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Abstract: Several anticancer properties have been largely attributed to phenolics in in vivo and
in vitro studies, but epidemiologic evidence is still scarce. Furthermore, some classes have not been
studied in relation to gastric cancer (GC). The aim of this study was to assess the relationship between
the intake of phenolic acids, stilbenes, and other phenolics and the risk of developing GC and its
anatomical and histological subtypes. We used data from a multi-case-control study (MCC-Spain)
obtained from different regions of Spain. We included 2700 controls and 329 GC cases. Odds
ratios (ORs) were calculated using mixed effects logistic regression considering quartiles of phenolic
intake. Our results showed an inverse association between stilbene and lignan intake and GC risk
(ORQ4 vs. Q1 = 0.47; 95% CI: 0.32–0.69 and ORQ4 vs. Q1 = 0.53; 95% CI: 0.36–0.77, respectively). We
found no overall association between total phenolic acid and other polyphenol class intake and GC
risk. However, hydroxybenzaldehydes (ORQ4 vs. Q1 = 0.41; 95% CI: 0.28–0.61), hydroxycoumarins
(ORQ4 vs. Q1 = 0.49; 95% CI: 0.34–0.71), and tyrosols (ORQ4 vs. Q1 = 0.56; 95% CI: 0.39–0.80) were
inversely associated with GC risk. No differences were found in the analysis by anatomical or
histological subtypes. In conclusion, a diet high in stilbenes, lignans, hydroxybenzaldehydes,
hydroxycoumarins, and tyrosols was associated with a lower GC risk. Further prospective studies
are needed to confirm our results.

Keywords: diet; epidemiology; gastric cancer; polyphenols; phenolic acids; stilbenes; lignans;
anatomic; histologic; MCC-Spain

1. Introduction

Gastric cancer (GC) is the third leading cause of cancer-related death in the world [1], and its
5-year survival after diagnosis is below 30% in many countries [2]. GC incidence rates vary across
geographical areas, probably due to risk factors such as dietary patterns, lifestyle habits, genetics,
and exposure to carcinogens [3].

Between 10% and 20% of GC patients have a family history—although only 1–3% of them show a
clear Mendelian inheritance pattern—and 80% to 90% are considered sporadic [4]. Thus, environmental
factors seem highly relevant for gastric carcinogenesis and, therefore, a large proportion of GC cases
are potentially preventable.

More than 20% of deaths due to GC are attributed to obesity/overweight, 5% to physical inactivity,
5% to excessive alcohol consumption, and 5% to a poor diet [5], which are all related to lifestyles.
Accordingly, fruit consumption has been identified as a protective factor against GC and this may
partly be due to the fruit’s content of polyphenols (PLPs) [6].

PLPs are secondary metabolites of plants, which can be found in fruit, vegetables, cereals, and their
derived beverages (such as coffee, tea, wine, and juices). These compounds have been shown to exert
preventive properties against a wide range of chronic conditions, including diabetes, cardiovascular
problems, neurodegenerative diseases, and cancer [7,8].

The anticancer properties of PLPs have been largely attributed to their great anti-inflammatory
and antioxidant potential, as well as their ability to modulate signaling pathways and molecular targets.
These mechanisms have been associated with cancer processes such as cell survival, differentiation,
proliferation, migration, hormonal activities, angiogenesis, immune responses, or detoxifying
enzymes [9].

Most of this knowledge has been obtained from in vitro studies, which have mainly focused on
the flavonoid family [10]. Other PLP families, such as phenolic acids, stilbenes, lignans, and other
phenolics, have been less studied; however, epidemiological evidence is still limited [11].
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Since risk factors for GC are different depending on its anatomical and histological subtype [12,13],
we hypothesize that the different classes of PLPs can be associated with different GC types. The aim of
this study was to assess whether the intake of phenolic acids, stilbenes, lignans, and other PLPs was
associated with the risk of developing GC, also according to its anatomical and histological subtypes.

2. Materials and Methods

2.1. Study Population

The multi-case-control (MCC)-Spain study is a multicenter, population-based case-control study
that was carried out in 12 Spanish provinces to examine potential associations between environmental
and genetic factors and the risk of five common cancers. Detailed information on the study design
can be found elsewhere [14]. Cases and controls were recruited from 2008 to 2013 in 16 hospitals.
The inclusion criteria for cases of histologically confirmed gastric tumors were having lived for at least
six months in the area of the hospital and being between 20 and 85 years old. Controls were frequency
matched to the overall distribution of cancer cases by age, sex, and region (province).

For the specific case of GC, MCC-Spain recruited 459 cases of GC and 3440 controls. In the
present study, 329 cases and 2700 controls were included after excluding participants with missing
data (Figure 1).
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All participants signed the informed consent after having been previously informed about the
study. The study was designed according to the Declaration of Helsinki and the Spanish Data Protection
Act 1999, and the ethics committees of the participating institutions approved the MCC-Spain study
protocol [15].

2.2. Classification of Tumors

The pathology information and the rest of records obtained regarding the histology and anatomy
of the GC were reviewed by qualified personnel. Collected clinical information for each gastric
tumor case included anatomical subtype (cardia and non-cardia), extension, and histological subtype
(intestinal and diffuse).

2.3. Variables and Data Collection

Cases and controls were interviewed by trained personnel at baseline. Information on
sociodemographic factors, health behaviors (as physical activity or smoking), medical conditions and
medical treatments, and family history of cancer was collected. In addition, cases and controls reported
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dietary habits, including current and past alcohol consumption (from 30 to 40 years old), mainly with a
self-administered questionnaire.

2.3.1. Assessment of Nutrient Intake

A validated food-frequency questionnaire (FFQ) [16] was collected at recruitment. The MCC-Spain
dietary questionnaire includes questions about the previous year’s frequency of consumption of foods
grouped under ten food categories: (1) Meat (products such as lamb, poultry, beef, pork, eggs, fish and
seafood, and precooked meat-derived food), (2) legumes and vegetables, (3) nuts and fruits, (4) dairy
products, (5) cereals (including bread and pasta), (6) seasonings and sauces, (7) oils and fats, (8) sweets
and snacks, (9) vitamin and mineral supplements, (10) alcoholic and other beverages.

The daily consumption of each food was estimated based on reference tables of food servings.
As in other studies, if a given food was a recipe (e.g., vegetable puree or gazpacho) the list of ingredients
was calculated [17].

2.3.2. Analysis of PLP Intake

The PLP classes considered in the present study were phenolic acids (including hydroxybenzoic
acids, hydroxycinnamic acids, and hydroxyphenylacetic acids) stilbenes, lignans, and other
phenolics (including alkylmethoxyphenols, methoxyphenols, hydroxycoumarins, tyrosols, and other
minor phenolics).

For the analysis of PLP intake, a subset of 58 foods was considered, including legumes and
vegetables, fruits, cereals, sweets and snacks, and alcoholic beverages and others. To estimate PLP
intake, instead of considering the amount of all individual PLP chemical species (glycosides, esters,
etc.) reported for different foods, we used aglycone equivalents. Dietary intake of the aglycone forms
of PLP was estimated from the Phenol-Explorer database [18]. The rationale for this decision was to
standardize data from different analytical methods to facilitate comparisons between studies [19].

PLP intake was calculated in milligrams per day, based on the food consumption data from the
FFQ and the aglycone PLP content of each food referred in the Phenol-Explorer database. Estimation
of the PLP contents involved obtaining the aglycone equivalents for each PLP subgroup and foods
included in the Phenol-Explorer database. No retention factors were applied in the calculation of the
amount of PLP intake.

2.4. Statistical Analysis

Descriptive statistics were used to display characteristics of cases and controls and by the tumor’s
specific location and histology. Comparisons between cases and controls and between anatomical and
histological subtypes were carried out using the Pearson chi square test (χ2) for categorical variables.
Depending on the normality of the continuous variables, ANOVA or Kruskal-Wallis tests were used
for qualitative traits. Significance for all statistical tests was set at p < 0.05.

PLP intake values were adjusted for energy intake [20] to estimate isocaloric intake of PLPs,
separately for men and women.

PLP intake was categorized into quartiles according to the sample distribution among controls
stratified by sex, and the lowest consumption category was always used as reference.

As additional analysis, PLP intake was transformed to log2, since the data were right-skewed [21].
This transformation had the same normalizing effect as the energy-adjusted by residual method.
Its interpretation is simpler, given that the odds ratios (ORs) indicate the odds of GC when the intake
is doubled (Supplementary Table S1).

Mixed-effects multivariate logistic regression models were performed to assess the association
between PLP intake and cancer risk, including study area as a random effect term. Values are shown
as OR and 95% confidence interval (CI). Other variables included in the multivariable model were age;
sex; socioeconomic status (low, medium, and high); first-degree family history of GC; physical activity
(as metabolic equivalent task (MET)-h/week); body mass index (BMI); smoking status; consumption of
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alcohol, vegetables, red meat, and salt; and total energy intake. Mixed-effects logistic regressions were
performed with Stata statistical software release 13 [22]. Python version 3.14 [23] was used for the
extraction of Phenol-Explorer web data on polyphenol content in foods, and R version 3.6 [24] was
used for the calculation of the PLP intake by individuals.

3. Results

This study includes 329 GC cases and 2700 controls whose characteristics are described in Table 1.
Cases were mostly male (72.6%) and had a higher percentage of family history of GC than that in
controls (16.1 vs. 6.3). In addition, they presented a larger percentage of high alcohol drinkers and
consumed on average more red meat (84.4 vs. 64.0 g/d) and more sodium (3529.3 vs. 3008.6 mg/g).
The average consumption of the PLP subclasses of the entire sample is shown in Table 2, as well as
main food sources for the different PLP subclasses.

Associations between the intake of phenolic classes and subclasses and the odds of developing
GC are shown in Figure 2. Stilbenes were associated with a reduction in the odds of total GC by 53%
(95% CI 0.32–0.69), lignans reduced the risk by 47% (95% CI 0.36–0.77), and hydroxybenzaldehydes by
59% (95% CI 0.28–0.61). The hydroxycoumarin subclass was associated with a 51% (95% CI 0.34–0.71)
reduction in total GC risk, and tyrosols were associated with 44% lower odds of GC (95% CI 0.39–0.80).
Regarding the consumption of other PLP subclass, the risk of total GC increased by 49% (95% CI
1.06–2.10). Hydroxybenzoic acids and hydroxyphenylacetic acids showed protective tendencies and
hydroxycinnamic acids, methoxyphenols, and other PLPs (subclass) tended to increase the risk against
GC although none of these associations were statistically significant.
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Figure 2. Adjusted odds ratios (ORs) and 95% confidence intervals (CIs) of gastric cancer (GC) for
quartile 4 (Q4) vs. quartile 1 (Q1) of polyphenol intake in the MCC-Spain study. Estimated using
unconditional logistic regression models adjusted for age; sex; socioeconomic status; smoking status;
first-degree family history of GC; physical activity; body mass index; alcohol consumption; and
vegetables, red meat, salt, and total energy intake including the study area as a random effect term.
* Other polyphenols (subclass): Estimated ORs and their corresponding 95% confidence intervals for
other polyphenols subclasses (including arbutin, catechol, coumestrol, phenol, phlorin, and pyrogallol).



Nutrients 2020, 12, 3281 6 of 16

Table 1. Characteristics of controls cases of gastric cancer, also by anatomical and histological type.

Variables Controls
Cases

Total By Anatomical Subtypes By Histological Subtypes

(n = 2700) (n = 329) p-Value 1 Cardia
(n = 84)

Non-Cardia
(n = 238) p-Value 2 Intestinal

(n = 122)
Diffuse
(n = 75) p-Value 3

Age (year) mean (SE) 63.5 (0.2) 65.4 (0.7) 0.001 63.4 (1.3) 66.1 (0.8) 0.036 69.5 (1.0) 61.8 (1.6) 0.000
Sex (men, %) 1522 (56.4) 239 (72.6) 0.000 77 (91.7) 156 (65.6) 0.000 87 (70.7) 45 (60.0) 0.120

Socioeconomic status
High (%) 448 (16.6) 27 (8.2)

0.000
9 (10.7) 18 (7.6)

0.679
8 (6.6) 8 (10.7)

0.372Medium (%) 1361 (50.4) 146 (44.4) 38 (45.2) 103 (43.3) 49 (40.2) 34 (45.3)
Low (%) 891 (33.0) 156 (47.4) 37 (44.1) 117(49.1) 65 (53.3) 33 (44.0)

Smoking status (%) yes 1531 (56.7) 201 (61.1)
0.138

65 (77.4) 130 (54.6)
0.000

60 (49.2) 45 (60.0)
0.229no 1169 (43.3) 128 (38.9) 19 (22.6) 108 (45.4) 62 (50.8) 30 (40.0)

GC family history (%) yes 170 (6.3) 53 (16.1)
0.000

11 (13.0) 40 (16.8)
0.423

27 (22.1) 13 (17.3)
0.432no 2530 (93.7) 276 (83.9) 73 (87.0) 198 (83.2) 95 (77.9) 62 (82.7)

Physical activity
(MET-h/week)

<8 1374 (50.9) 201 (61.1)
0.000

50 (59.5) 147 (61.8)
0.717

66 (54.1) 48 (64.0)
0.187

≥8 1326 (49.1) 128 (38.9) 34 (40.5) 91 (38.2) 56 (45.9) 27 (36.0)

Body mass index (kg/m2)
≤25 1026 (38.0) 103 (31.3)

0.057
21 (25.0) 80 (33.6)

0.135
41 (33.6) 32 (42.7)

0.415>25–30 1129 (41.8) 150 (45.6) 37 (44.0) 110 (46.2) 59 (48.4) 31 (41.3)
≥30 545 (20.2) 76 (23.1) 26 (31.0) 48 (20.2) 22 (18.0) 12 (16.0)

Alcohol consumption
(g/day)

0 418 (15.5) 47 (14.3)

0.000

8 (9.5) 39 (16.4)

0.002

22 (18.0) 13 (17.3)

0.592
<12 1179 (43.7) 103 (31.3) 16 (19.0) 84 (35.3) 40 (32.8) 27 (36.0)

12–47 787 (29.1) 101 (30.7) 34 (40.5) 66 (27.7) 30 (24.6) 22 (29.4)
>47 316 (11.7) 78 (23.7) 26 (31.0) 49 (20.6) 30 (24.6) 13 (17.3)

Vegetables total intake (g/d), mean (SE) 191.3 (2.4) 180.8 (7.0) 0.112 184.8 (18.3) 177.9 (7.0) 0.821 189.3 (170.1) 185.6 (13.9) 0.626
Red meat intake (g/d), mean (SE) 64.0 (0.8) 84.4 (2.9) 0.000 97.50 (6.5) 80.10 (3.3) 0.006 84.6 (4.6) 73.1 (5.2) 0.143
Sodium intake (mg/d), mean (SE) 3008.6 (24.0) 3529.3 (86.3) 0.000 3758.6 (200.7) 3443.9 (94.9) 0.175 3403.2 (144.6) 3821.4 (187.7) 0.044

Total phenolic acid intake (mg/d), mean (SE) 166.5 (2.0) 170.7 (5.4) 0.233 191.0 (12.2) 161.1 (5.8) 0.023 178.4 (10.3) 164.5 (10.6) 0.667
Total stilbene intake (mg/d), mean (SE) 1.9 (0.1) 1.67 (0.2) 0.022 2.4 (0.4) 1.4 (0.2) 0.061 1.6 (0.3) 1.3 (0.3) 0.719
Total lignan intake (mg/d), mean (SD) 2.7 (1.7) 2.5 (1.4) 0.085 2.5 (1.3) 2.5 (1.4) 0.712 2.7 (1.5) 2.4 (1.3) 0.260

Total other polyphenol intake (mg/d), mean (SE) 16.4 (0.3) 16.3 (0.9) 0.844 16.1 (1.1) 15.3 (1.3) 0.395 15.3 (1.3) 18.8 (2.6) 0.305
1 Differences in categorical and continuous variables between cases and controls using the Pearson chi square test (χ2) and ANOVA or Kruskal–Wallis tests, respectively. 2 Differences in
categorical and continuous variables between cardia and non-cardia groups using the Pearson chi square test (χ2) and ANOVA or Kruskal-Wallis tests, respectively. 3 Differences in
categorical and continuous variables between intestinal and diffuse groups using the Pearson chi square test (χ2) and ANOVA or Kruskal-Wallis tests, respectively. MET, metabolic
equivalent task.
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Table 2. Associations of polyphenols (PLPs) with gastric cancer (GC), average PLP consumption (mg/day) and percentage of PLP daily intake in all subjects of the
study sorted by the three most consumed foods.

PLP Classes Total
Anatomical Histological PLP Intake

mg/day ± SD
Foods with Highest Contribution in All Cases and Controls

Cardia Non-cardia Intestinal Diffuse First (%) Second (%) Third (%)

Phenolic
acids

Hydroxybenzoic acids ↓ ↓ ↓ ↓ ↑ 15.73 ± 11.72 Swiss chard (24.4) Wine (Red) (22.3) Nuts (14.2)
Hydroxycinnamic acids ↑ ↑ ↑ ↑ * ↓ 150.51 ± 99.41 Coffee (45) Coffee (decaffeinated) (25) Apple (5.3)

Hydroxyphenylacetic acids ↓ ↓ * ↓ ↓ ↑ 0.71 ± 1.13 Olives (83.5) Wine (Red) (11.12) Beer (Ale/Regular) (3.8)
Phenolic acids (class) ↑ ↑ ↑ ↑ * ↓

Stilbenes Stilbenes ↓ * ↓ ↓ * ↓ ↓ 1.86 ± 3.06 Wine (Red) (92.2) Wine (Rosé) (3.8) Grape (2)
Lignans Lignans ↓ * ↓ * ↓ * ↓ ↓ * 2.71 ± 1.70 Brassica oleracea (22.4) Green bean (17.4) Orange tangerine (11.9)

Other
polyphenols

Alkylmethoxyphenols ↑ ↑ ↑ ↑ ↑ 0.74 ± 0.92 Coffee (70.4) Coffee (decaffeinated (22.3) Beer (Ale/Regular) (7.3)
Alkylphenols ↑ ↓ ↑ ↑ * ↓ 0.09 ± 0.09 Coffee (98) Beer (1.8) Cocoa powder (0.2)

Hydroxybenzaldehydes ↓ * ↓ * ↓ * ↓ * ↓ * 0.38 ± 0.63 Wine (Red) (92.7) Wine (Rosé) (2.8) Beer (Ale/Regular) (18)
Hydroxycoumarins ↓ * ↓ * ↓ * ↓ ↓ 0.07 ± 0.14 Beer (Ale/Regular) (55.2) Wine (Rosé) (44) Sherry (0.7)

Methoxyphenol ↑ ↑ ↑ ↑ * ↓ 0.10 ± 0.13 Coffee (100)
Tyrosols ↓ * ↓ * ↓ * ↓ * ↓ 14.06 ± 16.18 Olives (58.2) Olive oil (26.4) Wine (Red) (12.8)

Other polyphenols (subclass) a
↑ * ↑ ↑ * ↑* ↓ 0.89 ± 0.90 Coffee (36.9) Orange juice (23.2) Other juice (13.7)

Other polyphenols (class) ↑ ↑ ↑ ↑* ↓

Other polyphenols (subclass) a This subclass contains the intake of arbutin, catechol, coumestrol, phenol, phlorin, and pyrogallol. ↑ increased risk; ↓ decreased risk; * statistically significant.
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When the association between the intake of PLP and GC was analyzed according to the anatomical
site (Figure 3), results were similar to the results for GC risk. Hydroxyphenylacetic acids showed a
50% decrease (95% CI 0.26–0.96) in the risk of the cardia subtype, stilbenes of 56% (95% CI 0.28–0.70),
and other PLP subclasses of 50% (95% CI 1.01–2.23) for non-cardia GC. Lignans were associated with a
reduction in the odds of both subtypes, a 55% risk reduction (95% CI 0.22–0.93) in cardia GC and 45%
reduction (95% CI 0.35–0.84) in non-cardia GC. Hydroxybenzaldehydes reduced the risk by 59% in
cardia and non-cardia GC and hydroxycoumarin by 61% (95% CI 0.20–0.77) and 55% (95% CI 0.36–0.84),
respectively. Finally, tyrosols were associated with a 61% (95% CI 0.20–0.77) reduction in cardia GC
risk and 55% reduction (95% CI 0.36–0.84) in non-cardia GC risk.
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Figure 3. Adjusted odds ratios (ORs) and 95% confidence intervals (CIs) of gastric cancer (GC) by
anatomical location for quartile 4 (Q4) vs. quartile 1 (Q1) of polyphenol intake in the MCC-Spain
study. Estimated using unconditional logistic regression models adjusted for age; sex; socioeconomic
status; smoking status; first-degree family history of GC; physical activity; body mass index; alcohol
consumption; and vegetables, red meat, salt, and total energy intake including the study area as a
random effect term. * Other polyphenols (subclass): Estimated ORs and their corresponding 95%
confidence intervals for other polyphenols subclasses (including arbutin, catechol, coumestrol, phenol,
phlorin, and pyrogallol).

According to histological subtypes (Figure 4), we found some differences between PLP groups.
For the intestinal subtype, hydroxycinnamic acids, alkylphenols, and other PLP classes, doubled the
odds of GC risk; while methoxyphenols were associated with an increase of 78% in the odds of GC.
Lignans were associated with a reduction of diffuse GC but were not associated with intestinal subtype.
Hydroxybenzoic acids showed a non-significant tendency to reduce the odds of intestinal GC but
not of the diffuse type. Stilbenes, hydroxybenzaldehydes, and tyrosols showed inverse associations
against both types. Table 2 summarizes the results presented in Figures 2–4.
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Figure 4. Adjusted odds ratios (ORs) and 95% confidence intervals (CIs) of gastric cancer (GC) by
histological subtype for quartile 4 (Q4) vs. quartile 1 (Q1) of polyphenol intake in the MCC-Spain study.
Estimated using unconditional logistic regression models adjusted for for age; sex; socioeconomic
status; smoking status; first-degree family history of GC; physical activity; body mass index; alcohol
consumption; and vegetables, red meat, salt, and total energy intake including the study area as a
random effect term. * Other polyphenols (subclass): Estimated ORs and their corresponding 95%
confidence intervals for other polyphenols subclasses (including arbutin, catechol, coumestrol, phenol,
phlorin, and pyrogallol).

4. Discussion

In the current case-control study, our results suggest an inverse association between stilbene and
lignan intake and GC risk. We found no overall association between total phenolic acid and other
polyphenol classes’ intake and this type of cancer. However, the intake of hydroxybenzaldehydes,
hydroxycoumarins, and tyrosols was inversely associated with GC.

By anatomical subsite, no substantial differences were found compared to total GC risk.
By histological subtype, the intake of lignans was inversely associated with diffuse GC and that
of hydroxybenzaldehydes, tyrosols, and stilbenes with both diffuse and intestinal GC. We found a
direct association between hydroxycinnamic acids, phenolic acids, alkylphenols, methoxyphenol,
and other polyphenol subclass intake and intestinal GC risk.

There are hardly any epidemiological studies in which the association between these classes of
PLPs and GC has been assessed [25–27]. Nevertheless, our results are plausible given the results from
in vitro and in vivo studies. Different mechanisms by which PLPs could play a role in the prevention
or treatment of GC have been described in these studies.
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Regarding the stilbene family, both resveratrol and pterostilbene have shown protective effects
against GC. Resveratrol has demonstrated the ability to inhibit the growth of human GC cells by
induction of apoptosis, increasing the cell load in the G0/G1 phase, and decreasing the proportion of
cells in the S and G2/M phases [28]. Resveratrol has also been suggested to show antimicrobial activity
through inhibition of the growth of Helicobacter pylori by suppressing inducible NO synthase (iNOS),
interleukin-8 (IL-8), and Nuclear factor-κappa B (NF-κB) and by activating the factor erythroid 2-related
factor 2/Heme oxygenase 1 (Nrf2/HO-1) pathway [29,30]. Pterostilbene has been shown to induce
apoptosis in GC cells through activation of the caspase cascade via the mitochondrial pathway, through
modification of the cell cycle progress, and through changes in several cycle-regulating proteins [31].
Pterostilbene has higher bioavailability and bioactivity than resveratrol, but its role as a key player in
gastric carcinogenesis has been less widely studied [32].

In line with our results, a cohort study showed an inverse association between lignan intake and
the risk of gastroesophageal carcinoma [26]. Another case-control study that specifically evaluated
GC showed consistent results [25]. This family includes arctigenin, which induces cell cycle arrest
and apoptosis [33]. Moreover, schisandrin B can inhibit proliferation and aberrant mitosis by the
downregulation of cyclin D1 mRNA expression [34]. Schisantherin A induced cell apoptosis and cell
cycle arrest at G2/M phase, inhibited cell migration, induced reactive oxygen species (ROS)dependent
Jun N-terminal kinase (JNK) phosphorylation with higher ROS production, and suppressed the
expression of Nrf2 in in vitro studies [35].

No previous study has reported an inverse association between hydroxybenzaldehyde intake
and GC in particular. However, antimutagenic, anticlastogenic, and anticancer properties have been
attributed to vanillin, a type of hydroxybenzaldehyde [36].

Hydroxycoumarins have shown protective effects on gastric cells: esculin conferred significant
antioxidant and gastroprotective activity and led to a reduction in gastric injury by inhibition of
Nf-κB activation, endogenous prostaglandin and nitric oxide synthesis, and opening of the adenosine
triphosphate-sensitive potassium channel (K ATP) [37,38]; esculetin exhibited antiproliferative effects
against GC cells through inhibition of the insulin-like growth factor 1 (IGF-1)/ phosphoinositide-3-kinase
(PI3K)/ Protein kinase B (Akt ) signaling pathway and induced their apoptosis by a mechanism
dependent on caspase activation [39–41]; 4-hydroxycoumarin has also shown effects of inhibition of
cell proliferation in GC [42].

In the tyrosol family, oleuropein, hydroxytyrosol, and tyrosol have shown antioxidant properties
by preventing gastric oxidative damage and improving total antioxidant capacity and cell membrane
integrity [43,44]. Furthermore, they have been related to antibacterial actions against H. pylori [45].
In this same family, oleuropein-aglycone mono-aldehyde (3,4-DHPEA-EA) and oleuropein-aglycone
di-aldehyde (3,4-DHPEA-EDA) have shown antioxidant activity as well induction of apoptosis in
tumor cell lines, although this has not been specifically studied in GC [46].

By anatomical location, our results showed no differences with respect to total GC. Cardia GC is
more strongly related to obesity, while non-cardia type is more closely related to H. pylori; nevertheless,
both locations have been associated with H. pylori [47,48]. The potential beneficial role of PLPs against
this infection have been already discussed.

Regarding the histological subtype, hydroxycinnamic acids, phenolic acids class, alkylphenols,
methoxyphenol, and other polyphenol subclasses have shown a direct association with the risk of
intestinal GC. This type of GC is often related to environmental factors, diet, and lifestyle, so that our
results may partly explain the observed associations between diet and GC [48]. The main source of
these PLPs in our study was coffee. It has been found that coffee could potentially increase the risk of
GC, although this association has been attributed to the residual confounding effect of tobacco [49,50].
The evidence is still inconsistent.
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Several major sources of PLPs have been more studied than the PLPs themselves. stilbenes,
hydroxybenzaldehydes, and hydroxybenzoic acids are mainly found in red wine, hydroxycoumarins
in beer and wine, and tyrosols and hydroxyphenylacetic acids in olives and olive oil. Nevertheless,
the role of wine consumption in gastric carcinogenesis is a controversial topic due to its alcohol content,
which is a probable risk factor for GC [51,52]. According to the World Cancer Research Fund [53],
the consumption of approximately 30 g or more alcohol per day increases the risk of GC. Despite the
fact that excessive alcohol consumption is related to an increased risk of GC, in this study, 59.2% of
the controls and 45.6% of the cases showed a daily alcohol intake of 0 and 0–12 g/day. In spite of
this, wine has received attention for its hypothesized anticarcinogenic properties. These effects have
been attributed to its PLP contents, more concretely to resveratrol, the most widely studied stilbene
but also to PLPs from other classes (such as flavonoids or phenolic acids) with which they seem to
interact [54,55].

Olive oil has a protective effect against various cancers, including GC, and this property has been
attributed to its high PLP content, which supports our results [56,57].

Foods such as olive oil are found within the Mediterranean diet pattern. The Mediterranean diet
is characterized by a high intake of vegetables, fruits, legumes, whole-grain cereals, nuts, olive oil;
a moderate intake of fish and dairy products; and a low intake of red meat. The properties of this
dietary pattern have been attributed—at least partially—to its richness in antioxidants and polyphenols.
It has been previously observed that a higher adherence to Mediterranean dietary patterns could
reduce the risk of GC [58,59].

We acknowledge that our study may have some limitations. First and given the case-control
design of the study, a possible recall bias in the dietary assessment could have led to a misclassification
of the exposure. Moreover, self-reported dietary information may have led to some misclassification.
However, this misclassification might have been partly reduced because we used a validated FFQ.
In addition, the aglycone content in food was estimated without taking into account the losses during
cooking, since the retention factors were considered. However, this information is not fully complete
for most PLPs, and it may mainly affect to cooked vegetables, which are not large contributors to
total phenolics [60]. Furthermore, factors related to climatic stress, geography, and storage conditions
can influence the content of polyphenols in food [61,62]. Thus, the heterogeneity in the PLP content
of foods grown in different soils, in storage, and in the dietary pattern in each country may explain
part of the variability of between the results from studies. [63]. Another important bias related to
self-reported dietary intake is the social desirability bias, which can lead to underestimation the
alcohol consumption [64]. Additionally, PLPs are extensively metabolized within the human body
after consumption, affecting the bioavailability of PLP [65]. In addition, dietary PLPs are consumed
simultaneously with other nutrients and compounds. It has been hypothesized that the effects of PLPs
may not be explained by a single mechanism of action but rather from many complementary actions of
various molecular, biochemical, and physiological pathways and from the additive and synergistic
interactions with other phytochemicals [66,67]. Furthermore, our analyses were adjusted for potential
confounding variables, but the possible confounding or interactions with other nutrients/compounds
cannot be totally ruled out. Finally, it must also be considered that we have assessed classes or
subclasses and not individual PLPs. Individual PLPs in the same subclass may have very different
bioactivities. Therefore, important associations for individual compounds may have been missed.

On the other hand, our study also shows some strengths. First, we included incident and
histologically confirmed cases, and we report our results by histological subtype and anatomical subsite
of the tumor. Controls were recruited via random selection from the general population in order to
reduce a potential selection bias. Second, our database was built including all the available information
about polyphenol contents in Phenol-Explorer, with a mix of extracted data from chromatography,
chromatography after hydrolysis data, information from a validated FFQ, and information on a wide
range of potential confounders related to GC. This provides a higher reliability from the viewpoint
of nutritional epidemiology. Third, PLP intake values were adjusted using the residual method,
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and the models were adjusted for vegetable and energy intakes, making it sometimes difficult to obtain
significant associations between PLP intake and GC. Models were calculated in quartiles and log2 to
facilitate the comparison with other studies. Moreover, we have collected a wide array of potential
confounders that have been included in the statistical models, which reduces residual confounding
and other potential biases. Finally, to our knowledge, this is the first study in which the association
between all these families of PLPs and GC has been addressed, including anatomical and histological
information. This lack of epidemiologic studies precluded us from comparing our results with others.

5. Conclusions

Our results suggest a potential beneficial role of stilbenes, lignans, hydroxybenzaldehydes,
hydroxycoumarins, and tyrosols against GC. Our results can only be supported by in vivo and
in vitro studies or indirectly by studies based on the PLP food sources. Given the identified gap in
epidemiological studies regarding this topic, more prospective research is warranted.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/12/11/3281/s1,
Figure S1: Quartiles distribution, OR (95% CIs), and Log2 (95% CIs) of all gastric cancer cases according to subclass
of polyphenol intakes in the MCC-Spain study by anatomical site and histological type.
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