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Abstract 1 

The current pandemic of coronavirus disease 2019 (COVID-19) caused by the severe acute 2 

respiratory syndrome coronavirus 2 (SARS-CoV-2) is having negative health, social and 3 

economic consequences worldwide. In Europe, the pandemic started to develop strongly at 4 

the end of February and beginning of March 2020. Subsequently, it spread over the conti-5 

nent, with special virulence in northern Italy and inland Spain. In this study we show that 6 

an unusual persistent anticyclonic situation prevailing in southwestern Europe during Feb-7 

ruary 2020 (i.e. anomalously strong positive phase of the North Atlantic and Arctic Oscilla-8 

tions) could have resulted in favorable conditions, e.g., in terms of air temperature and hu-9 

midity among other factors, in Italy and Spain for a quicker spread of the virus compared 10 

with the rest of the European countries. It seems plausible that the strong atmospheric sta-11 

bility and associated dry conditions that dominated in these regions may have favored the 12 

virus propagation, both outdoors and especially indoors, by short-range droplet and aerosol 13 

(airborne) transmission, or/and by changing social contact patterns. Later recent atmospher-14 

ic circulation conditions in Europe (July 2020) and the U.S. (October 2020) seem to sup-15 

port our hypothesis, although further research is needed in order to evaluate other con-16 

founding variables. Interestingly, the atmospheric conditions during the Spanish flu pan-17 

demic in 1918 seem to resemble at some stage with the current COVID-19 pandemic.  18 

 19 

Keywords: COVID-19 disease, atmospheric circulation, North Atlantic Oscillation, air 20 

humidity, 1918 Spanish flu 21 

 22 

 23 

 24 
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1. Introduction 25 

The world is currently undergoing a pandemic associated with the severe acute respiratory 26 

syndrome coronavirus 2 (SARS-CoV-2), which is a new coronavirus first noticed in late 27 

2019 in the Hubei province, China (Huang et al., 2020; WHO, 2020). The virus has a prob-28 

able bat origin (Liao et al., 2020; Zhou et al., 2020), and causes the ongoing coronavirus 29 

disease 2019 (COVID-19). Although it is crucial to find a proper vaccine and medical 30 

treatment for this pandemic, it is also relevant to know the main factors controlling the 31 

transmission of the virus and disease, including the role of meteorological conditions in the 32 

spread of the virus. 33 

Respiratory virus infections can be transmitted by means of particles (droplets or aerosols) 34 

emitted after a cough or sneeze or during a conversation with an infected person. The large 35 

particles (>5 μm in diameter) are referred to as respiratory droplets and tend to settle down 36 

quickly on the ground, usually within one meter of distance. The small particles (<5 μm in 37 

diameter) are referred to as droplet nuclei and are related to an airborne transmission. These 38 

particles can remain suspended in the air for longer periods of time and can reach a longer 39 

distance from the origin (Gralton et al., 2011).  40 

Recent studies have pointed out a role of temperature and humidity in the spread of 41 

COVID-19. Warm conditions and wet atmospheres tend to reduce the transmission of the 42 

disease  (Alkhowailed et al., 2020; Araujo and Naimi, 2020; Barcelo, 2020; Ma et al., 2020; 43 

Sajadi et al., 2020; Smit et al., 2020). For example, it has been pointed out that the main 44 

first outbreaks worldwide occurred during periods with temperatures around 5-11ºC, never 45 

falling below 0ºC, and specific humidity of 3-6 g kg-1 approximately (Sajadi et al., 2020). 46 

Nevertheless, there are still some uncertainties about the role of climate variability in 47 

modulating COVID-19 outbreaks (Jamil et al., 2020; Martinez-Alvarez et al., 2020). 48 
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The first major outbreak in Europe was reported in northern Italy in late February 2020. 49 

Following that, several major cases were reported in Spain, Switzerland and France in early 50 

March, with a subsequent spread over many parts of Europe. On late March 2020, Italy and 51 

Spain were the two main contributors of infections and deaths in the continent.  52 

The main hypothesis of this work is that the atmospheric circulation pattern in February 53 

2020 helped to shape the spatial pattern of the outbreak of the disease during the first stages 54 

of the pandemic in Europe, i.e., when public health strategies were still not in force in the 55 

major part of the European countries and, consequently, meteorological factors could have 56 

taken a more relevant role than later on. The main goal of this study is to add some relevant 57 

information regarding the possible role of climate variability to the outbreaks of the 58 

COVID-19 disease, which can be helpful in order to implement early alert protocols.  59 

 60 

2.  Materials 61 

• Covid-19 data 62 

Accumulated COVID-19 data on country basis were obtained on March 26th, 2020 from the 63 

website https://www.worldometers.info/coronavirus/, which it is mainly based on the data 64 

provided by the Coronavirus COVID-19 Global Cases by the Center for Systems Science 65 

and Engineering (CSSE) at the Johns Hopkins University. Accumulated data from Spain on 66 

regional scale were obtained on March 28th, 2020 from the Spanish Government through 67 

the Institute of Health Carlos III (ISCIII): https://covid19.isciii.es/ 68 

 69 

• Reanalysis data 70 
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NCEP/NCAR (Kalnay et al., 1996), ERA5 (Copernicus Climate Change Service (C3S), 71 

2017) and ERA20C (Poli et al., 2015) atmospheric data are used in this manuscript. More 72 

details about the spatial and temporal resolution, vertical levels, assimilation schemes, etc. 73 

can be consulted in their references. In brief, an atmospheric reanalysis like those used here 74 

is a climate data assimilation project which aims to assimilate historical atmospheric obser-75 

vational data spanning an extended period. It uses a single consistent assimilation scheme 76 

throughout, with the aim of providing continuous gridded data for the whole globe.  77 

For the link between the COVID-19 spread on European scale and atmospheric circulation 78 

we have extracted the monthly anomalies of sea level pressure (SLP) and 500 hPa geopo-79 

tential height for February 2020 over each grid point of the 15 capitals of the European 80 

countries. We have selected the SLP and 500 hPa fields in order to summarize the meteoro-81 

logical conditions over each location, as it is known that several meteorological variables 82 

can be involved in the transmission of respiratory viruses (Fuhrmann, 2010; Lowen et al., 83 

2007). With this approach we also avoid the lack of properly updated data for all potential 84 

meteorological variables involved in the COVID-19 spread, which needs further research as 85 

soon as the pandemic ends and a more reliable and complete database of both COVID-19 86 

impact and meteorological data can be compiled (Araujo and Naimi, 2020).  87 

 88 

• Surface weather observations  89 

For Spain, several meteorological variables with high-quality records were obtained from 90 

the Spanish State Meteorological Agency (AEMET) based on surface observations for each 91 

of the capital cities of the provinces inside each autonomous region; specifically, monthly 92 

averages for February 2020 of 2-m temperature, 2-m maximum temperature, 2-m minimum 93 

temperature (°C), air pressure (hPa), wind speed (km h−1), specific humidity (g kg-1), rela-94 
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tive humidity (%), total precipitation (mm), and days of more than 1 mm of precipitation. 95 

The arithmetic average was computed for the autonomous regions with more than one 96 

province.  97 

 98 

3. Results 99 

The main atmospheric circulation pattern during February 2020 is characterized by an 100 

anomalous anticyclonic system over the western Mediterranean basin, centered between 101 

Spain and Italy, and lower pressures over northern Europe centered over the Northern Sea 102 

and Iceland (Fig. 1, Fig. S1). This spatial configuration represents the well-known North 103 

Atlantic Oscillation (NAO) (Hurrell, 1995; Jones et al., 1997) in its positive phase, which is 104 

the teleconnection pattern linked to dry conditions in southern Europe whereas the opposite 105 

occurs in northern Europe (Calbó and Sanchez-Lorenzo, 2009).  106 

Fig. 2 and Fig. S2 show maps for February 2020 for several meteorological fields that pro-107 

vide clear evidence of the stable atmospheric situation in southern Europe, with a tendency 108 

towards very dry (i.e., lack of precipitation) and calm conditions, in line with recent results 109 

from Japan where sunny conditions were associated with an increase in the spread of the 110 

COVID-19 infection (Azuma et al., 2020). As suggested in an earlier analysis (Sajadi et al., 111 

2020), the SARS-CoV-2 virus seems to be transmitted most effectively in dry conditions 112 

with daily mean air temperatures between around 5ºC and 11ºC, which are the conditions 113 

shown in Fig. 2 for the major part of Italy and Spain. By contrast, northern Europe experi-114 

enced in February 2020 mainly wet and windy conditions due to an anomalous strong 115 

westerly circulation that is linked to rainy conditions.  116 

These spatial patterns fit with the well-known climate features associated over Europe dur-117 

ing positive phases of the NAO (Hurrell et al., 2003). The Arctic Oscillation (AO), which is 118 
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a teleconnection pattern linked to NAO, showed in February 2020 the strongest positive 119 

value during 1950-2020 (Fig. S3). The AO reflects the northern polar vortex variability at 120 

surface level (Baldwin et al., 2003), and it consists of a low-pressure center located over the 121 

Norwegian sea and the Arctic ocean and a high-pressure belt between 40 and 50ºN, forming 122 

an annular-like structure. Positive values of the AO index mean a strong polar vortex, and 123 

the anomalous positive phase experienced during early 2020 has been linked with the out-124 

standing ozone loss registered over the Arctic region during March 2020 (Witze, 2020). In 125 

a separate study, we have hypothesized that this strong AO positive phase could have 126 

played a non-negligible role in the first steps of the disease worldwide. Specifically, it is 127 

worth remembering that the COVID-19 pandemic started to develop strongly by the end of 128 

January, first in China with subsequent rapid spread to other countries concentrated mainly 129 

within the 30-50ºN latitudinal regions. This feature seems to be in line with unusual persis-130 

tent anticyclonic situation prevailing at latitudes around 40ºN, which was observed on 131 

global scale due to the strong positive phase of the AO described above. This atypical situa-132 

tion could have helped to provide favourable meteorological conditions for a quicker spread 133 

of the virus (for more details, see Sanchez-Lorenzo et al., 2020, Fig. S4). 134 

Back to Europe, we argue that this spatial configuration of the atmospheric circulation (Fig. 135 

1) might have played a non-negligible role in the modulation of the early spread of the 136 

COVID-19 outbreaks over Europe. It is known that some cases were reported already in 137 

mid-January in France, with subsequent cases in Germany and other countries (Spiteri et 138 

al., 2020). Thus, the SARS-CoV-2 virus was already in Europe in early 2020, but maybe it 139 

started to extend rapidly only when suitable atmospheric conditions for its spread were 140 

reached. It is possible that these proper conditions were met in February, mainly in Italy 141 

and Spain, due to the meteorological conditions previously mentioned.  142 
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The link between the COVID-19 spread and atmospheric circulation has been tested as fol-143 

lows. We have extracted monthly anomalies of sea level pressure (SLP) and 500 hPa geo-144 

potential height for February 2020 over each grid point of the 15 capitals of the European 145 

countries (Fig. S5) with the highest number of COVID-19 cases reported on late March 146 

(see Section 2). Fig. 3 shows that there is a clear relationship between the anomalies of the 147 

500 hPa and the total cases per population, which is given by a statistically significant 148 

(R2=0.481, p<0.05) second order polynomial fit. Italy, Spain, and Switzerland, which are 149 

the only countries with more than 1,000 cases/million inhabitants in our dataset, clustered 150 

together in regions with very large positive anomalies of 500 hPa geopotential heights. 151 

Similar results are obtained using SLP fields (not shown).  152 

These results evidence that it seems plausible that the positive phase of the NAO, and the 153 

atmospheric conditions associated with it, provided optimal conditions for the spread of the 154 

COVID-19 in southern European countries like Spain and Italy, where the start of the out-155 

break in Europe was located. To test this hypothesis further we have also analyzed the rela-156 

tionship between the disease and meteorological data within Spain (see Section 2 and Fig. 157 

S6). The results show that mean temperature and specific humidity variables have the 158 

strongest relation with infections and deaths of COVID-19 and fit with an exponential func-159 

tion (Fig. 4). They indicate that those meteorological conditions given by lower mean tem-160 

peratures (i.e., average of around 8-11ºC) and lower specific humidity (e.g., <6 g kg-1) are 161 

related to a higher number of cases and deaths in Spain. Nevertheless, it is worth mention-162 

ing that both meteorological variables are highly correlated (R2=0.838, p<0.05) and are not 163 

independent of each other. The temperatures as low as 8-10ºC are only reached in a few 164 

regions such as Madrid, Navarra, La Rioja, Aragon, Castilla and Leon and Castilla-La 165 

Mancha. These areas are mainly located in inland Spain where drier conditions were re-166 
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ported the weeks before the outbreak. The rest of Spain experienced higher temperatures 167 

and consequently were out of the areas of higher potential for the spread of the virus, as 168 

reported so far in the literature. In addition, higher levels of humidity also seemed to limit 169 

the impact of the disease (Barcelo, 2020), and therefore the coastal areas seem to benefit 170 

from lower rates of infection. Thus, the southern regions of Spain (all of them with more 171 

than 13ºC and higher levels of specific humidity) reported lower rates of infection and de-172 

ceases. This is in line with the spatial pattern in Italy, with the most (least) affected regions 173 

by COVID-19 mainly located in the North (South). In contrast, when the whole of Europe 174 

is considered on a country by country basis (see above and Fig. 3), the opposite is found, a 175 

clear gradient with more severity from North to South as commented previously.   176 

The spatial pattern of COVID-19 described above has some intriguing resemblances with 177 

the 1918 influenza pandemic, which is the latest deadly pandemic in modern history of Eu-178 

rope. The excess-mortality rates across Europe in the 1918 flu also showed a clear north-179 

south gradient, with a higher mortality in southern European countries (i.e., Portugal, Spain 180 

and Italy) as compared to northern regions, an aspect that could not be explained by socio-181 

economic or health factors (Ansart et al., 2009). In Spain, a south-north gradient was also 182 

reported in the 1918 flu after controlling for demographic factors (Chowell et al., 2014). 183 

The central and northern regions of Spain experienced higher rates of mortality, and this 184 

has been suggested to be linked to more favorable climate conditions for influenza trans-185 

mission as compared to the southern regions (Chowell et al., 2014). Interestingly, the SLP 186 

anomalies of the months previous to the major wave of this pandemic (which occurred in 187 

October-November 1918) showed a clear south-north dipole with positive anomalies in 188 

southern Europe centered over the Mediterranean, and negative ones in northern Europe 189 

(Fig. 5). In other words, the NAO was also in its positive phase just before the major out-190 
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break of the 1918 influenza pandemic. This resembles the spatial patterns described above 191 

for the current COVID-19 outbreak, both in terms of the spatial distribution of the mortality 192 

of the pandemic over Europe as well as in prevailing atmospheric circulation conditions 193 

before the outbreak. These intriguing coincidences should motivate further research in or-194 

der to better understand the spatial and temporal distribution of large respiratory-origin 195 

pandemics over Europe.  196 

 197 

4. Discussion 198 

Taking into account these results, we claim that the major initial outbreaks of COVID-19 in 199 

Europe (i.e., Italy and Spain) may have been favored by an anomalous atmospheric circula-200 

tion pattern in February, characterized by a positive phase of the NAO. Considering current 201 

evidences in the literature, it seems that suitable conditions of air temperature and humidity 202 

were reached in northern Italy and inland Spain. Indeed, meteorological conditions can af-203 

fect the susceptibility of an infected host by altering the mucosal antiviral defense (Kudo et 204 

al., 2019) and the stability and transmission of the virus (Lin and Marr, 2020; Moriyama et 205 

al., 2020), as well as social contact patterns (Azuma et al., 2020; Willem et al., 2012). It is 206 

worth mentioning that meteorological conditions can also affect indoors environment 207 

(Shaman and Galanti, 2020; Shaman and Kohn, 2009). Indeed, the air humidity is lowered 208 

in indoor conditions with respect to outdoors due to the heating (except if a humidity con-209 

trolled approach is installed).  210 

We also hypothesize that the anomalous meteorological conditions experienced in Italy and 211 

Spain promoted the airborne contagion (Lowen and Palese, 2009), especially in indoors 212 

situations, in addition to the direct and indirect contact and short-range droplets, which all 213 

together may have helped to speed up the rates of effective reproductive number (R) of the 214 
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virus (Fig. 6). Regarding airborne transmission, it has been suggested that it can play a key 215 

role in some diseases like tuberculosis or measles, and even in coronaviruses (Kutter et al., 216 

2018; Tellier et al., 2019; Yu et al., 2004) including COVID-19 disease (Dancer et al., 217 

2020; Jayaweera et al., 2020; Morawska et al., 2020; Morawska and Cao, 2020; Prather et 218 

al., 2020). Another study describes that the SARS-CoV-2 virus can remain viable at least 219 

up to 3 hours in airborne conditions (van Doremalen et al., 2020). Respiratory droplets and 220 

aerosols loaded with pathogens can reach distances up to 7-8 meters under some specific 221 

conditions such as a turbulence gas cloud emitted after a cough of an infected person 222 

(Bourouiba, 2020). A study performed in Wuhan, the capital of the Hubei province, shows 223 

that the SARS-CoV-2 virus was present in several health care institutions, as well as in 224 

some crowded public areas of the city. It also highlights a potential resuspension of the in-225 

fectious aerosols from the floors or other hard surfaces with the walking and movement of 226 

people (Liu et al., 2020). Another study also shows evidence of potential airborne transmis-227 

sion in a health care institution (Santarpia et al., 2020). Additionally, another recent study 228 

suggests that strong stability associated with anticyclonic conditions may have promoted 229 

airborne transmission (Bhaganagar and Bhimireddy, 2020).  230 

Equally, it has also been suggested that high atmospheric pollutant concentrations can be 231 

positively related to increase fatalities related to respiratory virus infections (Chen et al., 232 

2017; Cui et al., 2003) and even COVID-19 (Azuma et al., 2020; Coccia, 2020a, 2020b; 233 

Ogen, 2020). This is  a relevant issue as the main hotspot of COVID-19 in Italy was located 234 

in the Po valley  (EEA, 2019). Further research is needed in order to study the COVID-19 235 

incidence and concentration of the main air pollutants in Europe to test this latter hypothe-236 

sis.  237 
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In order to give some information regarding the possible role of atmospheric circulation in 238 

early COVID-19 outbreaks during the second wave of virus, Fig. 7 shows the anomaly ge-239 

opotential 500 hPa field over Europe for July 2020, which was characterized by anticyclon-240 

ic conditions over the Atlantic Ocean and affected southwestern Europe. This state of the 241 

atmospheric circulation should imply stable and dry conditions over most of the region af-242 

fected by the positive anomaly values. Interestingly, at the end of the next month, Spain and 243 

France were the countries with the highest detected 14-days COVID-19 incidence in Eu-244 

rope (Fig. S7), which seems to be in line with the results reported above for the first wave 245 

of virus infection in winter-spring.  246 

In addition to Europe, Fig. 8 shows the anomaly 500 hPa field over North America for Oc-247 

tober 2020, which was characterized by anticyclonic conditions over the Atlantic and Pacif-248 

ic coastal regions of the U.S., whereas a very low pressure center in central-eastern Canada 249 

enhanced a northwesterly flow circulation over the northern and central inland U.S. This 250 

atmospheric circulation is associated with lower temperature and very low specific humidi-251 

ty in these regions. The 7-days COVID-19 cases incidence map in early November over the 252 

U.S. (Fig. S8) shows that most of the central and northern states reported the highest num-253 

ber of cases, which seems to be aligned with the areas that experienced the northwestern 254 

wind flows during October. It is interesting to note that several atmospheric conditions 255 

might drive large outbreaks (i.e., not only anomalous anticyclonic conditions could trigger 256 

COVID-19 outbreaks), which should be taken into account in further studies as we can ex-257 

pect that these atmospheric patterns can be different along the year and also highly geo-258 

graphical dependent, i.e., mid-latitudes vs tropical regions (Lowen and Palese, 2009). 259 

Overall, in the context of anthropogenic climate change, it has been shown that in future 260 

emissions scenarios a poleward expansion of the Hadley cell is expected (Collins et al., 261 
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2013; Gillett and Stott, 2009), which in turn is in line with a tendency to increase the fre-262 

quency of positive phases of the NAO (Deser et al., 2017) (Figure S9). This should be tak-263 

en into account for planning against future epidemics and pandemics that arise from respir-264 

atory viruses, especially in terms of environmental and health policies implemented by pol-265 

icymakers to minimize future pandemics.  266 

 267 

5. Conclusions  268 

Although the outbreak of a pandemic is controlled by a high number of biological, health, 269 

political, social, economic and environmental factors, with complex and non-linear interre-270 

lationships between them (Coccia, 2020c), with government strategies likely playing the 271 

major role in the control of the spread of the pandemic, the results of this study indicate for 272 

the first time that an anomalous atmospheric circulation may play a role in (partly) explain-273 

ing why the first COVID-19 outbreak in Europe developed more easily (or faster) in the 274 

south-west (mainly north of Italy and inland of Spain). It should be noted that the current 275 

research is performed on COVID-19 incidence data until the end of March 2020, that is 276 

when governmental strategies could not have resulted yet in an impact on the evolution of 277 

the spread.  278 

Specifically, the extreme positive phase of the NAO during February 2020 could have 279 

modulated the beginning of the major outbreaks of COVID-19 in Europe. This detected 280 

anomalous atmospheric pattern, which produces dry conditions over southwestern Europe, 281 

may have provided optimal meteorological conditions for the virus propagation at mid-282 

latitudes (Lowen and Palese, 2009); this feature should be taken into account for future 283 

outbreaks of the disease. Nevertheless, this issue needs further research in order to prove 284 
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the cause-effect relationship suggested in our study which is based in simple correlation 285 

analysis and does not include any other socio-economical confounding factors.  286 

The results presented in this study could involve some health policy implications, as the lag 287 

between large atmospheric circulation anomalies and the COVID-19 outbreaks could be 288 

used for implementing early alert protocols using weather and seasonal forecasting models 289 

that can predict atmospheric circulation patterns several days/weeks in advance. Future 290 

research is needed in order to study other mid-latitude regions, as well as other possible 291 

atmospheric patterns with the potential to trigger COVID-19 outbreaks, as they can be spa-292 

tially and temporally variable throughout the year.  293 

Interestingly, the conditions during the latest major pandemic experienced in Europe (the 294 

Spanish flu in 1918) seem to resemble the current spatial pattern of affectation with more 295 

cases in the South of Europe as compared to the North. Equally, the dominant atmospheric 296 

situation was strongly affected by anticyclonic (cyclonic) conditions in the South (North) of 297 

Europe. More research is needed in order to better understand the spatio-temporal patterns 298 

of large epidemic and pandemic situations on historical times, and their connection with the 299 

prevailing atmospheric conditions patterns, which can be also used for implementing future 300 

environmental, health and social policies.  301 

 302 

 303 

 304 

 305 

 306 

 307 

 308 
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Figures 550 

 

Figure 1. Anomaly pattern of 500 hPa geopotential height (m) for February 2020 over Eu-551 

rope as compared to the climatology mean (1981-2010 period). Image generated with the 552 

Web-based Reanalysis Intercomparison Tool provided by the NOAA/ESRL Physical Sci-553 

ences Laboratory, Boulder Colorado from their Web site at http://psl.noaa.gov/  554 
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Figure 2. Mean values of several meteorological variables for February 2020 over Europe. 563 

a) Precipitation rate (mm/day), b) Surface wind speed (m/s), c) Surface air temperature 564 

(ºC), and d) Precipitable water (kg/m2). Image generated with the Web-based Reanalysis 565 

Intercomparison Tool provided by the NOAA/ESRL Physical Sciences Laboratory, Boul-566 

der Colorado from their Web site at http://psl.noaa.gov/  567 
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 571 

 572 

 573 

Figure 3. Relationship between accumulated COVID-19 cases in Europe reported up to 574 

March 26th, 2020 and 500 hPa geopotential height anomalies (m) over the capital of each 575 

country. Each point represents one of the 15 countries with more cases reported up to 576 

March 26th, 2020. The 500 hPa geopotential height anomalies are calculated for February 577 

2020 with respect to the 1981-2010 climatological mean.  578 
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 586 

 

 

Figure 4. Relationship between mean (top) air temperature (ºC) and (bottom) specific hu-587 

midity (g kg-1) against accumulated COVID-19 cases (left) and deaths (right) in Spain as 588 

reported up to March 28th, 2020. Each cross indicates a region of Spain. The meteorological 589 

data refer to the average of February 2020.    590 

 591 

 592 

 593 

 594 

 595 

 596 

Jo
urn

al 
Pre-

pro
of



 597 

 598 
Figure 5. Anomaly map of the sea level pressure (SLP) field extracted from ERA20C rea-599 
nalysis of August and September 1918 as compared to the climatological mean (1981-2010 600 
period). Image generated with the Web-based Reanalysis Intercomparison Tool provided 601 
by the NOAA/ESRL Physical Sciences Laboratory, Boulder Colorado from their Web site 602 
at http://psl.noaa.gov/ 603 
 604 
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 611 
 612 

 613 
Figure 6. Schematic representation of particles emitted by a cough, with the large droplets 614 
settled down nearby (e.g., 1 m distance) and the smaller airborne particles spreading in sus-615 
pension for longer time, and reaching longer distances, especially in dry and stable indoor 616 
conditions as compared to wet environments. It is also possible that a resuspension of aero-617 
sol particles can eventually happen due to human activities (e.g., walking, cleaning, etc.) or 618 
air flows, which is enhanced under dry conditions. 619 
 620 
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 628 

 629 

 630 

Figure 7. Anomaly pattern of 500 hPa geopotential height (m) for July 2020 over Europe as 631 

compared to the climatology mean (1981-2010 period). Image generated with the Web-632 

based Reanalysis Intercomparison Tool provided by the NOAA/ESRL Physical Sciences 633 

Laboratory, Boulder Colorado from their Web site at http://psl.noaa.gov/  634 
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 640 

 641 

 642 

Figure 8. Anomaly pattern of 500 hPa geopotential height (m) for July 2020 over North 643 

America as compared to the climatology mean (1981-2010 period). Image generated with 644 

the Web-based Reanalysis Intercomparison Tool provided by the NOAA/ESRL Physical 645 

Sciences Laboratory, Boulder Colorado from their Web site at http://psl.noaa.gov/  646 
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Highlights 

 

- First study to explore the effects of large-scale atmospheric patterns on COVID-19. 

- Anticyclonic conditions could have favored the COVID-19 disease over Europe. 
- Transmission by droplets and/or aerosols, and social contact could be enhanced.  

- Resemblances with spatial and atmospheric conditions during the 1918 Spanish flu.  
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