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1 Abstract 

Scientific observations lead to postulate the existence of dark matter and great e↵orts are being 
carried out by the scientific community to prove its existence. For this aim, the DAMIC-M 
(DArk Matter In CCDs) Experiment was built. In this thesis, Deep Learning is applied to 
achieve particle identification, in particular, convolutional neural networks will be built. The 
main goal of these models is to determine whether a particle of the Standard Model has been 
detected or not, hence to discard this event as a dark matter signal. 

 
2 Introduction to Dark Matter and DAMIC-M 
The study of the fundamental constituents of matter is the subject of particle physics. Our 
understanding of this branch of physics is based on the description provided by the Standard 
Model.  The model describes how  the universe is made up of a few basic blocks,  these are   
the fundamental particles governed by four forces: gravitational, electromagnetic, strong, and 
weak.  The Standard Model has been tested for several decades to conclude that the major-   
ity of the observed processes can be described by it, thus showing its potential [1]. Unluckily,  
a number of phenomena observed in nature is lacking an explanation, for instance, dark matter. 

 
Astronomical and cosmological observations, such as the rotation curves of galaxies and the 
cosmic microwave background lead us to postulate the existence of dark matter, beyond the 
Standard Model. This discovery would be a huge breakthrough for the scientific community as 
we only know how to describe the properties and interactions of ordinary matter which consti- 
tutes 5% of the total content of the universe [2]. 

 
Although there are many well-motivated theories providing candidates for dark matter, we will 
focus on the most studied candidate in the literature: Weakly Interacting Massive Particles 
(WIMPs). Around the world, many experiments are developed in order to discover these the- 
orized particles, but no technique has been successful to prove their existence so far. 

 
Our interest will be focused on the DAMIC-M Experiment: DArk  Matter  in  CCDs,  where  
CCDs stands for charge-coupled devices. The experiment employs the bulk silicon scientific- 
grade CCDs as a target for interactions of dark matter particles. The principle of detection 
with a CCD is illustrated in Figure 1. The charge produced due to the interaction between the 
ionizing particle and the silicon bulk, drifts towards the pixel gates, where it is held in place 
until the readout. After a given exposure time, the readout process starts and the charge is 
transferred vertically from pixel to pixel along each column until it reaches the last row, the 
so-called serial register. The signal is based essentially on i) ionization signals produced by 
the interaction of Standard Model particles with the silicon bulk of the CCDs, ii) the intrinsic 
detector noise composed of the dark current (from thermal excitation from charge released by 
traps in the surface and bulk of the detector material, or produced by ionizing backgrounds 
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particles) and electronic noise (during readout) and iii) (if we are lucky) the dark matter signals, 
through absorption or nuclear/electronic recoil [3]. In other words, these signals from ionizing 
particles, known as tracks, are energy deposited in silicon pixels along the particle trajectory 
within a CCD. 

 

 
Figure 1: Internal process of a CCD when an ionizing particle interacts with its silicon bulk [3] 

 
By virtue of the low readout noise of the skipper CCDs, in conjunction with low dark current, 
will allow DAMIC-M to observe physics process with collisions energies as low as 1eV. Most of 
the dark matter interactions with the silicon bulk result in the production of few charges [4], 
where a dark matter signal can be seeing as a distortion of the intrinsic detector 
noise. It is then extremely important to properly understand the expected background from 
Standard Model particle interactions to be able to discriminate it from the dark matter signal 
coupled with the intrinsic detector noise. 

 
For this reason, the goal of the thesis is to develop a pattern recognition algorithm based on 
Deep Learning techniques to provide Standard Model particle identification, in order to help 
to discriminate the Standard Model noise from the coupled dark matter and intrinsic signal 
events. The major challenge for the algorithm will be to prove the viability of disentangling  
the nuclear and/or electronic recoil due to dark matter interaction with the silicon bulk of the 
intrinsic detector’s noise. 

 
3 Artificial neural networks 
Parallel computation and neural networks are the new computing paradigms in machine learn- 
ing. Machine learning algorithms are trained rather than explicitly programmed, as they can 
find statistical structure in input data that eventually allows the system to come up with rules 
for automating the task [5]. The key element of neural networks is their structure: a large 
number of interconnected processing elements, so-called neurons, working in parallel enabling 
multitasking [6]. 
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Artificial neural networks are models inspired by biology. They can represent knowledge at an 
abstract level based on the architecture of the network and the connections between the neurons. 

 
Neurons are organized in layers, starting with the input layer which will acquire the data and 
ending with the output layer to return the results. If hidden layers are added between the input 
and output layers, the neural network will be called deep neural network and the depth of 
the model will be given by the number of hidden layers. 

 
Deep neural networks are described by deep learning, which is a specific subfield of machine 
learning. It stands for the fact of learning many successive layers of representations, whereas 
other approaches to machine learning tend to focus on learning with one or two layers. 
Its importance lies in the fact that it is possible to automate feature engineering. Other machine 
learning techniques involve transforming the input data into one or two successive represen- 
tation spaces, so this implies a previous work of extracting interesting features of the data in 
order to contribute to the classification. Deep learning learns all features in one step that is 
automated. 

 
It must be mentioned that a neural network can have di↵erent topologies such as multilayer 
networks, competitive networks and recurrent networks. Before we dig any further into these 
topologies, we need to understand how a single neuron works. 

 
In Figure 2, we can observe the process of a single neuron with a given nonlinear activation 
function, f (x). The origin of this function comes from biology once again, so when the stimulus 
that a neuron receives exceeds a certain threshold, ✓, then the neuron emits an impulse; other- 
wise, it remains at rest. This idea is implemented in the artificial neural network by calculating 
the weighted sum of the inputs (xj) received by the neuron, and then, by filtering it with a 
threshold-type activation function to obtain the output, y. 

 
Mathematically, the neuron performs a simple computation given the inputs to obtain the 
output value as follows: 

 

y = f (
X 

w x ) --f-or-i-n-eu-r-on-s! y 
 

 

= f (
X 

w 
 

 

x  - ✓ ) = f (
X 

w 
 

 

 
x ) (1) 

where wij stands for the weights (can take both positive and negative values) of the neuron i for 
the each input xj; f (x) is the, already mentioned, activation function and ✓i is the activation 
threshold. 
The activation threshold value ✓i can be included in the sum considering a new auxiliary neuron 
denoted by x0 = -1 connected to yi with wi0 = ✓i [7]. 

j=0 j=1 j=0 
i ij ij 
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Figure 2: Internal process of a single neuron to produce the output as a result of applying an 
activation function to a linear combination of weights and inputs [6] 

 

The most popular continuous activation functions are described in Table 1: 
 

Linear functions f (x) = x ( ( 

Step functions sgn(x) = 
-1 x < 0 ⇥(x) = 

0 x < 0
 

+1 otherwise 1 otherwise 
 
 

Sigmoidal functions 
Logistic function fc(x) =  1 2 [0, 1] 

1+expcx 

 
Hyperbolic tangent function fc(x) = tanh(x) 2 [-1, 1] 

Rectified linear unit (ReLU) f (x) = max(0, x) 

Table 1: Activation functions for neural networks 
 

Step functions give a binary output depending only on the position for a given threshold value 
and sigmoidal functions are bounded monotonic functions which return a nonlinear output for 
the inputs. 

 
Once the di↵erent activation functions have been discussed, in Figure 3, we will explain some 
of the possible topologies of neural networks. 
The topology on the left in Figure 3 is the multilayer network, which is formed by an input 
layer, a number of hidden layers, and an output layer. Each of the hidden and output neurons 
receives an input from the neurons on the previous layer, so this topology shows only connections 
between neurons in consecutive layers. 
The network in the middle shows a recursive architecture, that unlike the multilayer network, 
allows previous outputs to be used as inputs. 
Finally, in the competitive architecture, the layers are connected with consecutive layers but 
there are connections between neurons in the last layer. In this last layer, only one of the 
neurons will be activated (winner takes all). 
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Figure 3: From left to right, di↵erent topologies for a neural network: multilayer, recursive and 
competitive 

 

It is important to highlight that the number of hidden layers will define whether the architec- 
ture of the network is deep or not. Therefore the topologies described can be used in Deep 
Learning if there is at least, one hidden layer. 

 
Topologies and activation functions define the neural network, and the weights among the neu- 
rons are the parameters that the network has to learn by fitting them to the input data. During 
this learning process, the network will be able to generalize the knowledge learned. 

 
The di↵erent learning processes can be classified into four broad categories: supervised, 
unsupervised, self-supervised and reinforcement learning. We shall delve into the first two: 

 
• Supervised learning: input data X = (x1, ..., xn) is trained with its correspondent labels 

Y = (y1, ..., yn). These labels classify each data point into one or more groups. The 
networks learn the distribution of the data and trains itself. The weights are calculated 
by minimizing an error function (optimization problem), which computes the di↵erence 
between the desired output values and those predicted by the network. An error that can 
arise in this type of learning is the error convergence, as the error function may present 
multiple local minima where the network can get stuck and hence, not reach the optimal 
global minimum. Supervised learning is used for classification and regression problems. 

• Unsupervised learning: input data X = (x1, ..., xn) is trained without any labels, there- 
fore, the network must discover by itself patterns or categories. This type of network is 
used for clustering problems, where each neuron belonging to the last layer represents a 
cluster. 

 
Once the neural network is computed, it is important to check the quality of the resulting 
model. As discussed before, in the case of supervised learning, a measure of the quality can be 
given by the errors between the desired and the computed output values for the training data. 

. 

. 

. 

. 

.     

. 
. 

. 

. 
. 
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The resulting value is the so-called loss score and the measure most commonly used is the 
Root Mean Square Error (RMSE) defined as: 

 
 

n 

rmse = 
i=1 

1 
||yi - ŷi||2 (2) 

where ŷi is the network output for the input vector xi, whereas yi represents the true label. 
 

For the purpose of the RMSE’s minimization, several algorithms were developed. The most 
famous iterative algorithm is the so-called stochastic gradient descent, which is used as the 
optimizer of the network. During each epoch (each iteration over all the training data), the 
weights are changed with the goal of minimizing the error. Therefore, at each iteration step, 
the weights are modified proportionally to the negative gradient of the error function. Note 
that in the first epoch, weights are assigned with random values. Computing the gradient of  
the loss with regard to the network’s parameters is called the backward pass. 

 
In order to verify the generalizability of the model, cross-validation is needed. To this aim, 
the splitting of the available data into three sets is required: one part for training, another for 
validating and the last one for the final test. Cross-validation is an iterative process where the 
model is evaluated on di↵erent partitions, and yields the arithmetic mean of all the evaluations 
performed. These partitions are generated from the training and validation data, where the 
training of the model is performed on the training dataset and its evaluation on the validation 
dataset. 

 
When the test error is much larger than the training error during the training process, we 
observe overfitting. When this problem appears, the model is not able to capture the real 
trends of the population1, even though it may present a small training error. In this case, the 
model is not able to generalize well when applied to the test data. Overfitting is a critical 
problem in neural networks, in order to solve it, the network should be carefully designed 
and/or regularization techniques should be adopted.  One of the most used techniques is the 
dropout applied to some layers. Dropout consists of randomly setting to zero a number of 
output features of the layer during training. In each iteration of the training, di↵erent neurons 
will get a↵ected by the dropout. This regularization technique simplifies the network and avoids 
some neurons to over-specialize, avoiding overfitting. The only parameter of this layer is the 
dropout rate, which is the fraction of neurons that will have zero as output during each iteration 
of the training. 

 
 
 
 

1The model captures the trends of the sample which consists of one or more observations drawn from the 
population 

n 
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Another solution to fix overfitting is the early stopping, which consists of interrupting train- 
ing when the validation loss is no longer improving, thus avoiding having to train for more 
epochs than necessary. 

 
In order to understand how a neural network works, Figure 4 displays the internal workflow 
of a deep neural network. First of all, input data is injected into the network through the 
first layer where it will experience transformations according to the random weights associated 
with the layer.  These data transformations will be learned by  the network in order to find  
the proper weights for each layer. To do so, and to control the predictions, the network will 
compute a loss score using a chosen loss function, the predictions and the true targets. Note 
that this score is used as feedback to adjust the value of the weights and this process is done 
by the optimizer. Then, the weights will be updated and the training loop will start again. 

 
 

 

Figure 4: Internal process of deep neural network with two hidden layers [5] 
 

This same internal process occurs also inside a classical (no deep) neural network. In this case, 
no hidden layers would be used and the weights would be located between the input X and the 
predictions Y 0. 

 
Deep learning has been described so far, hence a specific type of deep neural network will be 
discussed: convolutional neural networks. We will focus our interest on these as they will be 
used for the aim of this thesis. 

 
3.1 Convolutional neural networks 
In deep learning, a convolutional neural network (CNN or Convnet) is the model most 
commonly applied to computer vision applications. 
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The fundamental di↵erence between a densely connected layer (classic neuronal layers discussed 
previously) and a convolution layer is that dense layers learn global patterns from their input 
feature space, whereas convolution layers learn local patterns [5]. Once this di↵erence is clear, 
we can discuss the main characteristics of convnets: 

 
• Patterns learned are translation invariant: when a pattern is learned in a certain 

location and then appears again in another di↵erent location, there is no need to learn 
the already known pattern again. Note that a dense network should learn it once again. 

• Ability to learn spacial hierarchies: earlier convolutional layers encode basic features, 
whereas layers higher up encode complex features by combining the previous basic fea- 
tures. 

 
Convolutional layers are composed of filters with two spatial axes (height and width) and a 
third dimension representing the number of channels. These layers operate over 3D tensors, 
(height, width, number of channels). The number of channels depends on the nature of the 
image: if the input data is an RGB image, the dimension of the depth axis is 3, because the 
image has three color channels: red, green, and blue. Otherwise, if it is a black and white 
picture, the dimension is 1 due to the levels of gray. Accordingly, the number of channels of  
the filters is given by the input they receive. 
Therefore, each convolutional layer is defined by two parameters: the number of filters applied 
and the shape of these filters. 

 
Once the components of the convolutional layer are presented, we shall continue with its inner 
functions. 
As mentioned before, the number of filters and their dimensions are the key parameters of 
convolutions, since the number of filters defines the depth of the output feature map and the 
dimensions of them, define the size of the patches extracted from the inputs. Let us follow an 
example in Figure 5 to understand it better. 

 
Given a black and white picture of shape (5 5), the input feature map will have as dimensions 
(5  5   1).  For the first convolutional layer, it has been chosen one filter of dimensions (2   2). 
To create the output feature map,  the convolution operation will slide the filter through all  
the possible locations in the input space. Finally, the dimensions of the output space in this 
example, will be (4 4 1). The result is still a 3D tensor, where the first two components are 
given by the dimensions of the filter and the last one, stands for the number of filters applied. 
If the input data was an RGB image, the filter would be applied to each of the three components 
and then perform a combination of these components to obtain one dimension. Therefore the 
third dimension no longer represents the colors, RGB or black and white, but the number of 
filters applied to the input space. 
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input feature map shape = (5,5,1) output feature map shape = (4,4,1) 

 
Figure 5: From the input space (5 ⇥ 5 ⇥ 1) to the output space (4 ⇥ 4 ⇥ 1) through one filter 
of shape (5 ⇥ 5) 

 
The main task of filters is to encode specific aspects of the input data, and for this reason, 
several filters are applied, instead of just one as shown in the previous example. 

 
Figure 5 also introduces us to a problem of convolutional networks: border e↵ects. The pixels 
located at the corners on the input feature map, would have less presence in the output whereas 
the pixels located in the center, would have more presence as they are included in several it- 
erations of the sliding window. Another problem associated with the border e↵ects is that the 
output feature map shrinks:  the bigger the shape of the filter is, the smaller will be the output 
feature map. The solution is padding the input feature map. Padding consists of adding an 
appropriate number of rows and columns on each side of the input feature map so each pixel 
has equal weight in the output feature map. 

 
Therefore, padding can influence output size, but also the concept of strides. The description of 
convolution assumed that the sliding of the windows is performed pixel by pixel. The distance 
between the windows is also a parameter of the convolution and is called stride, which defaults 
to 1. In Figure 6, on the left, we observe the default value and so, the windows are separated 
by one pixel. On the right, the strides take value 2, so the windows are now separated by two 
pixels. Note that the higher the strides, the smaller will be the shape of the output feature 
map. A live explanation of these operations can be found in [8]. 

 
The fact of modifying the strides and the padding creates changes on the dimensions of the 
output feature map2. To downsample the output feature maps and hence, to reduce the number 
of parameters to process, instead of strides, max-pooling is usually used. Max-pooling extracts 
windows from the input feature maps and creates an output where each value will be the 
maximum value of each channel. The usual size of the windows used in the max-pooling layers 
is (2 ⇥ 2).  

2Note that the last dimension changes only depending on the number of filters applied 
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stride = 1 stride = 2 

 

Figure 6: On the left, stride takes its default value; on the right, stride takes value two. Color 
blue means the first window taken and color red stands for the slid window in the second 
iteration 

 

Max-pooling is not the only technique to downsample the output feature maps, it is possible to 
use average pooling instead, where each local input patch is transformed by taking the average 
value of each channel over the patch. Although, the performance of the max-pooling is better 
since the maximal presence of features o↵ers more information than their average presence and 
max-pooling is also more effi cient. 

 
Once the features are extracted, this 3D tensor will be the input of a densely connected layer 
(or layers). But first, this vector must be transformed into a 1D vector through a flatten layer, 
which is necessary since classifiers only process vectors. 

 
For the purpose of this thesis, convolutional neural networks will be used in order to classify 
particles on the DAMIC-M detector. 

 
3.2 Metrics 
Loss functions are used to compute a quantity that a model should seek to minimize during 
training. However, a loss score does not o↵er much information, this is the reason why  we  
use metrics to assess the performance of the model. Through this section, we will discuss the 
di↵erent metrics used. 

 
For classification problems, we use accuracy, precision, recall, microaverage and macroaverage, 
which are defined as follows: 

 
 

accuracy = 
TP + TN  

 
 

TP + TN + FP + FN  
 

recall = 
TP  

 
 

TP + FN  
(3) 
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X 

X 

precision = 
TP  

 
 

TP + FP  
where TP stands for True Positive, TN for True Negative, FP for False Positive and FN for 
False Negative. Figure 7 shows how these four values are distributed in a confusion matrix for 
a binary (two classes) classification problem, Negative and Positive. 

 

Predicted labels 
 
 

True 
labels 

 
 
 

Figure 7: Confusion matrix showing the distribution of TN, FN, FP and TP for a binary 
classification problem 

 
When we face a multiclass classification problem, averaging the evaluation measures can give a 
view on the general results. For this purpose, we introduce micro-averaged and macro-averaged 
results (equations 4). 

 
 1 

macro - avg precision = n 
nc 

precisioni 
i=1 

 1 
macro - avg recall = n 

Pnc 

 
 

 
nc 

recalli 
i=1 

 
TPi 

 
  

 
(4) 

micro - avg = Pnc 
i=1 TP + FP  where nc stands for the number of classes in the classification problem. The di↵erence between 

both averages lies on the fact that macroaveraging gives equal weight to each class, whereas 
microaveraging gives equal weight to each classification decision [9]. As microaveraged results 
are more e↵ective on the large classes in a test collection and our classification problems has 
maximum four classes, we would compute macroaveraged results. 

 
For classification+location problems, we can use the metrics just mentioned for the classification 
task, but the location task requires the introduction of a new metric called Intersection over 
Union. Intersection over Union (IoU) is an evaluation metric used to measure the accuracy of 
an object detector on a particular dataset [10]. 

i i i=1 

c 

c 

 N P 

N TN FP 

P FN TP 
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To calculate this metric, we may define some concepts: 
 

• The ground-truth bounding boxes: the (x,y) coordinates, height and width of the bound- 
ing boxes which specify the location of the particle. 

• The predicted bounding boxes from our model with the same four variables. 

Therefore, IoU can be determined by dividing the area of overlap by the area of union (Figure 
8). In the numerator, we compute the area of overlap between the predicted bounding box  
and the ground-truth bounding box. On the other hand, the denominator is the area of union 
of both predicted and ground-truth bounding boxes. The greater the overlap between the 
bounding boxes, the closer the IoU will be to the unit. 

 

Figure 8: Definition of the Inverse over Union metric to evaluate a localization model [10] 
 
 

4 Data preprocessing and tasks 

4.1 Original data 
Files containing the data are in .npz format which is a zipped archive of files named after      
the variables they contain in .npy format [11]. In this case, each .npz file represents an event 
containing two variables: energy of the particle and noise of the signal. 

 
Both energy and noise data are numpy arrays composed of 300 300 pixels. Each pixel value 
represents the value of the energy measured in electronvolts (eV). Whereas the noise is generated 
from two independent distributions: i) Poisson distribution (.\ = 0.0003333), also called dark 
current. ii) Gaussian distribution (µ = 0, O' = 0.25), also called electronic noise. 
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The file name gives information about the simulated event and the particle detected. For the 
aim of this thesis, we will be interested in the last digits as they represent the type of particle: 

• xxxxxxxxxxxxx pdg 11.npz: electrons 

• xxxxxxxxxxxxx pdg 1000020040.npz: alphas 

• xxxxxxxxxxxxx pdg 13.npz: muons 

Each energy image contains the track of the particle. The first row of Figure 9 shows the track 
of an electron and the noise saved  during such event.   The next row displays the energy of      
a muon on the left, and an alpha decay event on the right. The noise stored has not been 
displayed as it looks similar to the noise saved during the electron signal already shown. 

 

 
Figure 9: Electron signal with its corresponding noise in the first row, and alpha and muon 
signals in the second row 
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4.2 Data preprocessing 
In order to reduce the number of parameters of the neural network to process, we will reduce 
the size of each energy and noise image. To do so, we shall follow the next process: 

• Extract the particle track from the original energy image 

• Calculate the size of the maximum track which will be called the shape of the maximum 
window 

• Pad (randomly) with empty pixels all cropped energy images until they reach the size of 
the maximum window 

• Crop the noise image to the shape of the maximum window 

In Figure 10, the process just discussed, is shown. First we observe the original track of the 
electron and on the right, just the track. Finally, in the next row, both energy and noise have 
the size of the maximum window. 

 
If we face a multiclass classification problem (with more than one type of particle), it is necessary 
to compare the resulting maximum windows and to choose the biggest, so we do not cut some 
tracks unintentionally. 
In order to understand the preprocessing of the data of the three particles, the code can be 
found in reference [12]. There are three blocks of code, one for each particle. The first part of 
each block shows how the maximum window is created and how the energy images are cropped 
to extract the particle track. 

 
Once the energy images are cropped and the maximum window has been calculated, the code 
available on reference [13] shows how the energy images are padded randomly and the noise is 
cropped to the shape of the maximum window. For this purpose, the first block of code displays 
two functions. The first one, padding energy, pads randomly with empty pixels the energy 
image until its shape is the same as the maximum window. The second one, cropping noise, 
just reshapes the noise image with the shape of the maximum window by selecting as many 
pixels as required. This is how the last row of images shown in Figure 10 is obtained. 

 
The functions just discussed help us to preprocess the data, and as a result, we obtain energy 
images and noise images separately which will be the input for a convolutional neural network. 
This network will distinguish between each type of particles and noise. 

 
On the other hand, we could also add the noise saved for each event to each energy image to 
obtain the real image. To do so, we would perform the sum of the noise and energy arrays as  
is described in reference [14]. In this case, the aim of the network would be the same as the 
one mentioned before: to classify between each type of particle and noise. 
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Figure 10: Data preprocessing for the energy, which is cropped and then padded, and for the 
noise, which is just cropped 

 

Before feeding the neural network, it is important to perform the standardization of the 
data in order to standardize the range of features of input dataset [15]. Standardization is 
necessary when features of input dataset have large di↵erences between their ranges. As this 
fact could influence the decision of the network, standardization is applied to avoid this scenario. 

 
Once the data preprocessing has been discussed, it was not possible to load the entire dataset 
due to insuffi cient memory on the machine, however this problem is becoming increasingly 
common. In order to solve this memory issue, a data generator has been created (available 
in reference [16]). Data generators are iterators, therefore, when functions like fit generator or 
predict generator are called, they loop through the data as many times as necessary. 
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4.3 Classification and localization tasks 

The first step to create the algorithm to classify di↵erent particles is to build a convolutional 
neural network capable of distinguishing between energy signals (without noise added) and 
noise. In order to do so, the network will have an output layer with four neurons, one for each 
class: electrons, muons, alphas and noise. 
Then, we will add the noise stored to the energy data to check if the network is still capable of 
the classification in these four classes. 

 
After these models are created, we can focus on simpler scenarios, such as a binary classification 
problem for electrons and muons, where we could also add the noise stored. 

 
Once the classification tasks have been discussed, convolutional neural networks can be also 
used for the location of particles. It is noteworthy that for an image classification setting, data 
used is in the form (X, y) where X is the image and y are the class labels; however, in the of 
classification and localization, data will be used in the form (X, y), where X is still the image 
and y is a array containing (class label, x, y, h, w) where, x stands for bounding box bottom 
left corner x-coordinate, y for the bounding box bottom left corner y-coordinate, h will be the 
height of bounding box in pixel and w, the width of bounding box in pixel [17]. 

 
The number of output nodes will change as well. For the classification tasks, four nodes were 
needed (one for each particle and the last one for the noise) but now, seven nodes will compose 
the output layer: three for the particles, and the remaining, for location parameters just in- 
troduced. It must be emphasized that for the classification and localization problem, the noise 
will not constitute a class since it can not be located. 

 
Finally, the loss function will be substituted by a linear combination of two loss functions, one 
for each problem, as following: 

 
loss = ↵ ⇥ Lclass + (1 - ↵) ⇥ Lloc (5) 

where ↵ is a hyper-parameter that needs to be tuned since these two losses, Lclass and Lloc, 
would be on a di↵erent scale. 
For the classification problem, we will use a cross-entropy loss on top of the softmax activation 
(equation (6a) shows the loss function); and for the localization problem, the regression L2 loss 
function (equation (6b)). 

 

Lclass = - 
X 

yj log ŷj (6a) Lloc = 
X

(ŷj - yj)2 (6b) 

where log stands for the natural logarithm, ŷi is the network output, and yi represents the true 
label. 
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⇥ 

5 Model details 
In this section, we will discuss about the layers used to build both type of models: to classify, 
and to classify and locate the particles. 

 
5.1 Models to classify 
In order to analyze a model that classifies particles, we will use as an example the one that 
classifies the three types of particles, and the noise [18]. These models used for the classification 
problem are based on sequential models, which are appropriate for a plain stack of layers 
where each layer has exactly one input tensor and one output tensor [19]. 

 
The input data for this model were the preprocessed images which were cropped to the shape 
of the maximum window calculated, and then standardized. Finally, we  needed to add one  
last dimension to the numpy  arrays:  the number of channels, which is this case, would be 1  
as is not a RGB image. Hence the shape of the input layer is (window y, window x, 1).  With  
this first input layer, we start the block of the convolutional 2D + max-pooling layers.  Each 
convolutional layer would have a di↵erent number of filters (typically 32, 64 or 128) and the 
following max-pooling layer would have a sliding window of 2    2. All these layers have ReLU 
activation to ensure there is no vanishing gradient. After the convolutional block, we move on 
to the fully connected block through a flatten layer. Then, some dense layers were added with 
some dropouts layers in between to avoid overfitting, to finally get to the dense output layer 
with softmax activation and four neurons to classify into the four categories. The schema below 
shows the architecture of the network: 

model.add(layers.Conv2D(32,(3,3), activation='relu', input_shape=(window_y, 
window_x, 1))) 
model.add(layers.MaxPooling2D((2,2))) 
model.add(layers.Conv2D(32,(3,3), activation='relu')) 
model.add(layers.MaxPooling2D((2,2))) 
model.add(layers.Conv2D(64,(3,3), activation='relu')) 
model.add(layers.MaxPooling2D((2,2))) 
model.add(layers.Conv2D(64,(3,3), activation='relu')) 
model.add(layers.MaxPooling2D((2,2))) 
model.add(layers.Conv2D(128,(2,2), activation='relu')) 
model.add(layers.MaxPooling2D((2,2))) 

 
model.add(layers.Flatten()) 
model.add(layers.Dropout((0.5))) 
model.add(layers.Dense(units= 92, activation='relu')) 
model.add(layers.Dropout((0.25))) 
model.add(layers.Dense(units= 4, activation='softmax')) 
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The models to classify su↵ered from an error during the data preprocessing: as discussed, there 
is a need to standardize the data to ensure quick convergence of the optimization algorithm and 
to avoid extra small model weights for the purpose of numerical stability. This standardization 
was not well performed for the classification models because of the creation of the batches with 
the data generator. The correct procedure is the following: 

 
• Calculate the mean of the training dataset. 

• Calculate the standard deviation of the training dataset. 

• Subtract the train mean and divide by the deviation of the training dataset, both train 
and test datasets. 

 
But the mean and deviation of the training dataset was not determined, instead the mean/de- 
viation changed for every batch as the mean/deviation of the batch was calculated and then 
subtracted/divided for each batch. 

 
This mistake was not repeated for the classification+location problem. 

 
5.2 Models to classify and locate 
For the location+classification problem, we used the Keras functional API, which allowed us 
to create more flexible models as this API can handle models with non-linear topology, models 
with shared layers, and models with multiple inputs or outputs [20]. For these models, we 
focused on models with multiple outputs as we needed three output neurons to classify the 
particles and four others to locate the particle track within the CCD. 

 
These models were based on convolutional neural networks, hence the first block of layers  
was always composed of filter + max-pooling (to reduce the number of parameters). Once the 
output feature map has decreased considerably, we would apply the flatten layer which prepares 
a vector for the fully connected layers. Afterward, the last fully connected layer would be split 
into two output layers, one to classify and the other, to locate. This schema can be visualized  
in Figure 11, where several blocks of filter + max-pooling were omitted. 
As with the case of classification, the same amount of filters would be applied, and each block 
of filters would be followed by a max-pooling layer. All these layers have ReLU activation.  
After the convolutional block, we move on to the flatten layer and then to the fully connected 
block. Then, some dense layers were added to finally get to the two dense output layers. The 
schema below shows the architecture of the network: 

 
inputs = keras.Input(shape=(window_y, window_x, 1)) 
x = layers.Conv2D(32, 3, activation='relu')(inputs) 
x = layers.MaxPooling2D(2)(x) 
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x = layers.Conv2D(32, 3, activation='relu')(x) 
x = layers.MaxPooling2D(2)(x) 
x = layers.Conv2D(64, 3, activation='relu')(x) 
x = layers.MaxPooling2D(2)(x) 
x = layers.Conv2D(64, 3, activation='relu')(x) 
x = layers.MaxPooling2D(2)(x) 
x = layers.Conv2D(128, 3, activation='relu')(x) 
block_output = layers.MaxPooling2D(2)(x) 

 
out = layers.Flatten()(block_output) 
x = layers.Dense(3002, activation='relu')(out) 
output1 = layers.Dense(3, activation='softmax', name='output1')(x) 
output2 = layers.Dense(4)(x) 
output2 = layers.LeakyReLU(alpha=0.3, name='output2')(output2) 
model = keras.Model(input=inputs, output=[output1, output2]) 

 
 

 

Figure 11: Final part of the model showing the flatter layer, the fully connected and the multiple 
outputs layers 
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( 

As we can see, there are two output layers named after output1 and output2.  The first  
one mentioned is the responsible for the classification of the particles, as it has a softmax 
activation. Whereas the second one is the responsible for the location, as it has a variant of 
the ReLu activation: Leaky ReLu (equation 7).  This new activation function is useful for  
this case as the standardized parameters3 of the ground-truth bounding boxes are small, and 
sometimes even negative (approximately from -1 to 1). Leaky ReLu has an hyper-parameter, 
↵, which defaults to 0.3 and states the weight of negative values. 

 

f (x) = ↵x if x< 0 
x if x >= 0  

(7) 

The first input layer with 3 neurons would classify into the three particles: electron, muon and 
alpha particle. And then, the remaining output layer would have 4 neurons to predict the value 
of the four parameters that determine the bounding box. 

 

6 Training details 
Once the architecture of the networks has been discussed, we will expose some details about 
the training of the models just mentioned in the previous section, such as the optimizers, the 
loss functions, the callbacks used for the early stopping of the training to avoid overfitting, etc. 

 
6.1 Models to classify 

The training for the models that classify the di↵erent particles (model of the reference [18]) is 
performed after their compilation, where we configure our model with losses and metrics. 
In our case, we would use categorical cross-entropy loss as we are facing a multiclass classifi- 
cation problem. The metric used would be the accuracy already explained in section 3.2. 

 
In the model compilation, we might choose an optimizer as well. For our case, we will use the 
RMSprop optimizer (Root Mean Square Propagation), which is a variant of the Stochastic 
Gradient Descent. The RMSprop takes into account previous weight updates when computing 
the next weight update, rather than just looking at the current value of the gradients [5]. An 
important tuning parameter of the optimizer is the learning rate as it determines the step 
size at each iteration while moving toward a minimum of the loss function. In other words, the 
learning rate determines how big a step is taken in the direction the gradient is pointing at. It 
is important to note that a high value will cause the gradient jump over minima while a low 
value will cause the gradient get stuck at a local minimum. For our case, we usually chose a 
small learning rate. The code for the compilation is shown bellow. 

3To check the standardization of these parameters and the input data, consult reference [21] 
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model.compile(optimizer=optimizers.RMSprop(lr= 1e-4), 
loss='categorical_crossentropy', metrics=['acc']) 

 

As discussed in the theoretical section, early stopping of the training is a form of regularization 
used to avoid overfitting. For this reason, we implement callbacks with patience 7, where 
patience is the number of epochs with no improvement after which training will be stopped. 

 
my_callbacks = [callbacks.EarlyStopping(patience=7)] 

 
For this specific case, we chose the model to train for 40 epochs, although with the implemen- 
tation of the callbacks, the number of epochs was reduced to 23. The next block of code shows 
how the model was trained: the training data was not just data but a data generator, same as 
the validation data. The number of steps per epoch corresponds to the number of the training 
batches (each of them containing 64 samples), same as the validation steps, which corresponds 
to the number of validation batches. 

 
model.fit_generator(train_gen, epochs=40, validation_data=val_gen, 
steps_per_epoch= 225, validation_steps= 75, callbacks=my_callbacks) 

 

Each epoch lasted approximately 325 seconds, so the training lasted for more than 2 hours with 
a Intel(R) Core(TM) i7-4770HQ CPU @ 2.20GHz. 

 
6.2 Models to classify and locate 
The training for the models that classify and locate at the same time (model of the reference 
[22]) is performed after their compilation, as already mentioned. 

 
For this case, we used a weighted linear combination of two loss functions:  the categori-  
cal cross-entropy and the L2, where the first one is used for the classification and the other 
one, for the localization. For this linear combination, the hyper-parameter ↵ took the value 
0.855. Each loss has associated a metric: for the classification, we would use the accuracy 
again, but for the location, we would used the already introduced Intersection over Union (IoU). 

 
For the model compilation, we chose the same optimizer as before: RMSprop.  In this case,  
as before, we used a small learning rate. It is possible to observe in the following code the 
model compilation with the two di↵erent loss functions (categorical cross-entropy and L2) and 
their correspondent weights together with the metrics used for the two outputs, where output1 
corresponds to classification and output2 corresponds to the localization task. Although the 
IoU could not be implemented during the training, it was used for the testing set to check the 
performance of the model. 
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losses={'output1': 'categorical_crossentropy', 'output2': l2} 
alpha = 0.855 
lossWeights = {"output1": alpha, "output2": 1-alpha} 
model.compile(optimizer=optimizers.RMSprop(lr= 1e-4), loss= losses, 
loss_weights= lossWeights, metrics=["acc"]) 

 

Early stopping was also implemented for these type of models. As opposed to the loss 
function, the structure of the callbacks is maintained, but this time we reduced the patience of 
the model to 6. 

 
my_callbacks = [callbacks.EarlyStopping(monitor="val_loss", patience=6)] 

 

In this case, we chose the model to train for 40 epochs, although due to the callbacks, the 
number of epochs was reduced to 33. Below, we show how the model was trained. As before, the 
number of steps per epoch corresponds to the number of the training batches and the validation 
steps corresponds to the number of validation batches. This time, we have less batches as the 
class noise has been eliminated. 

 
model.fit_generator(train_gen, epochs=40, validation_data=val_gen, 
steps_per_epoch= 171, validation_steps= 56, callbacks=my_callbacks) 

Each epoch lasted approximately 28 seconds, hence the training of this model lasted for 14 
minutes thanks to a Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz. 

 
7 Results 

Throughout this section, we will analyze the results obtained with the di↵erent models built for 
the following tasks: i) location and classification of electrons, muons and alphas; ii) noise added 
as a class: classification of electrons, muons, alphas and noise; iii) classification of electrons, 
muons and noise; and finally, iv) classification of electrons and muons. The first three tasks 
will also be discussed with noise added to the energy signals in this section. 

 
7.1 Analysis of results without noise added 
The following subsections, briefly summarize the results obtained for the models where the 
energy signals have no noise added. 

 
7.1.1 Model to classify into electrons, muons, alphas and noise 

The main goal of the models available on reference [18] is to classify as particle (electron, muon 
or alpha) or noise. And then,  try to di↵erentiate between each type of particle.  As we  can  
see in Figure 12, the main goal is accomplished, which means that the model is capable of 
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classifying correctly as noise or as particle 100 percent of the time. Furthermore, the model 
also concludes with a satisfactory classification of alpha particles. However, the model confronts 
some diffi culty when attempting to distinguish between electrons and muons. 

 

 

Figure 12: Confusion matrix for the model 
that classifies between noise, muons, alphas 
and electrons 

Figure 13: Confusion matrix for the model 
that classifies between noise, muons and elec- 
trons 

 
 

7.1.2 Model to classify into electrons, muons and noise 

The capacity to disentangle muon tracks from electron signatures fails in almost 50 per cent  
of the cases with the model presented in the previous section. Along this section, we will 
discuss a model built to distinguish between electrons, muons and noise, leaving aside alpha 
particles [23]. The confusion matrix (Figure 13) shows again that the noise signal are perfectly 
distinguished from energy signals, nevertheless there is still confusion between the two types of 
particles: electrons a muons. The model tends to classify as electron in case of confusion, but 
not backwards. 

 
7.1.3 Model to classify into electrons and muons 

Previous models find it hard to di↵erentiate between muons and electrons, for this reason, a 
new model to distinguish between these two particles has been built [24] and the highest accu- 
racy achieved is around 0.84 (Figure 14). In order to find out the reason why the model is not 
capable of distinguish both particles more accurately is analyzed below. 

 
In Figure 15, the energy distribution was plotted to show whether the particle energy influ- 
enced the model to classify as muon or electron. Although, as we can see, the distribution of 
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Figure 14: Confusion matrix for the model that classifies between muons and electrons 
 

the misclassified particles overlaps the one for the correctly classified ones, hence the energy 
does not confuse the model. 

 
Figure 16 displays the elongation distribution to show if there is a dependency on the length 
of the particle track. The elongation of each energy image was calculated as follows: the pixels 
that make up the track were located within a rectangle given by the coordinates of the bottom 
left and the top right corner of the track. Then, the number of pixels for each particle was 
calculated as the multiplication of the height and width of this rectangle. 

 
Once the elongation distribution has been plotted, it is also a good idea to plot the error rate 
distribution (Figure 17) which shows that the elongation of the particle is not a determining 
factor in deciding whether to classify as electron or muon, because the error rate accumulates 
between 0 and 200 pixels, as the original pixel number distribution. 

 
The elongation distribution is not able to show the shape of the poorly classified particles. For 
this purpose, the plot of Figure 18 was created. This plot allows us to ensure the fact that 
particles with both height and width small are the ones misclassified and lead us to confirm 
that the model cannot distinguish small and round tracks.  In addition,  to support this fact,   
we can see some mistaken tracks of both electron and muon in Figure 19 and some tracks of 
correctly classified electrons and muons in Figure 20. Hence, we can conclude that some tracks 
look alike and seams reasonable to think that the model could find hard to know which particle 
corresponds to the track, whereas the model classifies correctly if the tracks look di↵erent. 
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Finally, a better model could not be created and a physical reason for this particle confusion 
may lie in the fact that muon and electron signatures are not easily distinguishable at a glance. 
This issue may also be influenced by the z parameter (depth within CCD) responsible for the 
charge (energy) di↵usion, which has not been taken into account directly.  For instance, a muon 
track looks like an electron when arrives perpendicular to the CCD surface. In these cases, the 
electron di↵usion is not playing an important role and the muon track can be mistaken for an 
electron. 

 

Figure 15: Energy distribution for the model that classifies between muons and electrons 
 
 
 

 

Figure 16: Elongation distribution for the model that classifies between muons and electrons 
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Figure 17: Error rate for the elongation distribution 
 

Figure 18: Height and width distribution for the model that classifies muons and electrons 
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Figure 19: Mistaken electron and muon tracks 
 

Figure 20: Tracks from correctly classified electrons and muons 
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7.1.4 Model to classify and locate electrons, muons and alphas 

Once we studied the results of classification, we will add a location task to analyze the classi- 
fication+location problem. The model analyzed below, corresponds to the best model reached 
in reference [22]. For the classification task, we can observe the results obtained in Figure 21. 
The confusion matrix shows again that alpha particles are well distinguished, this feature was 
also present in the models already discussed. This time, it was not possible to reach the same 
accuracy as before. 

 

Figure 21: Confusion matrix for the model that classifies and locates particles 
 

This model was  also capable of localizing the particles with a 0.29 value of the IoU, which is   
a low value as a regular model would have 0.5 IoU value. Even though, the model can locate 
more or less the particle but no precisely. 

 
In order to find a model that could both classifies and locates particles was harder because the 
number of hyper-parameters to tune was larger. For these models it was greatly influencing the 
↵ parameter and as before, the number of neurons and layers in the the fully connected block. 

 
When we were only facing the classification problem, we just worried about the number of 
neurons per layer and number of layers. But when the localization task was added, it was  
harder to find the correct parameters for both tasks. 
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Figure 22: Localization and classification of the particles where 0 stands for electrons, 1 for 
muons and 2 for alpha particles 

 
7.2 Analysis of signals with noise 
Previously, we discussed the results where no noise was added to the energy, now we will proceed 
analogously, but in this case, the noise stored in the file will be added to the energy by adding 
the two numpy arrays. 

 
7.2.1 Model to classify into electrons, muons, alphas and noise 

Similarly, we will focus on the classification task for the particles and the noise. This time, as 
the noise has been added to the energy, the model (reference [25]) created is not capable of 
perfectly distinguishing between particles and noise (Figure 23). The recall for the noise is still 
1.00 but this time, the precision drops to 0.84, whereas in the case without the noise added, 
both variables took the value of 1.00. The recall value means that all noise images are classified 
as noise when they are fed to the model; while the value of the precision means that there is a 
(100-84) percent chance that the model confuses a signal from a particle with a noise signal. 
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Figure 23: Confusion matrix for the model 
that classifies between noise, muons, alphas 
and electrons 

Figure 24: Confusion matrix for the model 
that classifies between noise, muons and elec- 
trons with noise added to the energy signals 

 

7.2.2 Model to classify into electrons, muons and noise 

As discussed in the section of the analysis for signals without noise, the noise and energy 
signals were perfectly classified. Now, we will study a more realistic scenario were the noise has 
been added to the energy signals [26]. In the confusion matrix of Figure 24, the accuracy is 
calculated. Comparing this accuracy with the one obtained without noise added (Figure 13), 
we can confirm that the accuracy decreases in this more realistic scenario. Even so, the results 
for other statistical values are presented in Table 2. 
The recall for the noise is 1.00, this value means that if we feed the neural network with a noise 
signal, it will be classified as noise 100% of the time; while if the model receives an energy 
signal (electron or muon), it is capable of classifying as noise (100%-91%) of the time. 

 
 precision recall f1-score support 

noise 0.91 1.00 0.95 1141 
electron 0.83 0.84 0.84 1220 
muon 0.87 0.76 0.81 1031 
accuracy   0.87 3392 
macro avg 0.87 0.87 0.87 3392 

Table 2: Precision, recall, f1-score and support for the model of electrons, muons and noise 
with noise added 
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8 Conclusions 
The enigma of dark matter is a problem of modern cosmology and particle physics.   There   
are proposals for candidate particles to form dark matter, such as the WIMPs (Weakly Inter- 
acting Massive Particles). Our interest was focused on DAMIC-M. Thanks to Deep Learning 
techniques as the Convolutional Neural Networks, we have been able to study the background 
signals from Standard Model events. The main goal is to discard Standard Model events from 
what it could be a dark matter signal (if it really exists). For this reason, it is extremely 
important to establish a good working basis on these Standard Model signals. 

 
Throughout this thesis, we have discussed di↵erent scenarios with three particles: muons, elec- 
trons and alpha particles; and faced two problems: localization and classification. 

 
The classification task (with no noise added to the energy signals) showed good results when 
we were classifying as signal or noise, even though, the data standardization was not performed 
correctly. The model was always able to distinguish a particle track from noise, and successfully 
concluded the alpha particle classification. On the other hand, the model presented additional 
challenges when classifying as muon and electron. In order to improve the classification results 
of muons and electrons, this problem was studied in depth. 
The tracks of both electrons and muons could result very similar if the particle impacts perpen- 
dicular to the CCD surface. In these cases, the electron di↵usion is low and hence, the muon 
tracks can be mistaken for electron tracks. 

 
When the noise was added, the model was not capable anymore of distinguishing between noise 
and signal, but the accuracy did not drop abruptly. In fact, in this scenario, the network found 
easier to classify between the particles, and this is why the accuracy changes from 0.8088 to 
0.8109, hence improving. 

 
As soon as the location task was added to the classification task, the number of hyper pa- 
rameters of the models increased. The most important parameters that could influence the 
behaviour of the network so far, were the learning rate of the optimization algorithm, the num- 
ber of neurons per layer, and the number of layers. But now, the hyper parameter which defines 
the weight of the losses functions correspondent to the two tasks, becomes the most important 
one, as it will be a need to find the proper equilibrium between the two of them. Added to this 
parameter, we would also have the ones already mentioned such us the number of neurons or 
layers. 

 
For the reasons just discussed, this multitasking model was unable to deliver as accurate results 
as the classification model, hence the maximum accuracy reached was around 76%. The location 
predicted was not precise either, since the IoU took the value of 0.29, which means that the 
network can locate the particle inside the image, but not accurately. 
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Finally, from the results just discussed, we can conclude that Convolutional Neural Networks 
are a powerful tool for particle classification due to their ability to learn spacial hierarchies and 
the fact that these learned patterns will be translation invariant. 

 
9 Further work 
The scenarios discussed deal with one particle track, but in a real scenario we could be facing 
a multi classification and location problem, even showing overlapping between particles. 

 
Once the Standard Model events have been understood, the next step would be to dismiss these 
events as dark matter signals. We would study the events that were not classified as Standard 
Model events and the distortions of the intrinsic detect noise as the dark matter signal could 
mimic this e↵ect. The input data for the models, now, would have a di↵erent noise distribution 
and probably, it would be necessary to add another class to classify as ”distortion of the noise”. 
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