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Abstract
Since tensors are vectors, no matter their order and valencies, they

can be represented in matrix form and in particular as column matrices
of components with respect to their corresponding bases. This consider-
ation allows using all the available tools for vectors and can be extremely
advantageous to deal with some interesting problems in linear algebra,
as solving tensor linear equations. Once, the tensors have been operated
as vectors, they can be returned to their initial notation as tensors. This
technique, that is specially useful for implementing computer programs,
is illustrated by several examples of applications. In particular, some
interesting tensor and matrix equations are solved. Several numerical
examples are used to illustrate the proposed methodology.
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1 Introduction and Motivation

The paper describes a technique that permits to treat tensors as vectors, that
is, to extend (stretch) the tensor components, as column matrices that repre-
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sent their vector components, solve as vectors the desired problems, and recover
again the initial format of the tensor (condensation) (see (21)). This technique
is described and used to solve a wide set of tensor and matrix equations.

The paper is structured as follows. In Section 2 we introduce some neces-
sary background for the reader to understand the rest of the paper. In particu-
lar we deal with basis ordering and matrix representation of tensors. Since the
technique used in this paper is based on representing tensors as vectors to take
full advantage of vector theory and tools, and we stretch and condense tensors
to move from vectors to tensors and vice versa, we present the correspond-
ing extension and condensation operators, which permit moving from one of
these representation to the other, and vice versa. As an initial application of
these operators, Section 3 deals with some important tensor equations that are
solved by the stretching-condensing technique. In Section 4 some interesting
applications to matrix equations, including the generalized Sylvester equation,
the tensor product commuters equation, the Schur tensor product equation,
the square equation and some applications to probability and Statistics, are
presented. Finally, Section 5 gives some conclusions.

2 Background

In this section we include some important material that is required to under-
stand the following sections.

2.1 Basis ordering

Consider tensors of the form

t ∈ V n1
1 ⊗ V n2

2 ⊗ · · · ⊗ V nk
k .

To work with these tensors and avoid important errors, it is very important
that the different basic vectors

{�ei1 ⊗ �ei2 ⊗ · · · ⊗ �eik ; i1 = 1, 2, . . . , n1; i2 = 1, 2, . . . , n2; ik = 1, 2, . . . , nk}

be “ordered” by means of an agreed upon criteria. In this paper we use the
following criterion: The vector �ei1 ⊗�ei2 ⊗· · ·⊗�eik in this ordering will be ahead
of vector �ej1 ⊗ �ej2 ⊗ · · · ⊗ �ejk

iff at least one of the following condition holds:

1. i1 < j1

2. Being i1 = j1 it is i2 < j2.

3. Being is = js for s = 1, 2, . . . , t − 1, it is it < jt, for any t.
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Then, if the indices of the ordered sequence i1i2 · · · ir of basic vectors were
considered as digits of a natural number, they would appear as ordered with
respect to the standard ordering.

This order will play an important role in this paper.

2.2 Matrix representation of a tensor

The components of a tensor can be organized in matrix form. However, there
are many ways of representing a tensor in matrix form. In this paper we
consider only representations such that the order of its components are kept
by rows. For example, the third order tensor A ∈ V 2⊗V 3⊗V 4 can be written
as

M({1,2},{3}) (A) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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,

where the indices in the sets {1, 2} and {3} appear ordered in each column
and row, respectively; it can also be written as

M({1},{2,3}) (A) =
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⎜⎝a
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where the indices in the sets {1} and {2, 3} appear ordered in each column
and row, respectively; finally, it can be written with all its components in
a single row (M(∅,{1,2,3}) (A)) or with all its components in a single column
(M({1,2,3},∅) (A)).

Note that the subindices of M refer to the indices that are represented as
rows or columns, respectively.

The convenience of each representation depends on the application we are
interested in. In the following sections we shall use different representations
according to different criteria (saving printing space, convenience, simplicity
of calculations, etc.).

2.2.1 Stretching and condensing matrices

Consider the linear space Km×n(+, ◦) of matrices {Am,n}. We refer vectors in
this space to its “canonical basis” B = {Eij}, which consists of the simplest
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matrices of Km×n, that is,

B = {(Eij)mn} ≡ {E11,E12, . . . ,E1n,E21,E22, . . . ,Emn}
where (Eij)mn = [kαβ] and

kαβ =

{
1 if α = i and β = j
0 otherwise.

When choosing the basis B, matrix Am,n is expressed as a linear manifold
spanned by B. If a “matrix form” is adopted to notify the manifold, we get:

Am,n = (E11|E12| . . . |Eij| . . . |Emn)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11−−
a12−−
...−−

a1n−−
a21−−
a22−−
...−−

a2n−−
...−−

am1−−
...−−

amn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≡ ||Eij||Xmn×1,

where all the elements of matrix Amn appear “stacked” in a column matrix
X according to the ordering criteria imposed by the given basis “B”, and the
matrix product must be understood in symbolic form and as products of blocks.
When one desires a given matrix Am,n in this form, the English speaking texts
write: “obtained by stacking the elements of the rows of Am,n in sequence.”

However, we want to note that there is no “need” of expressing this result
by “words”of a given language, but using the universal language of Linear
Algebra. Given a matrix Tm,n of elements of a field K, and calling σ = m · n
(not a prime number) the dimension of the linear space Tm,n(Kσ) of matrices,
we define by “extension” the mapping: E : Km×n → Kσ such that ∀Tm,n ∈
Km×n : E(Tm,n) = Tσ,1 with Tσ,1 ∈ Kσ, that is, the “staked” optic is replaced
by “staked and extend the given matrix and write it in column form”.

In other words, the extension of a matrix T is a transformation that
converts its tensor representation M({1},{2})(T) to the column representation
M({1,2},∅)(T).

If B′
m = {Ei}1≤i≤m is the canonical basis of matrices in IRm×1, the “stacked”

column matrix Tσ,1, associated with matrix Tm,n can be obtained by:

(Tσ,1)
t =

(
Et

1 |Et
2 | · · · | Et

m

)
1,m2 •(Im⊗Tm,n) = J1,m2 •(Im⊗Tm,n), (1)
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where we have denoted J1,m2 to (Et
1 |Et

2 | · · · | Et
m )1,m2 , and • is the

standard product of matrices. Then, we have:

Extension formula:

Tσ,1 = (Im ⊗ Tt
m,n) • Jt

1,m2 . (2)

Example 2.1 (Extension of a matrix) Consider the matrix

A3,4 =

⎛
⎝ a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

⎞
⎠ ;

where m = 3 and n = 4, then

I3 ⊗ A3,4 =

⎛
⎜⎜⎝

A3,4 | Ω3,4 | Ω3,4−− + −− + −−
Ω3,4 | A3,4 | Ω3,4−− + −− + −−
Ω3,4 | Ω3,4 | A3,4

⎞
⎟⎟⎠

9,12

.

where Ω is the null matrix. Applying (1) one obtains

Xt = (100 |010 |001)1,9 • (I3 ⊗A3,4) ≡ (a11a12 . . . a14a21 . . . a33a34).

Similarly, given a “staked” matrix, Tσ,1 we can be interested in its “con-
densation”, that is, recover its original format Tm,n as a matrix.

Since we know that σ = m · n, we define as “condensation”, the mapping:

C : Kσ → Km×n

such that ∀Tσ,1 ∈ Kσ, C(Tσ,1) = Tm,n with Tm,n ∈ Km×n.

Condensation formula:

Tm,n =
(
Im ⊗ Tt

σ,1

)
(m,m2n)

•

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝

E1−−
E2−−
...−−

Em

⎞
⎟⎟⎟⎟⎟⎠⊗ In

⎞
⎟⎟⎟⎟⎟⎠

(m2n,n)

=
(
Im ⊗ Tt

σ,1

) • (Jt
1,m2 ⊗ In

)
(3)
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2.2.2 Stretching and condensing Tensors

Let V n1
1 ⊗V n2

2 ⊗· · ·⊗V nk
k (K) be the linear space “tensor product” of the linear

spaces V n1
1 , V n2

2 . . . V nk
k , which vectors �t are called tensors, and are referred to

a basis β of the given space, that is denoted

β = {�e1i1 ⊗ �e∗i22 ⊗ · · · ⊗ �e
∗ik−1

k−1 ⊗ �ekik}, (4)

with the ranges: 1 ≤ i1 ≤ n1; 1 ≤ i2 ≤ n2; · · · , 1 ≤ ik ≤ nk and dimension
k∏

h=1

nh. Any tensor in this space can be written as:

�t = t
i1
◦

◦
i2

i3
◦ · · · ◦

ik−1

ik
◦ �e1i1 ⊗ �e∗i22 ⊗ · · · ⊗ �e

∗ik−1

k−1 ⊗ �ekik , (5)

where all scalars t
i1
◦

◦
i2

i3
◦ · · · ◦

ik−1

ik
◦ ∈ K.

The stretching-condensation formulas can be extended to tensors. It is
interesting to know the existing relation between the position n that occupies
a component in the stretched vector representation of a tensor (ordered set of
all of its components), and the indices i1, i2, · · · , ik of the given component in
the initial representation of the tensor.

This leads to two problems:

Direct problem : Assuming known the indices i1, i2, · · · , ik of a given
component and the ranges n1, n2, · · · , nk of each index, determine the position
n (position that occupies such component in the ordered set), that is given by

n = ik + nk((ik−1 − 1) + nk−1((ik−2 − 1) + · · · (· · ·+ n2((i1 − 1)))))

= ik +

k−1∑
j=1

(ij − 1)

(
k∏

s=j+1

ns

)
,

where the first equality shows the most convenient formula for computer im-
plementation and the second equality gives the shortest expression.

Reverse problem : The reverse problem consists of assuming known the
position n (position of a given component) and the ranges r1, r2, . . . , rk of all
indices, determine the indices i1, i2, · · · , ik of the given component.

The indices i1, i2, · · · , ik can be obtained by means of the following algo-
rithm:

1. q = n − 1

2. repeat with j from k to 2, by −1: ij = mod[q, rj]+1; q = quotient[q, rj]

3. i1 = q + 1,
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where quotient[q, r] and mod[q, r] are the quotient and the rest, respectively,
when dividing q by r.

These two procedures define the stretching-condensation transformations
for general tensors.

This extended vector can be condensated as a two dimensional matrix by
rows, independently of the order of the tensor, to have a matrix representation
of the tensor. The following example shows how this matrix representation
has an stretching transformation that is independent on the tensor orders and
ranges. However, to recover the tensor, we need to know its order and ranges.

Example 2.2 (stretching-condensing tensors) Consider the fourth or-

der tensor a
i
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◦
�

◦ ∈ V 2 ⊗ V 3 ⊗ V 2 ⊗ V 4 that can be represented in matrix form
as:

M({1,2},{3,4})(A) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
1

◦
1

◦
1

◦
1

◦ a
1

◦
1

◦
1

◦
2

◦ a
1

◦
1

◦
1

◦
3

◦ a
1

◦
1

◦
1

◦
4

◦ | a
1

◦
1

◦
2

◦
1

◦ a
1

◦
1

◦
2

◦
2

◦ a
1

◦
1

◦
2

◦
3

◦ a
1

◦
1

◦
2

◦
4

◦
a

1

◦
2

◦
1

◦
1

◦ a
1

◦
2

◦
1

◦
2

◦ a
1

◦
2

◦
1

◦
3

◦ a
1

◦
2

◦
1

◦
4

◦ | a
1

◦
2

◦
2

◦
1

◦ a
1

◦
2

◦
2

◦
2

◦ a
1

◦
2

◦
2

◦
3

◦ a
1

◦
2

◦
2

◦
4

◦
a

1

◦
3

◦
1

◦
1

◦ a
1

◦
3

◦
1

◦
2

◦ a
1

◦
3

◦
1

◦
3

◦ a
1

◦
3

◦
1

◦
4

◦ | a
1

◦
3

◦
2

◦
1

◦ a
1

◦
3

◦
2

◦
2

◦ a
1

◦
3

◦
2

◦
3

◦ a
1

◦
3

◦
2

◦
4

◦−−−−−−−−−−−−+−−−−−−−−−−−−
a

2

◦
1

◦
1

◦
1

◦ a
2

◦
1

◦
1

◦
2

◦ a
2

◦
1

◦
1

◦
3

◦ a
2

◦
1

◦
1

◦
4

◦ | a
2

◦
1

◦
2

◦
1

◦ a
2

◦
1

◦
2

◦
2

◦ a
2

◦
1

◦
2

◦
3

◦ a
2

◦
1

◦
2

◦
4

◦
a

2

◦
2

◦
1

◦
1

◦ a
2

◦
2

◦
1

◦
2

◦ a
2

◦
2

◦
1

◦
3

◦ a
2

◦
2

◦
1

◦
4

◦ | a
2

◦
2

◦
2

◦
1

◦ a
2

◦
2

◦
2

◦
2

◦ a
2

◦
2

◦
2

◦
3

◦ a
2

◦
2

◦
2

◦
4

◦
a

2

◦
3

◦
1

◦
1

◦ a
2

◦
3

◦
1

◦
2

◦ a
2

◦
3

◦
1

◦
3

◦ a
2

◦
3

◦
1

◦
4

◦ | a
2

◦
3

◦
2

◦
1

◦ a
2

◦
3

◦
2

◦
2

◦ a
2

◦
3

◦
2

◦
3

◦ a
2

◦
3

◦
2

◦
4

◦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

the third order tensor a
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◦ ∈ V 2 ⊗ V 3 ⊗ V 8 that can be represented in matrix

form as:
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,

and the second order tensor a
i

◦
j

◦ ∈ V 6 ⊗ V 8 that can be represented in matrix
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form as:
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◦ a
5

◦
6

◦ a
5

◦
7

◦ a
5

◦
8

◦
a

6

◦
1

◦ a
6

◦
2

◦ a
6

◦
3

◦ a
6

◦
4

◦ a
6

◦
5

◦ a
6

◦
6

◦ a
6

◦
7

◦ a
6

◦
8

◦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

then the stretching formula, that is, the transformation giving the column of
the tensor components with respect to its ordered basis for the three tensors is
the same. In other words, the order of the tensor and the dimensions of the
original vector spaces are not needed. However, the condensation formula must
keep record of the tensor order and the initial vector spaces dimensions. These
are also required for other transformations, as basis changes, contractions and
other homomorphisms, etc.

Consider the following tensors: A ∈ V n1
1 ⊗ V n2

2 and B ∈ V n3
∗3 ⊗ V n4

∗4 ,
then we have

M({1},{2})A ⊗ M({3},{4})B = M({1,3},{2,4})A ⊗B. (6)

3 Tensor equations

In this section we deal with tensor equations, i.e., equations whose unknowns
are tensors. They will be the basic material for the following section on matrix
equations.

Consider the following tensors

A ∈ V n1
1 ⊗ V n2

2 ⊗ · · · ⊗ V nr
r

X ∈ V
nr+1

∗r+1 ⊗ V
nr+2

∗r+2 ⊗ · · · ⊗ V
nr+p

∗r+p

B ∈ V
nr+p+1

r+p+1 ⊗ V
nr+p+2

r+p+2 ⊗ · · · ⊗ V
nr+p+q

r+p+q

where the asterisks refer to the dual spaces, it is assumed that p < r + q, and
for the sake of simplicity, though this condition can be relaxed, the tensors
A and B are assumed to be totally contravariant, and the tensor X totally
covariant.

Consider the following tensor equation

C = C (S1, S2) (A⊗ X ⊗ B) , (7)
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where A and B are given tensors, C is a given totally contravariant tensor of
order r−p+q, X is the unknown tensor, and C (S1, S2) refers to a contraction of
the indices in the two ordered sets of cardinality p, S2 ≡ {r+1, r+2, . . . , r+p}
and S1 ⊂ S, where S ≡ {1, 2, . . . , r}∪{r+p+1, r+p+2, . . . , r+p+ q}. Note
that each of the p indices of tensor X is contracted with one of the indices of
either A or B; the first index r + 1 of X is contracted with the first index in
S1, the second index r + 2 of X is contracted with the second index in S1, and
so on.

Since Equation (7) is equivalent to the following standard system of linear
equations

M(S−S1,S1) (A⊗ B)E(X) = E(C), (8)

where E(X) = M(∅,S2)(X) and E(C) = M(∅,S−S1)(C) are the matrices of ex-
tended or stretched forms of tensors X and C, respectively, solving Equation
(8), the linear tensor equation (7) is solved.

In summary, the tensor equation (7) can be solved using the following
algorithm:

Algorithm for solving Equation (7).

Input: Tensors A,B and C and sets of contracted indices S1 and S2.

Output: The tensor X solution to Equation (7).

Step 1. Use different index numbers IA, IX ≡ S2 and IB, for the indices of
tensors A,X and B, respectively.

Step 2. Determine the set S = IA ∪ IB.

Step 3. Calculate the tensor A ⊗ B and write it in the matrix form
M(S−S1,S1)A⊗ B.

Step 4. Write the tensor C in matrix form E(C) = M(∅,S−S1)(C).

Step 5. Solve the system of linear equations M(S−S1,S1) (A ⊗ B)E(X) =
E(C) to obtain the column matrix form M(∅,S2)(X) of the tensor X.

The tensor equation (7) can be generalized to

I∑
i=1

C (S1i, S2i) (Ai ⊗ X⊗ Bi) = C, (9)

where the S1i, S2i sets and the tensors Ai, Bi and C are assumed to be such
that Equation (9) is well defined.
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Then, Equation (9) is equivalent to(
I∑

i=1

M(Si−S1i,S1i) (Ai ⊗ Bi)

)
E(X) = E(C), (10)

a standard system of linear equations that solves (9).
The tensor equation (7) can also be generalized to

I∑
i=1

C (S1i, S2i) (Ai ⊗Xi ⊗ Bi) = C, (11)

where the S1i, S2i sets and the tensors Ai, Bi and C are assumed to be such
that Equation (11) is well defined, and we have I unknown tensors.

Then, Equation (11) is equivalent to

(
M(S1−S11,S11) (A1 ⊗ B1) | · · · |M(SI−S1I ,S1I) (AI ⊗ BI)

)
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

E(X1)
−−−
E(X2)
−−−

...
−−−
E(XI)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= E(C), (12)

a standard system of linear equations that solves (11).
The extension of this procedure to systems of equations of the form (11) is

obvious. The same is true if one has inequalities instead of equalities.

Example 3.1 (Tensor equation) Consider the following tensor equation

c
i2
◦

i7
◦

i9
◦

i10
◦ = a

λ

◦
i2
◦

μ

◦x
◦
θ

◦
λ

◦
μ
b

i7
◦

θ

◦
i9
◦

i10
◦ ; ∀i2, i7, i9, i10 ∈ {1, 2}, (13)

which can be written as

C = C ({8, 1, 3}, {4, 5, 6}) (A⊗ X ⊗B) , (14)

where
A ∈ V 2

1 ⊗ V 2
2 ⊗ V 2

3

B ∈ V 2
7 ⊗ V 2

8 ⊗ V 2
9 ⊗ V 2

10

C ∈ V 2
2 ⊗ V 2

7 ⊗ V 2
9 ⊗ V 2

10

are given totally contravariant tensors and

X ∈ V 2
∗4 ⊗ V 2

∗5 ⊗ V 2
∗6
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is the unknown totally covariant tensor.
Here S1 = {8, 1, 3}, S2 = {4, 5, 6} and S = {1, 2, 3, 7, 8, 9, 10}. Thus,

S − S1 ≡ {2, 7, 9, 10}.
Suppose that the tensors in matrix form are:

M({1,2},{3}) (A) =

⎛
⎜⎜⎝

1 2
0 0
1 0
2 −1

⎞
⎟⎟⎠ ; M({7,8},{9,10}) (B) =

⎛
⎜⎜⎝

1 1 1 0
−1 1 0 −1
1 0 0 2
1 −1 0 1

⎞
⎟⎟⎠ ;

M({2,7},{9,10}) (C) =

⎛
⎜⎜⎝

1 3 2 −1
3 −1 0 5
1 −1 0 1
−1 1 0 −1

⎞
⎟⎟⎠ .

Then, the tensor A ⊗B in matrix form M({2,7,9,10},{8,1,3}) (A ⊗ B) is

M({2,7,9,10},{8,1,3}) (A⊗ B) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 1 0 −1 −2 −1 0
1 2 1 0 1 2 1 0
1 2 1 0 0 0 0 0
0 0 0 0 −1 −2 −1 0
1 2 1 0 1 2 1 0
0 0 0 0 −1 −2 −1 0
0 0 0 0 0 0 0 0
2 4 2 0 1 2 1 0
0 0 2 −1 0 0 −2 1
0 0 2 −1 0 0 2 −1
0 0 2 −1 0 0 0 0
0 0 0 0 0 0 −2 1
0 0 2 −1 0 0 2 −1
0 0 0 0 0 0 −2 1
0 0 0 0 0 0 0 0
0 0 4 −2 0 0 2 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

so that one can write Equation (13) in its equivalent form (see (8)):

M({2,7,9,10},{8,1,3}) (A⊗ B)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x
◦
1

◦
1

◦
1

x
◦
1

◦
1

◦
2

x
◦
1

◦
2

◦
1

x
◦
1

◦
2

◦
2

x
◦
2

◦
1

◦
1

x
◦
2

◦
1

◦
2

x
◦
2

◦
2

◦
1

x
◦
2

◦
2

◦
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 1 0 −1 −2 −1 0
1 2 1 0 1 2 1 0
1 2 1 0 0 0 0 0
0 0 0 0 −1 −2 −1 0
1 2 1 0 1 2 1 0
0 0 0 0 −1 −2 −1 0
0 0 0 0 0 0 0 0
2 4 2 0 1 2 1 0
0 0 2 −1 0 0 −2 1
0 0 2 −1 0 0 2 −1
0 0 2 −1 0 0 0 0
0 0 0 0 0 0 −2 1
0 0 2 −1 0 0 2 −1
0 0 0 0 0 0 −2 1
0 0 0 0 0 0 0 0
0 0 4 −2 0 0 2 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x
◦
1

◦
1

◦
1

x
◦
1

◦
1

◦
2

x
◦
1

◦
2

◦
1

x
◦
1

◦
2

◦
2

x
◦
2

◦
1

◦
1

x
◦
2

◦
1

◦
2

x
◦
2

◦
2

◦
1

x
◦
2

◦
2

◦
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
3
2
−1
3
−1
0
5
1
−1
0
1
−1
1
0
−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the coefficient matrix M({2,7,9,10},{8,1,3}) (A ⊗ B) is the convenient matrix
representation of the tensor A ⊗ B and the independent term is E(C). Note
that this is a simple linear system of equations that allows us solving the tensor
equation (14) or (13).

Its solution is

M({1,2,3},∅)(X) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − ρ3 − 2ρ4

ρ4

1 + ρ3

2 + 2ρ3

1 − ρ1 − 2ρ2

ρ2

ρ1

1 + 2ρ1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; ρ1, ρ2, ρ3, ρ4 ∈ IR ,

which is the column matrix representation of the solution tensor X.

Example 3.2 (Inverse tensors.) Consider the three fourth order tensors

A ≡ a
◦
i

◦
j

◦
k

◦
�
∈ V n

∗ ⊗ V n
∗ ⊗ V n

∗ ⊗ V n
∗ ,

B ≡ b
α

◦
β

◦
γ

◦
δ

◦ ∈ V n ⊗ V n ⊗ V n ⊗ V n

and
C ≡ c

◦
i

◦
j

γ

◦
δ

◦ ∈ V n
∗ ⊗ V n

∗ ⊗ V n ⊗ V n

and the tensor equation

C ({k, �}, {α, β}) (A ⊗B) = C, (15)

where C ({k, �}, {α, β}) refers to the corresponding contraction of indices, ten-
sors A and C are considered data, and tensor B the unknown.
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Using the Einstein’s notation of repeated indices, equation (15) can be writ-
ten as

a
◦
i

◦
j

◦
k

◦
�
b

k

◦
�

◦
γ

◦
δ

◦ = c
◦
i

◦
j

γ

◦
δ

◦, (16)

which rearranged in matrix form becomes

M({1,2},{3,4})(A)M({1,2},{3,4})(B) = M({1,2},{3,4})(C), (17)

showing that any tensor equation of the form (16) is equivalent to a matrix
equation of the form (17).

Note that the tensor A can be interpreted as a linear map that transforms
vectors in V n ⊗ V n ⊗ V n ⊗ V n to vectors in V n

∗ ⊗ V n
∗ ⊗ V n ⊗ V n.

Next, our problem consist of finding the inverse map of A, that is, finding
another tensor

D ≡ d
k

◦
�

◦
r

◦
s

◦ ∈ V n ⊗ V n ⊗ V n ⊗ V n,

such that

b
k

◦
�

◦
γ

◦
δ

◦ = d
k

◦
�

◦
r

◦
s

◦c
◦
r

◦
s

γ

◦
δ

◦. (18)

Replacing (18) into (16) one gets

a
◦
i

◦
j

◦
k

◦
�
d

k

◦
�

◦
r

◦
s

◦c
◦
r

◦
s

γ

◦
δ

◦ = c
◦
i

◦
j

γ

◦
δ

◦, (19)

which holds if

a
◦
i

◦
j

◦
k

◦
�
d

k

◦
�

◦
r

◦
s

◦ = δ
◦
i

r

◦δ
◦
j

s

◦. (20)

where δ
◦
i

r

◦ and δ
◦
j

s

◦ are the Kronecker’s deltas.

If tensor A is represented in matrix form as M({1,2},{3,4})(A), then Expres-
sion (20) shows that

M({1,2},{3,4})(A)M({1,2},{3,4})(D) = I,

i.e.,

M({1,2},{3,4})(D) = M−1
({1,2},{3,4})(A),

where I is the identity matrix. This implies that using the adequate ordering,
pseudo-inverses of tensors can be obtained using matrix tools, and the inverse
tensor D of tensor A can be obtained by inverting the matrix M({1,2},{3,4})(A)
associated with tensor A.

Thus, a necessary and sufficient condition for the existence of the inverse
tensor is that the matrix M({1,2},{3,4})(A) be regular.



122 Juan Ramón Ruiz-Tolosa and Enrique Castillo

Tensor A in matrix form M({1,2},{3,4})(A) is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
1

◦
1

◦
1

◦
1

◦ a
1

◦
1

◦
1

◦
2

◦ a
1

◦
1

◦
1

◦
3

◦ | a
1

◦
1

◦
2

◦
1

◦ a
1

◦
1

◦
2

◦
2

◦ a
1

◦
1

◦
2

◦
3

◦ | a
1

◦
1

◦
3

◦
1

◦ a
1

◦
1

◦
3

◦
2

◦ a
1

◦
1

◦
3

◦
3

◦
a

1

◦
2

◦
1

◦
1

◦ a
1

◦
2

◦
1

◦
2

◦ a
1

◦
2

◦
1

◦
3

◦ | a
1

◦
2

◦
2

◦
1

◦ a
1

◦
2

◦
2

◦
2

◦ a
1

◦
2

◦
2

◦
3

◦ | a
1

◦
2

◦
3

◦
1

◦ a
1

◦
2

◦
3

◦
2

◦ a
1

◦
2

◦
3

◦
3

◦
a

1

◦
3

◦
1

◦
1

◦ a
1

◦
3

◦
1

◦
2

◦ a
1

◦
3

◦
1

◦
3

◦ | a
1

◦
3

◦
2

◦
1

◦ a
1

◦
3

◦
2

◦
2

◦ a
1

◦
3

◦
2

◦
3

◦ | a
1

◦
3

◦
3

◦
1

◦ a
1

◦
3

◦
3

◦
2

◦ a
1

◦
3

◦
3

◦
3

◦−−−−−−−−−+−−−−−−−−−+−−−−−−−−−
a

2

◦
1

◦
1

◦
1

◦ a
2

◦
1

◦
1

◦
2

◦ a
2

◦
1

◦
1

◦
3

◦ | a
2

◦
1

◦
2

◦
1

◦ a
2

◦
1

◦
2

◦
2

◦ a
2

◦
1

◦
2

◦
3

◦ | a
2

◦
1

◦
3

◦
1

◦ a
2

◦
1

◦
3

◦
2

◦ a
2

◦
1

◦
3

◦
3

◦
a

2

◦
2

◦
1

◦
1

◦ a
2

◦
2

◦
1

◦
2

◦ a
2

◦
2

◦
1

◦
3

◦ | a
2

◦
2

◦
2

◦
1

◦ a
2

◦
2

◦
2

◦
2

◦ a
2

◦
2

◦
2

◦
3

◦ | a
2

◦
2

◦
3

◦
1

◦ a
2

◦
2

◦
3

◦
2

◦ a
2

◦
2

◦
3

◦
3

◦
a

2

◦
3

◦
1

◦
1

◦ a
2

◦
3

◦
1

◦
2

◦ a
2

◦
3

◦
1

◦
3

◦ | a
2

◦
3

◦
2

◦
1

◦ a
2

◦
3

◦
2

◦
2

◦ a
2

◦
3

◦
2

◦
3

◦ | a
2

◦
3

◦
3

◦
1

◦ a
2

◦
3

◦
3

◦
2

◦ a
2

◦
3

◦
3

◦
3

◦−−−−−−−−−+−−−−−−−−−+−−−−−−−−−
a

3

◦
1

◦
1

◦
1

◦ a
3

◦
1

◦
1

◦
2

◦ a
3

◦
1

◦
1

◦
3

◦ | a
3

◦
1

◦
2

◦
1

◦ a
3

◦
1

◦
2

◦
2

◦ a
3

◦
1

◦
2

◦
3

◦ | a
3

◦
1

◦
3

◦
1

◦ a
3

◦
1

◦
3

◦
2

◦ a
3

◦
1

◦
3

◦
3

◦
a

3

◦
2

◦
1

◦
1

◦ a
3

◦
2

◦
1

◦
2

◦ a
3

◦
2

◦
1

◦
3

◦ | a
3

◦
2

◦
2

◦
1

◦ a
3

◦
2

◦
2

◦
2

◦ a
3

◦
2

◦
2

◦
3

◦ | a
3

◦
2

◦
3

◦
1

◦ a
3

◦
2

◦
3

◦
2

◦ a
3

◦
2

◦
3

◦
3

◦
a

3

◦
3

◦
1

◦
1

◦ a
3

◦
3

◦
1

◦
2

◦ a
3

◦
3

◦
1

◦
3

◦ | a
3

◦
3

◦
2

◦
1

◦ a
3

◦
3

◦
2

◦
2

◦ a
3

◦
3

◦
2

◦
3

◦ | a
3

◦
3

◦
3

◦
1

◦ a
3

◦
3

◦
3

◦
2

◦ a
3

◦
3

◦
3

◦
3

◦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Assume that the components of tensors A and C in matrix form are:

M({1,2},{3,4})(A) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 −1 1 1 1 1 −1 0
−1 1 1 −1 0 −1 1 −1 −1
−1 1 1 1 1 0 1 −1 1
0 −1 0 0 0 1 1 0 −1
−1 1 −1 0 1 0 0 0 1
0 0 −1 1 1 0 1 0 1
0 −1 1 1 0 0 1 0 0
−1 0 0 1 −1 −1 1 0 1
−1 1 0 1 0 0 −1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

M({1,2},{3,4})(C) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −3 −2 −3 1 1 1 3 4
0 4 −1 1 0 −4 −1 −4 −5
0 −1 1 1 1 −1 0 −3 0
−1 −2 1 −1 0 −2 0 4 −2
2 −1 −1 2 −3 0 3 −2 2
3 −4 1 1 −1 2 3 2 2
−1 −2 3 0 2 0 −1 2 −2
0 −2 2 1 1 1 0 −1 −1
−4 2 −2 −2 −1 −2 −2 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then, the tensor D inverse of A in matrix form M({1,2},{3,4})(B) is M−1
({1,2},{3,4})(A),
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that is:

M({1,2},{3,4})(D) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

20 3 −28 −16 48 −39 54 1 −5
33 5 −46 −26 80 −65 89 2 −8
20 3 −28 −16 49 −40 55 1 −5
−19 −3 27 15 −47 38 −52 −1 5
−8 −1 11 6 −19 16 −21 −1 2
16 2 −22 −12 39 −32 43 1 −4
32 5 −45 −25 78 −63 87 2 −8
53 8 −75 −42 130 −105 145 3 −13
15 2 −21 −12 37 −30 41 1 −4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

and finally, the tensor B in matrix form M({1,2},{3,4})(B) is

M−1
({1,2},{3,4})(D)M({1,2},{3,4})(C),

that is:

M({1,2},{3,4})(B) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 −1 1 1 0 1 1
0 1 −1 −1 0 −1 0 −1 1
−1 1 1 0 1 −1 −1 −1 −1
−1 −1 0 −1 1 1 −1 1 1
1 0 0 1 −1 0 1 0 0
−1 −1 0 −1 0 −1 0 1 1
1 −1 1 0 0 −1 1 1 −1
0 0 1 0 −1 −1 1 1 0
1 −1 1 1 0 1 1 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

4 Some important matrix equations

Once tensor equations have been discussed, matrix equations arise as particular
cases of them.

There are a long list of references on Matrix equations, as for example (6),
(11), (17), (2), (3; 4; 5), (20), (14), (19), (15), (1), (8), (24; 23), (27), (26), (9),
(10), (7), (13), (18), (28), (12), (25), (22), (16), (21), etc.

In this section we solve some important matrix equations, i.e., some equa-
tions where the unknowns are matrices, using the results of the previous sec-
tion.

4.1 The generalized Sylvester matrix equations

The following matrix equation (see (15)):

k∑
i=1

(AiXBi) = C, (21)
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where the dimensions of matrices Ai,X,Bi and C are m× n, n × p, p× q and
m × q, respectively, can be called the generalized Sylvester equation, because
Sylvester (1884) considered only the particular case n = m and p = q.

Equation (21) can be written as

k∑
i=1

ai
i1
◦

θ

◦x
◦
θ

◦
λ
bi

λ

◦
i6
◦ = c

i1
◦

i6
◦ , (22)

i.e.,
k∑

i=1

C({2, 5}, {3, 4}) (Ai ⊗ X⊗ Bi) = C, (23)

which shows it is a particular case of (9). Then, according to (10), Equation
(21) is equivalent to(

k∑
i=1

M({1,6},{2,5}) (Ai ⊗Bi)

)
E(X) = E(C), (24)

where E(X) and E(C) are the stretched (column) matrices associated with
matrices X and C, respectively, which taking into account (6) leads to(
k∑

i=1

(
M({1},{2})Ai ⊗ M({6},{5})Bi

))
E(X) =

(
k∑

i=1

(
Ai ⊗Bt

i

))
E(X) = E(C),

(25)
the system of linear equations which solves the matrix equation (21).

Another generalization of the Sylvester equation is the following matrix
equation

k∑
i=1

(AiXiBi) = C, (26)

where the dimensions of matrices Ai,Xi,Bi and C are m× n, n× p, p× q and
m × q, respectively. Note that there are k unknown matrices.

Similarly, using (12), Equation (26) can be written in stretched form as

(A1 ⊗ Bt
1 | · · · | Ak ⊗ Bt

k )

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

E(X1)
−−

E(X2)
−−
...

−−
E(Xk)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= E(C), (27)

the system of linear equations (27) which solves the matrix equation (26).
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Example 4.1 (Generalized Sylvester equation (Case 1)) Consider the
following matrix equation

A1XB1 + A2XB2 + A3XB3 = C (28)

where

A1 =

⎛
⎝ −2 2 −2

−1 0 1
1 −1 1
0 2 0

⎞
⎠ ; A2 =

⎛
⎝ 1 0 2

1 0 1
2 1 0
1 2 0

⎞
⎠ ; A3 =

⎛
⎝ 1 1 2

0 1 0
0 −1 1
1 0 0

⎞
⎠ ;

(29)

B1 =
(

2 1 1
1 0 2

)
; B2 =

(
1 −1 1
1 0 0

)
; B3 =

(
1 1 1
1 2 0

)
; (30)

C =

⎛
⎝ 17 13 1

9 7 −3
2 −5 1

22 8 8

⎞
⎠ . (31)

Then, Equation (25) becomes

(
k∑

i=1

Ai ⊗ Bt
i

)
E(X) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 0 5 3 0 2
−2 2 3 2 −2 4

0 −4 3 4 2 −4
−1 0 1 1 3 2
−2 0 1 2 0 0

0 −2 1 0 2 2
4 3 −2 −1 3 2

−1 0 −3 −2 2 2
3 2 −1 −2 2 2
2 2 6 4 0 0
0 2 0 0 0 0
2 0 4 4 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

x11

x12

x21

x22

x31

x32

⎞
⎟⎟⎟⎟⎟⎟⎠

= E(C),

(32)
which is a compatible system and has a unique solution, that after condensation
leads to the solution

X =

( −2 4
3 0
2 −1

)
. (33)

Example 4.2 (Generalized Sylvester equation (Case 2)) Consider the
following matrix equation

A1XB1 + A2XB2 + A3XB3 = C, (34)

where

A1 =
(

1 1 1 1
−1 0 1 1

)
; A2 =

(
1 0 2 0
1 0 1 1

)
; A3 =

(
1 1 2 1
0 1 0 0

)
;

(35)
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B1 =

(
2 1 1
1 0 2

)
; B2 =

(
1 −1 1
1 0 0

)
; B3 =

(
1 1 1
1 2 0

)
; (36)

C =

(
33 20 26
22 7 7

)
. (37)

Then, Equation (25) becomes

(
k∑

i=1

Ai ⊗ Bt
i

)
E(X) =

⎛
⎜⎜⎜⎝

4 3 3 2 6 5 3 2
1 2 2 2 1 4 2 2
3 2 2 2 5 2 2 2

−1 0 1 1 3 2 3 2
−2 0 1 2 0 0 0 0

0 −2 1 0 2 2 2 2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

x11
x12
x21
x22
x31
x32
x41
x42

⎞
⎟⎟⎟⎟⎟⎠ = E(C),

(38)
which is a compatible system and has a unique solution, that after condensation
leads to the solution

X =

⎛
⎜⎜⎝

−2 − 7ρ1 − ρ2 4 + 11ρ1 + 5ρ2

3 + 38ρ1 + 26ρ2 −26ρ1 − 14ρ2

2 − 3ρ1 − 5ρ2 −1 − 13ρ1 − 11ρ2

3 + 8ρ1 2 + 8ρ2

⎞
⎟⎟⎠ ; ρ1, ρ2 ∈ IR . (39)

Next, we solve the following particular cases of matrix equations.

4.2 Linear equations in a single matrix variable

Consider the matrix equation:

An,n • Xn,m + Xn,m • Bm,m = Cn,m, (40)

in which the unknown is the matrix Xn,m.
Equation (40) is a particular case of Equation (9). To solve this equation,

we proceed to write it in an equivalent form, using the “tensor product”

(An,n ⊗ Im + In ⊗ Bt
m,m) • E(X) = E(C) <> M • E(X) = E(C) (41)

where
Mmn,mn = An,n ⊗ Im + In ⊗Bt

m,m.

The solution X is unique if M is non-singular.

Example 4.3 (Equivalent matrices) Assume that one is interested in
obtaining the most general matrix C such that AC = CB, where

A =

(
1 1 2
1 −1 0

−1 1 −2

)
and B =

( −3 −2 3
7 2 −5
3 0 −1

)
. (42)
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If such a matrix C exists, then we have

AC− CB = Ω,

which is a matrix equation of the form (40); thus, after stretching the matrix
C, we get (see Equation (41)):

(A ⊗ I3 − I3 ⊗ Bt) • E(C) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 | 1 0 0 | 2 0 0
0 1 0 | 0 1 0 | 0 2 0
0 0 1 | 0 0 1 | 0 0 2− − −+ − − −+ − − −
1 0 0 |−1 0 0 | 0 0 0
0 1 0 | 0−1 0 | 0 0 0
0 0 1 | 0 0−1 | 0 0 0− − −+ − − −+ − − −

−1 0 0 | 1 0 0 |−2 0 0
0−1 0 | 0 1 0 | 0−2 0
0 0−1 | 0 0 1 | 0 0−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c11
c12
c13−
c21
c22
c23−
c31
c32
c33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3 7 3 | 0 0 0 | 0 0 0
−2 2 0 | 0 0 0 | 0 0 0

3−5−1 | 0 0 0 | 0 0 0− − −+ − − −+ − − −
0 0 0 |−3 7 3 | 0 0 0
0 0 0 |−2 2 0 | 0 0 0
0 0 0 | 3−5−1 | 0 0 0− − −+ − − −+ − − −
0 0 0 | 0 0 0 |−3 7 3
0 0 0 | 0 0 0 |−2 2 0
0 0 0 | 0 0 0 | 3−5−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c11
c12
c13−
c21
c22
c23−
c31
c32
c33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= Ω,

(43)
where cij are the elements of matrix C and the block representation has been
used for illustrating the relation of the new matrix with matrices A and B.

Whence

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4−7−3 | 1 0 0 | 2 0 0
2−1 0 | 0 1 0 | 0 2 0

−3 5 2 | 0 0 1 | 0 0 2− − −+ − − −+ − − −
1 0 0 | 2−7−3 | 0 0 0
0 1 0 | 2−3 0 | 0 0 0
0 0 1 |−3 5 0 | 0 0 0− − −+ − − −+ − − −

−1 0 0 | 1 0 0 | 1−7−3
0−1 0 | 0 1 0 | 2−4 0
0 0−1 | 0 0 1 |−3 5−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c11
c12
c13−
c21
c22
c23−
c31
c32
c33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= Ω. (44)
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The solution of (44), is the linear subspace:

⎛
⎜⎜⎜⎜⎜⎜⎝

c11
c12
c13
c21
c22
c23
c31
c32
c33

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 −3 1
3 −2 3

−6 2 −5
3 4 0
3 2 1

−5 −3 −2
0 0 1
0 1 0
1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎝ ρ1

ρ2

ρ3

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−3ρ2 + ρ3
3ρ1 − 2ρ2 + 3ρ3−6ρ1 + 2ρ2 − 5ρ3

3ρ1 + 4ρ2
3ρ1 + 2ρ2 + ρ3−5ρ1 − 3ρ2 − 2ρ3

ρ3
ρ2
ρ1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

which after condensing, implies that the most general matrix C that satisfies
equation AC = CB is

C =

⎛
⎝ −3ρ2 + ρ3 3ρ1 − 2ρ2 + 3ρ3 −6ρ1 + 2ρ2 − 5ρ3

3ρ1 + 4ρ2 3ρ1 + 2ρ2 + ρ3 −5ρ1 − 3ρ2 − 2ρ3

ρ3 ρ2 ρ1

⎞
⎠ , (45)

where ρ1, ρ2 and ρ3 are arbitrary real constants. Its determinant is:

|C| = −9ρ3
1−33ρ2

1ρ2−31ρ1ρ
2
2−ρ3

2−3ρ2
1ρ3−16ρ1ρ2ρ3−21ρ2

2ρ3+ρ1ρ
2
3+5ρ2ρ

2
3−ρ3

3,

and thus, the most general change of basis matrix transforming matrix B into
matrix A is that given by (45) subject to

−9ρ3
1−33ρ2

1ρ2−31ρ1ρ
2
2−ρ3

2−3ρ2
1ρ3−16ρ1ρ2ρ3−21ρ2

2ρ3+ρ1ρ
2
3+5ρ2ρ

2
3−ρ3

3 �= 0.

Similarly, if the equation is

Am,n • Xn,p • Bp,q = Cm,q, (46)

the equivalent system of linear equations becomes

(Am,n ⊗ Bt
m,m) • E(X)np,1 = E(C)mq,1, (47)

which solves the problem.

4.3 Linear equations in several matrix variables

We start with the case of two unknown matrices and then we generalize to k
unknown matrices.

Consider the matrix equation:

Am,p • Xp,q + Ym,r • Br,q = Cm,q, (48)

where the unknown matrices are Xp,q and Ym,r.
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To solve this equation we proceed to write it stretched in an equivalent
form, using the “tensor product”:

(Am,p ⊗ Iq) • E(X)pq,1 + (Im ⊗ Bt
q,r) • E(Y)mr,1 = E(C)mq,1 (49)

to get

(
Am,p ⊗ Iq|(Im ⊗ (Bt)q,r

)⎛⎝ E(Xpq,1

−−−−
E(Ymr,1

⎞
⎠ = E(C)mq,1, (50)

which is equivalent to Equation (48) but written in the usual form. Then, the
solution (X,Y) can be obtained by solving a linear system of equations.

Example 4.4 (Matrix linear equation) Obtain the most general matri-
ces X and Y such that AX + YB = C, where:

A =

( −2 4 −4
3 0 4
2 −1 3

)
; B =

(
2 1 1
1 0 2

)
; C =

(
7 −4 10
5 10 0

−3 4 −4

)
. (51)

Since AX + YB = C is of the form (48), after stretching matrices X and
Y, one gets (see Equation (50)):

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 0 0 | 4 0 0 | −4 0 0 || 2 1 | 0 0 | 00
0−2 0 | 0 4 0 | 0−4 0 || 1 0 | 0 0 | 00
0 0−2 | 0 0 4 | 0 0−4 || 1 2 | 0 0 | 00− − −+ − − −+ − − −+−−+−+−−
3 0 0 | 0 0 0 | 4 0 0 || 0 0 | 2 1 | 00
0 3 0 | 0 0 0 | 0 4 0 || 0 0 | 1 0 | 00
0 0 3 | 0 0 0 | 0 0 4 || 0 0 | 1 2 | 00− − −+ − − −+ − − −+−−+−+−−
2 0 0 | −1 0 0 | 3 0 0 || 0 0 | 0 0 | 21
0 2 0 | 0−1 0 | 0 3 0 || 0 0 | 0 0 | 10
0 0 2 | 0 0−1 | 0 0 3 || 0 0 | 0 0 | 12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x11
x12
x13
x21
x22
x23
x31
x32
x33−−
y11
y12
y21
y22
y31
y32

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

7
−4
10
−−
5
10
0

−−
−3
4
−4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and solving the resulting homogeneous system and condensing X and Y one
finally gets:

X =

⎛
⎝ −2 − ρ3 − 2ρ4 − 4ρ7 4 − ρ4 − 4ρ6 −4 − 2ρ3 − ρ4 − 4ρ5

3 + ρ1 + 2ρ2 − 2ρ3 − 4ρ4 + ρ7 ρ2 − 2ρ4 + ρ6 4 + 2ρ1 + ρ2 − 4ρ3 − 2ρ4 + ρ5

2 + 3ρ7 −1 + 3ρ6 3 + 3ρ5

⎞
⎠ ,

Y =

⎛
⎝−4ρ2 + 6ρ4 −1 − 4ρ1 + 6ρ3

2 + 3ρ4 −1 + 3ρ3

−1 + ρ2 ρ1

⎞
⎠ .

where ρ1, ρ2, . . . , ρ7 ∈ IR .
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Example 4.5 (One application to probability) Assume that Σn,n is the
covariance matrix of the n-dimensional random variable X, then, the covari-
ance matrix of the n-dimensional random variable Yn,1 = Cn,nXn,1 is Σ∗

n,n =
Cn,nΣn,nC

t
n,n. If we look for Σn,n = In, it must be:

Σ∗ = CCt ⇔ InC
t − C−1Σ∗ = 0.

To obtain all changes of basis matrices C leading to this result, we initially
solve the equation:

InX − YΣ∗ = 0,

which is of the form (48) and then it can be written as

(
In ⊗ In|(In ⊗ (Σ∗)t

n,n

)⎛⎝E(X)nn,1

−−−−
E(Y)nn,1

⎞
⎠ = E(C)nn,1, (52)

from which matrices X and Y can be obtained. Next, it suffices to impose the
condition

Y =
(
(X)t

)−1
.

As an example, if the covariance matrix is

Σ∗ =

(
3 1 −1
1 4 0

−1 0 2

)

then, we get

X =

⎛
⎝−ρ7 + ρ8 + 3ρ9 4ρ8 + ρ9 2ρ7 − ρ9

−ρ4 + ρ5 + 3ρ6 4ρ5 + ρ6 2ρ4 − ρ6

−ρ1 + ρ2 + 3ρ3 4ρ2 + ρ3 2ρ1 − ρ3

⎞
⎠ ; Y =

⎛
⎝ ρ9 ρ8 ρ7

ρ6 ρ5 ρ4

ρ3 ρ2 ρ1

⎞
⎠ .

Finally we mention that Equations (23) and (48) can be immediately gen-
eralized to

I∑
i=1

(Ai)m,pi
• (Xi)pi,q +

J∑
j=1

(Yj)m,rj
• (Bj)rj ,q = Cm,q (53)

leading to the following solution, that generalizes (50):(
(A1)m,p1 ⊗ Iq,q| . . . |(AI)m,pI

⊗ Iq,q|Im,m ⊗ (B1)tr1,q| · · · |Im,m ⊗ (BJ)trJ ,q

) •⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(E(X)1)p1q,1
...

(E(X)I)pIq,1

−−−
(E(Y)1)mr1,1

...
(E(Y)J )mrJ ,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= E(C)mq,1. (54)
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4.4 Matrix tensor product commuters equation

We call “transposition matrix” of order “n”, to every matrix resulting from
exchanging any two rows of the unit matrix In, and leaving the remaining
rows unchanged. The transposition matrices are always, regular (|P| �= 0,
symmetric (P = Pt), involutive (P = P−1) and orthogonal (P−1 = Pt).

We call “permutation matrix” to the classic or tensor product of several
“transposition matrices” (in the second case they can be of different order
(P = Pm,m ⊗ Pn,n).

Consider the equation:

B ⊗ A = P1 • (A ⊗B) • P2, (55)

where P1 ∈ {permutations of Imp} and P2 ∈ {permutations of Inq} are the
unknown matrices.

Note that in general A⊗B �= B⊗A, where (A⊗ B)mp,nq, i.e., the tensor
product is not commutative. Thus, since direct reversing of the tensor product
is not permitted, Equation (55) allows to find two correction matrices P1 and
P2 for reversing the tensor product, that will be called “transposer matrices”.

We shall give two different expressions for the solution matrices P1 and P2.
The first solution is as follows. The permutation matrices P1 and P2

(orthogonal matrices P−1
1 = Pt

1;P
−1
2 = Pt

2) that solve Equation (55), for the
products Am,n ⊗ Bp,q and Bp,q ⊗ Am,n are as follows:

P1(m, p) ≡ Pmp,mp = [p1ij],

where

p1ij =

⎧⎨
⎩ 1 if i =

(
1 +

⌊
j − 1

p

⌋)
+

(
(j − 1) − p

⌊
j − 1

p

⌋)
m

0 otherwise
; (56)

for i, j = 1, 2, . . . , mp, where 
x� is the integer part of x, and

P2(n, q) ≡ Pnq,nq = [p2ij],

where

p2ij =

⎧⎨
⎩ 1 if j =

(
1 +

⌊
i − 1

q

⌋)
+

(
(i − 1) − q

⌊
i − 1

q

⌋)
n

0 otherwise
; (57)

for i, j = 1, 2, . . . , nq, showing that

P2(n, q) = Pt
1(n, q). (58)
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Example 4.6 (Commuting the tensor product) Consider the partic-
ular case A3,3 and B3,3 (m = n = p = q = 3), with A3,3 = [aij ];B = [bij ].

Applying the indicated formulas, one obtains P1 ≡ Pmp,mp ≡ P9,9 with
pij = 0, with the exception of

row 1 4 7 2 5 8 3 6 9
column 1 2 3 4 5 6 7 8 9

that is, in the positions

(i, j) ≡ (1, 1), (4, 2), (7, 3), (2, 4), (5, 5), (8, 6), (3, 7), (6, 8), (9, 9),

that take value 1, and P2 ≡ Pnq,nq ≡ P9,9 with pij = 0, with the exception of

row 1 2 3 4 5 6 7 8 9
column 1 4 7 2 5 8 3 6 9

that leads to a value 1 in positions

(i, j) ≡ (1, 1), (2, 4), (3, 7), (4, 2), (5, 5), (6, 8), (7, 3), (8, 6), (9, 9).

As one can see, the results are identical, and then P = P1 = P2, where P
is symmetric, involutive and orthogonal, thus, we get⎛

⎝ b11 b12 b13

b21 b22 b23

b31 b32 b33

⎞
⎠⊗

⎛
⎝ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠

= P •
⎛
⎝
⎛
⎝ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠⊗

⎛
⎝ b11 b12 b13

b21 b22 b23

b31 b32 b33

⎞
⎠
⎞
⎠ • P

with

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 | 0 0 0 | 0 0 0
0 0 0 | 1 0 0 | 0 0 0
0 0 0 | 0 0 0 | 1 0 0−−−+−−−+−−−
0 1 0 | 0 0 0 | 0 0 0
0 0 0 | 0 1 0 | 0 0 0
0 0 0 | 0 0 0 | 0 1 0−−−+−−−+−−−
0 0 1 | 0 0 0 | 0 0 0
0 0 0 | 0 0 1 | 0 0 0
0 0 0 | 0 0 0 | 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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For the case with p = m, q = n, that is, matrices Amn and Bmn that have
the same number of rows and columns, we have P1 = Pt

2 and since they are
orthogonal, the matrices B⊗A and A⊗B are “similar inside the orthogonal
group”

P−1 • (A ⊗ B) •P ≡ Pt • (A ⊗ B) • P = B ⊗A

As a final result of the analysis of the matrices P1 and P2, that appear in
Formula (55), we shall propose a second and simple general expression of such
matrices,

Let B1 = {E11,E12, · · · ,Eij, · · · ,Emp} be the canonical basis, with m × p
matrices, of the IRm×p matrix linear space.

Let B2 = {E′
11,E

′
12, · · · ,E′

k�, · · · ,E′
nq} be the canonical basis with n × q

matrices, in the IRn×q matrix linear space.

Matrices P1 and P2 will be represented by blocks:

P1 ≡ Pmp,mp =

⎛
⎜⎜⎜⎜⎜⎝

E11 | E21 | · · · | Em1−−+−−+−−+ −−
E12 | E22 | · · · | Em2−−+−−+−−+ −−
· · · | · · · | · · · | · · ·−−+−−+−−+ −−
E1p | E2p | · · · | Emp

⎞
⎟⎟⎟⎟⎟⎠ (59)

P2 ≡ Pnq,nq =

⎛
⎜⎜⎜⎜⎜⎜⎝

E′
11 | E′

21 | · · · | E′
n1−− | −− | −− | −−

E′
12 | E′

22 | · · · | E′
n2−− | −− | −− | −−

· · · | · · · | · · · | · · ·
−− | −− | −− | −−
E′

1q | E′
2q | · · · | E′

nq

⎞
⎟⎟⎟⎟⎟⎟⎠

t

(60)

Special attention must be given to the “block ordering” inside matrices P1

and P2; it is not the canonical order but the transpose. As an example, an
application is given below.

Example 4.7 (Commuting the tensor product) Consider again the ma-
trices A3,3 and B3,3 in Example 4.6. The matrices P1 and P2 that solve our
application (m = n = p = q = 3) have now a direct construction:
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P1 = P2 = P =

⎛
⎜⎜⎝

E11 | E21 | E31−− + −− + −−
E12 | E22 | E32−− + −− + −−
E13 | E23 | E33

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 | 0 0 0 | 0 0 0
0 0 0 | 1 0 0 | 0 0 0
0 0 0 | 0 0 0 | 1 0 0−−−+−−−+−−−
0 1 0 | 0 0 0 | 0 0 0
0 0 0 | 0 1 0 | 0 0 0
0 0 0 | 0 0 0 | 0 1 0−−−+−−−+−−−
0 0 1 | 0 0 0 | 0 0 0
0 0 0 | 0 0 1 | 0 0 0
0 0 0 | 0 0 0 | 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(61)
that evidently coincides with the P obtained in Example 4.6, that was obtained
after using a certainly complicated subindex relationships.

4.5 The Schur tensor product equation

Consider the following matrix equation, which allows us replacing a tensor
product by a Schur product:

Am,n � Bm,n = Qm,m2 • (Am,n ⊗ Bm,n) •Pn2,n, (62)

where P and Q, the unknowns, never are square matrices. Note that this is a
direct relationship among the “three matrix products”.

Solution matrices Qm,m2 and Pn2,n are, respectively, given by

Qm,m2 = [qij ]; qij ∈ {0, 1} with qij =

{
1 if j = i(m + 1) − m
0 otherwise

and

Pn2,n = [pij ]; pij ∈ {0, 1} with pij =

{
1 if i = j(n + 1) − n
0 otherwise.

Nevertheless, and following the previous criterion of having a faster formu-
lation for matrices Qm,m2 and Pn2,n in Formula (62) we propose the following
block alternative:

Qm,m2 =
(

E11 | E22 | · · · | Em,m

)
, (63)
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where Bm2 ≡ {Eij} is the canonical basis of the matrix linear space IRm,m, and

Pn2,n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

E′
11

−−
E′

22

−−
...

−−
E′

nn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (64)

where B′
n2 = {E′

ij} is the canonical basis of the matrix linear space IRn,n.

Example 4.8 (Replacing a Schur product by a tensor product) Re-
turning to the case A3,3 and B3,3 of a previous example, we have

A3,3 � B3,3 = Q3,9 • (A3,3 ⊗ B3,3) • P9,3

where Q = Pt or P = Qt and

Q =

(
1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1

)
,

as it can be checked easily, using the previous formulas.

As a consequence of (62), a relation between dot and tensor products can
be obtained for the particular case p = m, q = n. In fact, we know that

Am,n � Bm,n = Qm,m2 • (Am,n ⊗Bm,n) • Pn2,n

Bm,n � Am,n = Qm,m2 • (Bm,n ⊗Am,n) • Pn2,n

and applying the commutative property to the left hand side member and
equalling the right hand side members, we get

Qm,m2 • (Am,n ⊗Bm,n) • Pn2,n = Qm,m2 • (Bm,n ⊗ Am,n) • Pn2,n.

4.6 The square equation

Consider the matrix equation

P2Z + 2PZQ + ZQ2 = M (65)

where the matrices Pn,n,Qm,m and Mn,m are data and the matrix Zn,m is the
unknown.
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Since this is a particular case of the generalized Sylvester equation, we can
solve it by writing it as(

P2 ⊗ Im + 2P⊗ Qt + In ⊗ Q2
)
E(Z) = E(M). (66)

However, there is a better alternative, that consists of realizing that the
linear system (66) can be written as

N2z = N (Nz) = m (67)

where N = P⊗Im + In ⊗Qt, that suggests solving Equation (67) in two steps:

1. Solve Equation Ny=m.

2. Solve Equation Nz=y.

Example 4.9 (Square equation) Consider the equation

P2Z + 2PZQ + ZQ2 = M (68)

where

P =

⎛
⎝ 0 1 −1

1 0 1
−1 1 2

⎞
⎠ ; Q =

(
1 2
0 1

)
; M =

⎛
⎝−2 3

10 21
22 29

⎞
⎠ .

Using equation (66) we get

(
P2 ⊗ Im + 2P ⊗Qt + In ⊗ Q2

)
z =

⎛
⎜⎜⎜⎝

3 0 1 0 −3 0
4 3 4 1 −4 −3
1 0 3 0 3 0
4 1 4 3 4 3

−3 0 3 0 11 0
−4 −3 4 3 12 11

⎞
⎟⎟⎟⎠ z =

⎛
⎜⎜⎜⎝

−2
3

10
21
22
29

⎞
⎟⎟⎟⎠ ,

which leads to

z =

⎛
⎜⎜⎜⎝

3 0 1 0 −3 0
4 3 4 1 −4 −3
1 0 3 0 3 0
4 1 4 3 4 3

−3 0 3 0 11 0
−4 −3 4 3 12 11

⎞
⎟⎟⎟⎠

−1⎛
⎜⎜⎜⎝

−2
3

10
21
22
29

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1
2
1
0
2
1

⎞
⎟⎟⎟⎠

Using the alternative method, we have

N = P⊗ Im + In ⊗ Qt =

⎛
⎜⎜⎜⎝

1 0 1 0 −1 0
2 1 0 1 0 −1
1 0 1 0 1 0
0 1 2 1 0 1

−1 0 1 0 3 0
0 −1 0 1 2 3

⎞
⎟⎟⎟⎠
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and then

y =
(
N−1

)2
m =

⎛
⎜⎜⎜⎜⎜⎝

−1
2

0 1 0 −1
2

0
−3 −1

2
5
2

1 −3
2

−1
2

1 0 −1
2

0 1
2

0
5
2

1 −3 −1
2

3
2

1
2−1

2
0 1

2
0 0 0

−3
2

−1
2

3
2

1
2

−1 0

⎞
⎟⎟⎟⎟⎟⎠

2⎛
⎜⎜⎜⎝

−2
3

10
21
22
29

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1
2
1
0
2
1

⎞
⎟⎟⎟⎠ ,

which after condensation leads to

M({1},{2}) (Z) =

⎛
⎝ 1 2

1 0
2 1

⎞
⎠ .

5 Conclusions

In this paper a general method for stretching-condensing tensors has been
described. The technique is useful for dealing with tensors using all the already
available and powerful tools for vectors. First, the tensors are written as vectors
using the stretching transformation that converts the initial structure of tensors
components to a column matrix of its vector components with respect to a
given basis. Next, the required vector transformations are used. Finally, the
vectors are transformed back to their initial tensor representation. In addition,
this technique has been shown to be useful for solving important problems in
algebra, as solving linear tensor and matrix equations, and to have important
applications.
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