units and signals are rep-
resented in red. Fn are flit requests to SA from input n. LAin n are LA requests to
LA-Arb from input n. SAout m are Switch Allocation outputs for output m. LA−Aout m

are LA-Allocation outputs for output m. LA−ARBout m are LA-Arbitration outputs for
output m. Selout m contains the control information to set up the switch and select the
path at the input unit, from input n to output m.

LA-RC
BW

VA & SA ST LT

ST LT

Cycle

1 2 3 4 5 6

R
o
u
te

r

0

1
LA-RC

VA & LA-Arb
LA-Gen

LA-LTLA-Gen

Figure 2.3: Pipeline of single-hop bypass routers. Example of a flit using the traditional
pipeline in router 0 and the bypass pipeline in router 1. Stages executed by an LA are
highlighted in red.

Stage 1) LA-RC and BW. When a flit arrives at the router, the input multiplexer selects
between the standard or the bypass paths. If the standard path is selected, the
router computes the next hop route of the packet (LA-RC) only when the flit is
the head of a packet and writes the flit in the buffer (BW). If the bypass path is
selected (like occurs in router 1 at cycle 5 in Figure 2.3), the flit takes the bypass
path to the input of the switch to perform ST (Stage 3) in the current cycle.

Stage 2) SA, VA and LA-Gen. The router reads the flit at the front of the buffer. If
the flit read is the head of a packet, the router attempts to allocate a destination
VC in VA. In parallel the router also tries to allocate the switch to the flit in
SA, independently of the type of flit. VA is executed at the same time but not

Page 22

speculatively [Mullins2004], hence head flits have to win both allocations. When
a flit successes, LA-Gen prepares an LA for the next cycle.

Stage 3) ST and LA-LT. In this stage flits traverse the switch of the router while the
LAs traverse the links towards the next routers.

Stage 4) LT, LA-RC, LA-Arb and LA-Gen. The flit traverses the link while the asso-
ciated LA requests the switch in LA-Arb in the next router. If the LA successes,
the LA-Gen of the downstream router prepares another LA in the output unit
to forward the signal in the following cycle. Additionally, if the LA is associated
with a head flit, LA-RC for the next hop takes place in parallel.

2.1.2.A) Pipeline walk-trough

This section presents a walk-trough example of a packet traveling through the network
to describe in detail how the router micro-architecture works. The example, depicted in
Figure 2.4, illustrates how a packet (highlighted in green) traverse three routers, using the
standard pipeline in the first and the bypass pipeline in the last two. The configuration of
the example is as simple as possible: with single-flit packet, without VCs and with routers
of only one input/output port. The example is described next, cycle by cycle.

Cycle 1) In the initial state of the network the packet is in the input latch of R0 and the
bypass path of that router is not selected. The packet has only one flit, therefore
the flit is the packet’s head, and consequently R0 computes in advance the route
for the downstream router (LA-RC). We assume that the next hop route has
been calculated in the upstream router or NIC. Meanwhile, the flit is written at
the front of the VC buffer (BW).

Cycle 2) The packet wins SA and VA in R0, acquiring the switch and a destination VC
after a successful LA-Arb, since there are not conflicts with LAs. After acquiring
the switch, it travels to the second pipeline latch. R0, after granting access to
the switch, generates an LA (LA-Gen), which contains the routing information
computed in the previous cycle.

Cycle 3) The packet in R0 traverses the switch (ST) towards the latch at the output port,
while the LA traverses the link (LA-LT).

Cycle 4) The flit traverses the link (LT) from R0 to R1. Meanwhile, the LA in R1 re-
quests the setup of the bypass in LA-Arb while LA-RC computes the LA routing
information of the next hop. The LA wins LA-Arb, acquiring the switch and
a destination VC. LA-Arb prepares the bypass path of the input unit of R1 for
the next cycle. LA-Gen generates a new LA for R2 with the routing information
obtained in LA-RC.

Cycle 5) The packet, in R1, takes the bypass path and performs ST. The LA, generated
in R1 in the previous cycle, traverses the link (LA-LT) towards R2.

Cycle 6) The packet traverses the link (LT) to R2. The LA, in R2, acquires the bypass
and a destination VC in LA-Arb and VA.

Cycle 7) The packet traverses the switch (ST) of R2 passing through the bypass path.

Cycle 8) The packet traverses the last link (LT) leaving R2.

Page 23

C
y
cl
e

LA-RC

LA-Arb

LA-Gen

R0

LA-RC

LA-Arb

LA-Gen

R1

LA-RC

LA-Arb

LA-Gen

R2

6

LA-RC

LA-Arb

LA-Gen

R0

LA-RC

LA-Arb

LA-Gen

R1

LA-RC

LA-Arb

LA-Gen

R2

1

VA SA VA SA VA SA

LA-RC

LA-Arb

LA-Gen

R0

LA-RC

LA-Arb

LA-Gen

R1

LA-RC

LA-Arb

LA-Gen

R2

2

VA SA VA SA VA SA

LA-RC

LA-Arb

LA-Gen

R0

LA-RC

LA-Arb

LA-Gen

R1

LA-RC

LA-Arb

LA-Gen

R2

3

VA SA VA SA VA SA

LA-RC

LA-Arb

LA-Gen

R0

LA-RC

LA-Arb

LA-Gen

R1

LA-RC

LA-Arb

LA-Gen

R2

4

VA SA VA SA VA SA

LA-RC

LA-Arb

LA-Gen

R0

LA-RC

LA-Arb

LA-Gen

R1

LA-RC

LA-Arb

LA-Gen

R2

5

VA SA VA SA

LA-RC

LA-Arb

LA-Gen

R0

LA-RC

LA-Arb

LA-Gen

R1

LA-RC

LA-Arb

LA-Gen

R2

7

VA SA VA SA VA SA

LA-RC

LA-Arb

LA-Gen

R0

LA-RC

LA-Arb

LA-Gen

R1

LA-RC

LA-Arb

LA-Gen

R2

8

VA SA VA SA VA SA

VA SA

VA SAVA SAVA SA

Figure 2.4: Single-hop bypass pipeline walk-through example.

Page 24

2.1.3) Implementation details

This section reviews some micro-architectural details omitted in earlier sections to facilitate
the understanding of single-hop bypass routers. Some of the following implementation
details are proposed to reduce the timing constraints and hardware costs but are not
required for a correct operation of the network.

2.1.3.A) Conditions to use the bypass

The utilization of the bypass is not straightforward. An incorrect flow control implementa-
tion may result in a network design prone to suffer from deadlocks. To avoid this problem,
Kumar et al. [Kumar2007] only allow the use of the bypass when the following conditions
are met:

1. There is no flit already in the buffer at the input port where the advanced bundle
arrives.

2. There is no output port conflict with existing flits, i.e., there is no flit already in
the SA stage of the router which is waiting to use the same output port as the one
requested by the advanced bundle.

3. There is no conflict with new flits, i.e., there is no output port conflict between
multiple advanced bundle signals arriving in the same cycle, i.e., not more than one
advanced bundle signal comes, simultaneously requesting the same output port.

Conditions 2 and 3 are not required when using LA-Arb, which was introduced as
LookAhead Conflict Check (LA CC) in [Kumar2008], as it is in charge of resolving possible
conflicts caused by LAs. Chapter 4 studies why these conditions are required to propose
efficient flow control mechanisms concerning resource utilization.

2.1.3.B) Arbitration policies

The inclusion of LAs brings on the necessity of establishing priorities between LAs and
flits. The architecture proposed in [Kumar2007] ignores LAs when there are conflicts with
flits or other LAs according to the conditions 2 and 3 mentioned in Section 2.1.3.A.

Introducing an LA-Arb makes possible the resolution of this kind of conflict. LA-Arb
has two arbitration phases. The first phase arbitrates in conflicts between LAs that arrive
from different input ports that request the same output port, like SA does with local flits.
The second phase arbitrates in conflicts between data flits that win SA and LAs that win
in the first phase.

The arbitration policy of the first phase is implemented similarly to SA, as both have
the same number of inputs and outputs. In the second phase there are two possibilities,
giving priority to local flits or giving priority to LAs. Giving priority to local flits avoids
the possibility of one packet passing another one in the same flow, i.e., packets that
share the source and destination. However, this policy does not make the most of the
bypass opportunities. Giving priority to LAs increases the utilization of the bypass at
the cost of modifying the order of the packets of a data stream. Nevertheless, this policy
has the disadvantage of potentially causing starvation. The router architecture proposed
in [Kumar2008] implements a starvation avoidance mechanism. It consists of keeping track
of the number of consecutive flits bypassed for each output port. If there is a local flit
waiting to use an output port more cycles than a specified threshold then the priority is
inverted.

Page 25

2.1.3.C) Virtual Channel Implementation

As mentioned in Section 2.1.2, VA is executed at the same time as SA, but not specu-
latively. A head flit has to win both allocations to advance to the next stage; body flits
already have a VC assigned by their corresponding heads. This also affects LAs that win
LA-Arb because they have to allocate a VC in the same cycle in which they complete the
arbitration. To minimize the impact on the critical path of the stage, the router imple-
mentations of [Kumar2007; Kumar2008; Krishna2013; Kwon2017] use a simplified version
of VA called VC Selection (VS). It relies on a pool of free destination VCs for each output
port. The assignment of the VC only requires to take one VC from the pool. Flits have
to retry SA in the next cycle when the pool is empty.

2.1.3.D) Switch Allocator

The SA of the single-hop bypass router depicted in Section 2.1.1 is similar to the SA
of a traditional router. However, Krishna et al. proposed an alternative implementation
in [Krishna2010]. Basically, SA is divided in two, Switch Allocation-Input (SA-I) and
Switch Allocation-Output (SA-O). SA-I is executed in the first pipeline stage and selects
a flit among the VCs of each input port to place a request in SA-O. This is implemented
with a #V Cs : 1 arbiter for each input unit, where #V Cs is the number of VCs. Then,
SA-O is executed in the second pipeline stage and matches the output ports with the
input ports, which are the winners of SA-I. SA-O is implemented with a #INs : #OUTs
allocator, where #INs and #OUTs are the number of inputs and outputs of the router,
respectively.

2.1.3.E) LookAhead signaling

According to Kumar et al. [Kumar2007; Kumar2008], the information carried by LAs is the
routing information. The number of bits depends on the route encoding and the network
size. A very common encoding keeps track of the remaining hops in each dimension
and the next output port. Two other types of information is required besides the route.
First, LA-Arb has to distinguish between head and body flits, so an extra bit is required.
Identifying the type of flit is essential to determine whether the flit has to acquire a
destination VC (head) or it already has one assigned (body). Second, the LA has to carry
the VC assigned after winning VA (and SA or LA-Arb) so the router can check the 3
conditions in Section 2.1.3.A. If the LA corresponds to a body flit, this VC is also used to
read the routing information recorded in the control registers of the input unit.

Table 2.1 gathers the information carried by LAs in a 2D-Mesh without concentration
and DOR encoding the remaining hops.

Table 2.1: LA signal bits for a k-ary 2-mesh without concentration and with DOR
encoded with remaining hops per dimension and next output port.

Remaining Hops X log2k

Remaining Hops Y log2k

Next out-port 3

Flit type 1

VC assigned log2#V Cs

Page 26

2.1.3.F) Buffer management

In Sections 2.1.1 and 2.1.2 we have assumed the utilization of a private buffer for each
VC. An alternative consists in using shared buffers among multiple VCs also known as
Dynamically-Allocated Multi-Queue (DAMQ) buffers [Tamir1992]. This is the buffer orga-
nization followed in [Kumar2007; Kumar2008; Krishna2010]. Besides, these architectures
use on/off signaling [Dally2003] instead of credits. This signaling mechanism consists in
enabling a signal towards the upstream router when there is more available space than
a given threshold to tolerate the round-trip delay. One buffer slot is reserved per VC to
avoid deadlock.

The buffer configurations used in these router architectures have many VCs. The
main reason to use DAMQs is the conservative restrictions of this bypass mechanism,
which requires a multitude of VCs to exploit the NoC bandwidth. Section 4.1 discuses
these requirements in detail.

2.2
Multi-hop bypass routers

NoCs built with multi-hop bypass routers were introduced in SMART [Krishna2013].
SMART, which stands for Single-cycle Multi-hop Asynchronous Repeated Traversal, al-
lows packets to traverse multiple routers in a single cycle by using asynchronous repeaters
within each router. The objective of SMART is to minimize the latency by reducing the
effective average number of hops. By applying SMART to mesh topologies, the result-
ing NoC has a similar latency to high-radix NoCs like the FBFLY [Kim2007], without
incurring in their area and power costs. Krishna et al. estimate in [Krishna2013] that
an 8× 8-mesh SMART reduces the latency of an equivalent size FBFLY with traditional
routers while decreasing drastically the area (by 8.6×) and power (dynamic power at
saturation by 1.5× and leakage by 10×).

Like single-hop bypass routers, SMART uses LA routing to set up multi-hop bypass
paths. Instead of sending LAs with the routing information to adjacent routers, SMART
broadcasts Switch Setup Requests (SSRs) to the routers within the route of packets.
SSRs are broadcast up to a maximum distance of HPCMax (maximum Hops Per Cycle).
Figure 2.5 illustrates the fundamental idea of SMART. In Cycle 1, the green packet in R0

broadcasts an SSR to the next three routers. The SSR acquires the switch of R0-R2 in
Switch Allocation Global (SA-G), which is described later in Section 2.2.1, and the bypass
in R1-R2. In R3, the SSR of the green packet loses against the blue packet due to the
arbitration policies explained in Section 2.2.3.B. Therefore, in Cycle 2, the green packet
traverses the first three routers, the second and third though the bypass, and stops at R3

where it lost against the blue packet.

Traversing multiple routers in a single cycle would not be possible without asyn-
chronous repeaters. Moreover, according to Krishna et al. [Krishna2013] the use of re-
peaters also reduce area and power with respect to pipeline registers used in single-hop
traversal NoCs. They also demonstrate that the maximum propagation distance is 16
mm when operating at 1 GHz and using a 45 nm technology process. Isolating the link
traversal, the propagation distance is inversely proportional to the frequency, therefore,
the maximum propagation distance is 8 mm at 2 GHz. In their experimentation they
assume a distance of 1 mm based on the tile size of [Hoskote2007; Haring2012] and a fre-
quency of 1 GHz. After aggregating the propagation delay of the multiplexers in the input

Page 27

R0 SA-L SA-G

SSRR0

R1 SA-L SA-G

SSRR1

R2 SA-L SA-G

SSRR2

R3 SA-L SA-G

SSRR3

R0 SA-L SA-G

SSRR0

R1 SA-L SA-G

SSRR1

R2 SA-L SA-G

SSRR2

R3 SA-L SA-G

SSRR3

Cycle 1

Cycle 2

Figure 2.5: Overview of SMART’s multi-hop bypass.

units and the crossbar, their theoretical HPCMax is 11. The experimental evaluations of
the contributions presented in Chapters 5 and 6 consider the same assumptions.

Next, Section 2.2.1 describes the router architecture of SMART. Section 2.2.2 shows
the pipeline organization in detail with a walk-through example. Section 2.2.3 explains
implementation details as well as alternative implementation ideas.

2.2.1) Router micro-architecture

The micro-architecture of multi-hop bypass routers is similar to the one of single-hop
bypass routers. The fundamental differences affect LA communication (now refer as SSR)
that expands to multiple routers, and LA-Arb (now refer as Switch Allocation-Global)
that has to arbitrate among multiple requests per input port.

Figure 2.6 shows the router micro-architecture of SMART1. The architectural modifi-
cations required to implement multi-hop bypass affect three components: the computation
of the route, the allocation of the switch, and the output unit organization.

2.2.1.A) LookAhead Routing Computation

SMART uses LA routing to compute in advance the output, not only of the adjacent router,
but also in all the routers involved in the multi-hop. The number of hops to compute in
advance is the minimum between HPCMax and the remaining number of hops. In the case
of implementing SMART 1D, the remaining number of hops refers only to the traveling
dimension, and the output port is the same for all the routers involved. The particular
characteristics of SMART 1D and SMART 2D are described in Section 2.2.3.C. SSRs carry
the potential number of hops (H) of the next multi-hop. This information is filtered then
in each receptor router by comparing the H value with the distance to the source router.
If the value is greater or equal to such distance, the SSR passes to SA.

1To facilitate the comparison with other router micro-architectures presented, we maintain the VC
allocator unit instead of VC Selection

Page 28

G I C

G I C

Lookahead
Routing

VC Allocator

SA Allocator
Local

SA Allocator
Global

... ...

...

G R O P C

G R O P C

...

Async. Repeater

Async. Repeater

Flit

Flit

Flit

Flit

SSR1
SSR2
SSRHPCmax-1

SSR

SSR

Figure 2.6: Multi-hop bypass router architecture.

2.2.1.B) Switch Allocation

SA is divided in two units: Local (SA-L) and Global (SA-G). SA-L is equivalent to SA
in traditional and single-hop bypass routers. It decides which flits, i.e., local requests,
can progress to SA-G to request access to the router’s crossbar. SA-G arbitrates between
the aforementioned local flits and SSRs. Depending on the priority policy (described in
Section 2.2.3.B), one type of request has priority over the other. SA-G prepares the switch
for the corresponding flit and enables the bypass of the input unit if the winner is an SSR.
SA-L is an N×#V Cs : M allocator, where N is the number of inputs, #V Cs the number
of VCs and M the number of outputs.

SA-G is an N × HPCMax : M allocator. Figure 2.6 only represents the SSR input
signals of the west input port due to space limitations. The rest of the signals, i.e., flits
and output SSRs, are represented per in/out port.

2.2.1.C) Output unit

As mentioned in the introduction of Section 2.2, SMART uses asynchronous repeaters to
reduce the delay of long wires. These repeaters are located at the output unit, replacing
the pipeline register found in traditional and single-hop bypass routers. With this orga-
nization, packets can traverse the router without being latched, merging the ST and LT
stages as shown in Section 2.2.2. Another change, in some way related with the output
unit, is the additional output signal per direction required to propagate the SSRs. These
are similar to LAs of single-hop bypass routers, just including asynchronous repeaters to
cover the HPCMax distance. Each SSR wire interconnects the router with each of the
neighbors routers in a range of HPCMax − 1, as shown in Figure 2.5.

Page 29

2.2.2) Pipeline organization

The original pipeline of SMART described in [Krishna2013] consist of 3 cycles, the first
two cycles for preparing a multi-hop and the last cycle to perform it. The pipeline is
described next and depicted in Figure 2.7. The original pipeline implements VS, which
has been presented in Section 2.1.3.C, but we use VA to simplify the comparison with
traditional routers (Section 1.4.1.D). Section 2.2.3.A explains the role of VS in multi-hop
bypass NoCs.

Stage 1) LA-RC, VA & SA-L and BW. Assuming that a router just received a flit in
the previous cycle, the router writes the flit in the designated VC buffer (in VA
of the upstream router or node). In parallel, the flit places a request in SA-L and
VA. Like occurs in single-hop bypass routers, VA is executed in parallel but not
speculatively. Additionally, the router computes the next multi-hop route if the
flit is the packet’s head. Notice that, to execute LA-RC and SA-L in parallel,
head flits have to carry the LA route, so they can request the correct output
port in SA-L. Otherwise, the computation of SA-L has to be done sequentially
after LA-RC, extending the length of the stage. In addition, the router prepares
the SSRs corresponding to the winners of SA-L.

Stage 2) SSR and SA-G. The SSRs prepared in the previous cycle are broadcast to the
routers in the range of the next multi-hop. Local flits that won SA-L in the
previous router request access to the switch in SA-G. Neighbor routers compute
SA-G after receiving the SSRs. Routers in which local flits have won SA-G only
set up the switch, and those in which SSRs have won set up both the bypass
path and the switch.

Stage 3) ST and LT. Flits traverse the router’s switch and the links until finding the
first bypass path disabled.

Cycle
1 2 3 4 5 6

R
o
u
te

r

LA-RC
VA & SA-L

BW
SSR+SA-G ST+LT0

1

...

SSR+SA-G ST+LT

SSR+SA-G ST+LT

LA-RC
VA & SA-L

BW
SSR+SA-G ST+LT

SSR+SA-G ST+LT

n

n+1

n+2

...

Figure 2.7: SMART pipeline.

Page 30

2.2.2.A) Pipeline walk-through

This section uses a walk-through example to explain the behavior of the pipeline in detail.
Figure 2.8 shows the walk-through of two packets in a 6-ary 1-mesh. The packets traverse
the network as follows:

C
y
cl

e

SA-L

R0 LA-RC

VA SA-G SA-L

R1 LA-RC

VA SA-G SA-L

R2 LA-RC

VA SA-G SA-L

R3 LA-RC

VA SA-G SA-L

R4 LA-RC

VA SA-G SA-L

R5 LA-RC

VA SA-G
1

2 SA-L

R0 LA-RC

VA SA-G SA-L

R1 LA-RC

VA SA-G SA-L

R2 LA-RC

VA SA-G SA-L

R3 LA-RC

VA SA-G SA-L

R4 LA-RC

VA SA-G SA-L

R5 LA-RC

VA SA-G

0 1 20 3 1 2 3

SA-L

R0 LA-RC

VA SA-G SA-L

R1 LA-RC

VA SA-G SA-L

R2 LA-RC

VA SA-G SA-L

R3 LA-RC

VA SA-G SA-L

R4 LA-RC

VA SA-G SA-L

R5 LA-RC

VA SA-G
3

SA-L

R0 LA-RC

VA SA-G SA-L

R1 LA-RC

VA SA-G SA-L

R2 LA-RC

VA SA-G SA-L

R3 LA-RC

VA SA-G SA-L

R4 LA-RC

VA SA-G SA-L

R5 LA-RC

VA SA-G
4

Cycle
1 2 3

SSR+SA-G ST+LT

ST+LT

ST+LT

SSR+SA-G

SSR+SA-G

SSR+SA-G

LA-RC
VA & SA-L

BW

ST+LT

Wins

Cycle
1 2 3 4 5

3

4

5

LA-RC
VA & SA-L

BW
SSR+SA-G ST+LT0

1

2

SSR+SA-G

SSR+SA-G

ST+LT

SSR+SA-G ST+LT

SSR+SA-G ST+LT

LA-RC
VA & SA-L

BW
SSR+SA-G ST+LT

SSR+SA-GR
o
u
te

r

Loses

6

Green Packet Blue Packet

SSR+SA-G ST+LT

Figure 2.8: SMART’s pipeline walk-through. The SSR+SA-G stages highlighted in red
depict conflicts between SSRs of the green and blue packets.

Cycle 1) The initial state of the network assumes two single-flit packets: one in R0 (high-
lighted in green) and the second in R2 (highlighted in blue). The destination of
both packets is beyond R5 and HPCMax is 4. Both complete the first pipeline
stage computing the next multi-hop route (LA-RC), winning SA-L, acquiring a
destination VC (VA), and being buffered in the input VC buffer (BW).

Cycle 2) R0 and R2 broadcast the SSRs of the green and blue packet respectively. The

Page 31

SSR generated by R0 arrives to R1−3 but not to R4 because this router can
only receive the packet since its distance to R0 is 4 hops (HPCMax). The SSR
generated by R2 arrives to R3−5. The SSR of the green packet wins in R0−1,
while the one of the blue packet in R2−5. In R2−3, the blue packet wins SA-
G to the green because the network gives priority to local flits (Prio=Local in
Section 2.2.3.B). In other words, the lower the distance between the receptor and
the sender of the SSR, the higher the priority. For example, in R2 the distances
to the start routers are 0 for the blue packet and 2 for the green.

Cycle 3) Both packets perform the multi-hop. The blue packet exits the depicted part of
the network, while the green packet stops at R2 because the bypass is disabled
from the loss in the previous cycle.

Cycle 4) The green packet, in R2, starts the same process to perform the next multi-hop,
which effectively occurs in cycle 6 according to the diagram of Figure 2.8.

2.2.3) Implementation details

There are important implementation details to consider in order to obtain a performant
and balanced pipeline. Additionally, alternative mechanisms have been proposed to reduce
wiring overhead or improve the efficiency. These aspects are presented next.

2.2.3.A) Virtual Channel Selection

The previous sections show an implementation of SMART with Virtual Channel Allocation
(VA) to allocate VCs of adjacent routers to packets. In terms of functionality, there is no
reason to avoid using VA. However, the original implementation of SMART uses Virtual
Channel Selection (VS) to reduce the cycle time as its implementation is simpler. VS
has been already introduced in Section 2.1.3 for single-hop bypass routers. It consists
of allocating an input VC to packets when they arrive at a router, instead of allocating
a destination VC in the upstream router before forwarding them. The communication
between neighbor routers uses on/off signaling instead of credits. The on/off signals are
denoted free vc and indicate that there is at least an available input VC for the packet in
the upstream router. The downstream router has a pool of free VCs and, if there is at
least one VC in the pool, it enables the free vc signal. For body flits, the receiver router
has a hash table in the input unit, indexed by the packet’s source router, to determine the
input VC assigned to each packet. This table has a size equal to the number of multi-flit
VCs. SMART requires VCs with enough space to store entire packet, because routers
that retransmit packets do not know what is the state of the other routers involved in a
multi-hop.

2.2.3.B) SA-G arbitration policies

As mentioned in Section 2.2.1, Switch Allocation Global (SA-G) assigns the switch and
bypass to SSRs. To ensure the correct operation of the SMART NoC, all the routers must
implement the same priority policy. Otherwise, packets may stall waiting for resources
while the downstream router is waiting for a specific packet; or vice-versa, a downstream
router receives a not expected packet.

The two priority policies proposed in [Krishna2013] are: Prio=Local (priority to local
flits) and Prio=Bypass (priority to the bypass). In both cases, the decision criteria is the

Page 32

distance in hops between the routers that broadcast and receive an SSR. The distance is
determined by the input SSR port, as each of the ports is connected to a specific upstream
router. This distance must not be confused with H (information carried by SSRs), which
indicates the requested multi-hop length. Prio=Local gives preference to SSRs with a
closer origin, i.e., the priority is inversely proportional to the SSR distance. Prio=Bypass
gives preference to SSRs with the farthest origin, i.e., the priority is proportional to the
SSR distance.

Figure 2.9 shows an example with two packets in a 1-ary 8-mesh when using both
policies. When using Prio=Local (Figure 2.9a), the blue packet loses SA-G in routers 2-5
against the green. In total, both packets perform seven hops: two the blue packet, and
five the green. When using Prio=Bypass (Figure 2.9b), the blue packet wins in all the
routers, but the green packet cannot progress. Therefore, only the blue performs six hops.
As this example shows, Prio=Bypass does not maximize the total number of hops done
per cycle, experiencing a reduction in the maximum achievable throughput. Krishna et
al. demonstrate in [Krishna2013] the superiority of Prio=Local over Prio=Bypass.

Figure 2.9b serves also as an example of false negatives. False negatives occur when an
SSR wins SA-G, the router sets up the bypass, but it does not receive the corresponding
packet in the next cycle. This kind of situation occurs when at least one of the previous
upstream routers involved in the multi-hop loses SA-G. There are different reasons for
such a situation, like a lack of a free VC in the adjacent router or a conflict with other
SSR or flit. In the example of Figure 2.9b, this occurs in router 6, in which the green
packet has won SA-G but cannot reach the router because it has lost against the blue
packet in routers 2-5. The existence of false negatives does not produce correctness issues.

SSR source SA-G winner SSR

0 1 2 3 4 5 6 7

Blue packet stop Green packet stop

(a) Prio=Local. The blue packet stops at router 2 and the green packet at router 7.

0 1 2 3 4 5 6 7

Blue packet stopGreen packet stop
False positive

(b) Prio=Bypass. The green packet does not move and the blue packet stops at router 6.

Figure 2.9: SA-G arbitration policies. Boxes represent routers; arrows illustrate SSRs;
circles within the routers indicate the packet initial location; shadowed boxes represent
that the packet corresponding to the color has won SA-G in that router.

2.2.3.C) Multi-hop traversal in multi-dimensional networks.

Previous sections used one dimensional meshes to put the focus on the router micro-
architecture and pipeline. However, multi-hop traversal in multi-dimensional networks
introduces some complexity. Two types of SMART implementations are proposed in [Kr-
ishna2013] depending on whether packets can take the bypass or not at turns: SMART 1D
and SMART 2D.

SMART 1D. This implementation only bypass packets along the dimension, i.e., pack-
ets cannot do a dimension change during a multi-hop. SMART 1D only broadcast SSRs

Page 33

along one dimension as shown in Figure 2.10a. In this implementation, conflicts between
SSRs only arise when they are broadcast in the same direction, which are resolved by ap-
plying one of the arbitration policies described in Section 2.2.3.B. The main disadvantage
of this implementation is that when a packet has to turn to another dimension it is always
buffered. Therefore, assuming an ideal HPCMax, packets that have to travel through both
dimensions have to do at least two multi-hops to reach their destinations.

SSR distance

0 1 2 3

(a) SMART 1D. (b) SMART 2D.

Figure 2.10: SSR propagation on SMART 1D and 2D in a 7-ary 2-mesh with DOR-XY.

SMART 2D. This type of SMART allows the bypass in any direction. The name is
specific for two-dimensional topologies. With an ideal HPCMax, bypassing routers at
turns allows every packet in the network to go from source to destination in just one
multi-hop.

However, in order to cover the SSR broadcast range, the number of dedicated wires
grows quadratically as depicted in Figure 2.10b. This growth also affects the micro-
architecture of SA-G, increasing the number of SSR entries per input port and requiring
an extra arbitration layer. The additional entries come from neighbor routers that are
not connected in a straight manner. The extra arbitration layer is required because a
SA-G can receive SSRs from different routers that are at the same distance, unlike in
SMART 1D. This extra layer gives priority based on the direction of the SSR, only in
those cases in which the distance to the source router is the same. Any priority scheme
is valid as long as it resolves this type of conflict and enforces the same priority in every
router. The following scheme is chosen by Krishna et al. in [Krishna2013]: Straight > Left
Turn > Right Turn.

Figure 2.11 shows some arbitration examples when employing the previous scheme.
The first example (Figure 2.11a) shows two packets (green and blue) competing in SA-G
in R13 and R18, in which the blue packet wins as its SSR travels straight. The second
example (Figure 2.11b) shows three packets (green, blue and red) competing in SA-G of
R13 and R18. The green packet wins because its SSR turns to the left vs the right turn
of the red packet. The blue packet loses against both because the distance to the source
router is higher (Prio=Local). In the third example (Figure 2.11c), the red packet wins

Page 34

because it is the one with the closest SSR source to R13 and R18, so the extra priority
layer is not applied.

Another important consideration to keep in mind is that SSRs in SMART 2D have to
propagate the destination of the packet, i.e., the route. Otherwise, intermediate routers
of a multi-hop cannot determine which output port an SSR is requesting, as there are
multiple possibilities in this type of SMART.

SSR source SA-G winner SSR

0300 01 02 04

05 06 07 08 09

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

(a) Straight vs Left.

13

00 01 02 03 04

05 06 07 08 09

10 11 12 14

15 16 17 18 19

20 21 22 23 24

(b) Left vs Right.

08

13

07

03

14

00 01 02 04

05 06 09

10 11 12

15 16 17 18 19

20 21 22 23 24

(c) Prio=Local.

Figure 2.11: SMART 2D examples of Straight > Turn Left > Turn Right.

2.2.3.D) Bypass at the destination router

The previous section has shown that a NoC has to implement SMART 2D in order to
allow packets to change the traveling dimension during a multi-hop. This also applies to
packets using the bypass in their destination routers, as they are changing the traveling
dimension when using the ejection ports. Krishna et al. [Krishna2013] proposed an opti-
mization for SMART 1D to bypass the destination router too. In order to do so, SSRs
have an additional ejection bit that indicates that the multi-hop being requested reaches
the packet’s destination router. Thus, if an SSR arrives to a router with this bit enabled
and an H value equal to the distance to the SSR source router, then it can set up the
bypass and the crossbar.

2.2.3.E) Buffer bypass vs router bypass

We consider two possible bypass implementations: buffer bypass or router bypass. Fig-
ure 2.12 depicts a diagram of both implementations. In buffer bypass, the bypass path
connects the input port with the switch of the router, thus it bypasses the buffer and
allocation units. The router micro-architecture depicted in Section 2.2.1 implements this
type of bypass. Alternatively, router bypass connects the input ports with the opposite
output ports, e.g., the West input to the East output. Hence, router bypass skips the
buffer, the allocation units and the switch. The main difference is the placement of the
output demultiplexer: in buffer bypass it is placed before the switch while in router bypass
after it. Additionally, SA-G does not have to set up the switch when a non-local SSR wins
when implementing router bypass.

Buffer bypass is required when packets can change the traveling dimension through the
bypass path. This is the case of single-hop bypass routers, SMART 2D (Section 2.2.3.C),
and the destination router bypass optimization (Section 2.2.3.D). The benefit of router

Page 35

bypass is that it removes ST from the bypass path, which may increase HPCMax or
the operation frequency. However, it is only recommended for SMART 1D as it builds
dedicated paths to interconnect the input ports with the output ports. In the case of
SMART 1D, this is just one path per direction (West → East, North → South, and vice
versa), whereas SMART 2D requires a path per port combination complicating the logic.

G I CG R O P C

Async. Repeater

(a) Buffer bypass.

G I CG R O P C

Async. Repeater

(b) Router bypass.

Figure 2.12: Schematics of buffer bypass and router bypass.

Page 36

Chapter 3
BST: Bypass Simulation Toolset

This Chapter introduces BST [Perez2020], which is used in Chapters 4-6 to evaluate the
details of the proposed mechanisms to improve bypass based NoCs. BST, which stands
for Bypass Simulation Toolset, is a set of tools that we have created during the develop-
ment of the bypass mechanisms for their evaluation. This chapter starts in Section 3.1
with an introduction to the alternatives for simulation infrastructure and methodology
used to evaluate NoCs. Section 3.2 describes BST without entering in details about the
implemented models, as these are described in the next chapters when explaining the ex-
perimental methodology of each mechanism. The chapter ends in Section 3.3 with a brief
comparison with other NoC evaluation tools.

3.1
NoC modeling and evaluation tools

Beyond simple analytical models, such as the ideal zero-load latency introduced in Chap-
ter 1, the most relevant NoC evaluation tools can be characterized by three aspects: the
type of model implemented; the kind of injected traffic; and the metrics measured. These
aspects are discussed next.

3.1.1) Type of model: RTL vs software

The two types of NoC models that are most widely employed are RTL and software
models. RTL (Register Transfer Logic) is the closest model to reality, since real circuits
can be created from them. This kind of model is used in conjunction with tools such
as Synopsys Design Compiler and Cadence Genus Synthesis to create the final design,
including simulation tools to evaluate the behavior of the circuit and measure timing,
analyze the critical path, and evaluate the area and power consumption. Xilinx Vivado
and Intel Quartus are similar tools for FPGA synthesis, which are commonly used to
test and debug designs as well as perform initial estimations of the maximum operation
frequency, area (FPGA resources), and power. However, the low abstraction level of
these models increases drastically the development and simulation times compared with
alternative software models. Besides, these designs have more limitations and more rigid
configurations.

Page 37

By contrast, software models present a higher abstraction level that gives more flex-
ibility, eases the development and debug processes, and are various orders of magnitude
faster. However, their main downside is that they require a validation process with an
RTL model to verify their accuracy. For this reason, this kind of model is ideal at the
early stages of development to get an estimation of the viability of new designs and at
intermediate stages, after the validation, to mass-produce fast simulations for setup tuning
or debugging.

3.1.2) Type of traffic

The traffic injected into the NoC model can be essentially divided into two categories:
synthetic traffic and real traffic.

Synthetic traffic is generated using analytical models. Due to its simplicity, it is ideal
to measure the overall performance of NoCs and compare mechanisms in a wide range of
configurations. Besides, it is useful to analyze and debug NoCs, as designers can predict
their behavior for specific traffic patterns. Thus, designers can create traffic patterns
to test NoCs under specific conditions, while with complex patterns generated from real
applications, it is not feasible or very time-consuming. Table 3.1 summarizes most of the
synthetic traffic patterns described in [Dally2003].

Table 3.1: Common synthetic traffic patterns. Notation: si, di are the source and
destination nodes of a packet. N is the number of nodes, i identifies the bit in position i
of the node index and b = dlog2Ne, i.e., the total number of bits in a node index. k only
applies to k-ary n-topologies such as the mesh, the torus or the FBFLY, representing the
dimension size.

Traffic pattern Description

Random-Uniform di = random(N)

Bit-Complement di = ¬si
Bit-Reversal di = sb−i−1

Shuffle di = si−1 mod b

Transpose di = si+b/2 mod b

Tornado di = si + dk/2e − 1 mod k

Neighbour di = si + 1 mod k

Hotspot in x dx = si

Besides the traffic spatial pattern, there are other characteristics to model like the
injection process, the size of the packets, the packet classes and their relationship, and
the message order. There are multiple factors that determine these characteristics in a
CMP, for example the cache coherence protocol as mentioned in Section 1.4.3. It explicitly
defines the message classes, which typically are divided into control (requests, invalida-
tions, forwarded requests, acknowledgments, etc) and data messages. Commonly, the link
width is equal to the flit size, control packets have one flit, and data packets multiple flits.
Additionally, the packet classes have a request-reply relationship, e.g., data messages are
generated in response to a request from a cache miss. Moreover, the protocol may re-
quire point-to-point message order to operate correctly. All these characteristics can be
resembled in synthetic traffic. However, the traffics generated by applications executed

Page 38

in CMPs are so complex that analytical models created from them [Badr2014] are quite
difficult to understand. For this reason, the effects of a NoC running under synthetic
traffic in isolation can not been directly extrapolated to a CMP.

Real traffic covers the shortcoming of synthetic traffic by modeling traffic generated
by real programs. One of the most common and accurate ways of generating this type
of traffic consists in simulating the whole CMP with Full-System (FS) simulations. In an
FS simulation, programs are executed in an operative system running over the simulated
CMP. This methodology copies the sources of NoC traffic, which are triggered by the
memory instructions executed from real programs.

In this kind of evaluation it is essential to choose adequate workloads. In our ex-
perimentation we have used the PARSEC benchmark suite [Bienia2008], which focuses
on recognition, mining, synthesis and other large-scale multi-threaded programs. These
benchmarks are suitable for evaluating NoCs of many-core processors due to their large
diversity in terms of synchronization, data sharing, locality, etc. The main benefits of
this type of simulation are the possibility of measuring the real impact of a NoC design,
analyzing the traffic characteristics (such as spatial and temporal traffic distributions of
the offered load), and testing and debugging designs under real conditions. However, their
high cost in terms of simulation time and computational resources makes them not suitable
for agile development.

3.1.3) Performance vs Costs

NoC models can be categorized also in terms of what they measure. Software models
mainly focus on performance at a cycle level, but there are also models to predict area,
power or circuit timing. Section 3.3 reviews some of the most relevant.

Regarding RTL designs, suites such as Xilinx Vivado or Intel Quartus include their
own tools to measure both performance and costs. The low level of these designs allows
obtaining accurate results at the expense of higher simulation times.

3.2
Bypass Simulation Toolset

BST is a collection of tools developed during the course of this thesis to evaluate our
single- and multi-hop bypass NoCs. It is an open-source project that can be found at:
https://www.atc.unican.es/software.html. BST is composed of four modules, as
shown in Figure 3.1.

1. BookSim [Jiang2013] is a functional cycle-accurate network simulator widely used
in NoC research. BST includes a custom version with single- and multi-hop bypass
router models.

2. OpenSMART [Kwon2017] is an RTL implementation of SMART. BST includes
a custom version with support for SMART++ and S-SMART++ (see Chapters 5
and 6). It also includes some fixes and minor changes in the original SMART imple-
mentation.

3. An API to integrate BookSim in Full-System simulators or trace-based traffic gen-
erators.

Page 39

https://www.atc.unican.es/software.html

BST

1) BookSim

Performance

LA Bypass routers

SMART/SMART++

S-SMART++

Validation

Power/Area

2) OpenSMART
SMART/SMART++

S-SMART++

Validation

4) Scripts
Sim launcher & plotter

Traffic visualizer

SMART pipeline profiler

Productivity

3) API

Full-System

Traces

Real traffic

Figure 3.1: BST tools.

4. A set of scripts to reduce the effort of creating experiments, producing results charts
or debugging NoCs.

Each of these components is described next in more detail.

3.2.1) BookSim

BookSim is a functional (software model) network simulator written in C++. It con-
tains a cycle-accurate model of a traditional Input Queue (IQ) router similar to the one
described in Section 1.4.1.D. It has been used in multiple previous works both for sim-
ulating system networks [Mubarak2012; Besta2014; Won2015; Jiang2015; Jain2016] or
NoCs [Badr2014; Kannan2015; Hesse2015; Hong2016; Alazemi2018]. It has a flexible ar-
chitecture with the main elements of the network well-structured in independent classes
and multiple alternative implementations. It already includes a notable number of allo-
cators, topologies, routing algorithms, buffer policies, etc. It is a standalone simulator
that generates synthetic traffic to feed its network models. It already includes a large
variety of traffic patterns, as well as allowing the combination of different traffic classes.
Each class is characterized by the packet size, injection rate, assignable VCs, etc. This
includes the generation of reactive traffic with closed-loop simulations (request-reply) with
finite queues, which approximates the behavior of cache coherence protocols mentioned in
Section 1.4.3.

It has been integrated with different simulation tools, e.g., in GPGPU-
Sim [Bakhoda2009], a GPU simulator to evaluate CUDA workloads. It has been also
used to developed SynFull [Badr2014], a synthetic traffic model generator that resembles
the behavior of the cache coherence protocol from execution traces of real applications on
an FS simulation environment.

However, its IQ router model has only support for some optimizations like speculative
VC allocation and lookahead routing, which are not sufficient to model high-performance
contemporary NoCs. For this reason, we have extended the simulator with new models of
the single- and multi-hop bypass routers described in Chapter 2. From these models we
have built the proposals described in Chapters 4, 5, and 6.

Next, we summarize the most significant extensions of the custom version of BookSim
provided in BST.

Page 40

3.2.1.A) Flow control mechanisms

The conventional IQ router of BookSim implements WH with VC support, i.e., VC flow
control as mentioned in Section 1.4.1.C. We have extended this router model with the
following alternative flow control mechanisms: Virtual Cut-Through (VCT), Bubble flow
control [Carrion1997], and Flit Bubble Flow Control Localized (FBFC-L) [Ma2015]. The
last two are specifically designed to avoid deadlocks in tori, the former for packet-level
allocation and the latter for flit-level allocation. The implementation of the flow control
mechanisms relies on credits to monitor the buffer occupancy of adjacent routers in every
router model. Single-hop bypass routers are compatible with these mechanisms, but multi-
hop bypass routers only with VCT and Bubble flow control as they implement packet-
level allocation. Section 1.4.1.C introduced more information about these flow control
mechanisms.

3.2.1.B) Bypass routers

The implemented bypass-router models are cycle-accurate and faithful representations
of the single-hop bypass architectures described in [Kumar2007; Perez2018; Perez2020a]
and the multi-hop bypass NoCs described in [Krishna2013; Perez2019] and Chapter 6.
The implementations partially follow the organization of BookSim’s IQ router, but their
pipelines have a fixed number of stages to avoid over-complicating the model.

BookSim’s IQ router has two phases per pipeline stage, evaluation and update. The
evaluation phase models the computation of each stage without writing the inter-stage
signals to avoid interfering with the next pipeline stage. The update phase modifies the
inter-stage signals after all the evaluation phases end. This avoids the propagation of
unintended information between stages within a cycle because routers are executed se-
quentially, unlike in a real system. The bypass-router models in BST follow a different
strategy to correctly define cycle boundaries: the pipeline stages of each router are exe-
cuted sequentially in reverse order, i.e., link traversal, switch traversal, arbitration stages,
route computation, flit reception. Pipelines of different routers are separated by channels
that introduce a delay, avoiding unintended data communication within cycles. Bypass
routers support most of the configurable router parameters of BookSim, like the allocator
implementation, the buffer policies, etc. Table 3.2 compiles the most relevant parameters
specific for bypass routers.

3.2.1.C) Single-hop Bypass

The enhanced BookSim simulator in BST has five different bypass router models divided
into two categories. The classic single-hop bypass explained in Section 2.1, which requires
empty buffers when bypassing buffers, has two variants: EVCF and EBB. There are also
three variants of NEBB: NEBB-WH, NEBB-VCT and NEBB-Hybrid. These models are
explained in Chapter 4.

LAs and LA links are precise models based on the BookSim classes that implement
flits and flit links, denoted as channels in the simulator. Among the specific configuration
parameters, three are the most relevant: disable bypass, which deactivates the bypass
and is useful to obtain reference results; lookaheads kill flits, which indicates the priority
policy of the LA-Arb multiplexers (see Figure 2.2); and guarantee order, which preserves
an in-order delivery of packets as required by some coherence protocols.

NEBB-Hybrid has been adapted to support Dynamic input buffer management (shared
buffers, implemented as DAMQs, [Tamir1992]). As shown in Chapter 4 with more detail,

Page 41

Table 3.2: Representative parameters related to bypass routers in BookSim from BST.

BookSim parameter Description

router Specifies the router type, e.g., iq, bypass arb (single-hop bypass), smart
(multi-hop bypass), etc.

Single-hop Bypass

bypass empty vc Specifies if empty destination VCs are required to forward packets

disable bypass Used to enable or disable router bypass.

lookaheads kill flits Specifies the priority used in the LA priority Mux : Priority to LAs or to
local data flits.

guarantee order Avoid data reordering caused by buffer bypass requests that target the
same output as a packet in a local buffer.

Multi-hop Bypass

smart type Specifies the version of SMART to use from among SMART, SMART
++ (including partial implementations), and S-SMART ++. The router
model must be SMART (“router=smart”)

smart max hops Sets the maximum number on hops within a multi-hop (HPCmax)

smart priority Indicates the priority.1

smart dimensions Indicates whether SSRs can be propagated to multiple dimensions (“nD”,
equivalent to SMART 2D in k-ary 2-meshes) or not (“oneD”, which is
SMART 1D).

Hybrid combines WH and VCT virtual channel allocation, and packets may have bubbles
caused by channel interleaving. Buffer management must be aware of which flow control is
used by each bypassed packet to prevent deadlock. When bypassing a packet using VCT,
buffer slots are reserved for the whole packet, i.e., credits are reduced by the packet size.
This guarantees that any packet that starts advancing to a buffer will have space for it,
regardless of any bubble. In contrast, when transferring a packet using WH, credits are
reduced flit by flit (both for bypass and non-bypass paths).

Besides the standard statistics of BookSim, simulations using single-hop bypass routers
provide the following new metrics: bypass utilization, as the ratio of the number of hops
that use bypass paths over the total number of hops done; buffer and crossbar conflicts,
as the number of times that these resources are not available for flits or LAs; number of
SA-O winners killed by LAs, as the number of local flits that win SA and are later killed
due to a conflict with LAs in LA-Arb.

3.2.1.D) Multi-hop Bypass

The BST version of BookSim includes three main multi-hop bypass routers representative
of SMART [Krishna2013], SMART++ [Perez2019] and S-SMART++ [Perez2021]. The
last two NoC are explained in Chapters 5 and 6. Partial versions of SMART++ evaluated
in [Perez2019] and Chapter 5 are supported too. All the models implement VCT flow
control. However, SMART++ and S-SMART++ are the only mechanisms that guarantee
consecutive reception of packet flits, since they allocate buffers, switches and bypass paths

1Only “Prio=Local” is implemented due to its superior performance but it is prepared to add new
policies.

Page 42

on a packet by packet basis, instead of flit by flit.
As explained previously, flits can traverse multiple routers and links in a single cycle

thanks to multi-hop bypass. However, each channel in BookSim requires a minimum delay
of one cycle, making impossible the traversal of multiple links in a single cycle without
modifying the structure of BookSim to a large degree. Instead, these router models account
for the delay of multi-hop link traversals in each of the routers involved. In a multi-hop
path, each router calls the reading function of the next router that evaluates whether its
bypass is enabled or not. If it is enabled, the same procedure occurs with the subsequent
router, until finding a disabled bypass or reaching the end of the multi-hop. The flit is
directly saved in a pipeline register in the last router, prepared for BW in the following
cycle.

Additionally, SSR channels are not modeled, as they would introduce significant mod-
ifications to already implemented topologies or topology replications just for this type of
NoC. Instead, SSR signals are placed directly in the routers within each multi-hop, after
wining the local switch allocator. Despite not implementing detailed models of SSR links,
this implementation is cycle-accurate and functionally equivalent to the actual proposed
implementation as we demonstrate in subsequent chapters.

SMART simulations employ three additional parameters to select the version of
SMART, to define HPCmax and indicate whether the bypass is only along the traveling
dimension (SMART 1D) or along multiple (SMART 2D). These parameters are indicated
in Table 3.2. In addition to the default statistics of BookSim, SMART simulations include:
number of multi-hops; length of each multi-hop; and bypass utilization as the ratio of flits
bypassed over the total number of flits transmitted by each router.

3.2.2) OpenSMART

OpenSMART [Kwon2017] is an RTL implementation of SMART written in Bluespec Sys-
tem Verilog. BST includes a custom version of OpenSMART with implementations of
SMART++ and S-SMART++. The original OpenSMART implementation only supports
single-flit packets, and the same goes for the models included in BST. The pipeline model
presented in OpenSMART significantly differs from the original proposal in SMART. For
example, ST is implemented in the second stage after winning SA-L, instead of the third
stage as described in Section 2.2.2. This complicates the comparison between the func-
tional models in BookSim and the results from Bluespec. Additionally, initial testing of
the OpenSMART models presented execution errors, with packets that were missed or not
delivered to their correct destinations, preventing any productive use of the tool2. To be
able to compare the BookSim and OpenSMART models, we have reorganized the router
stages. Our implementation follows the original organization from SMART. Additionally,
our model corrects some errors and provides working models that deliver all packets to
the correct destinations. Some specific changes are detailed next.

Several issues with Bluespec rules prevented successful compilation, specifically cyclic
dependencies of rules. Rules are the main coding block of Bluespec to describe how data is
moved from state to state. The Bluespec compiler detects data dependencies and sched-
ules rules in an appropriate order, which may be explicitly given in the code. Cyclic
dependencies in these rules may prevent compilation. The following changes simplified
the implementation and mitigated the identified issues. First, OpenSMART employs a
custom library to implement FIFO structures. These modules have been replaced with
the Bluespec built-in modules FIFO and FIFOF (the latter including explicit full and

2Using the most recent repository version at the time of writing, commit d4f5095.

Page 43

empty signals). These changes are implemented in the Credit Unit, Input Unit, Smart
Flag, Smart Router and Traffic Generator Units. Similarly, the CReg module that im-
plements an Ephemeral History register [Rosenband2004] has been replaced by explicit
combinational logic, which is less prone to generate cyclic rule dependencies when modi-
fying code.

The implementation of SMART++ and S-SMART++ essentially required modifica-
tions to the VC Selector (VS). The original SMART VS implements a pool listing free VCs
in the neighbor router. An empty VC is extracted when a packet wins SA-G, and inserted
when a credit is received. The implementation is quite simple as SMART requires empty
destination VCs to forward packets, ignoring buffer depth and occupation. In contrast,
SMART++ employs buffer depth and occupation. Flow control credits, already imple-
mented in OpenSMART, are leveraged to monitor the available space in each VC. The
increase in logic is very moderate.

S-SMART++ additionally requires logic to handle speculative SSRs (details are ex-
plained in Chapter 6) and its corresponding bypass route. OpenSMART implements router
bypass instead of buffer bypass like the original proposal of SMART (Section 2.2.3.E). As
explained, router bypass is ideal for SMART 1D, which is what OpenSMART implements,
but this is not the case for S-SMART++ as it will allow packets to take the bypass when
changing dimensions like SMART 2D. The S-SMART++ implementation also uses router
bypass despite being suboptimal, given the complexity of altering this and other related
parts of the design, such as SA-G. Thus, the implemented design has dedicated bypass
paths from each input port to all the output ports, including the respective logic to control
them.

3.2.3) API

BookSim is a standalone simulator but has been integrated in different full-system sim-
ulators like GPGPU-sim [Bakhoda2009], GEMS [QinhongZhang2015], gem5 [Li2016;
Das2018] or FeS2 (Simics) [Magnusson2002; Ma2015]. However, most of the times the
integration is not made available publicly or is hard to maintain because of changes in the
FS simulator or BookSim.

BST provides an API to simplify the integration of BookSim with other simulation
environments, such as gem5. The API abstracts the internal structure and presents simple
commands to interact with the simulation tool. This section explains the integration with
gem5, assuming that the Ruby memory hierarchy model is employed. Ruby defines the
elements of the memory hierarchy, the cache coherence protocol, and the NoC.

The API supports the compilation of BookSim as a library, instead of integrating its
code into the other simulator like in GPGPUSim [Bakhoda2009]. The main advantage of
linking BookSim as a library is the automatic synchronization from the standalone version
to the integrated one. Additionally, this decouples the development and maintenance of
both tools, and speeds up the (time-consuming) compilation process when changes are
done only to one simulator.

Some code changes required to support the API and the compilation as a library include
a new namespace that encapsulates the complete BookSim code; a new compilation target
for the library version; and a new traffic manager class to interact with the API functions.

3.2.3.A) API functions

The API, defined in the BookSimWrapper class, consists of four main functions:

Page 44

GeneratePacket creates a packet if there is enough space in the injection queue of the
specified node. This method needs the following information:

• An integer that identifies the source node of the packet.

• An integer that identifies the destination node of the packet.

• The packet size.

• The class of the packet, i.e., the type of message, which is used to identify the virtual
or physical network the packet belongs to.

• The queueing time of the packet in the network interface. This is the number of
cycles since the creation of the packet in the FS simulator.

GeneratePacket returns the packet ID, which is used to keep track of the packets
that are inside the network. For example, the interface for gem5 provided within BST,
implements a hash table to save the message data and the packet destination in the
Ruby domain (the memory hierarchy model of gem5). This information is then retrieved
when packets are retired from the NoC with RetirePacket, to enqueue the message in the
corresponding cache, directory, etc.

RetirePacket retires a packet from one of the ejection queues of BookSim. The type of
data that it returns is a structure called RetiredPacket which contains the packet ID, the
packet’s class and size, and statistics like the packet latency or the number of hops done.
The packet ID is used to gather the message information from the hash table mentioned
in GeneratePacket. This function is intended to iterate through until it returns a packet
with ID “-1”.

RunCycles executes the network model the number of cycles specified in its only ar-
gument. The number of cycles is an integer greater than 0. A value larger than 1 cycle
means that the NoC (BookSim) has higher frequency than the caches (FS simulator). For
example, if the value is 1, the frequency is the same in both domains, while if the value is
2, the frequency of the NoC doubles the frequency of the caches.

CheckInFlightPackets returns a boolean that indicates whether there are packets in-
side the network or not. The purpose of this function is to avoid the execution of unnec-
essary cycles in BookSim in event-driven simulators like gem5. Thus, the gem5 interface
only schedules events to run BookSim when there are packets. This is useful to reduce
computation when the network is empty.

3.2.3.B) Topology mapping

Unlike the gem5 NoC models, like Simple Network, Garnet 2.0 [Krishna2017], or Het-
erogarnet [Bharadwaj2020], BookSim ignores the topology defined in gem5. The topology
modeled in BookSim is defined in its own configuration parameters, the same ones used
when running in isolation. This way, the user has the freedom to simulate custom topolo-
gies and rearrange the nodes (caches, directories, and DMAs) as it pleases. For example,
a user can define a tile per cache, memory, or DMA, and interconnect them as desired by
just adjusting the configuration of BookSim. However, this implies that the user must be
aware of how Ruby tiles map into BookSim nodes.

Page 45

Ruby tiles typically comprise caches from different levels of the memory hierarchy.
Some of them include a memory directory, and a few may include a DMA controller too.
Figure 3.2 shows an example with a 16-tile CMP arranged in a 4× 4 mesh. There are two
types of tiles represented in light yellow and dark red. Light yellow tiles have a private
bank of L1 cache and a shared bank of L2 cache connected to a Ruby Router (RR). Dark
red tiles also include a memory directory (DIR) and a DMA controller (typically, only one
tile has a DMA controller).

R0 R1 R2 R3

R4 R5 R6 R7

R8 R9 R10 R11

R12 R13 R14 R15

R0 R1 R2 R3

R4 R5 R6 R7

R8 R9 R10 R11

R12 R13 R14 R15

BS0 BS1

BS3BS2

RUBY BOOKSIM

BS BookSim RouterR Ruby TileR

RR-0

L1-0 L2-0

DIR-0 DMA-0

RR-8

L1-8 L2-8

Figure 3.2: Example of 16-tile network mapped as a 2× 2 mesh with concentration 4 in
BookSim. The only relevant information in the Ruby domain is the location of the caches
(L1 and L2), memory directories (DIR), and DMA controllers (DMA). The interconnection
topology is ignored.

The topology configuration from gem5 specifies a tile organization in Ruby, assigning
a consecutive tile ID to each Ruby Router. The actual gem5 topology is irrelevant, since
BookSim only employs the tile ID to map the resources.

A mapping algorithm has been adapted to take into account relative location of each
resource in the NoC placement. Figure 3.2 presents an example in which tiles are arranged
in a 2× 2 mesh with concentration 4. A naive mapping using increasing tile index would
map tiles with consecutive IDs to the same router; hence, the first router (BS0) would
include two Ruby tiles with attached memory controllers (R0 and R3), altering the tile
placement in the chip. The mapping of tiles to BookSim nodes implemented in BST
preserves the location of the tiles with memory controllers in the corners of the chip.
To achieve this arrangement, the node mapping from the concentrated mesh topology in
BookSim has been modified: tiles 0, 1, 4 and 5 are connected to the first router (BS0), and
so on. BST includes support for the most frequent topologies: meshes, tori and flattened-
butterfly, with and without concentration. Users must be aware of this peculiarity when
implementing custom topologies as it may have a significant impact on their results.

3.2.4) Scripts

BST includes a set of practical scripts, most of them written in Python. The purpose of
the most relevant scripts is the automatization of the most frequent tasks, such as the
creation of experiments and the production of charts from the results. Figure 3.3 shows

Page 46

Experiment execution Plot generation

Figure 3.3: Experiment and chart generation workflow.

a diagram of the typical workflow of creating and running an experiment in BookSim
(also applicable to gem5 and OpenSMART with minor differences) and generating results
graphs. The workflow is divided into two tasks. The first task consists of defining and
launching the experiments. We consider an experiment as a set of simulations with the
same parameters, except for the injection rate in the case of synthetic traffic. The user
can define the parameters of the simulator in a JSON file. In this file there are two types
of parameters, constants and variables. The launching script generates an experiment
for each combination of parameters. The launcher generates a Comma Separated Values
(CSV) file for each experiment with its statistics. This script is specifically adapted to
run on the local machine or in a cluster with a SLURM workload manager [Yoo2003].
However, it is easily extendable to other systems.

In the second task, the user creates another JSON file to select experiment CSV
files and define the plots. The plotting script uses the Python’s Matplotlib mod-
ule [Hunter2007]. There are also scripts intended to debug the network models, visualize
the evolution of the router pipelines or analyze specific behaviors.

3.3
Other NoC evaluation tools

There are numerous open-source NoC models available besides BookSim and OpenS-
MART. Some examples are Garnet, Noxim [Catania2015], Topaz [Abad2012], CON-
NECT [Papamichael2012] or DART [Wang2014]. However, as far as we know, besides
OpenSMART only Garnet has a patch3 to include SMART, but it is not fully cycle-
accurate.

Table 3.3 summarizes the characteristics of BST and compares with the original ver-
sions of BookSim, OpenSMART and Garnet. First, Garnet and BookSim are functional
simulators while OpenSMART is a real NoC design written in Bluespec System Verilog

3SMART 1D patch for Garnet2.0 from Synergy Lab (Georgia Tech): https://synergy.ece.gatech.

edu/tools/garnet/

Page 47

https://synergy.ece.gatech.edu/tools/garnet/
https://synergy.ece.gatech.edu/tools/garnet/

(BSV). All of them have a standard IQ router model but with some differences: BookSim
has a detailed model with configurable pipeline that goes from 3 to 5 stages depending on
the optimizations enabled; OpenSMART includes a single-cycle router (which increases
to two stages when accounting for Link Traversal)4; Garnet has a configurable pipeline in
which the user can define the router delay.

Table 3.3: Current state of NoC simulators

Characteristic BST-BookSim BST-OpenSMART BookSim 2 Garnet OpenSMART

Type of model Functional BSV Functional Functional BSV

IQ Router 3/5 stage router single-cycle router 3/5 stage router 1/n-stage single-cycle router

Single-hop bypass Standard and NEBB

Multi-hop bypass SMART, SMART++ and S-SMART++ SMART SMART

Accuracy Cycle accurate Real design Cycle accurate Acc./Approx. Real design

Simulation speed Fast Moderate-Slow Fast Fast Moderate-Slow

Flexibility High Low High Moderate Low

FS integration API (gem5) GPGPUSim gem5

Regarding single-hop bypass routers, they are only available in the custom version of
BookSim included in BST. Multi-hop bypass routers are available in OpenSMART and
Garnet in their SMART 1D implementation. BST has models of SMART, SMART++ and
S-SMART++ in BookSim and OpenSMART, and BookSim also includes SMART(++) 2D
variants.

In terms of accuracy, BookSim models are cycle-accurate. BookSim’s IQ router has
been validated against a real implementation [Jiang2013] and our bypass router models
have been validated against the real designs created in OpenSMART. These validations are
presented in Sections 5.4.3.A and 6.2.3.A for SMART++ and S-SMART++, respectively.
Garnet (versions 2.0 and heterogarnet) models accurately single-cycle routers. However, to
model pipelines with more than one stage it just adds extra waiting time at the input units.
Given that SMART has a standard pipeline of 3 stages and that the patch is applied over
the previous router, this model is not cycle-accurate. BookSim and Garnet are faster and
more flexible than OpenSMART given that they are software models. Finally, regarding
the FS integration, BookSim is a standalone simulator but thanks to the BST API it
can be easily integrated in other simulators, including gem5 for which we provide the
integration code5. Garnet is a NoC model integrated within the Ruby model of gem5.
Garnet has less configurable options than BookSim because it just implements the router
and link models. Ruby implements the network topology in addition to the rest of the
elements of the memory hierarchy, which limits the scope of Garnet.

Apart from BookSim and Garnet, there are also software models to estimate frequency,
area, and power like DSENT [Sun2012] or Orion [Kahng2009; Kahng2015]. These models
are several orders of magnitude faster than RTL based estimations. The main advantage
of these type of models is that they are technology-independent, so they can be used to
characterize NoC designs under different technological parameters. The problem with this
kind of models is that they are specific for a given router micro-architecture as the router
components are built from standard cell models. Thus, implementing new models for
bypass routers, specially with multi-hop bypass that have router components substantially
different from a standard router, is a tedious task. DELPHI [Papamichael2015] is a tool

4OpenSMART also includes a Chisel version of the single-cycle router.
5Last gem5 commit tested: af8d107191cc69a77624e2af34f108dc9c1ff03f

Page 48

to automatically generate DSENT models, but as it uses RTL designs as input, it does not
avoid the process of creating them. For this reason, we only use DSENT to approximate the
hardware costs of single-hop routers, given that LA-Arb is similar to SA. To evaluate multi-
hop bypass we use Quartus to synthesize and measure the performance of SMART++ and
S-SMART++ with respect to SMART in an FPGA.

Page 49

Chapter 4
NEBB: Non-Empty Buffer Bypass

Non-Empty Buffer Bypass (NEBB) is a mechanism for bypass routers that allows the
bypass of buffers that are not empty. Thus, NEBB increases the opportunities to use the
bypass, reducing the latency at medium-high loads and HoLB (without requiring VCs),
as the bypass paths can be enabled when there are packets blocked in the buffers. This
chapter focuses on single-hop bypass router but NEBB is also applicable to multi-hop
bypass router as explained in Chapter 5.

The chapter starts describing the packet-interleaving problem in Section 4.1. Next,
Section 4.2 introduces NEBB. Section 4.4 describes the most relevant implementation
details. Then, Section 4.3 explains how to adapt NEBB to k-ary n-torus when using an
efficient deadlock avoidance flow-control. The chapter ends with an evaluation of NEBB
in Section 4.5 and a summary of the main conclusions in Section 4.6.

4.1
Packet interleaving in bypass routers

The introduction of a bypass mechanism in traditional routers is not trivial. The VC con-
trol casuistic increases considerably with respect to non-bypass routers and the bypass path
can only be enabled under certain conditions. Without the application of additional flow-
control restrictions to manage the bypass, a problem that we denote as packet-interleaving
can arise, causing data corruption or router miss-behavior that ends in a deadlock.

This section describes the packet-interleaving problem in Section 4.1.1 and the original
restrictions to avoid it in Section 4.1.2.

4.1.1) Packet-interleaving

Packet-interleaving can occur when a multi-flit packet (A) takes the bypass and there
is already another packet (B) at the front of the buffer bypassed. The issue happens
when only a part of packet A takes the bypass while the second part has to be buffered,
occupying a position behind packet B. In this situation there are two possible scenarios:

1. Packet B overwrites the routing information of packet A, which is stored in the VC
control registers, after being assigned a destination VC. Thus, the buffered part of
packet A will be miss-routed.

Page 51

2. Packet B cannot be forwarded because packet A cannot release the destination VC
until its tail flit is forwarded, causing a deadlock.

Figure 4.1 illustrates the problem caused by carelessly relaxing the bypass conditions
with an example. Specifically for this example, packets may bypass a router even when
the associated buffer is not empty, and forwarding may occur towards non-empty buffers.
In the example, there are three packets, one in each router. The following analysis focuses
on the bypass of the blue packet in R0, which travels East, while gray packets in R1 and
R2 are blocked waiting for turning South.

Cycle 1) The head of the blue packet performs ST in R0 while its LA is doing LT. The
state of V C0 is ST (active forwarding a packet), the assigned output port is O0,
and the destination VC is V C0 with 2 credits left.

Cycle 2) The packet’s head does LT, while the tail ST. At the same time, the head LA
requests the switch and the bypass of R1. The gray packet at R1 cannot advance
through the output port O1 because there are no credits, so the LA wins LA-Arb
in R1 and generates an LA for the next hop towards R2. The LA can acquire
O0 because the destination VC has at least one credit left (WH). Also, the tail
LA does LT towards R1.

Cycle 3) The head flit takes the bypass in R1 and performs ST while the tail performs
LT towards R1. Meanwhile, the head LA does LT towards R2, and the tail LA
requests the bypass of R1 but fails because there are no more credits available
for O0 towards R2.

Cycle 4) The head flit does LT, and the tail flit advances towards the buffer of I0 in R1.
However, the gray packet is at the front of the buffer, while the control registers
of the VC store the blue packet information. This situation leads to the packet-
interleaving error in the network. In this case, the gray packet will overwrite
the blue packet routing information from V0 control registers of I0 in R1 once it
moves towards O1, miss-routing the blue packet’s tail.

Cycle 5) The head of the blue packet is written in the buffer of I0 in R2.

In conclusion, the problem arises when the blue packet’s head takes the bypass at R1

when there is another packet in the buffer to bypass and only one credit left.
Figure 4.2 shows the previous example in a simplified diagram that only shows the

buffer state after propagating flits. We use this type of diagram from now on to explain
the mechanisms that avoid packet-interleaving. This type of diagram uses the following
terminology. Source refers to the initial router or buffer that contains a packet to forward.
Bypass refers to the router or buffer that an LA requests to bypass. Destination refers
to the final router or buffer of a packet. Notice that the credit information is the same
as in non-bypass routers, so the source router does not have credit information about the
destination router.

4.1.2) Avoiding packet-interleaving: empty buffer bypass

Section 2.1.3.A already mentions the 3 conditions to use the bypass proposed in [Ku-
mar2007] to avoid packet-interleaving. In summary, the most important part is that the
input buffer that receives an LA has to be empty to allow the bypass (condition 1). The

Page 52

LA-RC

LA-Arb

LA-Gen

R0

LA-RC

LA-Arb

LA-Gen

R1

LA-RC

LA-Arb

LA-Gen

R2

I0

I1

O0

O1

I0

I1

O0

O1

I0

I1

O0

O1

VC0

VC0

VC0

VC0

VC0

VC0

HT HT HTB

VA O1 0 0X VA O1 0 0XST 0 2XO0
2C 1C 0C

0C 0C 0C

H

LA-RC

LA-Arb

LA-Gen

R0

LA-RC

LA-Arb

LA-Gen

R1

LA-RC

LA-Arb

LA-Gen

R2

I0

I1

O0

O1

I0

I1

O0

O1

I0

I1

O0

O1

VC0

VC0

VC0

VC0

VC0

VC0

HT HTB

VA O1 0 0X VA O1 0 0XST 0 1XO0
1C 1C

T
H

0C

0C 0C 0C

T

H

LA-RC

LA-Arb

LA-Gen

R0

LA-RC

LA-Arb

LA-Gen

R1

LA-RC

LA-Arb

LA-Gen

R2

I0

I1

O0

O1

I0

I1

O0

O1

I0

I1

O0

O1

VC0

VC0

VC0

VC0

VC0

VC0

HT HTB

ST O0 0 0X VA O1 0 0XX X XX
0C 0C 0C

0C 0C 0C

T

H

HT

LA-RC

LA-Arb

LA-Gen

R0

LA-RC

LA-Arb

LA-Gen

R1

LA-RC

LA-Arb

LA-Gen

R2

I0

I1

O0

O1

I0

I1

O0

O1

I0

I1

O0

O1

VC0

VC0

VC0

VC0

VC0

VC0

HT HTB

ST O0 0 0X VA O1 0 0XX X XXX
0C 0C 0C

0C 0C 0C

T H

H

LA-RC

LA-Arb

LA-Gen

R0

LA-RC

LA-Arb

LA-Gen

R1

LA-RC

LA-Arb

LA-Gen

R2

I0

I1

O0

O1

I0

I1

O0

O1

I0

I1

O0

O1

VC0

VC0

VC0

VC0

VC0

VC0

HT HTB

ST O0 0 0X VA O1 0 0XX X XXX
1C 0C 0C

0C 0C 0C

T

H
T

Ti
m
e

1

2

3

4

5

VA SA VA SA VA SA

VA SA VA SA VA SA

VA SA VA SA VA SA

VA SA VA SA VA SA

VA SA VA SA VA SA

Figure 4.1: Incorrect packet-interleaving example caused by misconfigured bypass re-
strictions.

Page 53

Bypass Router Destination RouterSource Router

H BT HT T H

(a) Initial state.
Bypass Router Destination RouterSource Router

H BT HT T H

(b) First flit forwarding.
Bypass Router Destination RouterSource Router

H BT HT T H

(c) Second flit forwarding.

Figure 4.2: Buffer state of Figure 4.1 showing a packet-interleaving example.

second and third conditions, which ignore LAs in case of a conflict with another LA or
local flit, are optional when using LA-Arb. However, the authors of these papers use
the term free VC when they refer to the state of the destination VC when forwarding
packets. This term is ambiguous as it can mean that the destination VC has to be empty
or just available, i.e., not in use by another packet and with at least one slot free. Both
alternatives are valid to avoid packet-interleaving, but the large number of VCs and the
implementation of dynamic shared buffers suggest the first meaning as this type of imple-
mentation mitigates the buffer under-utilization of requiring empty VCs. This Chapter
explores the implications of both alternatives. Next, we describe both mechanisms.

4.1.2.A) Empty VC Forwarding

Empty VC Forwarding (EVCF) consists of allowing packet forwarding only when there is a
destination VC available (not in use by another packet) and empty. This mechanism forces
buffers to only store one packet at a time, avoiding the possibility of packet-interleaving.
The example depicted in Figure 4.3 shows an example of empty VC forwarding. In this
case, the blue packet takes the bypass of the bypass router because its buffer and the
destination one are empty.

Bypass Router Destination RouterSource Router

T H

(a) Initial state.
Bypass Router Destination RouterSource Router

HT

(b) Packet forwarding.

Figure 4.3: Empty VC Forwarding (EVCF) example.

This mechanism does not impose any space requirements in the buffers, in other words,

Page 54

the minimum buffer space is 1 flit. Additionally, buffer sizes greater than the maximum
packet size do not make sense.

4.1.2.B) Empty Buffer Bypass

Empty Buffer Bypass (EBB) only allows the bypass if the buffer to bypass is empty and in
other state than active, i.e., the VC is not currently forwarding another packet. A buffer
can be empty in active state when a packet is fragmented because of WH. Figure 4.4 shows
examples of empty buffer bypass in different situations. In the example, the blue packet
takes the bypass in the bypass router because its buffer is empty and there is at least room
for one flit in the destination buffer. Like EVCF, this mechanism does not impose any
space requirements in the buffers. However, this mechanism does not limit the maximum
buffer size as buffers can have multiple packets simultaneously. In both mechanisms, it is
not a problem if only one part of the packet takes the bypass since the second part will
be stored at the front of the bypass buffer.

Bypass Router Destination RouterSource Router

H TT H

(a) Initial state.
Bypass Router Destination RouterSource Router

H T HT

(b) Packet forwarding.

Figure 4.4: Empty Buffer Bypass (EBB) example.

4.2
Non-Empty Buffer Bypass

Non-Empty Buffer Bypass (NEBB) is a mechanism that improves the efficiency of the
bypass overcoming the limitations of Empty VC Forwarding (EVCF) and Empty Buffer
Bypass (EBB). As the name itself indicates, NEBB allows taking the bypass path even
when the buffer to bypass is not empty. EVCF and EBB need to use a considerable number
of VCs to benefit from the network’s bandwidth and the bypass paths to guarantee that
free VCs are available for bypassing when other packets are blocked. NEBB mitigates such
Head of Line Blocking without requiring many VCs, by bypassing routers with non-empty
blocked input buffers.

We propose three versions of NEBB inspired in the WH and VCT flow controls. These
are: NEBB-WH, NEBB-VCT and NEBB-Hybrid. They are detailed and discussed in the
next subsections. In all versions, the buffer to bypass has to be in a state other than active
to allow the bypass.

Page 55

4.2.1) NEBB-WH

NEBB-WH is based on WormHole, hence the allocations of the switch and the bypass
paths are done in a flit by flit basis. It sets two conditions to avoid packet-interleaving:

1. If the packet being considered is single-flit, then it can take the bypass as long as
there is space in the destination VC.

2. If the packet is multi-flit, then it can take the bypass only if the buffer to bypass is
empty (similarly to EBB).

Figure 4.5 shows multiple examples of NEBB-WH. These examples are a representation
of the most common situations in terms of buffer occupation.

Bypass Router Destination RouterSource Router

HT T HB
Bypass Router Destination RouterSource Router

H T HT B

(a) Multi-flit packet, partial room in destination VC.

Bypass Router Destination RouterSource Router

H T HB T HB
Bypass Router Destination RouterSource Router

H BT HBT H

(b) Single-flit packet example.

Bypass Router Destination RouterSource Router

H T HT T H
Bypass Router Destination RouterSource Router

H T HT T H

(c) Multi-flit packet, room for the whole packet in destination VC.

Figure 4.5: Examples of NEBB-WH.

The first example (Figure 4.5a) shows the case of a multi-flit packet trying to take
the bypass in the bypass router when its buffer is empty. The second condition applies
in this situation, so that the first two flits of the packet take the bypass, and the last flit
is buffered in the bypass router. Despite the packet being fragmented in two routers, the
second part is at the front of the buffer so it cannot lose the routing information from the
VC control registers.

The second example (Figure 4.5b) depicts a single flit-packet, and the bypass and
destination routers have their buffers almost full with just one slot left. The first condition
applies in this case, so the packet takes the bypass because it has only one flit.

Page 56

In the third example (Figure 4.5c), there is a two-flit packet, and the bypass and
destination buffers have two slots left. In this case, the packet cannot take the bypass
because the packet has two-flits and the bypass buffer is not empty.

Summarizing, NEBB-WH is an incremental version of EBB that allows the bypass of
single-flit packets independently of the occupation of the buffer to bypass. The imple-
mentation cost is negligible and only requires an additional multiplexer controlled by the
packet size so that single-flit packets ignore the occupation of the bypass buffer (following
the terminology used in the figures).

4.2.2) NEBB-VCT

NEBB-VCT is based on Virtual Cut-Through, so the switch and the bypass acquisition
are carried out on a packet by packet basis. The conditions that LAs must meet in the
bypass router are the following:

1. The bypass path is not already granted to another packet.

2. The destination VC has enough space for the whole packet.

Figure 4.6 depicts the same examples used in Section 4.2.1, but in this case when
applying NEBB-VCT.

Bypass Router Destination RouterSource Router

HT B T H
Bypass Router Destination RouterSource Router

HT B T H

(a) Multi-flit packet, partial room in destination VC.

Bypass Router Destination RouterSource Router

H BT H BT H
Bypass Router Destination RouterSource Router

H BT HBT H

(b) Single-flit packet example.

Bypass Router Destination RouterSource Router

H T HT T H
Bypass Router Destination RouterSource Router

HT T HT HT H

(c) Multi-flit packet, room for the whole packet in destination VC.

Figure 4.6: Examples of NEBB-VCT.

Page 57

In the first example (Figure 4.6a), the blue packet has three flits while the destination
buffer only has two free slots. Therefore, following the second condition, the packet cannot
take the bypass in the bypass router.

In the second case (Figure 4.6b), the single-flit packet can take the bypass like in
NEBB-WH, because there is one slot left in the destination router.

In the third example (Figure 4.6c), the blue packet has two flits and the destination
buffer has two slots. Thus, the packet ignores the occupation of the bypass buffer, taking
the bypass. According to VCT, to forward the packet from the source to the bypass router,
the bypass buffer has to have at least two free slots.

NEBB-VCT can be implemented in networks with both WH and VCT in the standard
pipeline. In VCT networks, the implementation is straightforward as the arbitration is
carried out packet-by-packet. In WH networks, the router locks the bypass path when
the head LA of a packet wins LA-Arb and releases the lock when the corresponding flit
performs ST.

Figure 4.7 is an example that shows NEBB-VCT with WH in the standard pipeline.
The initial state shows that there is only space for the head flit of the blue packet in the
bypass router, but there is room for both flits in the destination router. In this situation,
the packet can use the bypass. The bypass has to be locked until the tail blue flit traverses
the bypass router, ignoring any other request to the same output port from LAs or local
flits.

Bypass Router Destination RouterSource Router

H T HT BT H
Bypass Router Destination RouterSource Router

H

T HT H

Figure 4.7: Bypass path lock or hold for the packet.

The implementation of NEBB-VCT is simple, specially when using VCT. It requires
an extra lock register per input unit to hold the bypass path for the whole packet. This
lock register stores the VC ID when an LA wins LA-Arb and frees it when the tail of the
packet traverses the bypass. VCT already holds the switch for the packet so no additional
logic is required. In LA-Arb, before requesting the bypass and the switch, the router
checks the lock register status. Note that with VCT there are only LAs for head flits. In
the case of applying NEBB-VCT over WH, the router has to check if the VC assigned to
the LA of body flits matches the VC stored in the corresponding lock register. If there is
a match, it means that the packet is holding the bypass and the switch. The router also
needs a lock register per output port at LA-Arb to hold the switch for the input VC. This
is to avoid the reallocation of the output port to a local flit located in the same input unit
but in another VC.

4.2.3) NEBB-Hybrid

NEBB-Hybrid combines NEBB-WH and NEBB-VCT to maximize the bypass utilization.
It uses the conditions of NEBB-WH or NEBB-VCT, depending on the occupation of the

Page 58

bypass and destination buffers. To combine both mechanisms, NEBB-Hybrid uses WH in
the standard pipeline. Next, are listed the conditions in which each mechanism is used to
take the bypass:

1. (NEBB-WH or NEBB-VCT) If the packet has one flit and there is a destination VC
available with at least one free slot.

2. (NEBB-WH) If the packet has more than one flit, the bypass buffer is empty, the by-
pass path is not locked for another packet, and there is a destination buffer available
with at least one free slot.

3. (NEBB-VCT) If the bypass buffer is not empty and there is a destination buffer
available with enough space for the whole packet. In this case the bypass is locked
for the packet as mentioned in Section 4.2.2.

Figure 4.8 depicts the same example scenarios used previously for NEBB-WH and
NEBB-Hybrid, but applied to NEBB-Hybrid.

Bypass Router Destination RouterSource Router

HT T HB
Bypass Router Destination RouterSource Router

H T HT B

(a) Multi-flit packet, partial room in destination VC.

Bypass Router Destination RouterSource Router

H BT H BT H
Bypass Router Destination RouterSource Router

H BT HBT H

(b) Single-flit packet example.

Bypass Router Destination RouterSource Router

H T HT T H
Bypass Router Destination RouterSource Router

HT T HT HT H

(c) Multi-flit packet, room for the whole packet in destination VC.

Figure 4.8: Examples of NEBB-Hybrid.

In the first scenario (Figure 4.8a), the three-flit packet takes the bypass in the bypass
router as the situation meets the second condition. In the second scenario (Figure 4.8b),
the packet has one flit and there is enough room at the destination buffer, so the packet
takes the bypass following the first condition. The third example (Figure 4.8c) shows a

Page 59

two-flit packet and the bypass and destination buffers have two empty slots. The packet
could progress to the bypass router with just one empty slot, but in this case, it also takes
the bypass because the destination buffer has room for the whole packet as stated in the
third condition. The bypass path has to be locked for the packet.

The implementation of NEBB-Hybrid is slightly more complex than the other two
alternatives because of the number of conditions to check. The decisions depend on four
control values, instead of three like in NEBB-WH and NEBB-VCT: the packet size, the
state of the bypass and destination buffers, and the lock register of the bypass and switch
when using NEBB-VCT. To hold the switch like NEBB-VCT over WH, LA-Arb needs a
lock register per output port to hold the switch for the whole packet when it is granted
following the third condition. Besides, NEBB does not require VCs to achieve a high
bypass utilization and throughput (see Section 4.5), so there is a wide margin to simplify
the VC logic if required to meet timing requirements.

4.2.4) NEBB summary

Table 4.1 summarizes the buffer conditions under which each of the bypass mechanisms
can be applied. It employs the same terminology as the previous figures: bypass buffer
refers to the router buffer in which the packet or flit takes the bypass, and destination
buffer is the one that receives it after taking the bypass.

Table 4.1: Bypass buffer conditions for different mechanisms. VCT and NEBB-VCT
require buffers of size, at least, equal to the maximum packet size. NEBB-Hybrid can
work with buffers even of just 1 flit, but packets with a greater size than the buffer can
not take the bypass following NEBB-VCT.

Bypass buffer occupation Empty Not empty

Packet size Single-flit Multi-flit Single-flit Multi-flit

Destination buffer space ≥ 1 flit ≥ packet < packet ≥ 1 flit ≥ packet < packet

VCT (EVCF & EBB) 3 3

WH (EVCF & EBB) 3 3 3

NEBB-WH 3 3 3 3

NEBB-VCT 3 3 3 3

NEBB-Hybrid 3 3 3 3 3

The first two rows are traditional implementations of bypass routers. VCT refers to
a version with VCT in the standard pipeline. VCT only allows taking the bypass when
the bypass buffer is empty, and the destination buffer is empty (EVCF) or has space for
the whole packet (EBB). WH refers to a version with WH in the standard pipeline. To
enable the bypass path, it requires that the bypass buffer is empty, and the destination
buffer is empty (EVCF) or has space for at least one flit (EBB).

Regarding NEBB, NEBB-WH allows taking the bypass when the bypass buffer is empty
or the packet size is one flit. NEBB-VCT allows using the bypass when the destination
buffer has room for the whole packet. NEBB-Hybrid is the mechanism that covers the
largest number of cases. It allows bypassing the bypass buffer when it is empty indepen-
dently of the available space in the destination buffer, and when it is not empty and there
is space for the whole packet in destination buffer.

Page 60

4.3
NEBB in tori with bubble-based flow control

This section presents a study of the implementation of NEBB in tori with bubble-based
flow control. To the best of our knowledge, traditional single-hop bypass routers have only
been evaluated in mesh topologies. Tori are interesting because they present lower average
distances and larger bisection bandwidths than meshes, and they are also node symmetric
as discussed in Section 1.4.1. As mentioned in Section 1.4.2, Bubble-based flow controls
are efficient deadlock avoidance mechanisms for tori that do not require VCs.

Implementing bubble-based flow controls in NEBB bypass NoCs is not straightfor-
ward. We focus on Flit Bubble Flow Control (FBFC) [Ma2015] as it works in a flit-by-flit
basis like NEBB-Hybrid. In particular, we focus on FBFC-L (Localized). It requires a
destination buffer with enough room for the whole packet plus one flit (the bubble) when
injecting it or forwarding it to a different dimension. This guarantees that at least one flit
slot is always empty in every ring of the torus.

As mentioned in Section 2.1.3.D, the switch allocator in single-hop bypass often em-
ploys a two-stage implementation form by SA-I and SA-O [Kumar2008; Krishna2010].
Simple round-robin (RR) arbiters are often used. RR input arbiters cycle through all
available VCs, selecting one at a time consecutively. If one of the output VCs is not
available (for example, there are no credits in the destination VC) it cannot win SA-O,
wasting one cycle. Also, such implementation inherently multiplexes packet flits, gener-
ating packet holes in WH, i.e., flits of the same packet are not forwarded in consecutive
cycles. However, the benefit of such implementation is that it simplifies the router design,
since output availability does not need to be propagated to the inputs.

Holes are undesirable when VCT is used in the bypass of NEBB-Hybrid as it locks the
bypass for the whole packet, blocking other packets. To minimize them, we use a variable
priority input arbiter to give priority to body flits, selecting the same VC until the packet
tail flit is forwarded, similar to VCT. However, this might introduce performance and
deadlock issues when WH and VCT are combined. First, a packet may be forwarded
using WH without space at the destination buffer for the complete packet, introducing
delays until the buffer becomes available. Second, a direct implementation introduces a
dependence between input VCs, which might generate a deadlock. This may happen when
a fragmented packet tries to access SA-O, but there is another packet blocked in SA-O
waiting for credits. If at the same time there is a packet in the downstream router in a
similar situation, it may prevent releasing space for the blocked packet in the upstream
router. The deadlock is produced when this situation occurs in all the routers of a ring of
the tori.

Figure 4.9 illustrates an example in of the potential deadlock when using NEBB in a
torus. The configuration presented has three routers forming a ring (1D-Torus), unidirec-
tional in this case for simplicity. Every packet in the example has two flits and requires
two hops to reach the destination router. Each packet is represented with a different color
and is identified by a letter, its source and destination: Xsrc,dst, where X is the identifier,
src the source and dst the destination.

Figure 4.9a depicts the initial state, where two packets are injected in each router: A
and B in R0; C and D in R1; and E and F in R2. The FBFC-L condition is satisfied
in every case because the destination VCs have room for three flits (two flits plus the
bubble).

Figure 4.9b represents the state of the routers after injecting the packets into the ring.

Page 61

BBT

R2

BBT

R0

BBT

R1

C1,0C1,0

D1,0D1,0

A0,2A0,2

B0,2B0,2

E2,1E2,1

F2,1F2,1

(a) Initially each router injects two packets.

BBT

R2

BBT

R0

BBT

R1

A0,2A0,2

B0,2B0,2

C1,0C1,0

D1,0D1,0

E2,1E2,1

F2,1F2,1

G1,0G1,0

(b) R1 injects packet G after sending packet D to R0.

BBT

R2

BBT

R0

BBT

R1

A0,2A0,2

B0,2B0,2

C1,0C1,0E2,1E2,1

F2,1 G1,0G1,0

D1,0D1,0

F2,1

(c) SA-I winners: E in R0, A in R1 and D in R2.

BBT

R2

BBT

R0

BBT

R1

A0,2A0,2

B0,2B0,2

C1,0C1,0E2,1E2,1

F2,1F2,1 G1,0

D1,0D1,0G1,0

(d) F wins in R0 and F in R2 producing a deadlock.

Figure 4.9: Switch allocator deadlock in Torus (ring) using FBFC. Packets have two
flits. They are represented with different colors and letters (Xsrc,dst, where X the packet
identifier, src the source router and dst the destination router).

Page 62

In this situation, there is a conflict between VCs in SA-I of each router. We assume that
the winners are: E in R0, A in R1 and D in R2; and they choose the first VC of R1, R2

and R0, respectively. Also, R1 will inject a new packet, G, after D frees the second VC of
R2.

The new state of the routers is depicted in Figure 4.9c. In this case, F wins in R0 and
G in R2. G chooses the first VC of R0 and F the second VC of R1.

Finally, Figure 4.9d shows the deadlock. In R0, F locks SA-I but cannot progress
because the second VC of R1 is full. The same occurs with A in R1. B cannot advance
to R2 despite there is space the second VC because SA-I is locked by A. In R2, the lack
of space in the first VC of R0 blocks G, and G blocks C the access to SA-I.

The solution is simple, instead of holding SA-I for body flits, we give priority to body
flits temporally to minimize packet holes as before. However, a flit loses the priority when
it does not advance to SA-O. Thus, in the next cycle the RR arbiter can choose the next
candidate in SA-I breaking the input VC dependency.

4.4
Implementation details

This section addresses implementation considerations when designing single-hop bypass
routers.

4.4.1) Credit management using shared buffers

In Section 2.1.3.C we mention that the original single-hop bypass NoC proposals use VC
Selection (VS) instead of VC Allocation (VA). However, we use VA based on credits to
simplify the comparison with standard routers, since in fact, our simulation models rely
on credits. This requires some adjustments in the credit management when using shared
buffers to tolerate the round-trip delay of credits.

Shared buffers [Tamir1992; Nicopoulos2006] are very important when implementing
EVCF to rise performance without wasting buffer space. The credit accounting with this
type of buffer has to consider the flow control mechanism applied in the standard and
bypass paths. When a router forwards a packet following VCT, it has to decrease the
credit count by the packet size in advance. Otherwise, the forwarding of another packet
to the same output port following WH may invade slots initially intended for the first
packet. This only affects NEBB-Hybrid and NEBB-VCT over WH. The implementation
needs an extra multiplexer in each output unit to select the value to decrement from the
credit count, depending on the bypass conditions used. Credit forwarding and reception
are the same as in a traditional WH router.

In NEBB-VCT over VCT, the forwarding and control of credits follow a packet-basis
management. Credits need an extra field to indicate the packet size that is moving from
the buffer so that the upstream router can increase the credit count by this value.

4.4.2) VC Selection in NEBB

Although the proposed router architecture uses VA, NEBB is compatible with VC Selection
(VS). As a remainder, VS combines a pool of free VCs together with on/off signaling and
a VC Selector to reduce the length of the input path that may determine the critical path.

Page 63

To use this idea in NEBB, instead of using free VC signals, it employs avail VCs signals
to indicate if there is an available VC, i.e., not in use by another packet, with enough
slots to store a whole packet. In the case of NEBB-VCT and NEBB-Hybrid, they require
one avail VC signal per packet size to perform VCT forwarding when bypassing a whole
packet.

4.4.3) Bypass in torus using Flit Bubble Flow Control and shared
buffers

Section 4.3 addresses the issue of combining FBFC and single-hop bypass due to the
separation of SA in two stages. The example used in that section analyzes the problem
with private buffers. However, implementing shared buffers introduces another deadlock
source. The bubble condition is checked when the head of the packet is forwarded.

Consider a shared buffer with space for exactly two packets. Two packets are for-
warded, interleaved in the same physical channel, and both obey the condition when their
head is sent. However, when they are fully received, the bubble disappears.

This issue is solved by decrementing the whole packet size when the head of a packet
changes the traveling direction or dimension. This is similar to the previous solution
presented in 4.4.1 when combining WH and VCT. Therefore, when using NEBB-Hybrid
with shared buffers in tori, credits are decremented by the whole packet in two cases: when
forwarding multi-flit packets using VCT and for injection and dimension change using any
flow control mechanism.

4.5
Evaluation

This section evaluates the three variants of NEBB, with special emphasis on NEBB-
Hybrid. Section 4.5.1 describes the experimental setup, Section 4.5.2 evaluates the mech-
anisms with synthetic traffic, and Section 4.5.3 evaluates them with real traffic from full
system simulations.

4.5.1) Experimental setup

To evaluate NEBB flow control mechanisms we use the BookSim version of BST presented
in Chapter 3. We also use DSENT [Sun2012] to estimate the dynamic power consumption.
We model 64-node networks, arranged as 8 × 8 mesh or torus topologies. The router
employs a two-stage SA similar to [Kumar2008; Krishna2010] to balance pipeline stages.
Priority is given to LAs over buffered flits. In the standard router path, priority is given
to body flits as mentioned in Section 4.3. Simulation parameters are shown in Tables 4.2
and 4.3, unless otherwise noted in the text.

Six bypass flow control mechanisms are evaluated. EVCF, including LA-Arb like the
router architecture described in Section 2.1.1. Baseline w/o Arb implements EBB but
does not include LA-Arb, ignoring LAs when there are conflicts with other LAs or local
flits, resembling the architecture of [Kumar2007]. Baseline implements EBB with LA-Arb.
Additionally, we evaluate the three variants of NEBB introduced in Section 4.2: NEBB-
WH, NEBB-VCT (employing VCT in the non-bypass pipeline) and NEBB-Hybrid.

Page 64

Table 4.2: Default simulation parameters.

General parameters

Topology 8× 8 mesh or torus

Link latency 1 cycle

Router architecture 2/4-stage bypass router (accounting LT)

Router size 5 ports

Packet size 1 and 5 flits

Buffer implementation Shared (DAMQ, [Tamir1992])

Buffer size 12 flits (1 private flit per VC)

Routing DOR

SA input arbiters 8 Round Robin arbiters, #VCs:1

SA output arbiters 8 Matrix arbiters, 8:1

LA arbiters 8 Matrix arbiters, 8:1

VA policy Highest number of credits

Channel width 128 bits

Experiments use synthetic and real traffic. For synthetic traffic we use both single-flit
packets or bimodal traffic. Bimodal traffic resembles a coherence protocol using packets
of one (control) and five (data) flits. A single-flit packet ratio of 80% is used [Ma2012;
Ma2015]. The default traffic pattern injected is random-uniform, but we also evaluate
bit-complement, tornado, transpose and hotspots in the corners of the layout (nodes 0, 7,
56 and 63). We focus on the most relevant performance metrics, which are average packet
latency, dynamic power, and percentage of buffered flits. The latter divides the number of
times a flit is buffered by the total number of times it is forwarded, averaged for all flits.

We use gem5 [Binkert2011] to generate the real traffic from FS simulations. We simu-
late a tiled system with 64 Out-Of-Order (O3) ARM CPUs with private L1s and a shared
L2 distributed among the tiles. We use Virtual Networks (VN) to avoid protocol-deadlock.
Each VN has one VC, except for the case of EVCF in the torus, which requires 2 VCs
to avoid routing-deadlock using Dateline [Dally2003]. We run the PARSEC suite [Bi-
enia2008] with the simlarge input set for every benchmark to have enough workload for
the 64 cores. Because of the excessive simulation time of the whole benchmarks, we collect
the results after executing the first 100 million cycles.

To estimate dynamic power with DSENT we have implemented an approximated model
of a bypass router micro-architecture based on the default four-stage router model of
DSENT. The first part of the approximation consists in multiplying the dynamic power
of the buffers and allocators of the default router model by the ratio of buffered flits
over all the received flits per router reported by BookSim. The second part approximates
the consumption of the switch allocators and LA-Arb. LA-Arb is very similar to SA-O.
Therefore, the power consumption of LA-Arb equals the power of SA-O. In this case we
do not apply any correction factor because these arbiters are used for every LA, and one
LA is received for each flit. We omit the consumption of extra control logic (such as the
checks of the packet size, the occupancy of the buffer to bypass, etc) as it is negligible
compared to the consumption of the buffers, crossbar or arbiters, and can be reduced by
using VS plus avail vc signaling.

Page 65

Table 4.3: Parameters for each simulation type.

Synthetic traffic parameters

Num. VCs 2

Simulation cycles 50.000 cycles

Full-system parameters

CPUs 64x O3 ARM @ 2 GHz (DerivO3CPU)

L1 caches 32KB (L1-I) and 64KB (L1-D) per core

L2 caches 64x 256KB shared banks

Memory controllers 16 (first and last rows)

Num. VCs 3 (1 per virtual network)

NoC frequency 2 GHz

Simulation cycles 108 cycles

DSENT parameters

Frequency 2 GHz

Technology Tri-Gate 11nm LVT process

Packets are able to take the bypass path in their injection routers. This is possible
by creating and sending LAs from nodes to injection routers before forwarding the corre-
sponding flits. BookSim implements this by adding one extra cycle to flit injection links
so that LAs arrive one cycle before flits. Link latency is one cycle except for injection
links, which is 2 cycles for flits and 1 cycle for LAs. The rest of the links of the network
have a latency of one cycle.

4.5.2) Synthetic traffic analysis

This evaluation focuses on comparing the different single-hop router bypass mechanisms
with synthetic traffic. It starts comparing EVCF, which is the mechanism used in the most
relevant works about bypass routers [Kumar2007; Kumar2008; Krishna2010; Krishna2013;
Kwon2017] and the baseline for the rest of the section, EBB, which is a more efficient
mechanism (see Section 4.5.2.A). Next, we evaluate the performance and efficiency of
NEBB using single-flit packets and bimodal traffic in meshes and tori. The last part
carries out two sensitivity analyses, to the buffer configuration and the bypass priority
policy.

4.5.2.A) Empty VC Forwarding vs Empty Buffer Bypass

Figure 4.10 compares the two bypass flow control mechanisms described in Section 4.1.2:
Empty VC Forwarding (EVCF) and Empty Buffer Bypass (EBB). As a reminder, the
difference between them is that EVCF only forwards packets when destination buffers are
empty. Both mechanisms have LA arbiters because it is the configuration with the best
results, as shown in Section 4.5.2.B. Bimodal traffic formed of 1-flit and 5-flit packets is
used in all cases.

Page 66

Bypass Mechansims | #VCs
EVCF | 1
EBB | 1

EVCF | 2
EBB | 2

EVCF | 4
EBB | 4

EVCF | 8
EBB | 8

EVCF | 16
EBB | 16

0 10 20 30 40
Offered load (%)

0

10

20

30

40

Pa
ck

et
 L

at
. (

Cy
cle

s)

(a) DAMQ. Total size: 10 flits.

0 10 20 30 40
Offered load (%)

0

10

20

30

40

Pa
ck

et
 L

at
. (

Cy
cle

s)

(b) DAMQ. Total size: 20 flits.

0 10 20 30 40
Offered load (%)

0

10

20

30

40

Pa
ck

et
 L

at
. (

Cy
cle

s)

(c) Private VC. VC size: 5 flits.

0 10 20 30 40
Offered load (%)

0

10

20

30

40

Pa
ck

et
 L

at
. (

Cy
cle

s)

(d) Private VC. VC size: 10 flits.

Figure 4.10: Packet latency in an 8× 8 mesh with Empty VC Forwarding (EVCF) and
Empty Buffer Bypass (EBB), using bimodal traffic.

Figures 4.10a1 and 4.10b employ shared buffers (DAMQ) with space for 10 and 20 flits,
respectively. Clearly, EBB is better with 1, 2 and 4 VCs. It is particularly notorious the
low throughput of EVCF with 1 and 2 VCs. EBB with a single VC is even better than
EVCF with 4 VCs. With 8 or more VCs, the improvement of EBB runs out, providing
similar results in both configurations. Figures 4.10c and 4.10d have a private buffer per
VC with room for 5 and 10 flits, respectively. Again, EBB is better for 1 to 4 VCs, and
similar with 8 and 16 VCs.

EBB is clearly better than EVCF when the number of VCs and their buffer size are
low. Reducing the number of VCs and the buffer space is crucial for reducing power
consumption and area of NoC designs. For this reason and to be conservative when
comparing NEBB, we use EBB as our baseline in the next sections.

4.5.2.B) NEBB using Single-Flit Packets

Figure 4.11 compares packet latency, buffered flits and dynamic power of each bypass
mechanism; lower values are better in all the cases. These first evaluations use single-flit
traffic, therefore, all NEBB variants are equivalent. Due to the small packet size, the
configurations with shared buffers have only 6 slots.

The percentage of buffered flits in 4.11b grows with the network load. Baseline w/o Arb
stores packets when the buffers are non-empty, or there are LA conflicts (it discards LAs
in such case) like in [Kumar2007]. The Baseline model is similar, but one LA proceeds
in case of conflict, reducing the use of buffers. In NEBB, buffers are only used when
conflicts occur, and not because of non-empty buffers, minimizing the buffer utilization.

1Figure 4.10a does not have results with 16 VCs because each VC needs a private slot and the DAMQ
only has 10 flits.

Page 67

Baseline w/o Arb Baseline NEBB

0 10 20 30 40
Offered load (%)

0

10

20

30

40

Pa
ck

et
 la

t.
(C

yc
le

s)

(a) Packet latency.

0 20 40
Offered load (%)

0

20

40

Bu
ffe

re
d

fli
ts

 (%
)

(b) Buffered flits.

0 20 40
Offered Load (%)

0

2

4

6

Dy
n.

 P
ow

er
 (m

W
)

(c) Router dynamic power.

Figure 4.11: 8 × 8 mesh performance and efficiency with single-flit random-uniform
traffic, a DAMQ of 6 flits and 2 VCs.

This translates into latency and power savings, particularly at intermediate and high
loads. For example, at 28% load, NEBB reduces Baseline w/o Arb latency by 24.5%
and buffered flits by 75.5%. From these values, 14.6% and 31.2% respectively come from
the LA arbiter, as observed in Baseline results. Regarding dynamic power, NEBB saves
23.6% over Baseline w/o Arb at 28% load.

Figure 4.12 shows the latency, throughput and buffered flits of Baseline and NEBB
using routers with minimal buffering. These configurations do not have VCs (i.e., equiv-
alent to 1 VC), and the input buffers have 2, 3, or 4 slots. NEBB reduces the number of
buffered flits under these conditions at 28% load by 27.3%, 46.5% and 69.9% for 2, 3, and
4 slots respectively. Increasing the bypass utilization also reduces HoLB as fewer packets
use the buffers and packets may take the bypass if an input VC is blocked. This has a
positive effect in throughput. Thus, NEBB achieves 7.9%, 12.3%, 17.7% more throughput
than Baseline for 2, 3, and 4 slots, respectively.

Bypass mechanism | Buffer size
Baseline | 2
NEBB | 2

Baseline | 3
NEBB | 3

Baseline | 4
NEBB | 4

0 10 20 30
Offered load (%)

0

10

20

30

40

Pa
ck

et
 la

t.
(C

yc
le

s)

(a) Average packet latency.

0 10 20 30 40
Offered load (%)

0

20

40

Bu
ffe

re
d

fli
ts

 (%
)

(b) Buffered flits.

0 20 40
Offered Load (%)

0

2

4

Dy
n.

 P
ow

er
 (m

W
)

(c) Router dynamic power.

Figure 4.12: Performance of bypass routers in an 8 × 8 mesh with single-flit random-
uniform traffic, and minimal buffering without VCs.

4.5.2.C) NEBB Flow Control and Hybrid

Figure 4.13 compares the NEBB alternatives using bimodal traffic. The three NEBB
variants outperform the baselines, and NEBB-Hybrid presents the best results since it
maximizes the cases in which the bypass is used.

Page 68

Baseline w/o Arb Baseline NEBB-WH NEBB-VCT NEBB-Hybrid

0 10 20 30 40
Offered load (%)

0

10

20

30

40
Pa

ck
et

 la
t.

(C
yc

le
s)

(a) Packet latency.

0 20 40
Offered load (%)

0

20

40

60

Bu
ffe

re
d

fli
ts

 (%
)

(b) Buffered flits.

0 20 40
Offered Load (%)

0

5

10

Dy
n.

 P
ow

er
 (m

W
)

(c) Router dynamic power.

Figure 4.13: 8×8 mesh performance and efficiency with bimodal uniform-random traffic,
a DAMQ of 12 flits and 2 VCs.

Both NEBB-WH and NEBB-VCT present similar results. VCT has a slightly lower
throughput, which translates into slightly lower power results after saturation as the vol-
ume of traffic is lower. NEBB-Hybrid has the best results in latency, buffered flits and
dynamic power. Before saturation, at a load around 27%, the reductions over Baseline
are 14.5%, 59.9%, and 34.3%, respectively.

Figure 4.14 depicts the buffer utilization for different traffic patterns. The results
are similar to the previous ones with random-uniform traffic, with NEBB mechanisms
improving the utilization of the bypass. NEBB-VCT has the lowest buffer utilization
among the NEBB mechanisms. However, the reason is that it has slightly less throughput
than the rest, stopping the growth of the buffer utilization earlier.

Baseline w/o Arb Baseline NEBB-WH NEBB-VCT NEBB-Hybrid

0 10 20 30
Offered load (%)

0

10

20

30

Bu
ffe

re
d

fli
ts

 (%
)

(a) Bit-complement.

0 20
Offered load (%)

0

20

40

Bu
ffe

re
d

fli
ts

 (%
)

(b) Tornado.

0 10 20
Offered load (%)

0

10

20

30

Bu
ffe

re
d

fli
ts

 (%
)

(c) Transpose.

0 2 4
Offered load (%)

0

25

50

75

Bu
ffe

re
d

fli
ts

 (%
)

(d) Hotspot.

Figure 4.14: Buffered flits in an 8× 8 mesh for different traffic patterns, using bimodal
traffic, a DAMQ of 12 flits and 2 VCs.

4.5.2.D) NEBB in Torus networks

Figure 4.15 depicts results of the bypass flow control mechanisms in tori. All the mech-
anisms utilize FBFC except for NEBB-VCT, which relies on Bubble flow control [Car-
rion1997] since all the allocation is carried out at the packet level.

In general, base latency is lower than in the mesh, and throughput almost doubles,
proving that FBFC and bypass routers with shared buffers operate correctly together.
FBFC presents better results than Bubble flow control, with NEBB-VCT presenting sim-
ilar latency than Baseline. Once more, NEBB-Hybrid has the best results, improving
latency over Baseline by 54.1% and dynamic power by 23.8% at 40% load.

Page 69

Baseline w/o Arb Baseline NEBB-WH NEBB-VCT NEBB-Hybrid

0 20 40 60
Offered load (%)

0

10

20

30

40

Pa
ck

et
 la

t.
(C

yc
le

s)

(a) Average packet latency.

0 20 40 60
Offered load (%)

0

20

40

60

Bu
ffe

re
d

fli
ts

 (%
)

(b) Buffered flits.

0 20 40 60
Offered Load (%)

0

5

10

15

Dy
n.

 P
ow

er
 (m

W
)

(c) Router dynamic power.

Figure 4.15: Performance of an 8× 8 torus with bimodal uniform traffic, a DAMQ of 12
flits and 2 VCs.

Figure 4.16 shows buffer utilization results for various traffic patterns. NEBB always
writes fewer flits in the buffers than the baselines. Like occurs in the mesh, NEBB-VCT
has the lowest buffer utilization among the NEBB mechanisms. In this case, it is more
appreciable that NEBB-VCT achieves less performance than the others in Figure 4.15a,
given that it uses Bubble flow control instead of FBFC.

Baseline w/o Arb Baseline NEBB-WH NEBB-VCT NEBB-Hybrid

0 10 20
Offered load (%)

0

10

20

30

40

Bu
ffe

re
d

fli
ts

 (%
)

(a) Bit-complement.

0 20
Offered load (%)

0

20

40

Bu
ffe

re
d

fli
ts

 (%
)

(b) Tornado.

0 10 20
Offered load (%)

0

10

20

30

Bu
ffe

re
d

fli
ts

 (%
)

(c) Transpose.

0 2 4
Offered load (%)

0

20

40

60

80

Bu
ffe

re
d

fli
ts

 (%
)

(d) Hotspot.

Figure 4.16: Buffered flits in an 8× 8 torus for different traffic patterns, using bimodal
traffic, a DAMQ of 12 flits and 2 VCs.

4.5.2.E) Sensitivity analysis: buffer depth and number of VCs

Figure 4.17 depicts the buffer utilization of Baseline and NEBB-Hybrid with different
combinations of VCs and buffer sizes. Each curve represents the same configuration with
a different number of VCs, either sharing the same buffer space (Figures 4.17a and 4.17b)
or using private buffers per VC (Figures 4.17c and 4.17d). With shared buffers, Hybrid
clearly outperforms Baseline, particularly when the shared buffer size is not very small.
With 20 flits per port, there is not a single Baseline configuration that matches the result
of Hybrid. Additionally, the number of VCs used in Hybrid has a small impact on buffered
flits.

In the private buffers evaluations of Figures 4.17c and 4.17d, the total amount of
storage increases with the VC count. If buffers are small (Figure 4.17c, buffer per VC
equals the maximum packet size of 5 flits), Hybrid is better than Baseline for the same
number of VCs, but the improvement is lower than with shared buffers. Indeed, this is the
minimum buffer size for Hybrid to use VCT. With larger buffers (Figure 4.17d), the effect
of using VCT in Hybrid grows and it gets approximately the same results of Baseline with

Page 70

Bypass mechanism | #VCs
Baseline | 1
Hybrid | 1

Baseline | 2
Hybrid | 2

Baseline | 4
Hybrid | 4

Baseline | 6
Hybrid | 6

Baseline | 8
Hybrid | 8

0 10 20 30 40 50
Offered load (%)

0

20

40

Bu
ffe

re
d

fli
ts

 (%
)

(a) DAMQ. Total size: 10 flits

0 10 20 30 40 50
Offered load (%)

0

20

40

Bu
ffe

re
d

fli
ts

 (%
)

(b) DAMQ. Total size: 20 flits

0 10 20 30 40 50
Offered load (%)

0

20

40

Bu
ffe

re
d

fli
ts

 (%
)

(c) Private VC. VC size: 5 flits.

0 10 20 30 40 50
Offered load (%)

0

20

40

Bu
ffe

re
d

fli
ts

 (%
)

(d) Private VC. VC size: 10 flits.

Figure 4.17: Buffer utilization for a mesh with different number of VCs and buffer sizes
using bimodal traffic.

half the VCs before saturation, and gets better after this point.

4.5.2.F) Sensitivity analysis: crossbar priority to buffered or bypassed flits

The original bypass proposal [Kumar2007] prioritizes flits in the non-bypass pipeline (sec-
ond bypass condition mentioned in Section 2.1.3.F), but the opposite priority (to LAs)
is used in this thesis. Figure 4.18 compares both alternatives, depicting buffered flits,
throughput, and packet latency histograms. On the one hand, giving priority to LAs is
positive to decrease the number of buffered flits in all the mechanisms, specially at medium
and high load. On the other hand, the maximum throughput decreases slightly.

The packet latency histograms of NEBB-Hybrid show that the number of high latency
packets slightly increases with priority to LAs. This issue is shared by all mechanisms when
more than 1 VC is used. To reduce peak latency, priority may be given to buffered flits
after a given number of cycles. The specific threshold used (e.g., 30 cycles in [Kumar2008])
presents a trade-off between the results with priority to LAs or to buffered flits.

4.5.3) Real traffic analysis

To conclude, we evaluate NEBB-Hybrid with real traffic through FS simulations in meshes
and tori. We compare NEBB-Hybrid with EVCF and Baseline, both with LA arbiters.
In this case we include also EVCF because the effect of NEBB is only appreciable at
medium-high loads. All configurations have shared buffers of 12 flits with 3 VCs, 1 VC
per VN to avoid protocol-deadlock, except for Torus-EVCF that has 6 VCs of 5 slots each.
It does not support FBFC-L, so it has to implement Dateline to avoid routing-deadlock,
requiring 2 VCs per VN.

Page 71

Baseline w/o Arb Baseline Hybrid

0 20 40
Offered load (%)

0

20

40

60

80

Bu
ffe

re
d

fli
ts

 (%
)

(a) Buffered flits. Priority to
flits.

0 20 40
Offered load (%)

0

10

20

30

40

Bu
ffe

re
d

fli
ts

 (%
)

(b) Throughput. Priority to
flits.

0 2500 5000 7500
Avg. packet latency (Cycles)

101

103

Fr
eq

ue
nc

y

99%

(c) Latency histogram in satu-
ration. Priority to flits.

0 20 40
Offered load (%)

0

20

40

60

Bu
ffe

re
d

fli
ts

 (%
)

(d) Buffered flits. Priority to
bypass.

0 20 40
Offered load (%)

0

10

20

30

40

Bu
ffe

re
d

fli
ts

 (%
)

(e) Throughput. Priority to
bypass.

0 2500 5000 7500
Avg. packet latency (Cycles)

102

104

Fr
eq

ue
nc

y

99%

(f) Latency histogram in satu-
ration. Priority to bypass.

Figure 4.18: NEBB-Hybrid buffer utilization, throughput and network latency his-
tograms prioritizing buffered flits or LAs in case of conflicts. Histograms show latency
distribution at 50% of offered load.

Figure 4.19 shows packet latency and offered load. First, the offered load in these
benchmarks is very low, around 5% in Canneal, the benchmark with the highest load.
For these reasons, the differences between Baseline and NEBB-Hybrid are small. Second,
the configurations that use a torus reduce latency with respect to their mesh counterpart
due to its lower average distance and bandwidth. Third, the EVCF configurations have
on average 44.9% and 27.3% more latency in the mesh and torus, respectively, compared
with Baseline. As shown in Section 4.5.2.A, EVCF requires more VCs to offer the same
performance, complicating the management of VCs and their allocation. In the case of
the torus, it is remarkable that the FBFC-L configurations get lower latency with half the
VCs and require less overall buffer space due to Dateline’s inefficient VCs utilization.

4.6
Conclusions

Single-hop bypass routers reduce the router delay by reducing the pipeline length when
possible, specially at low loads. Our proposal, Non-Empty Buffer Bypass, is based on
a proper analysis to relax the original bypass conditions stated in [Kumar2007]. We
present three variants of NEBB mechanism: one version following WH rules; a second one
following VCT; and a third one denoted NEBB-Hybrid that combines the previous ones
to maximize the utilization of the bypass.

We show the effectiveness of NEBB in a mesh and a torus using FBFC. Our proposals
decrease packet latency by up to 24% and dynamic power up to 23% in comparison with

Page 72

Mesh | EVCF
Torus | EVCF

Mesh | Baseline
Torus | Baseline

Mesh | NEBB-Hybrid
Torus | NEBB-Hybrid

bl
ac

bo
dy

ca
nn

de
du

fa
ce fe
rr flu
i

fre
q

st
re

sw
ap vi
ps

x2
64 Av

g

0

50

100

Pa
ck

et
 la

t.
(c

yc
le

s)

(a) Avg. packet latency

bl
ac

bo
dy

ca
nn

de
du

fa
ce fe
rr flu
i

fre
q

st
re

sw
ap vi
ps

x2
64 Av

g

0

2

4

Of
fe

re
d

lo
ad

 (%
)

(b) Offered load

Figure 4.19: Real-traffic performance.

applying the original conditions. Moreover, the experimentation shows that NEBB-Hybrid
outperforms prior proposals with shared buffers and requires half the VCs to obtain the
same result with private buffers, simplifying VC allocation and management.

In summary, NEBB, and specially NEBB-Hybrid, is a competitive and cost-effective
alternative to improve the design and performance of single-hop bypass mechanisms for
NoCs.

Chapter 5
SMART++

In this chapter we describe SMART++, which overcomes the limitations of SMART to
efficiently use the network resources. Similar to the traditional single-hop bypass mecha-
nisms studied in Chapter 4, SMART is also inefficient due to the unnecessary conservative
conditions to use the bypass and the VCs.

The organization of the chapter is as follows. Section 5.1 describes the packet-
interleaving problem that might occur in multi-hop bypass NoCs if a careless implemen-
tation is used. Section 5.2 details how this issue is handled in SMART, requiring empty
buffers for bypass. This solution implies a significant number of VCs to obtain good
performance, but this drastically impacts area, power, and frequency results, resulting
in suboptimal implementations. Section 5.3 introduces SMART++, which improves the
bypass and buffer utilization to solve the inefficiency problems of SMART. Section 5.4
contains the experimental evaluation of SMART++ with real-hardware simulations from
an HDL implementation and functional simulations. Section 5.5 closes the chapter with
the most important conclusions.

5.1
Packet-interleaving in multi-hop bypass

This section illustrates the potential data corruption problem that might occur when the
required conditions to allow the bypass are carelessly designed. Section 4.1 describes
the problem of packet-interleaving in single-hop bypass routers. Multi-hop bypass is not
immune to this issue, in fact, is it more susceptible. The larger HPCMax is, the higher
the chances of packet-interleaving. SMART avoids this problem with very restrictive
conditions as described in Section 5.2. Therefore, this section analyzes the source of the
problem to define less severe restrictions in SMART++, which is described in Section 5.3.

Figure 5.1 shows an example of packet-interleaving in a multi-hop bypass network
when there are no restrictions to use the bypass and VCs are assigned like in traditional
WH networks. There are three relevant packets in the network highlighted in blue, red
and green. The blue packet, with two flits at R0, tries to perform a multi-hop from R0 to
R3. The red packet is stalled in the first input VC of R2. One possible cause may be that
it has to make a dimension change but there are not free VCs in the next router. The
green packet in R2 of one flit, is in another input unit and tries to advance to R3. In the
initial state (Figure 5.1a) the head of the blue packet wins SA-G in the first three routers
(bypass enabled in R1 and R2). In this example, the lack of restrictions allows the bypass

Page 75

of R2 even though both buffers have packets. The blue head flit stops at the first input
VC of R3 (Figure 5.1b). The first VC of R1, R2 and R3 is assigned to the blue packet, but
its tail flit loses SA-G in R2 against the green packet because of the local priority policy,
which is described in Section 2.2.3.B. Note that the green packet can advance towards R3

because the second VC is available, i.e., it has space for the flit and is not being used. In
the last state shown in Figure 5.1c, the blue tail flit stops at the first VC of R2, resulting
in packet-interleaving between the blue and red packets.

Packet's flit VC in use by packet End requested multi-hop

TT H T TTT HT T TTT HT T TTT HT

TT HTT H TT H TT HH

H

R0 R1 R2 R3

(a) Initial state.

TT T T T T THT T TH HT

TT HTT H TT H TT HH

H

R0 R1 R2 R3

(b) Head flit multi-hop.

TT T T T T THT T TH HT

TT HTT H TT H TT HH

T

R0 R1 R2 R3

(c) Tail flit multi-hop.

Figure 5.1: Buffer state of multi-hop bypass packet-interleaving example.

In summary, this example shows the necessity of applying additional restrictions to
traditional flow control mechanisms to prevent packet-interleaving.

5.2
SMART: Empty VC Forwarding

This section details the correctness aspects of SMART related to the packet-interleaving
problem presented in Section 5.1. The solution relies on a large pool of input VCs per
port, which results in inefficient designs in terms of area, power, and cycle time. SMART
uses free vc signaling to indicate that there are free VCs, i.e., empty buffers, in the next
router. This similar to Empty VC Forwarding (EVCF) described for single-flit bypass in
Section 4.1.2.

Figure 5.2 shows the example described in Section 5.1 but applying EVCF. The ex-
ample has three relevant packets highlighted in blue, green and red (Figure 5.2a). The
blue packet attempts to perform a multi-hop to R3 but it cannot advance further than R1

because R2 does not have an empty VC (free vc is off), so it loses SA-G in R1. The same

Page 76

occurs for the tail flit (Figure 5.2b). It loses SA-G in R2 against the green packet because
the latter is a local flit (Prio=Local). Note that, even in a different scenario in which the
tail flit could win SA-G in R1 and R2, it has to stop at R1 to preserve the flit order within
the packet. In Figure 5.2c, the green packet reaches R3 and the blue packet waits until
any of the VCs of R2 is empty. In the next state (Figure 5.2d), the red and green packets
have already moved forward to their corresponding routers (not illustrated in the figure).
Thus, the head of the blue packet can move towards R2, so that it wins SA-G in R1 and
R2, and reaches R3 in a multi-hop. In this state, the head flit wins SA-G in R1 and R2 to
do reach R3 in a multi-hop. The same process follows the tail flit in Figure 5.2e, stopping
at R3 as shown in the last state (Figure 5.2f).

Besides demonstrating how EVCF fixes packet-interleaving, it also shows the limita-
tions of this mechanism in terms of throughput. Despite having space for the whole blue
packet in R3 in the first multi-hop attempt, this packet has to wait until the buffers have
been emptied to complete the multi-hop. This means that SMART needs many VCs to
take advantage of the topology bandwidth. Increasing the number of VCs does not only
increase the number of buffers in the input units but also it increases the control registers
and the complexity of the VC allocator. This has a negative impact on the area, power,
and the critical path delay of some pipeline stages, which eventually translates to higher
latencies in certain configurations.

The following sections discuss important considerations about the implementation of
Virtual Channel Selection (VS) in SMART.

5.2.1) Virtual Channel Selection: flow control and buffer size

SMART implements VCT and Virtual Channel Selection (VS), which is described in
Section 2.2.3.A. Using VCT guarantees that buffers have space for body flits once a packet
acquires them. Since SMART only forwards packets when downstream routers have an
empty VC, the minimum buffer size is the one of the largest packet in the network.

Unlike traditional VCT, SMART does SA in a flit-by-flit basis instead of packet-by-
packet. Flit-by-flit arbitration introduces the possibility of body flits stopping prematurely
with respect to their headers. This possibility avoids the retransmission of all the flits of a
packet in consecutive cycles, which is characteristic of VCT. This may not have impact on
the utilization of the links, but it conditions the restrictions to use the bypass. Section 5.3.3
describes how SMART++ implements packet-by-packet arbitration to improve the bypass
utilization in combination with NEBB.

5.2.2) Virtual Channel Selection: management of multi-flit packets

As a consequence of implementing VS with flit-by-flit arbitration, SMART requires a
mechanism to identify the VC assigned to a packet when body flits arrive at the router.
SMART has a hash table in every input unit to store the VC assigned to each packet.
These tables have a size equal to the number of VCs with buffers of more than one slot,
i.e., buffers that can hold multi-flit packets. The index field is the injection router ID of
the packet. A router assigns this value to the VC entry obtained from VS when the head
flit arrives, regardless of the flit taking the bypass or not, and it frees the entry when the
tail arrives. To avoid that two or more packets arrive with the same injection router ID,
SMART guarantees that all the local flits of a packet leave an output port of a router
before another packet can use the same output port. This is done by holding the switch
until the traversal of the tail flit, a characteristic of VCT.

Page 77

Packet's flit VC in use by packet End requested multi-hop

TT H T TTT HT T TTT HT T TTT HT

TT HTT H BT H TT HB

H

R0 R1 R2 R3

free_vc = 1 free_vc = 0 free_vc = 1

(a) Initial state.

TT T T T T THT T TH HT

TT HTT H BT H TT HB

H

R0 R1 R2 R3

H

free_vc = 1 free_vc = 0 free_vc = 1

(b) Blue packet’s head multi-hop attemp.

TT T T T T THT T TH HT

TT HTT H BT H TT HB

T

R0 R1 R2 R3

T H

free_vc = 1 free_vc = 0 free_vc = 0

(c) Blue packet’s tail multi-hop attemp.

TT T T T T T T TH HT

TT HTT H BT H TTB

T

R0 R1 R2 R3

T H

free_vc = 1 free_vc = 1 free_vc = 1

(d) Read and green packets frees VCs of R2 and R3.

TT T T T T T T TH HT

TT HTT H BT HB

R0 R1 R2 R3

T

H
free_vc = 1 free_vc = 0 free_vc = 0

(e) Blue packet’s head second multi-hop.

TT T T T T T T TH HT

TT HTT H BT HB

R0 R1 R2 R3

T H
free_vc = 1 free_vc = 1 free_vc = 0

(f) Blue packet’s tail second multi-hop.

Figure 5.2: Buffer state of multi-hop bypass using SMART’s empty VC forwarding.

Page 78

5.3
SMART++

SMART++ is a multi-hop bypass network that combines four mechanisms: SMART,
multi-packet buffers, NEBB and packet by packet arbitration. The main advantage of
SMART++ over SMART is that it does not require VCs to achieve good performance,
reducing the hardware costs of multi-hop bypass drastically. Next we analyze the mech-
anisms, introducing them incrementally with respect to the base SMART. Section 5.3.4
compares SMART and SMART++, including partial implementations of SMART++.
Section 5.3.3 describes a required change in the implementation of the input units to
operate efficiently when no using VCs.

5.3.1) Multi-packet buffers

SMART requires buffers sized for the largest packet in the network, since it implements
VCT flow control, but it only holds a single packet due to its VC reallocation policy.
SMART++ allows holding multiple consecutive packets in router buffers and can exploit
buffers larger than a single packet size. Such approach is similar to previous proposals
for NoCs [Chen2011; Ma2012; Wang2013; Daya2014; Towles2014]. The implementation
is similar to Whole Packet Forwarding (WPF [Ma2012]). WPF implements an aggressive
VC reallocation mechanism, which allows reallocating a given VC if it has enough buffer
slots to hold the whole packet and the tail of the previous packet has been already sent.
According to [Ma2012], WPF can be viewed as applying packet-based flow control in a
wormhole network. Note that in SMART flit-by-flit arbitration behaves similar to a WH
network.

The use of multi-packet buffers allows employing a lower number of VCs with deeper
buffers, leading to simpler memory organizations that exchange width (#VCs) by length
(deeper FIFOs). Such VC reduction simplifies allocation and reduces overall chip area
even though the total storage remains the same. Additionally, combining multiple packets
in the same buffer increases its efficiency, particularly with different-size packets (bimodal
traffic), which often occurs in NoCs. This is evaluated in Section 5.4.2.A.

However, applying multi-packet buffers to SMART is not straightforward due to the
use of VS. The necessary changes to implement multi-packet buffers with VS are described
next.

First, the free vc signaling has to be adapted. The free vc signals of SMART, depicted
in Figure 5.3a, only activate when one or more VCs of the input unit are empty. The free vc
is a 1-bit signal that only indicates that there is room for a packet so upstream routers do
not know which VCs are free. When using multi-packet buffers, avail vc replaces the free vc
signals. Instead of a 1-bit signal, avail vc uses one independent 1-bit signal per packet
size in the network, as depicted in Figure 5.3b. Each signal indicates the VC availability
for each packet size, so the upstream router only attends the signal corresponding to the
packet being evaluated. This supports a case with free space for a single-flit packet but not
enough space for a multi-flit packet. These signals are denoted availi, where i indicates
the number of flits of the packet size. In the example of Figure 5.3b, there are two avail vc
signals: avail1 and avail5 for packets of 1 and 5 flits respectively. If k < j and availj is
set then availk will be also set.

Second, changes in the SSR signals are required. The SSR signals have to include
a new field which indicates the packet size. This requires dlog2Ne bits where N is the

Page 79

1 10 free_vc free_vc free_vc

(a) free vc signals in SMART

1
1
avail1
avail5

1
0
avail1
avail5

0
0
avail1
avail5

(b) Availability signals in SMART++ with packet sizes of 1 and 5 flits.

Figure 5.3: Buffer signaling mechanisms in SMART and SMART++.

number of packet sizes. For N = 2, which is very common in CMPs, this implies that only
one additional bit is required. This information is needed when computing SA-G, so the
router can select the correct avail vc signal for the requested output port.

Third, additional control logic is required to check whether the bypass can be activated
or not to avoid packet-interleaving. To grant access to the bypass path, the input unit of
the router has to have an empty VC that is not in use by another packet. A buffer can
be empty but being used due to packet fragmentation given the flit-by-flit arbitration of
SMART, as mentioned in Section 5.2.2. With the use of VS instead of VA, the control of
the input VC has to be done in the receptor router. To control if an input VC is being
used, it is enough to retire the assigned VC from the pool of available VCs when the head
of a packet arrives to the router and reintroduce it when the tail arrives.

5.3.2) NEBB

NEBB can be applied to SMART with multi-packet buffers. It does not make sense to
apply NEBB to SMART directly because it can only forward packets when the VC buffer
of the next router is empty. NEBB allows the bypass of single-flit packets in SMART++
as they can not be fragmented and therefore they are not a source of packet-interleaving.

For multi-flit packets, the flit-by-flit allocation mechanism in SMART implies that the
bypass operation might be interrupted at any cycle, if a higher-priority SSR is received
at an intermediate router. When this happens, the remainder of the packet is stored
in the intermediate router buffer, and if it is not empty, packets would be interleaved
and corrupted. For this reason, NEBB does not support multi-flit packet bypass with
non-empty buffers when flit-by-flit allocation is employed.

Therefore, SSRs have to meet the following conditions before placing their request in
SA-G to activate the bypass:

1. If the packet size is one flit, then the SSR can set-up the bypass and the switch
independently of the input VC buffer occupation.

Page 80

2. If the packet has more than one flit, then the input VC buffer has to be empty.

3. In both cases, the input VC has to be in a state other than active (already forwarding
a packet).

The packet size field in SSRs is checked before performing SA-G to validate/check if
the packet is single flit.

Summarizing, in SMART with multi-packet buffers and NEBB, only single-flit packets
can make use of the bypass paths when intermediate buffers are not empty.

5.3.3) Packet-by-packet arbitration

To achieve that multi-flit packets can take the bypass with non-empty intermediate buffers,
SMART++ employs packet-by-packet arbitration (PPA). PPA is implemented using a
grant-hold circuit [Dally2003] coupled to the round-robin arbitration stages (SA-G and
SA-L, discussed in Section 5.3.5).

Grant-hold circuits hold the arbiter outcome for a certain amount of time. When a
multi-flit packet header wins arbitration, SMART++ logic locks the arbiter to the winning
packet. However, winning SA-G does not guarantee that a flit will be transferred in the
following cycle: the flit could suffer a premature stop in an upstream router in the multi-
hop. To cover this case, SMART++ releases the grant in two cases: when the packet tail
is received, or when no flit is received. Grant-holding is not required for single-flit packets.

Effectively, this makes SMART++ behave exactly as VCT, receiving all the flits of a
packet in consecutive cycles. Only packet headers generate SSRs. When an intermediate
router receives a high-priority SSR while a packet is traversing the bypass path, the router
ignores the SSR and stores the corresponding packet. This behavior does not conflict with
the single priority enforced in the network requirement of SMART because it does not
introduce false positives (a non-expected flit arrives at a router), only premature stops.
Additionally, these premature stops do not reduce performance: they always occur because
another packet is actually traveling towards the desired output1.

Therefore, the following conditions have to be met in a multi-hop intermediate router
to grant the bypass to a packet:

1. There is an available destination VC in the next router with enough room for the
packet.

2. There is a VC in other state than active in the input unit of the router that receives
the SSR.

3. Another packet does not hold the switch and bypass path.

The implementation of the previous conditions requires the SSR’s packet size field.
This mechanism only generates SSRs for head flits because SA-G follows a packet-basis
arbitration.

Packets cannot be fragmented when using PPA, i.e., the flits of a packet are forwarded
in consecutive cycles, without gaps between them. Therefore, all the buffer slots used
by a packet can be considered as free when forwarding the head flit, reducing the time
required to enable the avail vc flag for multi-flit packets. Figure 5.4 shows an example

1There are no cascading invalidations, as occurs with SSRs using Prio=bypass [Krishna2013].

Page 81

comparing the activation time of the avail vc signals when using flit-by-flit and packet-
by-packet arbitration.2 With flit-by-flit arbitration the blue packet cannot advance to R1,
until there are 4 slots available as it is uncertain if the flits of the green packet will progress
in consecutive cycles. Thus, it takes 8 cycles to forward the blue packet. By contrast, with
packet-by-packet arbitration, R1 activates the avail4 signal when the head of the green
packet leaves the buffer, as the remainder flits will leave the router in consecutive cycles.
In this way, the flits of the blue packet use the slots that the green packet is leaving. In
this case, it takes 5 cycles to forward the blue packet.

Flit-by-Flit arbitration

TT H T TBT HB T TTT

R0 R1 R2

avail=0 avail=1
BB TT H T TBT HB T TTT

R0 R1 R2

avail=0 avail=1
BB

TT H T TT B T TTT

R0 R1 R2

avail=0 avail=0
BB HB TT H T TT B T TTT

R0 R1 R2

avail=1 avail=0
BB HB

Packet-by-Packet arbitration

TT T T TTT

R0 R1 R2

avail=0 avail=0
BB HH BT BT T TTT

R0 R1 R2

avail=0 avail=0
HH BT BTT HBB

TTT BB T T T

R0 R1 R2

avail=0 avail=0
HH BT B T T T T

R0 R1 R2

avail=0 avail=0
HH BT BT BB

......
T T T T

R0 R1 R2

avail=0 avail=0
HH BT BT BBT T T

R0 R1 R2

avail=1 avail=0
HBT BT HT BB

...
TT T T T

R0 R1 R2

avail=0 avail=0
HH BT BT BB

C
y
cl

e

0

1

2

4

5

8

Figure 5.4: Activation of availability signals (avail) when using flit-by-flit and packet-
by-packet arbitration.

5.3.4) Comparative analysis of the mechanisms

Table 5.1 summarizes the different cases in which bypass is supported in SMART and
SMART++, detailing the specific contribution of each of the mechanisms SMART++
comprises. SMART routers can only forward packets when the next router has an empty
buffer and set the bypass if they have an empty input VC. MPB supports forwarding
packets to non-empty buffers, but packets can only take the bypass path in intermediate
routers with an empty input VC. NEBB adds support for single-flit packet bypass of non-
empty buffers. Finally, PPA completes SMART++, which supports bypassing non-empty
buffers for any packet size.

Figure 5.5 depicts two examples that compare the conditions presented in Table 5.1,
for both single- and multi-flit packets. In all cases the destination of the blue packet is
R4. When using SMART, the packets stop at R1 because the buffers of R2 are not empty

2This example does not take into account the pipeline of the routers so flits move between buffers
instantaneously.

Page 82

Table 5.1: Bypass activation depending on the buffer status. Bypass and Dest. buf.
refers to the buffers in the bypass router and in the next router. When multiple routers
are bypassed, intermediate buffers are both bypass and dest. buffers. They may need to
be completely empty, or may accommodate at least a whole packet.

Bypass buf.: empty Bypass & Dest. buf.: packet

Bypass mechanism Dest. buf.: empty Dest. buf.: packet 1-flit packet Multi-flit packet

SMART (Baseline) 3

SMART+MPB 3 3

SMART+MPB+NEBB 3 3 3

SMART++ (MPB+NEBB+PPA) 3 3 3 3

TT H T TTT HT T TTT H T TTT H

R0 R1 R2 R3

avail1=1
T TTT H

R4SMART

avail1=1 avail1=1 avail1=1MPB MPB+NEBB,
SMART++

TT H T TTT HT T TTT H T TTT H

R0 R1 R2 R3

avail3=1
T TTT H

R4SMART

avail3=1 avail3=1 avail3=1MPB,
MPB+NEBB

SMART++

BT

Figure 5.5: Stop router of each mechanism in SMART++ for single-flit (up) and multi-
flit (bottom) packets. R4 is the destination of the blue packet in R0. Routers only have
one buffer.

in both cases. In the case of MPB, the packets stop at R2 in both cases because MPB
only allows bypassing when the input buffer is empty. MPB+NEBB allows bypassing
non-empty VCs for single-flit packets, so the single-flit packet reaches R4 while the 3-flit
packet stops at R2. Finally, SMART++ allows bypassing non-empty VCs regardless of
the packet size, so in both cases the packet reaches R4.

5.3.5) SMART++ input unit architecture

SMART++ implements a three stage pipeline like SMART. However, it targets efficient
designs with few input buffers, ideally one. Such configurations may introduce archi-
tectural dependencies between the pipeline operations of consecutive packets that reuse
the same VC, which causes idle cycles, also known as bubbles, as described in [Dimi-
trakopoulos2015]. In the case of SMART++ (including partial implementations described
previously in this section), three stages may need to access flit information in the same
cycle. In the example presented in Figure 5.6a this occurs in cycle 3, when the first flit
is doing ST+LT, the second one SA-G, and the third one SA-L. Using the input unit
organization of SMART generates architectural dependencies that may lead to stalls be-
cause flits cannot exit from the head of the buffer until completing SA-G in stage 2. In
a design without VCs, this would interrupt the transmission of packets sharing the same
input buffer. This is because the next packet in the queue cannot place a request in SA-L
in stage 1 while the front packet is performing SA-G. Pipeline bubbles increases latency
and reduces throughput.

This issue is avoided in SMART++ by changing the pipeline registers of the input unit

Page 83

A

B
Fl

it
s

Time (Cycles)

1 2 3

A

B
1 2 3

A

B
1 2 3

ST+LT

1 2 3 4 5

VS+BW
SA-L

LA-RC
SA-G
SSR

ST+LT
VS+BW

SA-L
LA-RC

SA-G
SSR

ST+LT
VS+BW

SA-L
LA-RC

SA-G
SSR

(a) Router pipeline.

G R O P C

R1 R2 R3

1A 1B 2 3

Input Unit

(b) Input unit organization

Figure 5.6: SMART++ router: input unit organization and pipeline.

as depicted in Figure 5.6b. The input unit has three pipeline registers R1-R3. Flits are
dequeued to R2 when winning SA-L in the first stage, transferring the following flit to the
front position of the buffer. In this organization, VS and BW in stage 1 read the flit from
the first register (1A), whereas RC and SA-L also in stage 1 read their data from 1B, i.e.,
the front of the input buffer (if it is not empty) or register R1 (if the buffer is empty). In
the latter case, the flit advances directly to R2 avoiding the buffer, which typically acts
as another pipeline register. SA-G reads the flit from register R2, while ST reads the flit
from R3.

SMART++ implements VCT as defined in Section 5.3.3, so buffer credits may be
handled per-packet. For single-flit packets, the credit is sent back to the upstream router
when the flit advances to R2. However, flits may wait indefinitely in R2. For multi-flit
packets, we notice that when the header advances to R3, it is certain that the packet flits
will be transferred consecutively. For this reason, credit handling for multi-flit packets may
be optimized as follows: when a packet header advances to R2, one credit is generated;
when the first body flit advances to R2, the remaining credits are generated.

5.4
Evaluation

This section evaluates SMART++. Section 5.4.1 describes the simulation methodology
and the experimentation parameters; Section 5.4.2 presents performance results; and Sec-
tion 5.4.3 shows power, resource utilization and maximum frequency results;

5.4.1) Methodology

The evaluation methodology uses BST, introduced in Chapter 3, and consists of both
functional simulations and estimations of power, area, and frequency based on FPGA
synthesis. Next, we describe the simulation infrastructure and parameters.

5.4.1.A) Simulation Infrastructure

We have implemented cycle-accurate models of SMART and SMART++ in the Book-
Sim version of BST, as described in Chapter 3, including the partial versions detailed
in Table 5.1. These models support multi-flit packets and, for simplicity, they use cred-
its. BookSim’s back-pressure mechanism is based on credits, and each topology defines the
credit channels between routers. Thus, the adaptation of SMART to use credits fits better

Page 84

in BookSim’s architecture than adding a new back-pressure mechanism, while performance
results are the same.

The SMART++ model of OpenSMART is based on the SMART implementation with
the modifications mentioned in Section 3.2 that fix some errors. The SMART++ im-
plementation works with credits and is limited to single-flit packets, like the SMART
implementation. All the models in both tools use router bypass (Section 2.2.3). The
OpenSMART models are also used to validate the latency and throughput results of the
BookSim models, through BSV functional simulations. This type of simulation is fast in
terms of execution time but very resource-heavy and time-consuming for compiling, mak-
ing it difficult to use for experimentation with a high degree of variable parameters. The es-
timations of power, resource utilization and frequency, are done using Quartus Prime 18.1
Lite Edition, synthesizing and measuring the metrics on an Arria II EP2AGX45DF29I5
FPGA. We feed the power analysis tool with VCD (value change dump) files generated
from ModelSim functional simulations with a clock frequency of 50MHz.

Table 5.2 gathers the most relevant simulation parameters. Unless otherwise stated,
these are the default parameters of experiments in next sections.

Table 5.2: Simulation parameters.

Parameter BookSim OpenSMART

Topology 4× 4 and 8× 8 meshes 4× 4 mesh

Bypass mechanism SMART, SMART++ and partial versions SMART and SMART++

Bypass type SMART 1D with router bypass

Router size 5 ports

VC number & backpressure 1, 2, 4 or 8 VCs using credits

Buffer size 1, 2, 4, 5, 8, 10, 15 or 20 1, 2, 4 or 8

Packet size (flits) 1, 5 or bimodal (80% of 1 + 20% of 5) 1

Routing DOR XY

VC selection policy Shortest queue First available VC

SSR policy Priority to local flits

HPCMAX 3 or 7 3

Flit size 128 bits 32 bits

All the evaluations of SMART and SMART++ only propagate SSRs in one dimen-
sion (SMART 1D), given that SMART 2D focuses on reducing the base latency and
SMART++ on improving the efficiency of the buffers and bypass. Performance simu-
lations on BookSim evaluate 8 × 8 meshes with HPCMax = 7, which is the maximum
possible value for this topology. Validation simulations are evaluated in 4 × 4 meshes
with HPCMax = 3 due to the large requirements of the BSV compiler. In both cases,
local flits have priority over SSRs as it is the best policy so far [Krishna2013]. All the
simulations use synthetic traffic. Five traffic patterns are evaluated: random-uniform, bit-
complement, tornado, transpose and hotspots in the corners of the topologies. Moreover,
we evaluate three packet sizes: single-flit packets, 5-flit packets, and bimodal traffic that
combines single-flit and 5-flit packets following a distribution of 80% and 20%, respectively.
It emulates the packet distribution observed in full-system simulations of the PARSEC

Page 85

benchmarks [Ma2012]. We do not elaborate Full-System simulations in this case because
the loads generated are very low as shown in the evaluation of Chapter 4. Under these
conditions, the difference in terms of base latency between SMART and SMART++ is
null, so that the mechanism practically does not affect the whole system performance (ex-
ecution time). Therefore, we focus on the efficiency of SMART++, i.e., achieving similar
performance with less VCs.

5.4.2) Cycle-level Performance Results

This section evaluates SMART++ without VCs, then with VCs, and finally the contribu-
tion of each of its mechanisms.

5.4.2.A) SMART++ without VCs

We compare SMART and SMART++, the first using multiple VCs and the second without
VCs (1 VC), but with equivalent total buffer space. First, we evaluate the mechanisms
with random-uniform traffic and then with other traffic patterns.

Figure 5.7 shows the average packet latency for 1-flit packets, 5-flit packets and a
combination of 1-flit and 5-flit packets (bimodal traffic). With single-flit packets and for
the same amount of buffering per input port, the performance of SMART++ is similar
to SMART. In the case of 5-flit packets, SMART++ achieves more throughput when the
buffer space is low, 5 and 10 slots, and similar for 20 and 40. With a 5 slots buffer,
SMART++ outperforms SMART throughput by 48.7% with 1 VC. This is thanks to
PPA’s early activation of the avail vc signals when the head of a multi-flit packet starts
its traversal to the next routers (Sections 5.3.3 and 5.3.5). With bimodal traffic, the
performance improvement of SMART++ over SMART is even larger. It requires half of the
buffer space of SMART to practically obtain the same performance, which is a consequence
of supporting multi-packet buffers. In SMART, single-flit packets are overusing the whole
buffer size, which is required to hold 5-flit packets.

Mechanism | #VCs x Buffer size (packets)
SMART | 1x1
SMART++ | 1x1

SMART | 2x1
SMART++ | 1x2

SMART | 4x1
SMART++ | 1x4

SMART | 8x1
SMART++ | 1x8

0 20 40
Offered load (%)

0

20

40

Pa
ck

et
 L

at
. (

Cy
cle

s)

(a) Single-flit packet latency.

0 20 40
Offered load (%)

0

20

40

Pa
ck

et
 L

at
. (

Cy
cle

s)

(b) 5-flit packet latency.

0 20 40
Offered load (%)

0

20

40

Pa
ck

et
 L

at
. (

Cy
cle

s)

(c) Bimodal traffic packet lat.

Figure 5.7: Packet latency for different packet sizes in SMART and SMART++.
SMART++ only employs 1 buffer (no VCs). The size of buffers is relative to the maximum
packet size.

Figure 5.8 depicts the packet latency using bit-complement, tornado, transpose and
hotspot (in the corners of the mesh) traffic patterns for bimodal traffic. We only show
results of bimodal traffic because the conclusions remain the same as with random-uniform

Page 86

traffic. Results with both traffic patterns are very similar, requiring buffer sizes of only 2
packets (10 flit slots) to reach the maximum throughput, while SMART requires 4 VCs
(20 flit slots in total). On top of that, SMART++, with just one buffer for one packet,
improves the throughput of SMART with 2 VCs by 14.1%, 20.7%, 41.1% and 36.4% for
bit-complement, tornado, transpose and hotspot.

Mechanism | #VCs x Buffer size (packets)
SMART | 1x1
SMART++ | 1x1

SMART | 2x1
SMART++ | 1x2

SMART | 4x1
SMART++ | 1x4

SMART | 8x1
SMART++ | 1x8

0 10 20
Offered load (%)

0

20

40

Pa
ck

et
 L

at
. (

Cy
cle

s)

(a) Bit-complement.

0 10 20 30
Offered load (%)

0

20

40
Pa

ck
et

 L
at

. (
Cy

cle
s)

(b) Tornado.

0 10
Offered load (%)

0

20

40

Pa
ck

et
 L

at
. (

Cy
cle

s)

(c) Transpose.

0 1
Offered load (%)

0

20

40

Pa
ck

et
 L

at
. (

Cy
cle

s)

(d) Hostpot.

Figure 5.8: Latency of SMART and SMART++ without VCs for bit-complement, trans-
pose, tornado and hotspot (in the corners of the meshes) traffic, with bimodal traffic. The
size of buffers is relative to the maximum packet size which is 5 flits.

5.4.2.B) SMART++ with multiple VCs

Next, we compare SMART++ against SMART using the same configuration, i.e., same
number of VCs and buffer size. Figure 5.9 shows the latency of both mechanisms. The
performance of SMART++ is clearly better than SMART. These results are very similar
to the results shown in the previous evaluation without VCs. Even so, SMART++ has
slightly more performance when using multiple VC since they mitigate the Head of line
Blocking (HoLB) effect. Notice that the results for single-flit packets are practically the
same for both mechanisms because this packet size does not exploit the early activation
of the avail vc signals, unlike multi-flit packet (Sections 5.3.3 and 5.3.5).

Mechanism | #VCs
SMART | 1
SMART++ | 1

SMART | 2
SMART++ | 2

SMART | 4
SMART++ | 4

SMART | 8
SMART++ | 8

0 20 40
Offered load (%)

0

20

40

Pa
ck

et
 L

at
. (

Cy
cle

s)

(a) 1-flit packet latency.

0 20 40
Offered load (%)

0

20

40

Pa
ck

et
 L

at
. (

Cy
cle

s)

(b) 5-flit packet latency.

0 20 40
Offered load (%)

0

20

40

Pa
ck

et
 L

at
. (

Cy
cle

s)

(c) Bimodal traffic latency.

Figure 5.9: SMART vs SMART++ packet latency with multiple VCs and minimal buffer
size per VC.

Page 87

5.4.2.C) Partial implementations of SMART++

This evaluation breaks down the performance of SMART++ by incrementally
incorporating the four mechanisms that compose it: SMART, SMART+MPB,
SMART+MPB+NEBB and SMART+MPB+NEBB+PPA (SMART++).

Figure 5.10 shows throughput and buffer utilization results when injecting bimodal
traffic. First, Figures 5.10a and 5.10c show the evolution of the throughput with the
injected load, for a fixed buffer configuration with space for two packets of 5 flits in total,
and the maximum throughput for different configurations, respectively.

Mechanism | #VCs x Buffer size (flits)
SMART | 2x5 SMART+MPB | 1x10 SMART+MPB+NEBB | 1x10 SMART++ | 1x10

0 10 20 30 40 50
Offered load (%)

0

20

40

Ac
ce

pt
ed

 lo
ad

 (%
)

(a) Throughput.

0 10 20 30 40 50
Offered load (%)

40

60

80

Bu
ffe

re
d

fli
ts

 (%
)

(b) Buffered flits.

SMART SMART+MPB SMART+MPB+NEBB SMART++

1
x
5

2
x
5

4
x
5

8
x
5

0.0

0.1

0.2

0.3

0.4

M
a
x
.
T
h
ro

u
g
h
p
u
t

(f
lit

s/
cy

cl
e
/n

o
d
e
)

1
x
5

1
x
1
0

1
x
1
5

1
x
2
0

2
x
5

2
x
1
0

2
x
1
5

2
x
2
0

4
x
5

4
x
1
0

4
x
1
5

4
x
2
0

8
x
5

8
x
1
0

8
x
1
5

8
x
2
0

VCs x Buffer Size

(c) Maximum throughput.

Figure 5.10: Performance of the partial implementations of SMART++ using bimodal
traffic.

SMART clearly depends on the number of VCs to extract the maximum throughput
possible in the NoC. The theoretical bound of an 8×8 mesh is 0.5 flits/node/cycle (50%).
Implementing MPB support, the throughput increases drastically since VC buffers are
used efficiently. In the case of the configuration with buffers of 10 flits (SMART with
2 VCs of 5 slots vs SMART+MPB with 1 VC of 10 slots) SMART+MPB increases the
throughput of SMART by 39.7%. The other two mechanism increase even further the
throughput, thanks to the efficient utilization of the bypass: SMART+MPB+NEBB by
45.1% and SMART++ by 48.5%, both with respect to SMART. Additionally, the maxi-
mum throughput chart (Figure 5.10c) show the low dependency of SMART++ (and the
rest of the partial implementations) on the number of VCs. The total amount of buffer
space is more important. So, in this particular case, SMART++ without requiring VCs
and with half the resources is very close to the maximum throughput achieved by SMART.

Page 88

Particularly, SMART++ with 1 VC of 20 slots achieves 3.0% less throughput than SMART
with 8 VCs of 5 slots. Beyond 20 slots in total, the impact of increasing the buffer size is
negligible. In summary, SMART++ does not require VCs to exploit the mesh bandwidth,
while reducing the optimal overall buffer space.

Second, Figure 5.10b shows the buffer utilization of the mechanisms with 10 flits over-
all. In general, a lower buffer utilization means that the bypass utilization is higher.
Starting with SMART+MPB, the buffer utilization is slightly lower just before satura-
tion, which is positive. The buffer utilization after saturation is higher because it has a
higher maximum throughput. Following with SMART+MPB+NEBB, the utilization is
notably lower than with the previous mechanism. This is the result of applying NEBB
(only for single-flit packets) which increases the opportunities of taking the bypass. Lastly,
when including PPA, the effect of bypassing 5-flit packets when the buffers are not empty
reduces the utilization of the buffers. The use of bimodal traffic practically hides the effect
of PPA in this evaluation. Moreover, the implementation of PPA is simpler than flit-by-
flit arbitration. Note that increasing the utilization of the bypass does not only reduce
latency at medium to high loads but also the dynamic energy consumption, as shown in
the evaluations of Chapter 4.

5.4.3) Synthesis results

This section shows the evaluations on the Arria II FPGA. The first part validates the
BookSim models used in the previous section with the real OpenSMART implementations
of SMART and SMART++. The second and third parts show the logic resources, power
consumption, and maximum frequency on the FPGA. The final part scales the latency
results of Section 5.4.2.A using the maximum frequency estimated in this section.

5.4.3.A) Model Validation

To validate the models implemented in BookSim we compare packet latency results using
BSV simulations of the OpenSMART implementations. We simulate a 4 × 4 mesh with
HPCmax = 3, random-uniform traffic and single-flit packets.

Figure 5.11 depicts the packet latency and maximum throughput of both implemen-
tations for various buffer configurations. The packet latencies obtained form both models
(Figures 5.11a and 5.11b) are equal until reaching the saturation region where there is
a negligible difference. In terms of maximum throughput the difference are insignificant.
The highest relative error between models is 3.53%, when using 2 VCs of 1 slot.

5.4.3.B) Resource Analysis

This section analyzes the resource utilization of SMART and SMART++. We focus on
just one router because of the large duration of the synthesis process (including place
and routing, etc), the large number of configurations evaluated and the limited number of
resources in the FPGA.

Figure 5.12 shows the number of Adaptive Look-Up Tables (ALUTs), Adaptive Logic
Modules (ALMs), dedicated registers and internal block memory bits of the FPGA used.
These results show the high impact of the number of VCs on resource demands.

The number of VCs directly impacts the size and complexity (control logic and regis-
ters) of the input unit, credit units (credit handling logic) and VA. When duplicating the

Page 89

Bluespec - 1 VC
BookSim - 1 VC

Bluespec - 2 VC
BookSim - 2 VC

Bluespec - 4 VC
BookSim - 4 VC

Bluespec - 8 VC
BookSim - 8 VC

0 20 40 60 80 100
Offered load (%)

0

10

20

Pa
ck

et
 la

t.
(C

yc
le

s)

(a) Buffer size: 1 slot.

0 20 40 60 80 100
Offered load (%)

0

10

20

Pa
ck

et
 la

t.
(C

yc
le

s)

(b) Buffer size: 4 slots.

1x
1

1x
2

1x
4

1x
8

2x
1

2x
2

2x
4

2x
8

4x
1

4x
2

4x
4

4x
8

8x
1

8x
2

8x
4

8x
8

VCs x Buffer size

0.00

0.25

0.50

0.75

M
ax

. T
hr

ou
gh

pu
t

(fl
its

/n
od

e/
cy

cle
s)

SMART++ (Bluespec)
SMART++ (BookSim)

(c) Maximum throughput.

Figure 5.11: Comparison of packet latency and throughput of the SMART++ models
implemented in BSV and BookSim.

number of VCs, the number of resources is almost doubled. For example, the configura-
tion with 2 VCs of 1 slot increases the number of ALUTs by 86.9%, ALMs by 82.3% and
registers by 77.63% with respect to 1 VC of 1 slot. Alternatively, the resource utilization
grows in a much lighter way when using deeper buffers. For example, using 1 VC of 8
slots requires 22.3%, 31.4% and 63.14% more ALUTs, ALMs and registers, respectively,
than using 1 VC of 1 slot.

The FPGA synthesizer employs block memory (internal FPGA RAM) when buffers
larger than 10 slots are instantiated. This occurs in the credit unit for configurations with
more than 8 buffer slots. This is a consequence of the implementation of OpenSMART’s
credit units. Each unit has two FIFO structures to store credits pending to be transmitted,
one for credits from the standard pipeline and the other for the bypass path. Each of the
FIFOs has to have as many entries as buffer slots has an input port to avoid overflow. In
implementations with free vc or avail vc, these structures do not exist as they use pools
of free or available VCs instead to manage the back-pressure.

5.4.3.C) Timing and Power Analysis

Figure 5.13 depicts the maximum operation frequency and the dynamic power consump-
tion. The dynamic power has been obtained for a clock frequency of 50MHz, which is
achievable by all the configurations (see Figure 5.13a). Static power has been omitted
because it is almost constant for every configuration in the FPGA.

Both in terms of frequency and power, the results reveal that the number of VCs
is a critical design factor. Doubling the number of VCs decreases frequency in a range

Page 90

Input Units

SA-L

XBar

Credit Units

VA

Others

1
x
1

2
x
1

4
x
1

8
x
1

1
x
2

1
x
4

1
x
8

2
x
2

2
x
4

2
x
8

4
x
2

4
x
4

4
x
8

8
x
2

8
x
4

8
x
8

0

5000

10000

15000
#

 A
LU

s

VCs x Buffer Size

SMART
SMART++

SMART++

(a) ALUTs employed.

1
x
1

2
x
1

4
x
1

8
x
1

1
x
2

1
x
4

1
x
8

2
x
2

2
x
4

2
x
8

4
x
2

4
x
4

4
x
8

8
x
2

8
x
4

8
x
8

0

5000

10000

#
 A

LM
s

VCs x Buffer Size

SMART
SMART++

SMART++

(b) ALMs employed.

1
x
1

2
x
1

4
x
1

8
x
1

1
x
2

1
x
4

1
x
8

2
x
2

2
x
4

2
x
8

4
x
2

4
x
4

4
x
8

8
x
2

8
x
4

8
x
8

VCs x Buffer Size

0

2000

4000

6000

#
 D

e
d

ic
a
te

d
 R

e
g

is
te

r

SMART
SMART++

SMART++

(c) Registers employed.

1
x
1

2
x
1

4
x
1

8
x
1

1
x
2

1
x
4

1
x
8

2
x
2

2
x
4

2
x
8

4
x
2

4
x
4

4
x
8

8
x
2

8
x
4

8
x
8

0

1000

2000

3000

B
lo

ck
 M

e
m

o
ry

 B
it

s

VCs x Buffer Size

SMART
SMART++

SMART++

(d) Memory employed.

Figure 5.12: FPGA resources employed by each configuration.

between 18% and 29% in each step. The dynamic power almost doubles when duplicating
the number of VCs. For example, 2 VCs of 1 slot multiplies by 1.99 the power of 1
VC of the same size. However, increasing the buffer depth has a negligible impact on
frequency. Abrupt increases on dynamic power are caused by the use of block memory
bits (Figure 5.12d) as mentioned before, being 75.84% the worst case (2× 8 compared to
2× 4 slots). Comparing the 8× 1 (VCs × buffer size) SMART and the 1× 8 SMART++
configurations, resources are reduced by 5.49× on average and dynamic power by 4.99×.

5.4.3.D) Scaled SMART++ performance results

Section 5.4.2 presents performance results in discrete time units, i.e., cycles without con-
sidering the frequency of each configuration. In this evaluation, we use the maximum
operation frequencies depicted in Figure 5.13a to scale the performance results in order to
observe the effect of reducing the number of VCs.

The maximum frequency is typically determined by the first two router stages which
comprise routing computation, VC management and switch allocation. The delay of the
third stage increases as the HPCmax value grows and high values might lower the router
frequency. In such case, the frequency is given by the length of the maximum multi-hop
and not by the complexity of the router, so SMART and SMART++ should have similar
frequencies and their performance would be proportional to results of Section 5.4.2. In the
case of moderate HPCmax, the performance will be determined by the router maximum
frequency.

Page 91

Input Units

SA-L

XBar

Credit Units

VA

Others

1
x
1

2
x
1

4
x
1

8
x
1

1
x
2

1
x
4

1
x
8

2
x
2

2
x
4

2
x
8

4
x
2

4
x
4

4
x
8

8
x
2

8
x
4

8
x
8

0

50

100

Fr
e
q
u
e
n
cy

 (
M

H
z)

VCs x Buffer Size

SMART
SMART++

SMART++

(a) Max. operation frequency.

1
x
1

2
x
1

4
x
1

8
x
1

1
x
2

1
x
4

1
x
8

2
x
2

2
x
4

2
x
8

4
x
2

4
x
4

4
x
8

8
x
2

8
x
4

8
x
8

0

10

20

30

D
y
n
a
m

ic
 P

o
w

e
r

(m
W

)

VCs x Buffer Size

SMART
SMART++

SMART++

(b) Dynamic power.

Figure 5.13: FPGA frequency and dynamic power results.

Figure 5.14 presents frequency-scaled latency results of SMART and SMART++. A
simple SMART++ configuration with 1 VC with a buffering space for 4 packets (4 slots
for single-flit packets and 20 for 5-flit packets and bimodal traffic) clearly outperforms
any SMART implementation. Comparing the same configuration to SMART with 4 VCs,
which is a competitive configuration in terms of throughput, SMART++ has 32.1% less
zero-load latency and 42.2% more throughput, for single-flit packets which is the most
conservative comparison.

Mechanism | #VCs x Buffer size (packets)
SMART | 1x1
SMART++ | 1x1

SMART | 2x1
SMART++ | 1x2

SMART | 4x1
SMART++ | 1x4

SMART | 8x1
SMART++ | 1x8

0 20 40
Offered load (GB/s)

0

100

200

300

Pa
ck

et
 la

t.
(n

s)

(a) Single-flit packet latency.

0 20 40
Offered load (GB/s)

0

100

200

300

Pa
ck

et
 la

t.
(n

s)

(b) 5-flit packet latency.

0 20 40
Offered load (GB/s)

0

100

200

300

Pa
ck

et
 la

t.
(n

s)

(c) Bimodal traffic packet lat.

Figure 5.14: Frequency-scaled latency of SMART and SMART++ using different packet
sizes.

5.5
Conclusions

SMART reduces latency in topologies such as the mesh with the introduction of multi-
hop bypass to reduce the effective number of hops. However, power and area efficiency
are essential NoC features to meet the budgets of the CMPs design. The main issue of
SMART in this regard is that it requires a large number of VCs to exploit the advantages
of the mechanism due to conservative restrictions in the use of the bypass and buffers to

Page 92

avoid packet-interleaving.
In this chapter we have described the fundamentals and implementation considerations

of SMART++, and presented a detailed evaluation. SMART++ is a multi-hop bypass
mechanism that does not require VCs. Its goal is to improve the efficiency of SMART,
increasing the utilization of the available space in buffers and the bypass. SMART++
allows multiple packets to share the same buffer and bypassing routers when their buffers
are not empty. Thus, it exhibits high performance without VCs, reducing drastically
power, area and critical path delay due to the simplification of the input unit organization
and VC management. Moreover, SMART++ presents a more efficient utilization of buffers
and bypass, which translates in latency reductions and dynamic power savings at medium-
high loads. Contrary to conventional wisdom, the use of multiple VCs in SMART++ just
provides a marginal improvement.

For the same frequency and similar performance, SMART++ reduces area and power
by 5.5× and 5.0×. SMART++ improves the performance in presence of congestion, but
it does not reduce the router pipeline. For this reason, the base latency in cycles is
the same as in SMART. However, selecting the maximum frequency, SMART++ may
reduce base latency by up to 31.9% and increase throughput by up to 42.2%. In sum, the
efficient design of SMART++ simultaneously provides near-optimal performance with a
small footprint and reduced implementation cost.

Page 93

Chapter 6
Speculative-SMART++

In the background of this thesis (Chapter 2) we have mentioned that single-hop bypass
routers reduce the router delay while multi-hop bypass routers reduce the effective average
number of hops in common 2D grid-based topologies. Multi-hop bypass routers are not an
exact extension of single-hop bypass routers. One of the most important characteristics of
single-hop bypass is that it can chain multiple bypass hops in consecutive cycles, completely
avoiding the standard pipeline of the routers. In other words, a packet is able to complete
its route without being buffered. In SMART and SMART++, each multi-hop needs to
employ the complete pipeline of the router to prepare the next multi-hop, incurring a
latency of 3 cycles per multi-hop.

In this chapter we describe Speculative-SMART++, a mechanism that combines the
best of single-hop and multi-hop bypass to cost-efficiently reduce the latency of NoCs. S-
SMART++ employs a bypass pipeline for consecutive multi-hops, reducing base latency
and the relevance of HPCMax.

The chapter is organized as follows. Section 6.1 describes the fundamentals and imple-
mentation considerations of S-SMART++. Section 6.2 evaluates the performance of the
mechanism with synthetic and realistic traffic, the power consumption, the area required,
and the maximum frequency. Section 6.3 summarizes the conclusions of the chapter.

6.1
S-SMART++: speculative SSR broadcast

Speculative-SMART++ (S-SMART++) relies on speculative SSRs to chain consecutive
multi-hops with a single cycle per multi-hop. This idea is based on single-hop bypass,
where routers can generate a subsequent LA when a previous LA wins LA-Arb. This
idea works with both SMART (S-SMART) and SMART ++ (S-SMART ++). False
negatives (activation of the bypass without receiving the corresponding packet) make it
impossible to know whether a packet will arrive or not, so the creation of the next SSR
for the next multi-hop has to be speculative. We start this section with an overview of
how the mechanism works when applying it to SMART (Section 6.1.1). Then we describe
the router architecture (Section 6.1.2), followed by a detailed analysis of its behavior
(Section 6.1.3). The section concludes with some implementation considerations when
applying the mechanism to SMART and SMART++ in Section 6.1.4, and its extension
to torus networks in Section 6.1.5.

Page 95

6.1.1) S-SMART overview

Single-hop bypass networks [Kumar2007; Kumar2008; Krishna2010] pre-allocate bypass
paths to skip the buffering and allocation stages. The idea of SMART of conforming multi-
hop paths by pre-allocating bypass paths is very similar to them, but their principles are
slightly different. SMART seeks to minimize latency by conforming the largest multi-hop
paths, whereas single-hop bypass chains multiple hops in consecutive cycles. SMART
is more effective in terms of latency, specially in large networks. However, single-hop
bypass optimizes per-hop latency and allows skipping all the buffers in the whole route,
optimizing dynamic power. In SMART this is not possible, as the packet is buffered after
each multi-hop.

Speculative-SMART combines both approaches to support chaining several multi-hops
in consecutive cycles, skipping the first and second pipeline stages in subsequent multi-
hops. In S-SMART, SSRs are generated speculatively in the last router of each multi-hop,
where the packet would be buffered. Therefore, while a packet is traversing the routers, a
speculative SSR (spec-SSR) is requesting the subsequent bypass paths.

In SMART, global arbitration is speculative, since a packet may not reach the max-
imum desired hop length because of a conflict. However, after sending an SSR, SMART
always sends data on the multi-hop. S-SMART exploits speculation even further, since
the SSR itself is also speculative (spec-SSR), given that it is generated before even know-
ing if the associated packet will reach the router in time for the multi-hop. Therefore, a
spec-SSR may not be followed by any data, when it conflicts in an intermediate router in
the previous multi-hop.

Figure 6.1a presents a comparative example of a flit crossing the network when using
single-hop bypass, SMART, and S-SMART, the latter two with HPCMax = 2. Note that
the behavior of S-SMART with HPCMax = 1 would be equivalent to single-hop bypass.
Figure 6.1b depicts the pipeline stages of the router and their temporal behavior. They
are reviewed next.

• Single-hop bypass: The packet in R0 (in red) wins SA-I, SA-O and VA (VC
Allocation) in the first 2 cycles. In the next two cycles, it traverses the crossbar and
the link, while the LookAhead travels through the link and acquires access to the
crossbar and the bypass in LA-Arb of R1. In cycle 4, the LA succeeds in LA-CC and
originates the creation of another LA from R1 to R2. In this mechanism, the arrival
of the packet to R1 is guaranteed in cycle 5 so the second LA is not speculative. In
the next two routers, the bypass and crossbar acquisitions and the packet traversal
follow the same procedure. Overall, The packet spends 10 cycles to cross the four
routers.

• SMART: In R0, the packet (in blue) performs LookAhead Routing Computation
(LA-RC), VA, SA-L and Buffer Write (BW) in the first cycle. In the second cycle, it
propagates the SSR to R1 (HPCMax−1 = 2−1 = 1) to acquire the bypass through
SA-G, and in the third cycle, it performs the multi-hop to reach R2. The SSR does
not reach R2, since this final router cannot set up the bypass to meet the temporal
constraints. In R2, the packet repeats the same process. Overall, the packet spends
6 cycles to cross the routers.

• S-SMART: Like in SMART, the packet (in green) spends 3 cycles in R0. However,
in cycle 2 the SSR broadcast is extended to reach R2. The extended SSR does not
request SA-G in R2, but produces the broadcast of a speculative SSR (spec-SSR) in

Page 96

cycle 3, which acquires the bypass of R2 and R3. Thus, in cycle 4, the packet takes
the bypass path (instead of performing BW like in SMART). Overall, the packet
requires 4 cycles to traverse the four routers.

Single-hop bypass

SMART

S-SMART

InputE

InputInj

Bypass

Bypass

InputE

InputInj

Bypass

Bypass

InputE

InputInj

Bypass

Bypass

InputE

InputInj

Bypass

Bypass

1 2 3 4

InputE

InputInj

Bypass

InputE

InputInj

Bypass

InputE

InputInj

Bypass

InputE

InputInj

Bypass

1 2 3 4 5 6

InputE

InputInj

Bypass

InputE

InputInj

Bypass

InputE

InputInj

Bypass

InputE

InputInj

Bypass

2 3 4 5 6 7 8 9 101

(a) Flit forwarding in different bypass-router architectures. Boxed numbers represent the cycle of
each step.

SSRDest

ST+LT

SSR
SA-G

ST+LT

ST+LT

1 2 3 4
SSR
SA-G

SSRspec

SA-G
ST+LT

SSRspec

SA-G

S-SMART
1 2 3 4

LA-RC
VA&SA-L
BW

ST+LT

SSR
SA-G

ST+LT

SSR
SA-G

ST+LT

SSR
SA-G

ST+LT

SSR
SA-G

5 6
SMARTSingle-Hop Bypass

Cycle 1 2 3 4

R0

R1

R2

R3

BW
SA-I

SA-O
VA

5 6
ST

LA-LT
LT

7 8 9 10

LA-RC
LA-CC

ST
LA-LT

LT

LA-RC
LA-CC

ST
LA-LT

LT

LA-RC
LA-CC

ST
LA-LT

LT

LA-RC
VA&SA-L
BW

LA-RC
VA&SA-L
BW

(b) Pipelines of different bypass-router architectures.

Figure 6.1: Comparison of single-hop bypass, SMART and S-SMART, the last two with
HPCMax = 2. The boxes placed together with the arrows indicate the cycle when the flit
advances through the router paths.

6.1.2) Router architecture

S-SMART introduces modifications in three elements of the design of SMART: the gen-
eration of SSRs, the SSR priority scheme, and the bypass control. Figure 6.2 shows the
router architecture of S-SMART and Figure 6.3 a partial implementation of SA-G for the
path from the west input to the east output. The highlighted elements are the changes
over the SMART design.

In S-SMART, the length of SSRs is extended by one unit so that they can reach the
final router of the multi-hop. SSRs carry the final destination of the packet to determine

Page 97

the next multi-hop direction and length. The ‘final’ router of a multi-hop is determined
using the multi-hop length requested in the SSR, information already carried in SMART.
The multi-hop length is compared with the distance to the multi-hop requester, which is
known from the ID of the SSR input port. The ‘final’ router uses the final destination of
the packet to generate the spec-SSR in the next cycle, instead of computing SA-G. This is
depicted in Figure 6.3, with the other modules of SA-G: input arbitration (SSR Priority
Arbitration), output arbitration, and bypass setup logic. Additionally, the router that
generates a spec-SSR also propagates the request to its own SSR Priority arbitration logic
in the SA-G unit (Spec− SSRdist=0 in Figure 6.3) to activate its bypass.

SA-G

S
p
e
c D

e
m

S
p
e
c M

u
x

Input0

InputN-1...

B
y
p
a
ss

M
u
x

Fl
it
s

Fl
it
s

Bypass
Bypass

SA-L

S
S
R
1

S
S
R
2

S
S
R
h

Spec-SSR
S
S
R

SSRMux

LA-RC

Pi
p
e
S
A
G

..
.

Pi
p
e
IN

B
y
p
a
ss

D
e
m

......

Figure 6.2: S-SMART router implementation. The additional elements included with
respect to SMART are highlighted in green.

Spec-SSR
Generation

SSR Priority
Arbitration...

SSRin_h

SSRin_2

SSRin_1

...
SSRout_h

SSRout_1

SSRout_2

Spec-SSRdist=0

Spec-SSR

Output
Arbitration

XBsel_W→E Bypass
Setup

Specmux

Bypmux

Bypdem

Specdem

XBsel_W→E

if SSRin_x is 'final':
 generation of spec-SSR
 in next cycle
else:
 SSRout_x←SSRin_x

SSRwinner ← highest prio:
 1. non-spec > spec
 2. distance
 3. direction
if SSR winner is found:
 bypass_Win ← SSRwinner

else:
 bypass_Win ← 0

SSRE← highest prio among:
 bypass_Win, bypass_Nin,
 bypass_Sin

if SA-L==C→E | N→E | S→E:
 XBsel_W→E ← 0
else if SA-L==W→E |
 SSRE==bypass_Win:
 XBsel_W→E ← 1
else:
 XBsel_W→E ← 0

if XBsel_W→E & SA-L≠W→E:
 if SSR is Spec & dist=0:
 Bypdem←0; Bypmux←1
 Spedem←1; Spemux←0
 else:
 Bypdem←1; Bypmux←1
 Spedem←0; Spemux←1
else:
 Bypdem←0; Bypmux←0
 Spedem←0; Spemux←0

Figure 6.3: Implementation of SA-G for Win to Eout. S-SMART additional elements
are highlighted in green. XBselW−>E is the selection signal of XBar to enable the path
between input West and output East; BypMux, BypDem, SpeMux, and SpeDem are the
selection signals of BypassMux, BypassDem, SpecMux, and SpecDem, respectively.

Page 98

6.1.2.A) SSR priority scheme

The SSR priority scheme is modified to resolve conflicts between spec-SSRs and standard
SA-G requests (SSRs or local flits). We give absolute priority to standard requests over
spec-SSRs, to minimize unnecessary premature stops. The reason comes from the local
priority policy used in SMART, i.e., priority to the SSR originated in the nearest router,
which is the best policy evaluated in [Krishna2013]. With this shortest-distance policy,
packets may not complete their whole multi-hop. For this reason a spec-SSR may win
SA-G in a router but leave the bypass path unused in the following cycle, because the
associated packet was stopped in an intermediate router of the previous multi-hop. Giving
low priority to spec-SSRs prevents other packets from stopping prematurely due to a
speculative bypass acquisition that is not used.

Conflicts between spec-SSRs and standard requests can occur in the input phase of SA-
G or the SSR output phase. The first kind of conflict, in the input phase of SA-G, occurs
when standard SSRs and/or spec-SSRs share the same input port. When the conflict is
between a standard SSR and a spec-SSR, the spec-SSR is ignored as mentioned before.
This requires one extra bit to identify spec-SSRs. When the conflict is between two or
more spec-SSRs the arbitration follows the same policy used for standard SSRs, i.e., the
SSR with the shortest distance has priority. The second kind of conflict, in the SSR output
phase, can occur between a standard SSR (generated by a local flit) and a spec-SSR, or
between two or more spec-SSRs. In the first case, the conflict is solved with a multiplexer
(SSRMux in Figure 6.2) at each SSR output port, which discards the spec-SSR. The second
conflict occurs because SSRs coming from different input directions at the same cycle can
generate spec-SSRs for the same output port. In such case, only one of them is chosen.
We choose the one with the longest multi-hop to maximize the utilization of the bypass
paths.

6.1.2.B) Bypass control

The standard bypass of SMART is implemented by a demultiplexer (BypassDem) and a
multiplexer (BypassMux). S-SMART implements an additional path to bypass the input
buffer from the input pipeline register (PipeIn) when spec-SSRs win SA-G. This path is
formed by a demultiplexer (SpecDem) and a multiplexer (SpecMux), depicted in Figure 6.2.
These mux/demux pairs are controlled together. Overall, there are three paths. The
standard bypass path from BypassDem to BypassMux is used when an SSR wins SA-G,
except for speculative SSRs generated in the local router (generated distance 0). The
second bypass path from PipeIn to BypassMux is used when a spec-SSR with distance
equal to 0 (local) wins SA-G. Finally, the traditional path from PipeIn to the buffer is
used when local flits win SA-G.

6.1.3) Speculative bypass walk-through

This section describes the process of using the bypass paths speculatively through an
example. Figure 6.4 shows the state of the network during the four cycles that the high-
lighted packet needs to make two multi-hops. The process is divided into two phases. The
first phase extends from cycles 1 to 3, when the packet prepares and performs the multi-
hop bypass like in the original design of SMART. The second phase shows the bypass via
speculative arbitration, in cycles 3 and 4.

Cycle 1) The packet in R0 requests a local output port in SA-L while the route for the

Page 99

next multi-hop is computed in LA-RC. The packet wins SA-L (there are no
competitors) and moves to the next pipeline stage.

Cycle 2) The SSR is propagated to the next two routers (HPCMax = 2 in this example)
to prepare the multi-hop. The SSR received in R1 performs SA-G, while R2

(‘final’ router) uses the destination information to compute LA-RC required to
generate the spec-SSR in the next cycle. The packet wins SA-G in R0 and R1,
advancing to the next stage and preparing the control signals of the crossbars
and paths for the next cycle.

Cycle 3) The packet traverses R0 and R1, reaching R2, where it is saved in the input port
latch (PipeIn in Figure 6.2). Simultaneously, R2 generates the spec-SSR from
the destination information saved in the previous cycle, and sends it to its local
SA-G and R3 (and R4 in case it exists). Both spec-SSRs win SA-G because there
are no competing requests.

Cycle 4) The packet in PipeIn of R2 travels through SpecDem and SpecMux towards the
bypass path of R2 and R3.

SA-L SA-GLA-RC SA-L SA-GLA-RC

R0 R1

SA-L SA-GLA-RC

R2

SA-L SA-GLA-RC

R3

Cycle 1

SA-L SA-GLA-RC SA-L SA-GLA-RC

R0 R1

SA-L SA-GLA-RC

R2

SA-L SA-GLA-RC

R3

Cycle 2 SSR

SA-L SA-GLA-RC SA-L SA-GLA-RC

R0 R1

SA-L SA-GLA-RC

R2

SA-L SA-GLA-RC

R3

Cycle 3
Spec-SSR

SA-L SA-GLA-RC SA-L SA-GLA-RC

R0 R1

SA-L SA-GLA-RC

R2

SA-L SA-GLA-RC

R3

Cycle 4

Figure 6.4: Example of speculative SA-G arbitration in S-SMART. HPCMax is 2.

6.1.4) Speculative bypass in SMART and SMART++

As mentioned in previous sections, speculative bypass acquisition can be applied to both
SMART and SMART++. Apart from the differences between SMART and SMART++

Page 100

already stated in Chapter 5, the only distinction between S-SMART and S-SMART++ is
that the former generates SSRs per flit and S-SMART++ per packet. Thus, S-SMART++
preserves the packet-by-packet arbiter of SMART++ so SSRs and Spec-SSRs are created
only from head flits. Therefore, in S-SMART++ the bypass paths, taken speculatively or
not, are locked for the whole packet once the head flit traverses them, and released after
forwarding the tail flits.

6.1.5) Speculative-SMART++ in torus NoCs

Like happened with single-hop bypass routers, SMART is not compatible with bubble-
like flow controls to avoid deadlock and has to use an alternative mechanism, such as
Dateline. The reason is the utilization of Empty VC Forwarding (EVCF), which does
not allow holding bubbles in the buffers for other packets in transit within a dimension.
This does not occur in SMART++ and S-SMART++ since they implement multi-packet
buffers, allowing multiple packets and bubbles waiting in the same buffer. In this case,
SMART++ and S-SMART++ are not compatible with Flit-Bubble Flow Control (FBFC),
because they use VCT flow control so the bubble has to have a size of the maximum packet
size.

6.2
Evaluation

This section evaluates S-SMART++. Section 6.2.1 describes the simulation infrastructure;
Section 6.2.2 presents cycle-accurate performance results with synthetic traffic and Full-
System (FS) simulations; Section 6.2.3 shows synthesis estimations of power, resource
utilization and maximum frequency.

6.2.1) Simulation Infrastructure

We have implemented models of S-SMART and S-SMART++ in the BookSim version of
BST (Chapter 3). We also have developed a real-design implementation of S-SMART++
written in BSV based on the SMART++ one of OpenSMART from BST. Like OpenS-
MART, this model is limited to single-flit packets and works with credits. The imple-
mentation uses router bypass instead of buffer bypass, despite the fact that buffer bypass
is preferable for S-SMART++. The reason is that packets can change the traveling di-
mension when taking the bypass speculatively, like occurs in SMART 2D as explained
in Section 2.2.3.E. This produces conservative power, area, and frequency results for S-
SMART++. The BSV implementation is also used to validate the latency and throughput
results of the BookSim models, through BSV functional simulations as in Section 5.4.3.A.
The BSV compiler is used to generate Verilog code that is synthesized with Quartus
Prime 18.1 Lite Edition to measure power, area and maximum frequency on an Arria II
EP2AGX45DF29I5 FPGA.

We employ three types of simulations: functional with synthetic traffic, FS simulations
and validations with the BSV simulator. Tables 6.1 and 6.2 gather the most relevant
network and gem5 simulation parameters, respectively.

We focus on comparing S-SMART++ against SMART, because the performance of
SMART++ is equivalent to SMART in terms of cycles but with lower hardware cost

Page 101

Table 6.1: Network simulation parameters.

Parameter BookSim gem5 BSV

Mesh size 4× 4, 8× 8 & 16× 16 4× 4 & 8× 8 4× 4

Torus size 8× 8 & 16× 16 - -

Bypass mechanism SMART and S-SMART++

Bypass type buffer bypass router bypass

Router size 5 ports

Back-pressure Credits

SMART VCs 8 12 1, 2, 4 & 8

S-SMART++ VCs 1 3 1, 2, 4 & 8

SMART buf. size (packets) 1 packet

S-SMART++ buf. size (packets) 8 4 1, 2, 4, 8

Packet size (flits) 1 & 5 1

Routing DOR XY

VC selection policy Shortest queue Shortest queue First available VC

SSR policy Priority to local flits

HPCMax 1, 2, 3, 4, 7 & 15 3 & 7 3

Flit size 128 bits 32 bits

as shown in Chapter 5. Most of the functional simulations evaluate 8 × 8 meshes with
HPCMax = 7. There are also evaluations of 8× 8 tori and 16× 16 meshes and tori, with
different values for HPCMax. Some experiments also evaluate 8 × 8 SMART 2D meshes
to weight the benefit of the pipeline bypass in S-SMART++. Validation simulations are
evaluated in 4 × 4 meshes with HPCMax = 3 due to the large requirements of the BSV
compiler and the large number of simulation points obtained. The size of the network
is relatively small due to the large requirements of the BSV compiler. We do not use
the optimization to bypass the destination router as in the evaluation of SMART++ in
Chapter 5. In all cases local flits have priority over bypass.

Synthetic traffic simulations evaluate five traffic patterns [Dally2003]: random-uniform,
bit-reversal, transpose, tornado and hotspot (with traffic distributed evenly among 4
hotspots at the corners of the grid). We evaluate single-flit and 5-flit packets, which
are equivalent to control and data packets. Full-system simulations evaluate SMART and
S-SMART++ under real workloads in gem5. We simulate the execution of PARSEC [Bi-
enia2011] benchmarks1 under Linux 4.15.0 in an ARMv8 processor with 16 or 64 cores
operating at 2 GHz. Simulations employ the detailed Out-of-Order processor (O3) and
interconnection (Ruby) models in gem5. The cache coherence messages are distributed
in 3 Virtual Networks (VNs) to break cyclic protocol dependencies. The 16-core model
employs a 4× 4 mesh with HPCMax = 3 and runs the complete Region Of Interest (ROI)
of each benchmark with the simsmall input sets. The 64-core model employs an 8 × 8
mesh with HPCMax = 7 and runs the simlarge input sets, but only for 500 million cycles

1Raytrace is missing because of incompatibilities found with our simulation toolset.

Page 102

Table 6.2: gem5 configuration parameters

Parameter Value

CPU model 16x & 64x ARMv8 Out-of-Order (DerivO3CPU) @2GHz

Memory model Ruby @2GHz

Coherence protocol MESI with two levels of cache (MESI Two Levels)

Cache line size 64 Bytes

L1-I cache private, 32KB, 2-way associativity

L1-D cache private, 64KB, 2-way associativity

L2 cache shared and distributed among cores, 16x & 64x 256KB, 8-way associativity

Memory controllers 8x & 16x DDR3-1600 11-11-11 (Location: first and last mesh rows)

because of its high simulation time.

6.2.2) Cycle-level Performance Results

This section evaluates the performance of S-SMART++ based on the packet latency in
terms of cycles, abstracting differences in the maximum operation frequency of the NoCs.

6.2.2.A) Bypass mechanisms comparison

This section compares single-hop bypass (based on NEBB-Hybrid), SMART 1D and
SMART 2D with S-SMART++. Figure 6.5 shows the packet latency of the mechanisms
in 4×4, 8×8, and 16×16 meshes with HPCMax equal to 3, 7, and 15, respectively. These
values cover a dimension of the meshes in one multi-hop. Injected traffic follows a random-
uniform distribution and packets have one flit. NEBB-Hybrid and S-SMART++, which
allow multi-packet buffering, have a single buffer of 8 slots. SMART 1D and SMART 2D
have 8 VCs of 1 slot each.

Single-hop bypass SMART_1D SMART_2D S-SMART++

0 25 50 75
Offered load (%)

0

5

10

15

Pa
ck

et
 la

t.
(c

yc
le

s)

(a) 4× 4 mesh, HPCMax = 3

0 20 40
Offered load (%)

0

5

10

15

20

Pa
ck

et
 la

t.
(c

yc
le

s)

(b) 8× 8 mesh, HPCMax = 7

0 10 20
Offered load (%)

0

10

20

30

Pa
ck

et
 la

t.
(c

yc
le

s)

(c) 16×16 mesh, HPCMax = 15

Figure 6.5: Latencies of single-hop bypass, SMART 1D, SMART 2D and S-SMART++
for different mesh sizes.

The results show that single-hop bypass is competitive in small networks because of its
shorter per-hop latency. However, its performance quickly degrades with the network size

Page 103

because the average hop count grows. In contrast, the zero-load latency with multi-hop
bypass is almost constant with the network size, given that the effective number of hops
is practically constant. S-SMART++ outperforms SMART 1D and almost reaches the
performance of SMART 2D. The gain over SMART 1D is practically constant with the
size of the meshes due to the values of HPCMax, which are the maximum possible. For
example the base latency reduction in the 4× 4 mesh is 29.2% while in the 16× 16 mesh
is 32.1%. In all cases, the base latency remains almost constant since HPCMax always
covers a full dimension, whereas throughput halves when the size of the grid (mesh) side
duplicates due to halving the ratio between the bisection bandwidth and the number of
nodes.

6.2.2.B) S-SMART++ with different traffic patterns

This section compares SMART and S-SMART++ for various synthetic traffic patterns
and packets of 1 or 5 flits. Figure 6.6 depicts the results for tornado, bit-complement,
transpose, and hotspot traffic patterns, in an 8× 8 mesh.

SMART ps-1 SMART ps-5 S-SMART++ ps-1 S-SMART++ ps-5

0 10 20 30
Offered load (%)

0

10

20

Pa
ck

et
 la

t.
(c

yc
le

s)

(a) Tornado.

0 10 20
Offered load (%)

0

5

10

15

20

Pa
ck

et
 la

t.
(c

yc
le

s)

(b) Bit-complement.

0 5 10 15
Offered load (%)

0

5

10

15

20

Pa
ck

et
 la

t.
(c

yc
le

s)

(c) Transpose.

0 1
Offered load (%)

0

5

10

15

20

Pa
ck

et
 la

t.
(c

yc
le

s)

(d) Hotspot.

Figure 6.6: Latency for various traffic patterns in an 8× 8 mesh with HPCMax = 7 and
packet sizes of 1 (ps-1) and 5 flits (ps-5).

The results for these four traffic patterns are similar to the case of random-uniform
traffic in Section 6.2.2.A. S-SMART++ has lower latency than SMART in every case, with
similar throughput in spite of not using VCs. Besides, using multi-flit packets do not have
any effect other than increasing the latency due the flit serialization of packets.

6.2.2.C) HPCMax analysis

This experiment studies the impact of HPCMax on the latency of SMART and S-
SMART++. We model 8 × 8 and 16 × 16 meshes with different values of HPCMax.
Figure 6.7 shows the packet latency of both configurations. We focus on single-flit packets
and random-uniform traffic to simplify the analysis, given that the trend is similar with
other packet sizes and traffic patterns.

As expected, latency improves with larger HPCMax in all cases. However, S-
SMART++ outperforms SMART even with low HPCMax thanks to its speculation mech-
anism. Interestingly, S-SMART++ without multi-hop bypass (HPCMax = 1) in the 8× 8
mesh has the same zero-load latency than SMART with the maximum possible multi-hop
bypass (HPCMax = 7). The multi-hop length influence on the packet latency is also
reduced, specially at low offered loads. In the 8 × 8 mesh, between HPCMax = 1 and
HPCMax = 7 the reduction of zero-load latency is 10.42 cycles in SMART, and only 3.47

Page 104

SMARTType | HPCMax

SMART | 1
S-SMART++ | 1

SMART | 2
S-SMART++ | 2

SMART | 4
S-SMART++ | 4

SMART | 7
S-SMART++ | 7

SMART | 15
S-SMART++ | 15

0 10 20 30 40
Offered load (%)

0

10

20

Pa
ck

et
 la

t.
(c

yc
le

s)

(a) 8× 8 mesh

0 5 10 15 20 25
Offered load (%)

0

20

40

Pa
ck

et
 la

t.
(c

yc
le

s)

(b) 16× 16 mesh

Figure 6.7: Packet latency varying HPCMax.

in S-SMART++; in the 16× 16 mesh, these differences are 24.27 in SMART and 8.08 in
S-SMART++.

6.2.2.D) Evaluation with real traffic

This section analyzes NoC performance using FS simulations running the PARSEC bench-
marks. Figure 6.8a presents speedup results of S-SMART++ over SMART with a 16-core
system. The average speedup of S-SMART++ is 4.59%. Half of the applications present
similar performance in both models. It has to be considered that the distribution of
micro-architectural and operating system events over time introduces some performance
variability. The other applications present notable speedups for S-SMART++, with a
maximum of 15.4%.

Figure 6.8b presents average packet latency results for the same executions. We mea-
sured an average network load of only 4.7%, so average latency results are very close to
the base latency in most cases, with additional constant delays that correspond to the in-
jection and ejection from the NoC in the memory sub-system. The speculative mechanism
of S-SMART++ systematically improves latency in all cases, with an average reduction
of 2.77 cycles over SMART, or a 17.4%.

Figure 6.8c presents latency with 64 cores in an 8 × 8 mesh, but only for the initial
500M cycles of the ROI. In this case the initialization is more relevant, and some ap-
plications (especially Blackscholes) present larger latency than when observing the full
ROI. However, the systematic improvement of S-SMART++ observed with 16 cores is
preserved, with an average reduction of 3.01 cycles. This graph also includes results for
two variants of SMART 2D, one of them with a very costly but realistic HPCMax value
(HPCMax = 7) and an ideal implementation that reaches the destination in a single
multi-hop (HPCMax = 15). S-SMART++ is very close to the realistic implementation of
SMART 2D, and only 1.50 cycles higher than the ideal model on average.

6.2.2.E) SMART and S-SMART++ in tori

This evaluation analyzes SMART and S-SMART++ in torus topologies. The first part
of this evaluation compares single-hop bypass, SMART and S-SMART++ in tori with
different sizes, like it was done at the beginning of the section with meshes. In this case

Page 105

b
la

c
b

o
d

y
ca

n
n

d
e
d

u
fa

ce
fe

rr
fl
u
i

fr
e
q

st
re

sw
a
p

v
ip

s
x
2

6
4

A
v
g

0

5

10

15

S
p

e
e
d

u
p

 (
%

) S-SMART++

(a) S-SMART++ speedup over SMART with 16 cores running the complete ROI.

SMART_1D S-SMART++ SMART_2D - Realistic SMART_2D - Ideal

bl
ac

bo
dy

ca
nn

de
du

fa
ce fe
rr flu
i

fre
q

st
re

sw
ap vi
ps

x2
64 Av

g

0

10

20

Pa
ck

et
 la

t.
(c

yc
le

s)

(b) Average packet latency with 16 cores run-
ning the complete ROI.

bl
ac

bo
dy

ca
nn

de
du

fa
ce fe
rr flu
i

fre
q

st
re

sw
ap vi
ps

x2
64 Av

g

0

20

40

60

Pa
ck

et
 la

t.
(c

yc
le

s)

(c) Average packet latency with 64 cores, 500M
cycles.

Figure 6.8: S-SMART++ performance on full-system simulations.

we focus on 8× 8 and 16× 16 torus with HPCMax equal to 4 and 8. These HPCMax are
enough to cover the maximum distance between nodes within a dimension. This is one of
the advantages of using a torus instead of a mesh as we show later.

Figure 6.9 shows packet latency results for 1-flit and 5-flit packets. Single-hop bypass
uses NEBB-Hybrid and FBFC-L with 1 VC for 8 packets (8 slots for 1-flit packets and
40 slots for 5-flit packets), SMART uses dateline with 8 VCs for 1 packet each, and S-
SMART++ uses Bubble flow control with 1 VC for 8 packets. The results are similar
to meshes, i.e., single-hop bypass suffers high latency degradation when increasing the
network size, and S-SMART++ has lower latency than SMART as expected. The latencies
with 5-flit packets show similar behaviors. We note that S-SMART++ presents slightly
lower throughput than SMART, which may be attributed to the lack of VCs to reduce
HoLB.

Figure 6.10 compares the latency of 8 × 8 and 16 × 16 meshes and tori using S-
SMART++ and varying HPCMax. The first observation is that the torus configurations
almost double the throughput of the mesh ones, as expected from the duplication of the
bisection width (BW) mentioned in Section 1.4.1. The second observation is that the torus
configurations reduce the latency with respect to their mesh counterparts, due to the re-
duction of the average distance. This is most noticeable with low values for HPCMax as a
result of having higher effective number of hops. The most important effect of employing
a NoC topology with lower average distance is the reduction of the maximum HPCMax as
mentioned before. For example in the case of the 8× 8 networks, the maximum HPCMax

is 7 in the mesh and 4 in the torus. In both cases the zero-load latency is the same because
the effective number of hops is the same, i.e., 1 multi-hop if the destination of a packet is
in the same dimension or 2 if packets have to perform a dimension change. For this reason

Page 106

NEBB SMART_1D S-SMART++

0 20 40 60 80
Offered load (%)

0

5

10

15

20
Pa

ck
et

 la
t.

(c
yc

le
s)

(a) 8× 8 tori with packet size 1.

0 20 40 60
Offered load (%)

0
10
20
30
40

Pa
ck

et
 la

t.
(c

yc
le

s)

(b) 8× 8 tori with packet size 5.

0 10 20 30 40
Offered load (%)

0

10

20

30

Pa
ck

et
 la

t.
(c

yc
le

s)

(c) 16× 16 tori with packet size 1.

0 10 20 30 40
Offered load (%)

0

20

40

60

Pa
ck

et
 la

t.
(c

yc
le

s)

(d) 16× 16 tori with packet size 5.

Figure 6.9: Packet latency of 8 × 8 and 16 × 16 tori with bypass. Single-hop bypass
uses NEBB-Hybrid with FBFC-L and 1 VC; SMART employs dateline with 8 VCs; and
S-SMART++ relies on Bubble flow control with 1 VC.

and given the low core-count of the FS simulations depicted in the previous evaluation,
we do not include real-traffic results as it is expected to observe similar performance.

6.2.3) Synthesis results

This section evaluates the S-SMART++ model implemented in OpenSMART with the
Bluespec System Verilog tools and Quartus.

6.2.3.A) Model Validation

This section validates the models implemented in Booksim and BSV by comparing their
results. The network evaluated is a 4× 4 mesh with HPCMax = 3, single-flit packets and
random-uniform traffic. Figure 6.11 shows the results of S-SMART++ in both platforms.

The base latency of both implementations is the same until reaching saturation, where
most of the differences are negligible. The highest relative error is 9.77% when using 2
VCs of 1 slot. From these results we consider that the functional models implemented in
BookSim, cycle accurately simulate the router architecture and the pipeline, according to
the HDL implementation.

Page 107

Topology | HPCMax

Mesh | 1

Torus | 1

Mesh | 2

Torus | 2

Mesh | 4

Torus | 4

Mesh | 7

Torus | 7

Mesh | 15

0 20 40 60 80
Offered load (%)

0

10

20

Pa
ck

et
 la

t.
(c

yc
le

s)

(a) S-SMART++ in 8× 8 mesh and torus.

0 10 20 30 40
Offered load (%)

0

10

20

Pa
ck

et
 la

t.
(c

yc
le

s)

(b) S-SMART++ in 16× 16 mesh and torus.

Figure 6.10: Packet latency of 8× 8 and 16× 16 meshes and tori varying HPCMax.

6.2.3.B) Resource Analysis

This section analyzes the resource requirements of a single SMART and S-SMART++
router, for different values of buffer count and depth using packets of 1 flit. Note that
SMART is limited to only 1 packet. S-SMART++ targets designs with few deep buffers
(1× 8 instead of 8× 1 in SMART) but configurations with multiple buffers are also con-
sidered. Figure 6.12 shows FPGA resources used by the synthesized routers, represented
by the number of Adaptive Look-Up Tables (ALUTs), Adaptive Logic Modules (ALMs),
dedicated registers and internal block memory bits.

First, the results show the high impact of VCs on resource demands as they are part of
the input units, credit units (credit handling logic) and VA. When duplicating the number
of VCs, the number of resources is almost doubled. For example, the configuration of
SMART with 2 VCs of 1 slot increases the number of ALUTs by 74.3%, ALMs by 62.1%
and registers by 80,9% with respect to 1 VC of 1 slot. By contrast, when increasing buffer
depth, the resource utilization grows at a much slower rate. For example, in S-SMART++
with 1 VC of 8 slots the number of ALUTs increases by 5.1%, ALMS by 4.6% and registers
by 25.9% compared to 1 VC of 1 slot. In some configurations of S-SMART++, like 1× 8
slots, the synthesis employs block memory (internal FPGA RAM) to build the buffers of
the input and/or credit unit because the FPGA employed does not have enough dedicated
registers. This causes a significant power increment for this configuration as shown in
Section 6.2.3.C.

The overhead of S-SMART++ over SMART is similar between common configurations.
For example with 1 VC of 1 slot, S-SMART++ uses 31.0% more ALUTs, 24.9% ALMs
and 1.3% registers than SMART. With 4 VCs of 1 slot, these values are 26.92%, 26.18%
and 0.06%, respectively. The logic increase is localized in the VA of OpenSMART, which
integrates a large part of SA-G.

However, since S-SMART++ targets few deep buffers, effective configurations are more
efficient than in SMART. For example, S-SMART++ with 1 VC of 8 slots employs 80.88%
less ALUTs, 82.06% less ALMs and 81.71% fewer registers than SMART with 8 VCs of 1
slot.

Page 108

Simulator | # VCs
OpenSMART | 1
BookSim | 1

OpenSMART | 2
BookSim | 2

OpenSMART | 4
BookSim | 4

0 20 40 60 80
Offered load (%)

0

5

10

15

20

Pa
ck

et
 la

t.
(c

yc
le

s)

(a) Buffer size: 1 slot.

0 20 40 60 80
Offered load (%)

0

5

10

15

20

Pa
ck

et
 la

t.
(c

yc
le

s)

(b) Buffer size: 4 slots.

1x
1

1x
2

1x
4

1x
8

2x
1

2x
2

2x
4

2x
8

4x
1

4x
2

4x
4

4x
8

8x
1

8x
2

8x
4

8x
8

VCs x Buffer size

0.00

0.25

0.50

0.75

M
ax

. T
hr

ou
gh

pu
t

(fl
its

/c
yc

le
/n

od
e)

OpenSMART
BookSim

(c) Maximum throughput.

Figure 6.11: Comparison of packet latency and throughput of the S-SMART++ models
implemented in BSV and BookSim.

6.2.3.C) Timing and Power Analysis

Figure 6.13 depicts the maximum operation frequency and the dynamic power consump-
tion for multiple SMART and S-SMART++ router configurations. Again, note that S-
SMART++ targets deep buffer arrangements such as 1×8, compared to 8×1 in SMART.

To obtain dynamic power results, we feed the power analysis tool with VCD (value
change dump) files generated from ModelSim functional simulations with a clock frequency
of 25 MHz, which is under the minimum operation frequency of the configurations depicted.
The results reveal that the number of VCs is a critical design factor. Focusing on SMART,
doubling the number of VCs reduces frequency by between 12.04 and 21.44 MHz in each
step. The overhead of S-SMART++ reduces the maximum frequency of SMART by 23.98
to 29.76 MHz for equivalent configurations. However, increasing the buffer depth has a
negligible impact on frequency, and S-SMART 1×8 obtains a frequency 46.1% faster than
SMART 8× 1.

Dynamic power, depicted in Figure 6.13b, almost doubles when duplicating the number
of VCs. For example, SMART with 2 VCs of 1 slot multiplies by 1.73 the power of 1 VC
with 1 slot. Moreover, increasing the buffer depth in S-SMART++ has a negligible impact
on frequency and moderately increases dynamic power. Section 6.2.3.B mentions how the
abrupt increment in dynamic power for some configurations (1 × 8, 2 × 8, 4 × 8, 8 × 2,
8× 4, and 8× 8) is caused by the use of memory instead of dedicated registers to allocate

Page 109

Input Units

SA-L

XBar

Credit Units

VA

Others

1
x
1

2
x
1

4
x
1

8
x
1

1
x
1

1
x
2

1
x
4

1
x
8

2
x
1

2
x
2

2
x
4

2
x
8

4
x
1

4
x
2

4
x
4

4
x
8

8
x
1

8
x
2

8
x
4

8
x
8

0

5000

10000

15000

#
 A

LU
s

VCs x Buffer Size
SMART S-SMART++

(a) ALUTs used.

1
x
1

2
x
1

4
x
1

8
x
1

1
x
1

1
x
2

1
x
4

1
x
8

2
x
1

2
x
2

2
x
4

2
x
8

4
x
1

4
x
2

4
x
4

4
x
8

8
x
1

8
x
2

8
x
4

8
x
8

0

5000

10000

#
 A

LM
s

VCs x Buffer Size
SMART S-SMART++

(b) ALMs used.

1
x
1

2
x
1

4
x
1

8
x
1

1
x
1

1
x
2

1
x
4

1
x
8

2
x
1

2
x
2

2
x
4

2
x
8

4
x
1

4
x
2

4
x
4

4
x
8

8
x
1

8
x
2

8
x
4

8
x
8

0

2000

4000

#
 D

e
d

ic
a
te

d
 R

e
g

is
te

r

VCs x Buffer Size
SMART S-SMART++

(c) Registers used.

1
x
1

2
x
1

4
x
1

8
x
1

1
x
1

1
x
2

1
x
4

1
x
8

2
x
1

2
x
2

2
x
4

2
x
8

4
x
1

4
x
2

4
x
4

4
x
8

8
x
1

8
x
2

8
x
4

8
x
8

0

1000

2000

3000

B
lo

ck
 M

e
m

o
ry

 B
it

s

VCs x Buffer Size
SMART S-SMART++

(d) Memory used.

Figure 6.12: FPGA resources employed by SMART and S-SMART++.

part of the buffers of the input unit. Despite this, S-SMART++ 1 × 8 reduces dynamic
power by 44.1% with respect to SMART 8× 1.

6.2.3.D) Scaled performance results

Similarly to Section 5.4.3.D, this section scales the performance results of Section 6.2.2 that
are given in terms of cycles, with the maximum frequency of each configuration depicted
in Figure 6.13a. Figure 6.14 presents the frequency-scaled latency of SMART and S-
SMART++ with single-flit packets and random-uniform traffic. The figure shows SMART
for different VC configurations (2, 4 and 8 VCs) given that more VCs increase throughput
but reduce the maximum frequency. For S-SMART++ we only show a configuration with
a single VC of 8 slots, equivalent in space and throughput to SMART with 8 VCs of 1
slot, because the frequency variations with the buffer depth are negligible.

From the results, it is clear that S-SMART++ outperforms SMART with lower costs.
In terms of latency, S-SMART++ reduces the zero-load latency of SMART with 2 VCs
by 45.3%. In terms of throughput, S-SMART++ increases the maximum throughput of
SMART with 4 VCs by 13.9%.

The previous evaluation compares SMART and S-SMART++. However, SMART++
improves the efficiency of SMART without incurring in the implementation overhead of
Speculative-SMART. Thus, Figures 5.13a and 6.13a show that SMART++ achieves higher
maximum frequencies that S-SMART++ for the same buffer configuration.

Figure 6.15 shows the latency of SMART++ and S-SMART++ with the same buffer
configuration and varying HPCMax. The buffer configuration is 1 VC of 8 slots. The

Page 110

Input Units

SA-L

XBar

Credit Units

VA

Others

1
x
1

2
x
1

4
x
1

8
x
1

1
x
1

1
x
2

1
x
4

1
x
8

2
x
1

2
x
2

2
x
4

2
x
8

4
x
1

4
x
2

4
x
4

4
x
8

8
x
1

8
x
2

8
x
4

8
x
8

0

50

100

Fr
e
q

u
e
n
cy

 (
M

H
z)

VCs x Buffer Size
SMART S-SMART++

(a) Max. frequency.

1
x
1

2
x
1

4
x
1

8
x
1

1
x
1

1
x
2

1
x
4

1
x
8

2
x
1

2
x
2

2
x
4

2
x
8

4
x
1

4
x
2

4
x
4

4
x
8

8
x
1

8
x
2

8
x
4

8
x
8

0

25

50

75

D
y
n
a
m

ic
 P

o
w

e
r

(m
W

)

VCs x Buffer Size
SMART S-SMART++

(b) Dynamic power.

Figure 6.13: FPGA frequency and dynamic power results of SMART and S-SMART++.

SMART 2 VCs SMART 4 VCs SMART 8 VCs S-SMART++

0 5 10 15 20 25 30 35
Offered load (GB/s)

0

100

200

300

400

Pa
ck

et
 la

t.
(n

s)

Figure 6.14: Frequency-scaled latency of SMART with different VC configurations and
S-SMART++ without VCs.

zero-load latency of S-SMART++ is lower despite having a lower maximum frequency.
The difference between both mechanisms is higher for small values of HPCMax. However,
the lower frequency of S-SMART++ notably decreases its maximum bandwidth with
respect to SMART++. For example, the S-SMART++ configuration with HPCMax = 2
reduces the bandwidth of SMART++ by 18.72%. In general, the lower dependency of S-
SMART++ with HPCMax makes it a more versatile version, capable of adjusting better to
stringent design requirements. It is also important to remark that these results consider
that the router architecture determines the maximum frequency instead of HPCMax,
which favors SMART++. Nevertheless, SMART++ is a suitable option when bandwidth
is a determining factor.

6.3
Conclusions

In this chapter we have described S-SMART++, a multi-hop bypass NoC architecture that
makes use of speculative allocation to reduce latency. The target of S-SMART++ is the
relatively high router delay of SMART after each multi-hop, which reduces its effectiveness
in small meshes and/or with small HPCMax values. Applying S-SMART++ reduces the

Page 111

Mechanism | HPCMax

SMART++ | 2
S-SMART++ | 2

SMART++ | 4
S-SMART++ | 4

SMART++ | 8
S-SMART++ | 8

0 5 10 15 20 25 30 35 40 45
Offered load (GB/s)

0

100

200

300

Pa
ck

et
 la

te
nc

y
(n

s)

Figure 6.15: Frequency-scaled latency of SMART++ and S-SMART++ varying
HPCMax.

minimum router delay from three cycles to one, just like in a single-hop bypass router.
The evaluation results show that S-SMART++ reduces the zero-load latency of

SMART 1D and achieves almost the same latency as SMART 2D, which implies an unaf-
fordable cost given that its SSR interconnection grows quadratically with HPCMax. More-
over, S-SMART++ reduces drastically the dependency of its base-latency with HPCMax.
The results of area, power, and maximum frequency show that the overhead introduced
by the additional logic is not negligible. In short, the combination of SMART++ and
Speculative-SMART expands the possibilities of integrating multi-hop bypass NoCs in
real CMPs by adjusting critical design parameters such as the topology, the number of
VCs and HPCMax.

Page 112

Chapter 7
Related Work

In this chapter we present and discuss previous work that is related with the contributions
of this thesis, either to compare them or to propose their combination in possible future
work. The organization of the chapter follows the structure of the thesis: Section 7.1
focuses on BST; Section 7.2 focuses on NEBB in single-hop bypass NoCs; Section 7.3
focuses on SMART++; and Section 7.4 focuses on S-SMART++.

7.1
BST

In Chapter 3 we discuss the NoC simulators BookSim and Garnet, and the HDL imple-
mentation OpenSMART. There exist many other open-source alternatives, such as [Pa-
pamichael2012; Abad2012; Catania2015; Chen2016a; Norollah2018]. While these tools
provide very diverse and relevant functionalities, as far as we know none of them supports
detailed bypass router models, at least in their public version.

In some cases, such NoC simulators are integrated with other tools in order to eval-
uate shared-memory systems. Most simulation platforms at this level tend to be cycle-
accurate to faithfully model the processing cores and the memory hierarchy. However,
most of such proposals make use of simple NoC architectures [Carlson2011; Sanchez2013]
or have employed router architectures without bypass features [Binkert2011; Hsieh2012;
Bakhoda2009; Lowe-Power2020].

The next subsections discuss alternative tools or methodologies to evaluate the effect
of NoCs in real systems, which, in our opinion, is the biggest obstacle for their evaluation.

7.1.1) Simulation time of Full-System simulations

A fundamental aspect of evaluating shared-memory systems, especially CMPs, is their
simulation time that in many cases is unaffordable because the simulators are com-
monly single-threaded. When parallelizing a time-driven simulator, typically, it is done
following a coarse-grain partitioning, which is only applicable when the simulated sys-
tem is large [Mohammad2017] or the scalability limit is acceptable. For example,
TOPAZ [Abad2012], based on SICOSYS [Puente2002], has support for parallel execu-
tions and is integrated in gem5. However, the execution of gem5 is sequential and only
the execution of TOPAZ is parallel.

Page 113

Based on our own experience, this kind of simulation may take months to complete the
execution of PARSEC benchmarks [Bienia2011] using large input-sets when run in 64-core
CMPs with detailed models. Nowadays, CMPs already exceed such core counts and it
is critical to evaluate NoCs with several hundreds or thousands of nodes for near-future
CMPs. The concern is that simulation times will continue increasing with the number of
cores, not only due to the system size but also because of the size of the input workload
required by the benchmarks. These workloads also have to grow if the goal is to resemble
the execution of the benchmarks in a real system. In this sense, even the largest state-
of-the-art industrial FPGA platforms cannot simulate large multi-cores with tens of high
performance cores, accelerators, a complex NoC and high bandwidth memory controllers.
A possible solution to this issue might be the use of FPGAs to accelerate the simulation by
implementing certain components of the system in them [Angepat2014], but this depends
on the exploitable parallelism of the simulator.

The utilization of execution traces is a common solution to mitigate the previous
problem. For example, elastic traces in gem5 [Jagtap2016] capture loads and stores of
detailed out-of-order CPUs to then replay them, abstracting the core details and achieving
speed-ups up to 8x over execution-driven simulations while providing low errors, around
3% in relative terms. As an alternative, SynFull [Badr2014] proposes to abstract the core
details and the memory hierarchy to simulate or emulate only the NoC with automatic
generated finite state machines that represents the traffic produced by the cores to the
NoC. Mocktails [Badr2020] follows the idea of SynFull to generate memory traffic models in
heterogeneous systems based on the temporal and spatial distribution of memory accesses.
It focuses on generating black-box models of intellectual property (IP) blocks, of which the
industry does not provide memory traces. Thus, companies may use Mocktails to provide
synthetic models, which hide relevant information of their IP blocks, to support academic
research. Nevertheless, in both cases, they first require a full system simulation or real
execution to generate the trace; the size of the traces is usually in the order of some GBs;
and they lack flexibility, i.e., they are typically accurate when modeling the same system
configuration used during the capture of the trace.

BarrierPoint [Carlson2014] is a promising methodology. The methodology is based on
SimPoint [Hamerly2005], which draws from the premise that applications can be divided
in phases that are repeated multiple times during an execution. Thus, simulating just once
each of the phases, it is possible to reconstruct the whole execution. BarrierPoint extends
SimPoint to parallel applications, which introduce a new dimension to the problem due to
the variability that each concurrent thread can exhibit. This is addressed in BarrierPoint
by leveraging synchronization barriers commonly used in parallel programming to sepa-
rate the application phases. In general, this methodology solves the lack of flexibility of
traces. Moreover, this methodology has been successfully applied when using a real sys-
tem to characterize the application and obtain the BarrierPoints, and use that information
directly in the simulated system [Ferreron2017; TairumCruz2018]. The information from
the real system comes from hardware counters and dynamic binary instrumentation, being
accurate even when employing different ISAs between the real and the simulated system.
However, it is uncertain that one can use this methodology in a real system with fewer
cores than the target one, as the use of thread oversubscription might alter the temporal
characteristics of the metrics.

Page 114

7.1.2) Simulation of large-scale parallel applications

For larger deployments, subsystem simulators are common tools that allow obtaining per-
formance predictions and assist computer architects in designing specific parts of HPC
systems. Mubarak et al.[Mubarak2017], for example, propose CODES, a fast and flexible
simulation framework that models large-scale state-of-the-art torus and dragonfly net-
works. Compared to this, our work focuses on a detailed NoC model that should be
included in a state-of-the-art simulator like gem5, oriented to evaluate the nodes (servers)
composing such big systems.

In this direction, prior work proposed simulation methodologies to evaluate the perfor-
mance of large-scale parallel applications on distributed systems [Zheng2010; Denzel2008;
Grobelny2007]. Most proposals use analytical models to estimate node performance (no
cycle-accurate models are used) or system software interactions.

SST [Rodrigues2011] is a multi-scale simulator often used in combination with other
simulators to model distributed applications. In BE-SST [Ramaswamy2018], authors
combine SST with coarse-grained behavioral emulation models abstracting from micro-
architectural details in favor of simulation speed. Other implementations integrate SST
with a highly accurate simulator but require too costly full system simulations to produce
a wide set of experiments [Hsieh2012; Ramaswamy2018]. Since SST is compatible with
gem5, it could benefit from the contributions of BST.

The MUlti-level SimulAtion methodology (MUSA) enables fast and accurate perfor-
mance estimations in scenarios with several thousands of cores [Grass2016; Gomez2019].
MUSA takes into account inter-node communication, node-level architecture, and sys-
tem software interactions. MUSA combines sampling techniques with different simulators
based on analytical models and cycle-accurate traces. The NoC model in MUSA is a
simple multi-bus without any notion of the router architecture. Integrating BookSim in
MUSA is an interesting future work.

7.1.3) Analytical models

With the same objective, application specific analytical models [Kerbyson2001;
Nowatzki2013; Marjanovic2014] use a small set of parameters to predict performance for
a single application on large systems. Once those models are created and validated, they
are able to accurately predict performance with negligible compute and time cost. For
example, Vaish et al. [Vaish2016] address three NoC design problems, which are memory
controller placement, resource allocation in heterogeneous networks, and their combina-
tion. The main downside of these models is that they have little flexibility; any significant
change in the application or hardware architecture requires the model to be updated,
refined, and validated again. Our methodology focuses on hardware micro-architectural
exploration and iterative fast co-design; new features can be tested on all applications at
the moment they are included in the simulator.

7.2
NEBB

Chapter 4 targets improving the implementation of single-hop bypass NoCs defined ini-
tially in [Kumar2007]. In this section we review other works that also improve the original
architecture and alternative solutions as well.

Page 115

7.2.1) Single-hop bypass architectures

Lookahead routing [Galles1997], originally introduced to reduce the latency of routers in
system area networks, is key to set-up the bypass in NoCs with bypass routers. To our
knowledge, the first publication that presents a NoC architecture with bypass paths, to
reduce latency without increasing the radix of the routers, is Express Virtual Channels
(EVC, [Kumar2007a]). EVC is based on dedicating a set of VCs to use what the authors
call the express pipeline of routers, which is equivalent to the bypass path of the routers
described in Chapter 2. The dedicated VCs, or express VCs, form paths k-hops away
(with k > 1) so when a packet acquires one of these VCs it can take the bypass in the
intermediate routers. However, this proposal presents some issues. First, it requires many
VCs, specially the dynamic version which have the best latency, to conform the express
VCs. Second, the architecture complicates the buffer management as credits has to be sent
to the upstream routers k-hops away. And third, bypass is only supported when traveling
along a dimension, to avoid conflicts between packets acquiring overlapping express VCs
at the same time.

In the same year, the router architecture presented in Section 2.1 was published [Ku-
mar2007]. This architecture solves all the problems of EVC by using only information
about the occupation of adjacent routers and without partitioning the VC set. This is
possible due to the conditions defined to use the bypass. However, as we have already
mentioned multiple times, they are unnecessarily conservative, requiring multiple VCs to
exploit the throughput of the topology, which complicates the design and increases area
and power.

Token Flow Control (TFC, [Kumar2008]) is another work from the same authors that,
like EVC, communicates information, denoted as tokens, about the availability of resources
among nodes in a neighborhood. The objective of the mechanism is the improvement of
the bypass utilization by choosing low congested paths, exploiting path diversity with
adaptive routing. In that work, the authors introduce the LookAhead Conflict Check unit
(LA-CC, equivalent to LA-Arb) which modifies two of the bypass conditions originally
presented that discard packet bypass when an LA conflicts with a flit or another LA.
NEBB only takes advantage of the LA-CC idea because our objective was to make the
conditions as simple as possible while providing compatibility with other mechanisms
designed for traditional routers, such as FBFC in tori (Section 4.3). However, adapting
NEBB to Token Flow Control could be interesting to exploit its adaptive routing, specially
for adverse traffic.

Based on TFC, SWIFT [Krishna2010] presents a router architecture that concentrates
on using low-swing links to implement the crossbars and links, improving energy consump-
tion. The proposed conditions to use the bypass in NEBB are totally independent of the
signaling technology, therefore it can be combined with NEBB.

ShortPath [Psarras2016] proposes an alternative pipeline organization for bypass
routers. It focuses on enhancing performance by removing the speculative allocation of
this type of router. With non-speculative allocation, flits may bypass the first allocation
stage in case of losing the second one. This minimizes the time spent by each flit in a
router by bypassing part of the allocation when the bypass of the entire router is not
possible. As far as we know, ShortPath uses WH because it performs SA for body flits,
and allows the storage of multiple packets in the same input VC. Combining ShortPath
with NEBB is an interesting idea for future work to take the most of both.

Page 116

7.2.2) Ordered message NoCs

As mentioned in Section 2.1.3.B, giving priority to LAs over local flits can break the mes-
sage sequence order. Giving priority to local flits do not guarantee the message order as
it can be already broken if the VC allocation policy is not designed accordingly, even in
traditional routers. The cache coherence protocol of distributed directory-based imple-
mentations usually does not require message order. Therefore, giving priority to LAs is
typically preferable, at least while it does not cause starvation.

SCORPIO [Daya2014] guarantees the message order if the protocol requires it, which
is very common in snoopy protocols. SCORPIO basically consists of two subnetworks:
the main network that transports the messages in any order, like any common NoC; and
a notification network in charge of informing that there are messages in-flight towards the
Network Interface Controllers (NICs). The notification network has a delimited maximum
latency due to the micro-architecture design, guaranteeing that all the destination nodes
of a message will receive the ordering information in time. Then, the NIC is in charge of
reordering the messages at the destination using the previous information. SCORPIO is
compatible with ARM’s Advanced Microcontroller Bus Architecture (AMBA). The router
architecture of the main network is based on the single-hop bypass architecture described
in Section 2.1.1 with the addition of broadcast support. The combination of NEBB with
a reordering mechanism such as SCORPIO remains as future work.

7.2.3) Hybrid flow controls

Finally, the Hybrid version of NEBB combines two flow controls, WH and VCT. Whole
Packet Forwarding (WPF, [Ma2012]) applies packet-based flow control in a WH network.
In this case, they use it to relax VC re-allocation requirements in deadlock-free fully
adaptive routing NoCs, without considering bypass. Another work that combines two
different types of flow control is [Jafri2010], which combines bufferless back-pressure with
the typical buffered one, to minimize buffer power consumption at low loads and maximize
performance at medium-high loads, but again, without considering bypass.

7.3
SMART++

Chapters 2 and 3 already described the original SMART proposal [Krishna2013] and its
HDL implementation OpenSMART [Kwon2017]. In this section we briefly mention other
related works and alternative topologies that has been proposed in the context of NoCs
to reduce the number of hops done by packets.

7.3.1) SMART related works

As explained in 2.2.3.C, the key issue of SMART 2D is the complexity that introduces
the links to propagate SSRs, which grows quadratically with HPCMax. In [Chen2016],
the authors propose a dedicated network to propagate SSRs, replacing the SSR broadcast
wires and the complex allocators required by SMART. This is a good solution to reduce
the wire overhead and energy consumption but it introduces an extra pipeline stage to
arbitrate between SSRs in the SSR network. SHARP (Smart Hop Arbitration Request

Page 117

Propagation) [Asgarieh2019] is an alternative solution that does not add an extra pipeline
stage, besides eliminating the quadratic SSR arbitration. It also eliminates the possibility
of false negative SA-G allocations by only propagating SSRs from the previous routers
that win SA-G.

Besides the previous two works that could be adapted directly to SMART++, there
are a variety of interesting works that uses SMART. For example, WiSMART (wireless-
enabled SMART [Duraisamy2017]) is a hybrid NoC that combines SMART and a wire-
less NoC (WiNoC). This combination allows operating at high frequencies indepen-
dently of HPCmax, using wireless communication for long distances. Another example
is [Yang2017], which uses task mapping techniques to reduce conflicts between packets
in SMART. The techniques focus on communication contention, rather than communica-
tion distance, as contention degrades bypass utilization. Finally, an analytical model of
SMART is presented in [Bhattacharya2017] to accelerate simulations, achieving reductions
of two orders of magnitude with respect to cycle-accurate simulators.

7.3.2) Low-diameter topologies

Designing low-diameter topologies is a common solution to reduce the average distance
between nodes in networks. They are implemented using high-radix routers. Some of
the most traditional examples of these topologies are concentrated mesh, flattened but-
terfly [Kim2007] or express cube topologies [Grot2009a]. A recent topology proposal is
the Slim NoC (SN) [Besta2018], a low diameter NoC design that minimizes router radix
for a given node count based on Moore graphs and non-prime finite fields. The main
disadvantage of these four topologies is that they increase the router radix, which does
not only increment the number of ports including their respective components (buffers,
VC registers, control logic, etc), but also increases the complexity of the allocators and
crossbars. The case of using concentration in a mesh, or any other topology, may be a
double-edge sword. It increases the number of injection/ejection ports because there are
more nodes connected to the routers, but it reduces the total number of routers with re-
spect to an equivalent topology without concentration. However, the decisive factor may
be the bandwidth reduction, which is divided by the concentration factor. Either way,
SMART++ should be compatible with these topologies without further adaptation but
the combination of them does not make sense, except for concentrated meshes with mod-
erate/large distances. Another option is the combination of SMART++ with topologies
in between meshes and flattened butterflies, i.e., meshes with ruche channels [Ou2020].
Instead of interconnecting adjacent routers of a mesh, ruche channels interconnect routers
that are at a distance determined by the ruche factor. The case of the flattened butterfly
is an extreme case of a mesh with ruche channels that combines all the possible ruche
factors.

7.4
S-SMART++

In the previous section we already mentioned the related work of SMART++ and therefore
of S-SMART++. However, returning to SHARP [Asgarieh2019], it introduces the concept
of SSR propagation which eliminates false negatives in SA-G. Instead of broadcasting the
SSR, SHARP routers process all the received SSRs and only forward one winning SSR
per output port. Therefore, using SHARP allows intermediate multi-hop routers know

Page 118

in advance when they will be the destination of a premature stop of a multi-hop. In
combination with Speculative-SMART++, this information can be leveraged to generate
spec-SSRs in intermediate routers where SA-G fails. If the spec-SSR succeeds in the next
cycle, the packet will only lose 1 cycle in intermediate routers instead of 3 like in the
current implementation of S-SMART++, which only works when packets traverse the
whole multi-hop.

Page 119

Chapter 8
Conclusions

NoCs play a key role in the performance and area/power budgets of many-core processors.
They are part of the memory sub-system and add a new source of non-uniform latency
in memory operations. Therefore, designing cost-efficient networks with minimal latency
is critical. However, the task is becoming more and more difficult with the continuous
increase in the number of cores found in CMPs, as it is the number of nodes to interconnect.
Mesh-based NoCs are in use in many current multi- and many-core processors. However,
the latency of meshes is significant for current core counts, and their scalability is limited.
Alternative low-latency topologies using high-radix routers have been proposed but their
implementation is costly.

NoCs in CMPs usually have to deal with low load, so under these conditions there are
two main factors that define the latency: the delay of routers, and the distance between
nodes. Bypass routers were proposed to minimize the latency in mesh-like topologies while
taking advantage of its relative low cost. There are two types of bypass routers: single-hop
bypass routers focus on reducing the router delay; and multi-hop bypass routers focus on
reducing the effective distance between nodes.

Summary of contributions

This thesis focuses on the improvement of bypass routers in terms of efficiency and per-
formance.

In Chapter 3 we describe BST (Bypass Simulation Toolset), a set of tools to develop and
design NoC with bypass support. BST published in [Perez2020], has been made available
to the community. The main goal of BST is to fill the gap found in open-source NoC
simulators, that implement out-dated traditional router models or do not model bypass
routers with cycle accuracy. BST comprises four parts: an updated version of BookSim
with models of single-hop and multi-hop bypass routers, including NEBB, SMART++ and
S-SMART++; an updated version of OpenSMART with SMART++ and S-SMART++;
an API to easily integrate BookSim in Full-System simulators or any other kind of system
model; and a set of scripts to launch bundles of simulations, generate plots, analyze and
debug the network models. BST is the main tool used to evaluate the other contributions
of the thesis: NEBB, SMART++ and S-SMART++.

In Chapter 4 we analyze the packet-interleaving problem that appears when blindly
implementing bypass in traditional routers, focusing on single-hop bypass. We show that
previous proposals set strict conditions to use the bypass, leading to low efficiency. In
addition, they require multiple VCs to take advantage of the bypass paths and the band-

Page 121

width of the network. Instead, we propose an implementation called NEBB (Non-Empty
Buffer Bypass), that supports bypassing blocked buffers that are not empty. NEBB min-
imizes the cases in which the bypass cannot be used, maximizing its utilization, and not
requiring VCs. Therefore, the resulting designs are simpler, allow higher clock frequency
and consume less power. We propose three versions of NEBB: NEBB-WH for flit-based
flow controls; NEBB-VCT for packet-based flow controls; and NEBB-Hybrid a combina-
tion of the other two that maximizes the opportunities of bypass flits. NEBB-Hybrid is
able to match the performance of the baseline without requiring VCs and with half the
total buffer space.

In Chapter 5, we point out a limitation of SMART, and propose SMART++ to over-
come this limitation by extending the analysis of potential packet-interleaving issues to
multi-hop bypass routers. SMART only forwards packets when destination VCs are empty,
requiring the use of many VCs to achieve high throughput and exploit multi-hop by-
passes. However, this results in overly complex and power-hungry designs. As a solution
to the limitation of SMART, we propose SMART++, a multi-hop bypass architecture
that combines: SMART, multi-packet buffers, NEBB, and packet-by-packet arbitration.
Multi-packet buffers allow the forwarding of packets when there is available space in the
downstream router. Adding, NEBB removes the requirement for empty VCs to bypass
single-flit packets. Finally, packet-by-packet arbitration enables multi-flit packets to take
the bypass too. The combination of these mechanisms allows the design of cheap config-
urations with one or a few deep buffers instead of many small VCs. Thus, SMART++
obtains practically the same performance of SMART even without using VCs, which trans-
lates in area and power reductions due to the simpler logic required. The experimentation
in an FPGA shows reductions of up to 5.49× in area and 4.99× in dynamic power.

In Chapter 6, we present S-SMART++, which combines the fundamentals of single-
and multi-hop bypass to reduce both the router delay and the effective distance between
nodes. S-SMART++ uses speculative requests to configure multi-hop paths that may
left unused because packets may not complete their previous multi-hop. Standard single-
and multi-hop architectures already employ speculation to use the bypass paths, but S-
SMART++ goes one step further because it can configure multi-hops even when packets
can not complete the previous multi-hop. S-SMART++ is comparable in terms of zero-
load latency to SMART 2D for the same HPCMax in 2D-Meshes, but without the high
costs of broadcasting SSRs in both dimensions. From our point of view, S-SMART++
offers a more important improvement, that is the reduction of the effect of HPCMax in
the base latency of multi-hop bypass NoCs. By depending less on HPCMax, there is
more room for tuning the frequency of operation, the complexity of SA-G (input phase)
and other general parameters to balance the design. In terms of cost, the results show
increments with respect to SMART++ of up to 31% in area and 18% in power. However,
being true that S-SMART++ introduces overhead, it is also true that it does not perfectly
fit the base design of OpenSMART.

Future work

Chapter 7 presents related work, and it outlines several ideas of potential future work,
combining the proposals in this thesis with previous works. Additionally, we present next
some ideas to improve or extend the contributions of this thesis in the future.

Regarding BST (Chapter 4) we would like to:

• Improve the simulation speed of BookSim, specially in Full-System simulations.
BookSim is a time driven simulator, so in every cycle it goes through the set of

Page 122

NoC components checking whether they have packets/flits to evaluate or not. In FS
simulators like gem5, which is event driven, this can introduce a significant overhead
if the traffic offered to the NoC is low. A possible solution might be the parallelization
of BookSim by dividing the NoC into multiple parts. Another possible solution might
be the conversion of BookSim into an event driven simulator, but this is a complex
task given its current architecture.

• Improve the implementation of OpenSMART with the following features to obtain
more accurate evaluations: free/avail vc signaling for VS as an alternative to VA
with credits; Multi-flit support; and SMART 2D including buffer bypass. In this
regard, implementing actual VLSI designs and integrate them it into a RISC-V
open source many-core processor such as [Balkind2016] would be very valuable.

With respect to S-SMART++, it would be interesting to evaluate S-SMART++ in con-
centrated meshes with ruche links [Ou2020] to analyze the cost-benefit ratio of HPCMax,
the radix of the routers, and the network size. Lastly, we would like to improve the imple-
mentation of S-SMART++ in OpenSMART replacing router bypass with buffer bypass.

Another possible topic to address is the application of bypass routers to other types
of systems. For example, single-hop bypass routers might help to reduce the overall
power consumption in system area networks. In GPUs or hardware accelerators with
high bandwidth demand, applying single-hop bypass might be used to: reduce the latency
per hop in low-distance topologies such as the FBFLY; or apply QoS over the bypass paths
to prioritize certain packet classes.

Finally, it would be interesting to get into the subject of wireless NoCs to study
if SMART++ and S-SMART++ can improve proposals such as WiSMART [Du-
raisamy2017]. This is far from our field of expertise, but applying some insight from the
bypass restrictions of SMART++ should be possible. The same applies to the speculative-
SSRs of S-SMART++ that might reduce the latency of the multi-hop preparation and
traversal, which is 4 cycles in WiSMART.

Publications

The main research described in this thesis has been presented in the following publications:

• Iván Pérez, Enrique Vallejo, and Ramón Beivide. “Improving the efficiency of router
bypass”. In: Twelfth IEEE/ACM International Symposium on Networks-on-Chip
(NOCS). Poster. Oct. 2018

• Iván Pérez, Enrique Vallejo, and Ramón Beivide. “Efficient Router Bypass via
Hybrid Flow Control”. In: 11th International Workshop on Network on Chip Ar-
chitectures (NoCArc). Oct. 2018, pp. 1–6. doi: 10.1109/NOCARC.2018.8541147

• Iván Pérez, Enrique Vallejo, and Ramón Beivide. “SMART++: Reducing Cost
and Improving Efficiency of Multi-hop Bypass in NoC Routers”. In: International
Symposium on Networks-on-Chip (NOCS). 2019, 5:1–5:8. isbn: 978-1-4503-6700-4.
doi: 10.1145/3313231.3352364

• Iván Pérez et al. “BST: A BookSim-Based Toolset to Simulate NoCs with Single- and
Multi-Hop Bypass”. In: IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS). Boston, MA, USA: IEEE, Aug. 2020, pp. 47–57.
isbn: 978-1-72814-798-7. doi: 10.1109/ISPASS48437.2020.00015

Page 123

https://doi.org/10.1109/NOCARC.2018.8541147
https://doi.org/10.1145/3313231.3352364
https://doi.org/10.1109/ISPASS48437.2020.00015

• Iván Pérez, Enrique Vallejo, and Ramón Beivide. “Efficient bypass in mesh and
torus NoCs”. en. In: Journal of Systems Architecture 108 (Sept. 2020), p. 101832.
issn: 13837621. doi: 10.1016/j.sysarc.2020.101832

• Iván Pérez, Enrique Vallejo, and Ramón Beivide. “S-SMART++: a Low-Latency
NoC Leveraging Speculative Bypass Requests”. In: IEEE Transactions on Comput-
ers (second round of review) (2021)

Page 124

https://doi.org/10.1016/j.sysarc.2020.101832

Bibliography

[Abad2012] P. Abad, P. Prieto, L. G. Menezo, A. Colaso, V. Puente, and
J. Gregorio. “TOPAZ: An Open-Source Interconnection Net-
work Simulator for Chip Multiprocessors and Supercomputers”.
In: IEEE/ACM Sixth International Symposium on Networks-on-
Chip. May 2012, pp. 99–106. doi: 10.1109/NOCS.2012.19.

[Alazemi2018] Fawaz Alazemi, Arash AziziMazreah, Bella Bose, and Lizhong
Chen. “Routerless Network-on-Chip”. In: IEEE Interna-
tional Symposium on High Performance Computer Architecture
(HPCA). Vienna, Feb. 2018, pp. 492–503. isbn: 978-1-5386-3659-
6. doi: 10.1109/HPCA.2018.00049.

[Angepat2014] Hari Angepat, Derek Chiou, Eric S Chung, and James C
Hoe. FPGA-accelerated simulation of computer systems. OCLC:
1205371786. 2014. isbn: 978-1-62705-214-6.

[ARM2018] ARM. The Arm CoreLink CMN-600 Coherent Mesh Network.
2018. url: https : / / www . arm . com / products / silicon -

ip - system / corelink - interconnect / cmn - 600 (visited on
01/15/2021).

[Asgarieh2019] Yashar Asgarieh and Bill Lin. “Smart-Hop Arbitration Request
Propagation: Avoiding Quadratic Arbitration Complexity and
False Negatives in SMART NoCs”. In: ACM Transactions on De-
sign Automation of Electronic Systems 24.6 (Nov. 2019), pp. 1–
25. issn: 1084-4309, 1557-7309. doi: 10.1145/3356235.

[Badr2014] Mario Badr and Natalie D. Enright Jerger. “SynFull: Syn-
thetic traffic models capturing cache coherent behaviour”. In:
ACM/IEEE 41st International Symposium on Computer Archi-
tecture (ISCA). 2014, pp. 109–120. doi: 10.1109/ISCA.2014.
6853236.

[Badr2020] M. Badr, C. Delconte, I. Edo, R. Jagtap, M. Andreozzi, and
N. E. Jerger. “Mocktails: Capturing the memory behaviour of
proprietary mobile architectures”. In: ACM/IEEE 47th annual
international symposium on computer architecture (ISCA). 2020,
pp. 460–472. doi: 10.1109/ISCA45697.2020.00046.

Page 125

https://doi.org/10.1109/NOCS.2012.19
https://doi.org/10.1109/HPCA.2018.00049
https://www.arm.com/products/silicon-ip-system/corelink-interconnect/cmn-600
https://www.arm.com/products/silicon-ip-system/corelink-interconnect/cmn-600
https://doi.org/10.1145/3356235
https://doi.org/10.1109/ISCA.2014.6853236
https://doi.org/10.1109/ISCA.2014.6853236
https://doi.org/10.1109/ISCA45697.2020.00046

[Bakhoda2009] Ali Bakhoda, George L. Yuan, Wilson W. L. Fung, Henry
Wong, and Tor M. Aamodt. “Analyzing CUDA workloads us-
ing a detailed GPU simulator”. In: IEEE International Sympo-
sium on Performance Analysis of Systems and Software. tex.ids:
bakhoda2009. Boston, MA, USA, Apr. 2009, pp. 163–174. isbn:
978-1-4244-4184-6. doi: 10.1109/ISPASS.2009.4919648.

[Balkind2016] Jonathan Balkind et al. “OpenPiton: An Open Source Manycore
Research Framework”. In: ACM SIGPLAN Notices 51.4 (June
2016), pp. 217–232. issn: 0362-1340, 1558-1160. doi: 10.1145/
2954679.2872414.

[Bell2008] Shane Bell et al. “Tile64-processor: A 64-core SoC with
mesh interconnect”. In: IEEE international solid-state circuits
conference-digest of technical papers. tex.organization: IEEE.
2008, pp. 88–598.

[Besta2014] Maciej Besta and Torsten Hoefler. “Slim Fly: A Cost Effective
Low-Diameter Network Topology”. In: SC14: International Con-
ference for High Performance Computing, Networking, Storage
and Analysis. New Orleans, LA, USA, Nov. 2014, pp. 348–359.
isbn: 978-1-4799-5500-8. doi: 10.1109/SC.2014.34.

[Besta2018] Maciej Besta, Syed Minhaj Hassan, Sudhakar Yalamanchili,
Rachata Ausavarungnirun, Onur Mutlu, and Torsten Hoefler.
“Slim NoC: A Low-Diameter On-Chip Network Topology for High
Energy Efficiency and Scalability”. In: ACM SIGPLAN Notices
53.2 (Nov. 2018), pp. 43–55. issn: 0362-1340, 1558-1160. doi:
10.1145/3296957.3177158.

[Bharadwaj2020] Srikant Bharadwaj, Jieming Yin, Bradford Beckmann, and
Tushar Krishna. “Kite: A Family of Heterogeneous Interposer
Topologies Enabled via Accurate Interconnect Modeling”. In:
ACM/IEEE Design Automation Conference (DAC). San Fran-
cisco, CA, USA, July 2020, pp. 1–6. isbn: 978-1-72811-085-1. doi:
10.1109/DAC18072.2020.9218539.

[Bhattacharya2017] Debajit Bhattacharya and Niraj K. Jha. “Analytical Modeling of
the SMART NoC”. In: IEEE TMSCS (2017).

[Bienia2008] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai
Li. “The PARSEC benchmark suite: Characterization and archi-
tectural implications”. In: 17th international conference on Par-
allel architectures and compilation techniques. 2008, pp. 72–81.

[Bienia2011] Christian Bienia. “Benchmarking modern multiprocessors”. PhD
thesis. Princeton University, Jan. 2011.

[Binkert2011] Nathan Binkert et al. “The gem5 simulator”. In: ACM SIGARCH
Computer Architecture News 39.2 (May 2011), pp. 1–7. issn:
0163-5964. doi: 10.1145/2024716.2024718.

[Bland2009] Arthur S Bland, Ricky A Kendall, Douglas B Kothe, James H
Rogers, and Galen M Shipman. “Jaguar: The world’s most pow-
erful computer”. In: Memory (TB) 300.62 (2009), p. 362.

Page 126

https://doi.org/10.1109/ISPASS.2009.4919648
https://doi.org/10.1145/2954679.2872414
https://doi.org/10.1145/2954679.2872414
https://doi.org/10.1109/SC.2014.34
https://doi.org/10.1145/3296957.3177158
https://doi.org/10.1109/DAC18072.2020.9218539
https://doi.org/10.1145/2024716.2024718

[Bohnenstiehl2017] Brent Bohnenstiehl, Aaron Stillmaker, Jon J. Pimentel, Timothy
Andreas, Bin Liu, Anh T. Tran, Emmanuel Adeagbo, and Bevan
M. Baas. “KiloCore: A 32-nm 1000-Processor Computational Ar-
ray”. In: IEEE Journal of Solid-State Circuits 52.4 (Apr. 2017),
pp. 891–902. issn: 0018-9200, 1558-173X. doi: 10.1109/JSSC.
2016.2638459.

[Butenhof1997] David R Butenhof. Programming with POSIX threads. 1997.

[Carlson2011] Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. “Sniper:
exploring the level of abstraction for scalable and accurate par-
allel multi-core simulation”. In: International Conference for
High Performance Computing, Networking, Storage and Analy-
sis. 2011, 52:1–52:12.

[Carlson2014] Trevor E Carlson, Wim Heirman, Kenzo Van Craeynest, and
Lieven Eeckhout. “Barrierpoint: Sampled simulation of multi-
threaded applications”. In: IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS). 2014,
pp. 2–12.

[Carrion1997] C. Carrion, R. Beivide, J. A. Gregorio, and F. Vallejo. “A
flow control mechanism to avoid message deadlock in k-ary n-
cube networks”. In: Fourth International Conference on High-
Performance Computing. Dec. 1997, pp. 322–329. doi: 10.1109/
HIPC.1997.634510.

[Catania2015] V. Catania, A. Mineo, S. Monteleone, M. Palesi, and D.
Patti. “Noxim: An open, extensible and cycle-accurate net-
work on chip simulator”. In: IEEE 26th International Confer-
ence on Application-specific Systems, Architectures and Proces-
sors (ASAP). July 2015, pp. 162–163. doi: 10.1109/ASAP.2015.
7245728.

[Chandra2001] Rohit Chandra, Leo Dagum, David Kohr, Ramesh Menon, Dror
Maydan, and Jeff McDonald. Parallel programming in OpenMP.
2001.

[ChangkyuKim2003] Changkyu Kim, D. Burger, and S.W. Keckler. “Nonuniform cache
architectures for wire-delay dominated on-chip caches”. In: IEEE
Micro 23.6 (Nov. 2003), pp. 99–107. issn: 0272-1732. doi: 10.
1109/MM.2003.1261393.

[Chapman2008] Barbara Chapman, Gabriele Jost, and Ruud Van Der Pas. Using
OpenMP: portable shared memory parallel programming. Vol. 10.
2008.

[Chen2011] Lizhong Chen, Ruisheng Wang, and Timothy M. Pinkston. “Crit-
ical Bubble Scheme: An Efficient Implementation of Globally
Aware Network Flow Control”. In: IEEE International Paral-
lel & Distributed Processing Symposium. Anchorage, AK, USA,
May 2011, pp. 592–603. isbn: 978-1-61284-372-8. doi: 10.1109/
IPDPS.2011.63.

Page 127

https://doi.org/10.1109/JSSC.2016.2638459
https://doi.org/10.1109/JSSC.2016.2638459
https://doi.org/10.1109/HIPC.1997.634510
https://doi.org/10.1109/HIPC.1997.634510
https://doi.org/10.1109/ASAP.2015.7245728
https://doi.org/10.1109/ASAP.2015.7245728
https://doi.org/10.1109/MM.2003.1261393
https://doi.org/10.1109/MM.2003.1261393
https://doi.org/10.1109/IPDPS.2011.63
https://doi.org/10.1109/IPDPS.2011.63

[Chen2016] X. Chen and N. K. Jha. “Reducing Wire and Energy Overheads
of the SMART NoC Using a Setup Request Network”. In: IEEE
Transactions on Very Large Scale Integration (VLSI) Systems
24.10 (Oct. 2016), pp. 3013–3026. doi: 10.1109/TVLSI.2016.
2538284.

[Chen2016a] Lizhong Chen, Di Zhu, Massoud Pedram, and Timothy M.
Pinkston. “Simulation of NoC power-gating: Requirements, op-
timizations, and the Agate simulator”. In: Journal of Parallel
and Distributed Computing 95 (2016), pp. 69–78. issn: 0743-7315.
doi: https://doi.org/10.1016/j.jpdc.2016.03.006.

[Chrysos2014] George Chrysos. “Intel® xeon Phi™ coprocessor-the architec-
ture”. In: Intel Whitepaper 176 (2014), p. 43.

[Dally1986] William J. Dally and Charles L. Seitz. “The torus routing chip”.
In: Distributed Computing 1.4 (Dec. 1986), pp. 187–196. issn:
0178-2770, 1432-0452. doi: 10.1007/BF01660031.

[Dally1987] Dally and Seitz. “Deadlock-Free Message Routing in Multiproces-
sor Interconnection Networks”. In: IEEE Transactions on Com-
puters C-36.5 (May 1987), pp. 547–553. issn: 0018-9340. doi:
10.1109/TC.1987.1676939.

[Dally2003] William Dally and Brian Towles. Principles and Practices of In-
terconnection Networks. San Francisco, CA, USA, 2003. isbn: 0-
12-200751-4.

[Das2018] Abhijit Das, Sarath Babu, John Jose, Sangeetha Jose, and Mau-
rizio Palesi. “Critical Packet Prioritisation by Slack-Aware Re-
Routing in On-Chip Networks”. In: IEEE/ACM International
Symposium on Networks-on-Chip (NOCS). Turin, Oct. 2018,
pp. 1–8. isbn: 978-1-5386-4893-3. doi: 10.1109/NOCS.2018.

8512164.

[Daya2014] Bhavya K. Daya, Chia-Hsin Owen Chen, Suvinay Subramanian,
Woo-Cheol Kwon, Sunghyun Park, Tushar Krishna, Jim Holt,
Anantha P. Chandrakasan, and Li-Shiuan Peh. “SCORPIO: A 36-
core research chip demonstrating snoopy coherence on a scalable
mesh NoC with in-network ordering”. In: ACM/IEEE 41st In-
ternational Symposium on Computer Architecture (ISCA). Min-
neapolis, MN, USA, June 2014, pp. 25–36. isbn: 978-1-4799-4394-
4. doi: 10.1109/ISCA.2014.6853232.

[Dennard1974] R.H. Dennard, F.H. Gaensslen, Hwa-Nien Yu, V.L. Rideout, E.
Bassous, and A.R. LeBlanc. “Design of ion-implanted MOSFET’s
with very small physical dimensions”. In: IEEE Journal of Solid-
State Circuits 9.5 (Oct. 1974), pp. 256–268. issn: 0018-9200,
1558-173X. doi: 10.1109/JSSC.1974.1050511.

[Denzel2008] Wolfgang E. Denzel, Jian Li, Peter Walker, and Yuho Jin. “A
Framework for End-to-end Simulation of High-performance Com-
puting Systems”. In: 1st International Conference on Simulation
Tools and Techniques for Communications, Networks and Sys-
tems & Workshops. event-place: Marseille, France. 2008, 21:1–
21:10. isbn: 978-963-9799-20-2.

Page 128

https://doi.org/10.1109/TVLSI.2016.2538284
https://doi.org/10.1109/TVLSI.2016.2538284
https://doi.org/https://doi.org/10.1016/j.jpdc.2016.03.006
https://doi.org/10.1007/BF01660031
https://doi.org/10.1109/TC.1987.1676939
https://doi.org/10.1109/NOCS.2018.8512164
https://doi.org/10.1109/NOCS.2018.8512164
https://doi.org/10.1109/ISCA.2014.6853232
https://doi.org/10.1109/JSSC.1974.1050511

[Dimitrakopoulos2015] Giorgos Dimitrakopoulos, Anastasios Psarras, and Ioannis Sei-
tanidis. Microarchitecture of Network-on-Chip Routers. 2015.

[Duato2003] Jose Duato, Sudhakar Yalamanchili, and Lionel Ni. Interconnec-
tion networks. 2003.

[Duraisamy2017] Karthi Duraisamy and Partha Pratim Pande. “Enabling High-
Performance SMART NoC Architectures Using On-Chip Wireless
Links”. In: IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 25.12 (Dec. 2017), pp. 3495–3508. doi: 10.1109/
TVLSI.2017.2748884.

[Duran2011] Alejandro Durán, Eduard Ayguadé, Rosa M Badia, Jesús
Labarta, Luis Martinell, Xavier Martorell, and Judit Planas.
“OmpSs: A Proposal for Programming Heterogeneous Multi-core
Architectures”. In: Parallel Processing Letters 21.2 (2011). Pub-
lisher: World Scientific, pp. 173–193.

[Ferreron2017] Alexandra Ferrerón, Radhika Jagtap, Sascha Bischoff, and Rox-
ana Ruşitoru. “Crossing the architectural barrier: Evaluating rep-
resentative regions of parallel HPC applications”. In: IEEE In-
ternational Symposium on Performance Analysis of Systems and
Software (ISPASS). 2017, pp. 109–120.

[Flynn1972] Michael J. Flynn. “Some Computer Organizations and Their Ef-
fectiveness”. In: IEEE Transactions on Computers C-21.9 (Sept.
1972), pp. 948–960. issn: 0018-9340. doi: 10.1109/TC.1972.
5009071.

[Fu2016] Haohuan Fu et al. “The Sunway TaihuLight supercomputer: sys-
tem and applications”. In: Science China Information Sciences
59.7 (June 2016), p. 072001. issn: 1869-1919. doi: 10. 1007/

s11432-016-5588-7.

[Galles1997] M. Galles. “Spider: a high-speed network interconnect”. In: IEEE
Micro 17.1 (Jan. 1997), pp. 34–39. issn: 0272-1732. doi: 10 .

1109/40.566196.

[Gara2005] A. Gara et al. “Overview of the Blue Gene/L system architec-
ture”. In: IBM Journal of Research and Development 49.2.3 (Mar.
2005), pp. 195–212. issn: 0018-8646, 0018-8646. doi: 10.1147/
rd.492.0195.

[Gomez2019] Constantino Gómez, Francesc Mart́ınez, Adrià Armejach, Miquel
Moretó, Filippo Mantovani, and Marc Casas. “Design Space Ex-
ploration of Next-Generation HPC Machines”. In: IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS).
2019, pp. 54–65. doi: 10.1109/IPDPS.2019.00017.

[Graham2008] Richard L. Graham and Galen Shipman. “MPI Support for Multi-
core Architectures: Optimized Shared Memory Collectives”. In:
Recent Advances in Parallel Virtual Machine and Message Pass-
ing Interface. Ed. by Alexey Lastovetsky, Tahar Kechadi, and
Jack Dongarra. Vol. 5205. Series Title: Lecture Notes in Com-
puter Science. Berlin, Heidelberg, 2008, pp. 130–140. isbn: 978-
3-540-87474-4. doi: 10.1007/978-3-540-87475-1_21.

Page 129

https://doi.org/10.1109/TVLSI.2017.2748884
https://doi.org/10.1109/TVLSI.2017.2748884
https://doi.org/10.1109/TC.1972.5009071
https://doi.org/10.1109/TC.1972.5009071
https://doi.org/10.1007/s11432-016-5588-7
https://doi.org/10.1007/s11432-016-5588-7
https://doi.org/10.1109/40.566196
https://doi.org/10.1109/40.566196
https://doi.org/10.1147/rd.492.0195
https://doi.org/10.1147/rd.492.0195
https://doi.org/10.1109/IPDPS.2019.00017
https://doi.org/10.1007/978-3-540-87475-1_21

[Grass2016] Thomas Grass, César Allande, Adrià Armejach, Alejandro Rico,
Eduard Ayguadé, Jesús Labarta, Mateo Valero, Marc Casas, and
Miquel Moretó. “MUSA: a multi-level simulation approach for
next-generation HPC machines”. In: International Conference for
High Performance Computing, Networking, Storage and Analysis
(SC). 2016, pp. 526–537. doi: 10.1109/SC.2016.44.

[Gratz2006] Paul Gratz, Changkyu Kim, Robert McDonald, Stephen W.
Keckler, and Doug Burger. “Implementation and Evaluation of
On-Chip Network Architectures”. In: International Conference
on Computer Design. ISSN: 1063-6404. San Jose, CA, USA, Oct.
2006, pp. 477–484. isbn: 978-0-7803-9706-4. doi: 10.1109/ICCD.
2006.4380859.

[Grobelny2007] Eric Grobelny, David Bueno, Ian Troxel, Alan D George, and Jef-
frey S Vetter. “FASE: A framework for scalable performance pre-
diction of HPC systems and applications”. In: Simulation 83.10
(2007), pp. 721–745.

[Gropp1999] William Gropp, William D Gropp, Ewing Lusk, Anthony Skjel-
lum, and Argonne Distinguished Fellow Emeritus Ewing Lusk.
Using MPI: portable parallel programming with the message-
passing interface. Vol. 1. 1999.

[Grot2009a] Boris Grot, Joel Hestness, Stephen W. Keckler, and Onur Mutlu.
“Express Cube Topologies for on-Chip Interconnects”. In: IEEE
15th International Symposium on High Performance Computer
Architecture. Raleigh, NC, USA, Feb. 2009, pp. 163–174. isbn:
978-1-4244-2932-5. doi: 10.1109/HPCA.2009.4798251.

[Hamerly2005] Greg Hamerly, Erez Perelman, Jeremy Lau, and Brad Calder.
“Simpoint 3.0: Faster and more flexible program phase analysis”.
In: Journal of Instruction Level Parallelism 7.4 (2005), pp. 1–28.

[Haring2012] Ruud Haring et al. “The IBM Blue Gene/Q Compute Chip”. In:
IEEE Micro 32.2 (Mar. 2012), pp. 48–60. issn: 0272-1732. doi:
10.1109/MM.2011.108.

[Hassan2013] Syed Minhaj Hassan and Sudhakar Yalamanchili. “Centralized
buffer router: A low latency, low power router for high radix
NoCs”. In: Seventh IEEE/ACM International Symposium on
Networks-on-Chip (NoCS). 2013, pp. 1–8.

[Hassan2014] Syed Minhaj Hassan and Sudhakar Yalamanchili. “Bubble shar-
ing: Area and energy efficient adaptive routers using centralized
buffers”. In: 2014 Eighth IEEE/ACM International Symposium
on Networks-on-Chip (NoCS). 2014, pp. 119–126.

[Hennessy2019] John L. Hennessy. Computer architecture: a quantitative ap-
proach. Sixth edition. Cambridge, MA, 2019. isbn: 978-0-12-
811905-1.

[Hesse2015] Robert Hesse and Natalie Enright Jerger. “Improving DVFS in
NoCs with Coherence Prediction”. In: 9th International Sympo-
sium on Networks-on-Chip - NOCS ’15. Vancouver, BC, Canada,
2015, pp. 1–8. isbn: 978-1-4503-3396-2. doi: 10.1145/2786572.
2786595.

Page 130

https://doi.org/10.1109/SC.2016.44
https://doi.org/10.1109/ICCD.2006.4380859
https://doi.org/10.1109/ICCD.2006.4380859
https://doi.org/10.1109/HPCA.2009.4798251
https://doi.org/10.1109/MM.2011.108
https://doi.org/10.1145/2786572.2786595
https://doi.org/10.1145/2786572.2786595

[Hong2016] Byungchul Hong, Gwangsun Kim, Jung Ho Ahn, Yongkee Kwon,
Hongsik Kim, and John Kim. “Accelerating Linked-list Traver-
sal Through Near-Data Processing”. In: 2016 International Con-
ference on Parallel Architectures and Compilation. Haifa Israel,
Sept. 2016, pp. 113–124. isbn: 978-1-4503-4121-9. doi: 10.1145/
2967938.2967958.

[Hoskote2007] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar. “A
5-GHz Mesh Interconnect for a Teraflops Processor”. In: IEEE
Micro 27.5 (Sept. 2007), pp. 51–61. issn: 0272-1732. doi: 10.

1109/MM.2007.4378783.

[Hsieh2012] Mingyu Hsieh, Kevin Pedretti, Jie Meng, Ayse Coskun, Michael
Levenhagen, and Arun Rodrigues. “SST + Gem5 = a Scal-
able Simulation Infrastructure for High Performance Comput-
ing”. In: 5th International ICST Conference on Simulation Tools
and Techniques. SIMUTOOLS. 2012, pp. 196–201. isbn: 978-1-
4503-1510-4.

[Hunter2007] John D. Hunter. “Matplotlib: A 2D Graphics Environment”. In:
Computing in Science & Engineering 9.3 (2007), pp. 90–95. issn:
1521-9615. doi: 10.1109/MCSE.2007.55.

[Jafri2010] S. A. R. Jafri, Y. J. Hong, M. Thottethodi, and T. N. Vijaykumar.
“Adaptive Flow Control for Robust Performance and Energy”.
In: International Symposium on Microarchitecture (Micro). ISSN:
1072-4451. 2010, pp. 433–444. doi: 10.1109/MICRO.2010.48.

[Jagtap2016] Radhika Jagtap, Stephan Diestelhorst, Andreas Hansson,
Matthias Jung, and Norbert When. “Exploring system perfor-
mance using elastic traces: Fast, accurate and portable”. In: In-
ternational Conference on Embedded Computer Systems: Archi-
tectures, Modeling and Simulation (SAMOS). Agios Konstanti-
nos, Samos Island, Greece, July 2016, pp. 96–105. isbn: 978-1-
5090-3076-7. doi: 10.1109/SAMOS.2016.7818336.

[Jain2016] Nikhil Jain, Abhinav Bhatele, Sam White, Todd Gamblin, and
Laxmikant V. Kale. “Evaluating HPC Networks via Simulation of
Parallel Workloads”. In: SC16: International Conference for High
Performance Computing, Networking, Storage and Analysis. Salt
Lake City, UT, USA, Nov. 2016, pp. 154–165. isbn: 978-1-4673-
8815-3. doi: 10.1109/SC.2016.13.

[Jerger2017] Natalie Enright Jerger, Tushar Krishna, and Li-Shiuan Peh. On-
Chip Networks, Second Edition. Vol. 12. 3. 2017.

[Jiang2013] N. Jiang, D. U. Becker, G. Michelogiannakis, J. Balfour, B.
Towles, D. E. Shaw, J. Kim, and W. J. Dally. “A detailed and
flexible cycle-accurate Network-on-Chip simulator”. In: Interna-
tional Symposium on Performance Analysis of Systems and Soft-
ware (ISPASS). 2013, pp. 86–96. doi: 10.1109/ISPASS.2013.
6557149.

Page 131

https://doi.org/10.1145/2967938.2967958
https://doi.org/10.1145/2967938.2967958
https://doi.org/10.1109/MM.2007.4378783
https://doi.org/10.1109/MM.2007.4378783
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MICRO.2010.48
https://doi.org/10.1109/SAMOS.2016.7818336
https://doi.org/10.1109/SC.2016.13
https://doi.org/10.1109/ISPASS.2013.6557149
https://doi.org/10.1109/ISPASS.2013.6557149

[Jiang2015] Nan Jiang, Larry Dennison, and William J. Dally. “Network end-
point congestion control for fine-grained communication”. In: In-
ternational Conference for High Performance Computing, Net-
working, Storage and Analysis on - SC ’15. Austin, Texas, 2015,
pp. 1–12. isbn: 978-1-4503-3723-6. doi: 10 . 1145 / 2807591 .

2807600.

[Kahle2019] James A. Kahle, Jaime Moreno, and Dan Dreps. “2.1 Summit and
Sierra: Designing AI/HPC Supercomputers”. In: IEEE Interna-
tional Solid- State Circuits Conference - (ISSCC). San Francisco,
CA, USA, Feb. 2019, pp. 42–43. isbn: 978-1-5386-8531-0. doi:
10.1109/ISSCC.2019.8662426.

[Kahng2009] A.B. Kahng, Bin Li, Li-Shiuan Peh, and K. Samadi. “ORION
2.0: A fast and accurate NoC power and area model for early-
stage design space exploration”. In: Design, Automation & Test
in Europe Conference & Exhibition. Nice, Apr. 2009, pp. 423–428.
isbn: 978-1-4244-3781-8. doi: 10.1109/DATE.2009.5090700.

[Kahng2015] Andrew B. Kahng, Bill Lin, and Siddhartha Nath. “ORION3.0: A
Comprehensive NoC Router Estimation Tool”. In: IEEE Embed-
ded Systems Letters 7.2 (June 2015), pp. 41–45. issn: 1943-0663,
1943-0671. doi: 10.1109/LES.2015.2402197.

[Kannan2015] Ajaykumar Kannan, Natalie Enright Jerger, and Gabriel H. Loh.
“Enabling interposer-based disintegration of multi-core proces-
sors”. In: 48th International Symposium on Microarchitecture -
MICRO-48. Waikiki, Hawaii, 2015, pp. 546–558. isbn: 978-1-
4503-4034-2. doi: 10.1145/2830772.2830808.

[Kerbyson2001] Darren J Kerbyson, Henry J Alme, Adolfy Hoisie, Fabrizio
Petrini, Harvey J Wasserman, and Mike Gittings. “Predictive per-
formance and scalability modeling of a large-scale application”.
In: Supercomputing, ACM/IEEE 2001 Conference. 2001, pp. 39–
39.

[Kim2007] J. Kim, J. Balfour, and W. Dally. “Flattened Butterfly Topology
for On-Chip Networks”. In: International Symposium on Microar-
chitecture (MICRO). 2007, pp. 172–182. doi: 10.1109/MICRO.
2007.29.

[Krawezik2003] Géraud Krawezik. “Performance comparison of MPI and three
openMP programming styles on shared memory multiproces-
sors”. In: fifteenth annual ACM symposium on Parallel algorithms
and architectures - SPAA ’03. San Diego, California, USA, 2003,
p. 118. isbn: 978-1-58113-661-6. doi: 10.1145/777412.777433.

[Krishna2010] Tushar Krishna, Jacob Postman, Christopher Edmonds, Li-
Shiuan Peh, and Patrick Chiang. “SWIFT: A SWing-reduced in-
terconnect for a Token-based Network-on-Chip in 90nm CMOS”.
In: 2010 IEEE International Conference on Computer De-
sign. tex.ids: krishna2010. Amsterdam, Netherlands, Oct. 2010,
pp. 439–446. isbn: 978-1-4244-8936-7. doi: 10.1109/ICCD.2010.
5647666.

Page 132

https://doi.org/10.1145/2807591.2807600
https://doi.org/10.1145/2807591.2807600
https://doi.org/10.1109/ISSCC.2019.8662426
https://doi.org/10.1109/DATE.2009.5090700
https://doi.org/10.1109/LES.2015.2402197
https://doi.org/10.1145/2830772.2830808
https://doi.org/10.1109/MICRO.2007.29
https://doi.org/10.1109/MICRO.2007.29
https://doi.org/10.1145/777412.777433
https://doi.org/10.1109/ICCD.2010.5647666
https://doi.org/10.1109/ICCD.2010.5647666

[Krishna2013] T. Krishna, Chia-Hsin Owen Chen, Woo Cheol Kwon, and
Li-Shiuan Peh. “Breaking the on-chip latency barrier using
SMART”. In: International Symposium on High Performance
Computer Architecture (HPCA). Feb. 2013, pp. 378–389. doi:
10.1109/HPCA.2013.6522334.

[Krishna2017] Tushar Krishna. “GARNET2.0: A detailed on-chip network
model inside a full-system simulator”. In: gem5 workshop, ARM
Research Summit. 2017.

[Kumar2007] Amit Kumar, Partha Kunduz, AP Singhx, L-S Pehy, and NK
Jhay. “A 4.6 Tbits/s 3.6 GHz single-cycle NoC router with a
novel switch allocator in 65nm CMOS”. In: 25th International
Conference on Computer Design (ICCD). Oct. 2007, pp. 63–70.
doi: 10.1109/ICCD.2007.4601881.

[Kumar2007a] Amit Kumar, Li-Shiuan Peh, Partha Kundu, and Niraj K. Jha.
“Express Virtual Channels: Towards the Ideal Interconnection
Fabric”. In: 34th Annual International Symposium on Computer
Architecture. ISCA ’07. event-place: San Diego, California, USA.
New York, NY, USA, 2007, pp. 150–161. isbn: 978-1-59593-706-3.
doi: 10.1145/1250662.1250681.

[Kumar2008] Amit Kumar, Li-Shiuan Peh, and Niraj K. Jha. “Token Flow
Control”. In: International Symposium on Microarchitecture (MI-
CRO). 2008, pp. 342–353. isbn: 978-1-4244-2836-6.

[Kwon2017] H. Kwon and T. Krishna. “OpenSMART: Single-cycle multi-hop
NoC generator in BSV and Chisel”. In: International Symposium
on Performance Analysis of Systems and Software (ISPASS).
2017, pp. 195–204. doi: 10.1109/ISPASS.2017.7975291.

[Li2009] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman,
Dean M. Tullsen, and Norman P. Jouppi. “McPAT: an integrated
power, area, and timing modeling framework for multicore and
manycore architectures”. In: 42nd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture - Micro-42. New York,
New York, 2009, p. 469. isbn: 978-1-60558-798-1. doi: 10.1145/
1669112.1669172.

[Li2016] Zimo Li, Joshua San Miguel, and Natalie Enright Jerger.
“The runahead network-on-chip”. In: IEEE International Sym-
posium on High Performance Computer Architecture (HPCA).
Barcelona, Spain, Mar. 2016, pp. 333–344. isbn: 978-1-4673-9211-
2. doi: 10.1109/HPCA.2016.7446076.

[LizhongChen2013] Lizhong Chen and T. M. Pinkston. “Worm-Bubble Flow Con-
trol”. In: IEEE 19th International Symposium on High Perfor-
mance Computer Architecture (HPCA). Shenzhen, Feb. 2013,
pp. 366–377. isbn: 978-1-4673-5587-2. doi: 10.1109/HPCA.2013.
6522333.

[Lowe-Power2020] Jason Lowe-Power et al. “The gem5 Simulator: Version 20.0+”.
In: arXiv:2007.03152 [cs] (Sept. 2020). arXiv: 2007.03152.

Page 133

https://doi.org/10.1109/HPCA.2013.6522334
https://doi.org/10.1109/ICCD.2007.4601881
https://doi.org/10.1145/1250662.1250681
https://doi.org/10.1109/ISPASS.2017.7975291
https://doi.org/10.1145/1669112.1669172
https://doi.org/10.1145/1669112.1669172
https://doi.org/10.1109/HPCA.2016.7446076
https://doi.org/10.1109/HPCA.2013.6522333
https://doi.org/10.1109/HPCA.2013.6522333

[Ma2012] Sheng Ma, Natalie Enright Jerger, and Zhiying Wang. “Whole
Packet Forwarding: Efficient Design of Fully Adaptive Rout-
ing Algorithms for Networks-on-chip”. In: International Sym-
posium on High-Performance Computer Architecture (HPCA).
2012, pp. 1–12. isbn: 978-1-4673-0827-4. doi: 10.1109/HPCA.
2012.6169049.

[Ma2015] S. Ma, Z. Wang, Z. Liu, and N. E. Jerger. “Leaving One Slot
Empty: Flit Bubble Flow Control for Torus Cache-Coherent
NoCs”. In: IEEE Transactions on Computers 64.3 (Mar. 2015),
pp. 763–777. doi: 10.1109/TC.2013.2295523.

[Magnusson2002] P.S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G.
Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and B. Werner.
“Simics: A full system simulation platform”. In: Computer 35.2
(Feb. 2002), pp. 50–58. issn: 00189162. doi: 10.1109/2.982916.

[Marjanovic2014] Vladimir Marjanović, José Gracia, and Colin W Glass. “Per-
formance modeling of the HPCG benchmark”. In: International
Workshop on Performance Modeling, Benchmarking and Simu-
lation of High Performance Computer Systems. 2014, pp. 172–
192.

[Miyazaki2012] Hiroyuki Miyazaki, Yoshihiro Kusano, Naoki Shinjou, Fumiyoshi
Shoji, Mitsuo Yokokawa, and Tadashi Watanabe. “Overview of
the K computer system”. In: Fujitsu Sci. Tech. J 48.3 (2012),
pp. 302–309.

[Mohammad2017] Alian Mohammad, Umur Darbaz, Gabor Dozsa, Stephan Di-
estelhorst, Daehoon Kim, and Nam Sung Kim. “dist-gem5: Dis-
tributed simulation of computer clusters”. In: IEEE International
Symposium on Performance Analysis of Systems and Software
(ISPASS). Santa Rosa, CA, USA, Apr. 2017, pp. 153–162. isbn:
978-1-5386-3890-3. doi: 10.1109/ISPASS.2017.7975287.

[Moscibroda2009] Thomas Moscibroda and Onur Mutlu. “A Case for Bufferless
Routing in On-chip Networks”. In: International Symposium on
Computer Architecture. event-place: Austin, TX, USA. 2009.
isbn: 978-1-60558-526-0. doi: 10.1145/1555754.1555781.

[Mubarak2012] Misbah Mubarak, Christopher D. Carothers, Robert Ross, and
Philip Carns. “Modeling a Million-Node Dragonfly Network Us-
ing Massively Parallel Discrete-Event Simulation”. In: 2012 SC
Companion: High Performance Computing, Networking Storage
and Analysis. Salt Lake City, UT, Nov. 2012, pp. 366–376. isbn:
978-0-7695-4956-9. doi: 10.1109/SC.Companion.2012.56.

[Mubarak2017] M. Mubarak, C. D. Carothers, R. B. Ross, and P. Carns. “En-
abling Parallel Simulation of Large-Scale HPC Network Sys-
tems”. In: IEEE Transactions on Parallel and Distributed Sys-
tems (TPDS) 28.1 (Jan. 2017), pp. 87–100. issn: 1045-9219.

Page 134

https://doi.org/10.1109/HPCA.2012.6169049
https://doi.org/10.1109/HPCA.2012.6169049
https://doi.org/10.1109/TC.2013.2295523
https://doi.org/10.1109/2.982916
https://doi.org/10.1109/ISPASS.2017.7975287
https://doi.org/10.1145/1555754.1555781
https://doi.org/10.1109/SC.Companion.2012.56

[Mullins2004] R. Mullins, A. West, and S. Moore. “Low-latency virtual-channel
routers for on-chip networks”. In: 31st Annual International Sym-
posium on Computer Architecture. Munchen, Germany, 2004,
pp. 188–197. isbn: 978-0-7695-2143-5. doi: 10.1109/ISCA.2004.
1310774.

[Nagarajan2020] Vijay Nagarajan, Daniel J Sorin, Mark D Hill, and David Allen
Wood. A primer on memory consistency and cache coherence.
OCLC: 1141095013. 2020. isbn: 978-1-68173-711-9.

[Nicopoulos2006] C. A. Nicopoulos, D. Park, J. Kim, N. Vijaykrishnan, M. S.
Yousif, and C. R. Das. “ViChaR: A Dynamic Virtual Channel
Regulator for Network-on-Chip Routers”. In: International Sym-
posium on Microarchitecture. ISSN: 1072-4451. 2006. doi: 10.

1109/MICRO.2006.50.

[Norollah2018] A. Norollah, D. Derafshi, H. Beitollahi, and A. Patooghy. “PAT-
Noxim: A Precise Power Thermal Cycle-Accurate NoC Simu-
lator”. In: International System-on-Chip Conference (SOCC).
2018, pp. 163–168. doi: 10.1109/SOCC.2018.8618491.

[Nowatzki2013] Tony Nowatzki, Michael Ferris, Karthikeyan Sankaralingam,
Cristian Estan, Nilay Vaish, and David Wood. “Optimiza-
tion and Mathematical Modeling in Computer Architecture”.
In: Synthesis Lectures on Computer Architecture 8.4 (Sept.
2013), pp. 1–144. issn: 1935-3235, 1935-3243. doi: 10 . 2200 /

S00531ED1V01Y201308CAC026.

[Olofsson2016] Andreas Olofsson. “Epiphany-V: A 1024 processor 64-bit RISC
system-on-chip”. In: arXiv preprint arXiv:1610.01832 (2016).

[Ou2020] Yanghui Ou, Shady Agwa, and Christopher Batten. “Imple-
menting Low-Diameter On-Chip Networks for Manycore Pro-
cessors Using a Tiled Physical Design Methodology”. In:
14th IEEE/ACM International Symposium on Networks-on-Chip
(NOCS). Hamburg, Germany, Sept. 2020, pp. 1–8. isbn: 978-1-
72818-847-8. doi: 10.1109/NOCS50636.2020.9241710.

[Papamichael2012] Michael K. Papamichael and James C. Hoe. “CONNECT: Re-
examining Conventional Wisdom for Designing NoCs in the Con-
text of FPGAs”. In: International Symposium on Field Pro-
grammable Gate Arrays (FPGA). 2012, pp. 37–46. isbn: 978-1-
4503-1155-7. doi: 10.1145/2145694.2145703.

[Papamichael2015] Michael K. Papamichael, Cagla Cakir, Chen Suny Chia-Hsin,
Owen Cheny, James C. Ho, Ken Mai, Li-Shiuan Pehy, and
Vladimir Stojanovic. “DELPHI: a framework for RTL-based ar-
chitecture design evaluation using DSENT models”. In: IEEE In-
ternational Symposium on Performance Analysis of Systems and
Software (ISPASS). Philadelphia, PA, USA, Mar. 2015, pp. 11–
20. isbn: 978-1-4799-1957-4. doi: 10 . 1109 / ISPASS . 2015 .

7095780.

Page 135

https://doi.org/10.1109/ISCA.2004.1310774
https://doi.org/10.1109/ISCA.2004.1310774
https://doi.org/10.1109/MICRO.2006.50
https://doi.org/10.1109/MICRO.2006.50
https://doi.org/10.1109/SOCC.2018.8618491
https://doi.org/10.2200/S00531ED1V01Y201308CAC026
https://doi.org/10.2200/S00531ED1V01Y201308CAC026
https://doi.org/10.1109/NOCS50636.2020.9241710
https://doi.org/10.1145/2145694.2145703
https://doi.org/10.1109/ISPASS.2015.7095780
https://doi.org/10.1109/ISPASS.2015.7095780

[Parasar2019] Mayank Parasar and Tushar Krishna. “BINDU: Deadlock-
freedom with One Bubble in the Network”. In: International
Symposium on Networks-on-Chip (NOCS). 2019, 3:1–3:8. isbn:
978-1-4503-6700-4. doi: 10.1145/3313231.3352359.

[Pellegrini2020] Andrea Pellegrini et al. “The Arm Neoverse N1 Platform: Build-
ing Blocks for the Next-Gen Cloud-to-Edge Infrastructure SoC”.
In: IEEE Micro 40.2 (Mar. 2020), pp. 53–62. issn: 0272-1732,
1937-4143. doi: 10.1109/MM.2020.2972222.

[Perez2018] Iván Pérez, Enrique Vallejo, and Ramón Beivide. “Efficient
Router Bypass via Hybrid Flow Control”. In: 11th International
Workshop on Network on Chip Architectures (NoCArc). Oct.
2018, pp. 1–6. doi: 10.1109/NOCARC.2018.8541147.

[Perez2018a] Iván Pérez, Enrique Vallejo, and Ramón Beivide. “Improving the
efficiency of router bypass”. In: Twelfth IEEE/ACM International
Symposium on Networks-on-Chip (NOCS). Poster. Oct. 2018.

[Perez2019] Iván Pérez, Enrique Vallejo, and Ramón Beivide. “SMART++:
Reducing Cost and Improving Efficiency of Multi-hop Bypass
in NoC Routers”. In: International Symposium on Networks-on-
Chip (NOCS). 2019, 5:1–5:8. isbn: 978-1-4503-6700-4. doi: 10.
1145/3313231.3352364.

[Perez2020] Iván Pérez, Enrique Vallejo, Miquel Moreto, and Ramón Bei-
vide. “BST: A BookSim-Based Toolset to Simulate NoCs with
Single- and Multi-Hop Bypass”. In: IEEE International Sym-
posium on Performance Analysis of Systems and Software (IS-
PASS). Boston, MA, USA, Aug. 2020, pp. 47–57. isbn: 978-1-
72814-798-7. doi: 10.1109/ISPASS48437.2020.00015.

[Perez2020a] Iván Pérez, Enrique Vallejo, and Ramón Beivide. “Efficient by-
pass in mesh and torus NoCs”. In: Journal of Systems Architec-
ture 108 (Sept. 2020), p. 101832. issn: 13837621. doi: 10.1016/
j.sysarc.2020.101832.

[Perez2021] Iván Pérez, Enrique Vallejo, and Ramón Beivide. “S-SMART++:
a Low-Latency NoC Leveraging Speculative Bypass Requests”.
In: IEEE Transactions on Computers (second round of review)
(2021).

[Psarras2016] A. Psarras, I. Seitanidis, C. Nicopoulos, and G. Dimitrakopou-
los. “ShortPath: A Network-on-Chip Router with Fine-Grained
Pipeline Bypassing”. In: IEEE Trans. Comput. (TC) 65.10 (Oct.
2016), pp. 3136–3147. doi: 10.1109/TC.2016.2519916.

[Puente2002] V. Puente, J. A. Gregorio, and R. Beivide. “SICOSYS: an in-
tegrated framework for studying interconnection network perfor-
mance in multiprocessor systems”. In: Proceedings 10th Euromi-
cro Workshop on Parallel, Distributed and Network-based Pro-
cessing. 2002, pp. 15–22. doi: 10.1109/EMPDP.2002.994207.

Page 136

https://doi.org/10.1145/3313231.3352359
https://doi.org/10.1109/MM.2020.2972222
https://doi.org/10.1109/NOCARC.2018.8541147
https://doi.org/10.1145/3313231.3352364
https://doi.org/10.1145/3313231.3352364
https://doi.org/10.1109/ISPASS48437.2020.00015
https://doi.org/10.1016/j.sysarc.2020.101832
https://doi.org/10.1016/j.sysarc.2020.101832
https://doi.org/10.1109/TC.2016.2519916
https://doi.org/10.1109/EMPDP.2002.994207

[QinhongZhang2015] Qinhong Zhang, Meng Zhou, Juan Chen, and Hao Yang. “A ho-
mogeneous many-core x86 processor full system framework based
on NoC”. In: 4th International Conference on Computer Science
and Network Technology (ICCSNT). Harbin, China, Dec. 2015,
pp. 794–797. isbn: 978-1-4673-8173-4. doi: 10.1109/ICCSNT.

2015.7490861.

[Rabaey2003] Jan M. Rabaey, Anantha P. Chandrakasan, and Borivoje Nikolić.
Digital integrated circuits: a design perspective. 2nd ed. Prentice
Hall electronics and VLSI series. Upper Saddle River, N.J, 2003.
isbn: 978-0-13-090996-1.

[Rahmani2010] Amir-Mohammad Rahmani, Khalid Latif, Pasi Liljeberg, Juha
Plosila, and Hannu Tenhunen. “Research and practices on
3D networks-on-chip architectures”. In: NORCHIP 2010. 2010,
pp. 1–6.

[Rajovic2016] Nikola Rajovic et al. “The Mont-Blanc Prototype: An Alterna-
tive Approach for HPC Systems”. In: SC16: International Con-
ference for High Performance Computing, Networking, Storage
and Analysis. Salt Lake City, UT, USA, Nov. 2016, pp. 444–455.
isbn: 978-1-4673-8815-3. doi: 10.1109/SC.2016.37.

[Ramaswamy2018] Ajay Ramaswamy, Nalini Kumar, Aravind Neelakantan, Herman
Lam, and Greg Stitt. “Scalable Behavioral Emulation of Extreme-
Scale Systems Using Structural Simulation Toolkit”. In: Inter-
national Conference on Parallel Processing (ICPP). 2018, 17:1–
17:11.

[Requena2008] Crisṕın Requena, M.E. Gómez, Pedro López, and José Duato.
“BPS: A bufferless switching technique for NoCs”. In: (Feb.
2008).

[Rodrigues2011] A. F. Rodrigues et al. “The structural simulation toolkit”. In:
ACM SIGMETRICS Performance Evaluation Review 38.4 (Mar.
2011), pp. 37–42. issn: 0163-5999. doi: 10 . 1145 / 1964218 .

1964225.

[Rosenband2004] D.L. Rosenband. “The ephemeral history register: flexible
scheduling for rule-based designs”. In: Second ACM and IEEE
International Conference on Formal Methods and Models for Co-
Design, 2004. MEMOCODE ’04. San Diego, CA, USA, 2004,
pp. 189–198. isbn: 978-0-7803-8509-2. doi: 10.1109/MEMCOD.

2004.1459853.

[Rovinski2019] Austin Rovinski et al. “Evaluating Celerity: A 16-nm 695 giga-
RISC-V instructions/s manycore processor with synthesizable
PLL”. In: IEEE Solid-State Circuits Letters 2.12 (2019). Pub-
lisher: IEEE, pp. 289–292.

[Sadasivam2017] Satish Kumar Sadasivam, Brian W. Thompto, Ron Kalla, and
William J. Starke. “IBM Power9 Processor Architecture”. In:
IEEE Micro 37.2 (Mar. 2017), pp. 40–51. issn: 0272-1732. doi:
10.1109/MM.2017.40.

Page 137

https://doi.org/10.1109/ICCSNT.2015.7490861
https://doi.org/10.1109/ICCSNT.2015.7490861
https://doi.org/10.1109/SC.2016.37
https://doi.org/10.1145/1964218.1964225
https://doi.org/10.1145/1964218.1964225
https://doi.org/10.1109/MEMCOD.2004.1459853
https://doi.org/10.1109/MEMCOD.2004.1459853
https://doi.org/10.1109/MM.2017.40

[Sanchez2013] Daniel Sanchez and Christos Kozyrakis. “ZSim: Fast and Accu-
rate Microarchitectural Simulation of Thousand-core Systems”.
In: International Symposium on Computer Architecture (ISCA).
2013, pp. 475–486. isbn: 978-1-4503-2079-5. doi: 10 . 1145 /

2485922.2485963.

[Sodani2016] Avinash Sodani, Roger Gramunt, Jesus Corbal, Ho-Seop Kim,
Krishna Vinod, Sundaram Chinthamani, Steven Hutsell, Ra-
jat Agarwal, and Yen-Chen Liu. “Knights landing: Second-
generation Intel Xeon Phi product”. In: IEEE Micro 36.2 (2016).
Publisher: IEEE, pp. 34–46.

[Strohmaier2020] Erich Strohmaier, Jack Dongarra, Horst Simon, and Martin
Meuer. Top500 supercomputer sites. Nov. 2020. url: www .

top500.org (visited on 01/15/2021).

[Sun2012] Chen Sun, Chia-Hsin Owen Chen, George Kurian, Lan Wei, Ja-
son Miller, Anant Agarwal, Li-Shiuan Peh, and Vladimir Sto-
janovic. “DSENT - A Tool Connecting Emerging Photonics with
Electronics for Opto-Electronic Networks-on-Chip Modeling”.
In: IEEE/ACM Sixth International Symposium on Networks-on-
Chip. Lyngby, Denmark, May 2012, pp. 201–210. isbn: 978-1-
4673-0973-8. doi: 10.1109/NOCS.2012.31.

[TairumCruz2018] Miguel Tairum Cruz, Sascha Bischoff, and Roxana Rusitoru.
“Shifting the Barrier: Extending the Boundaries of the Barrier-
Point Methodology”. In: IEEE International Symposium on Per-
formance Analysis of Systems and Software (ISPASS). Belfast,
Apr. 2018, pp. 120–122. isbn: 978-1-5386-5010-3. doi: 10.1109/
ISPASS.2018.00023.

[Tamir1992] Yuval Tamir and Gregory L. Frazier. “Dynamically-Allocated
Multi-Queue Buffers for VLSI Communication Switches”. In:
IEEE Transactions on Computers 41.6 (June 1992), pp. 725–737.
issn: 0018-9340. doi: 10.1109/12.144624.

[Towles2014] Brian Towles, J. P. Grossman, Brian Greskamp, and David E.
Shaw. “Unifying On-chip and Inter-node Switching Within the
Anton 2 Network”. In: Proceeding of the 41st Annual Interna-
tional Symposium on Computer Architecuture. ISCA ’14. event-
place: Minneapolis, Minnesota, USA. Piscataway, NJ, USA, 2014,
pp. 1–12. isbn: 978-1-4799-4394-4.

[Vaish2016] Nilay Vaish, Michael C. Ferris, and David A. Wood. “Optimiza-
tion Models for Three On-Chip Network Problems”. In: ACM
Transactions on Architecture and Code Optimization 13.3 (Sept.
2016), pp. 1–27. issn: 1544-3566, 1544-3973. doi: 10 . 1145 /

2943781.

[Vangal2008] Sriram R Vangal et al. “An 80-Tile sub-100-W teraFLOPS pro-
cessor in 65-nm CMOS”. In: IEEE Journal of solid-state circuits
43.1 (2008). Publisher: IEEE, pp. 29–41.

Page 138

https://doi.org/10.1145/2485922.2485963
https://doi.org/10.1145/2485922.2485963
www.top500.org
www.top500.org
https://doi.org/10.1109/NOCS.2012.31
https://doi.org/10.1109/ISPASS.2018.00023
https://doi.org/10.1109/ISPASS.2018.00023
https://doi.org/10.1109/12.144624
https://doi.org/10.1145/2943781
https://doi.org/10.1145/2943781

[Wang2013] Ruisheng Wang, Lizhong Chen, and Timothy Mark Pinkston.
“Bubble Coloring: Avoiding Routing- and Protocol-induced
Deadlocks with Minimal Virtual Channel Requirement”. In: In-
ternational Conference on Supercomputing (ICS). event-place:
Eugene, Oregon, USA. 2013, pp. 193–202. isbn: 978-1-4503-2130-
3. doi: 10.1145/2464996.2465436.

[Wang2014] D. Wang, C. Lo, J. Vasiljevic, N. Enright Jerger, and J. Gregory
Steffan. “DART: A programmable architecture for NoC simu-
lation on FPGAs”. In: IEEE Transactions on Computers 63.3
(2014), pp. 664–678. doi: 10.1109/TC.2012.121.

[Won2015] Jongmin Won, Gwangsun Kim, John Kim, Ted Jiang, Mike
Parker, and Steve Scott. “Overcoming far-end congestion in large-
scale networks”. In: IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA). Burlingame, CA,
USA, Feb. 2015, pp. 415–427. isbn: 978-1-4799-8930-0. doi: 10.
1109/HPCA.2015.7056051.

[Yang2017] Lei Yang, Weichen Liu, Peng Chen, Nan Guan, and Mengquan Li.
“Task Mapping on SMART NoC: Contention Matters, Not the
Distance”. In: 54th Annual Design Automation Conference 2017.
Austin TX USA, June 2017, pp. 1–6. isbn: 978-1-4503-4927-7.
doi: 10.1145/3061639.3062323.

[Yoo2003] Andy B Yoo, Morris A Jette, and Mark Grondona. “SLURM:
Simple linux utility for resource management”. In: Workshop on
job scheduling strategies for parallel processing. 2003, pp. 44–60.

[Yoshida2012] Toshio Yoshida, Mikio Hondo, Ryuji Kan, and Go Sugizaki.
“SPARC64 VIIIfx: CPU for the K computer”. In: Fujitsu Sci.
Tech. J 48.3 (2012), pp. 274–279.

[Yoshida2018] Toshio Yoshida. “Fujitsu high performance CPU for the post-K
computer”. In: Hot chips. Vol. 30. 2018.

[Zheng2010] Gengbin Zheng, Gagan Gupta, Eric J. Bohm, Isaac Dooley, and
Laxmikant V. Kalé. “Simulating Large Scale Parallel Applica-
tions Using Statistical Models for Sequential Execution Blocks”.
In: International Conference on Parallel and Distributed Systems
(ICPADS). 2010, pp. 221–228.

Page 139

https://doi.org/10.1145/2464996.2465436
https://doi.org/10.1109/TC.2012.121
https://doi.org/10.1109/HPCA.2015.7056051
https://doi.org/10.1109/HPCA.2015.7056051
https://doi.org/10.1145/3061639.3062323

	Resumen
	Abstract
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	Acronyms
	Introduction to NoCs
	Introduction
	CMPs
	Software implications
	Hardware organization
	Architectural support for parallel programming

	Cache coherence protocol
	NocS
	Network design parameters
	Topology
	Routing
	Flow control
	Router architecture
	Link architecture

	Deadlock avoidance
	NoCs in CMPs

	Motivation
	Organization

	Background
	Single-hop bypass routers
	Router micro-architecture
	Changes in standard units
	New bypass units

	Router pipeline
	Pipeline walk-trough

	Implementation details
	Conditions to use the bypass
	Arbitration policies
	Virtual Channel Implementation
	Switch Allocator
	LookAhead signaling
	Buffer management

	Multi-hop bypass routers
	Router micro-architecture
	LookAhead Routing Computation
	Switch Allocation
	Output unit

	Pipeline organization
	Pipeline walk-through

	Implementation details
	Virtual Channel Selection
	SA-G arbitration policies
	Multi-hop traversal in multi-dimensional networks.
	Bypass at the destination router
	Buffer bypass vs router bypass

	BST
	NoC modeling and evaluation tools
	Type of model: RTL vs software
	Type of traffic
	Performance vs Costs

	Bypass Simulation Toolset
	BookSim
	Flow control mechanisms
	Bypass routers
	Single-hop Bypass
	Multi-hop Bypass

	OpenSMART
	API
	API functions
	Topology mapping

	Scripts

	Other NoC evaluation tools

	NEBB
	Packet interleaving in bypass routers
	Packet-interleaving
	Avoiding packet-interleaving: empty buffer bypass
	Empty VC Forwarding
	Empty Buffer Bypass

	Non-Empty Buffer Bypass
	NEBB-WH
	NEBB-VCT
	NEBB-Hybrid
	NEBB summary

	NEBB in tori with bubble-based flow control
	Implementation details
	Credit management using shared buffers
	VC Selection in NEBB
	Bypass in torus using Flit Bubble Flow Control and shared buffers

	Evaluation
	Experimental setup
	Synthetic traffic analysis
	Empty VC Forwarding vs Empty Buffer Bypass
	NEBB using Single-Flit Packets
	NEBB Flow Control and Hybrid
	NEBB in Torus networks
	Sensitivity analysis: buffer depth and number of VCs
	Sensitivity analysis: crossbar priority to buffered or bypassed flits

	Real traffic analysis

	Conclusions

	SMART++
	Packet-interleaving in multi-hop bypass
	SMART: Empty VC Forwarding
	Virtual Channel Selection: flow control and buffer size
	Virtual Channel Selection: management of multi-flit packets

	SMART++
	Multi-packet buffers
	NEBB
	Packet-by-packet arbitration
	Comparative analysis of the mechanisms
	SMART++ input unit architecture

	Evaluation
	Methodology
	Simulation Infrastructure

	Cycle-level Performance Results
	SMART++ without VCs
	SMART++ with multiple VCs
	Partial implementations of SMART++

	Synthesis results
	Model Validation
	Resource Analysis
	Timing and Power Analysis
	Scaled SMART++ performance results

	Conclusions

	S-SMART++
	Speculative SSR broadcast
	S-SMART overview
	Router architecture
	SSR priority scheme
	Bypass control

	Speculative bypass walk-through
	Speculative bypass in SMART and SMART++
	Speculative-SMART++ in torus NoCs

	Evaluation
	Simulation Infrastructure
	Cycle-level Performance Results
	Bypass mechanisms comparison
	S-SMART++ with different traffic patterns
	HPCMax analysis
	Evaluation with real traffic
	SMART and S-SMART++ in tori

	Synthesis results
	Model Validation
	Resource Analysis
	Timing and Power Analysis
	Scaled performance results

	Conclusions

	Related Work
	BST
	Simulation time of Full-System simulations
	Simulation of large-scale parallel applications
	Analytical models

	NEBB
	Single-hop bypass architectures
	Ordered message NoCs
	Hybrid flow controls

	SMART++
	SMART related works
	Low-diameter topologies

	S-SMART++

	Conclusions
	Bibliography

