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Abstract

In a recent study, Coppola et al (2020) assessed the ability of an en-
semble of convection-permitting models (CPM) to simulate deep con-
vection using three case studies. The ensemble exhibited strong dis-
crepancies between models, which were attributed to various factors.
In order to shed some light on the issue, we quantify in this paper
the uncertainty associated to different physical parameterizations from
that of using different initial conditions, often referred to as the inter-
nal variability. For this purpose, we establish a framework to quantify
both signals and we compare them for upper atmospheric circulation
and near-surface variables. The analysis is carried out in the context of
the CORDEX Flagship Pilot Study on Convective phenomena at high
resolution over Europe and the Mediterranean, in which the interme-
diate RCM WRF simulations that serve to drive the CPM are run
several times with different parameterizations. For atmospheric circu-
lation (geopotential height), the sensitivity induced by multi-physics
and the internal variability show comparable magnitudes and a similar
spatial distribution pattern. For 2-meter temperature and 10-meter
wind, the simulations with different parameterizations show larger dif-
ferences than those launched with different initial conditions. The
systematic effect over one year shows distinct patterns for the multi-
physics and the internal variability. Therefore, the general lesson of
this study is that internal variability should be analyzed in order to
properly distinguish the impact of other sources of uncertainty, espe-
cially for short-term sensitivity simulations.

Keywords: Internal variability, Regional climate models, Uncer-
tainty, Physical parameterizations, Ensemble
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1 Introduction

The increasing resolution of Regional Climate Models (RCMs) has reached
the so-called convection-permitting scale (Prein et al, 2015), by approaching
resolutions of a few kilometers, typically used in Numerical Weather Predic-
tion (NWP). A recent study by Coppola et al (2020) presented the largest
multi-model ensemble of convection permitting RCMs to date, with an ini-
tial experiment exploring the ability of RCMs setup as NWP models and as
regional climate modelling tools. Strong discrepancies between models were
found in simulating three heavy precipitation events over the Alps. The
explanation of these discrepancies was left open, and they speculated on
three potential explanations: (1) the proximity of the event to the bound-
aries of the domain, (2) a failure in some RCMs to capture the response to
the drivers of the event and (3) internal variability being responsible for the
differences across models. This study is a follow up of Coppola et al (2020),
where we investigate the role of internal variability in a selected event and
we also further extend our analysis to a full annual cycle.

Internal, unforced climate variability is one of the main sources of uncer-
tainty in global climate simulations (Hawkins and Sutton, 2009). Due to the
non-linear and chaotic nature of the climate system, small perturbations to a
given state of the system grow and develop different trajectories in the state
space (Palmer, 2005). In a relatively short period of time, two slightly per-
turbed simulations in which initial conditions are modified can differ as much
as two randomly chosen states of the climate system (Kalnay, 2003). When
considering coupled systems that exhibit modes of low-frequency variability,
even mean states over long periods of time can differ considerably. This
internal or natural variability of the system is commonly explored using en-
sembles of simulations started from perturbed initial conditions (Haughton
et al, 2014). The uncertainty arising from internal variability is not negli-
gible compared to other sources of uncertainty, such as GCM modelling or
GHG-scenario uncertainty (Hawkins and Sutton, 2009; Deser et al, 2012;
van Pelt et al, 2015; Kumar and Ganguly, 2018).

In contrast, internal variability emerging in regional climate models
(RCMs) is usually smaller than that in GCMs (Caya and Biner, 2004). This
uncertainty is also commonly assessed by using a multi-initial-conditions
ensemble (MICE) in order to separate RCM internal variability from the
signal of forced variability (Giorgi and Bi, 2000; Christensen et al, 2001;
Caya and Biner, 2004; Lucas-Picher et al, 2008b; Giorgi, 2019; Bassett et al,
2020). Several studies concluded that at least 5-6 members should be con-
sidered to obtain robust estimates of internal variability (Lucas-Picher et al,
2008b; Laux et al, 2017). Recent studies (Bassett et al, 2020) point to the
need of even larger ensembles. The amplification of perturbations in the
initial conditions is damped somewhat by the continuous flow of informa-
tion through the boundaries of the limited area domain. Lucas-Picher et al
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(2008a) quantified the relation between the RCM internal variability and
the lateral boundary forcing over the domain. In mid-latitudes, internal
variability has a seasonal behaviour with higher (lower) values in summer
(winter), when the boundary forcing (e.g. storm track intensity) is weaker
(stronger) and the model is more (less) free to develop its own circulation
(Caya and Biner, 2004; Lucas-Picher et al, 2008b). According to the general
atmospheric circulation, prevalent winds (e.g. westerlies in mid-latitudes)
force a flow of information through the boundary. As a result, this forcing
imposes a typical pattern that exhibits increasing internal variability as one
travels downwind across the domain. Flow perturbations develop and grow
as they travel through the RCM domain, reaching a maximum near the
downwind boundary where they are forced back to the flow of the GCM in
the relaxation zone (Lucas-Picher et al, 2008b).

Despite its relevance, few studies have addressed other RCM uncertain-
ties in the light of internal variability. Regarding multi-model uncertainty,
Sanchez-Gomez et al (2009) explored the impact of internal variability for
four different weather regimes, which showed different sensitivity depending
on the lateral boundary conditions. The fraction of multi-model uncertainty
in RCMs that can be explained by internal variability can be relatively large.
For example, Gu et al (2018) suggest that it could be up to 70% of the to-
tal uncertainty for the precipitation in Asia. Also, Fathalli et al (2019)
reported that internal variability was comparable to the inter-model pre-
cipitation spread in Tunisia during summertime, when the lateral forcing
constraint is reduced. As for GCMs, the magnitude of RCM internal vari-
ability depends on the synoptic circulation, model configuration, region and
season (Giorgi and Bi, 2000; Alexandru et al, 2007).

The relevance of RCM internal variability is also recognized by the Coor-
dinated Regional climate Downscaling Experiment (CORDEX; Giorgi and
Gutowski, 2015), an international ongoing initiative endorsed by the World
Climate Research Program which coordinates the regional climate downscal-
ing community. Under this framework, multiple institutions are producing
and analysing the largest regional multi-model ensemble in history, cover-
ing all populated areas in the world with a standard set of continental-scale
domains.

Multi-RCM ensembles sample the dynamical downscaling methodolog-
ical uncertainty. As such, it is challenging to discern the contributions to
uncertainty from other sources (e.g. physical process parameterizations, in-
ternal variability). This is because RCMs developed by different groups
differ in so many aspects that the results from different models and mem-
bers cannot be used to understand the processes responsible for the spread.
There have been different attempts to decompose multi-model uncertainty
into other sources of uncertainty that can be more systematically explored.
Perturbed-Physics Ensembles (PPE; Yang and Arritt, 2002; Bellprat et al,
2012) consider a given RCM and explore the uncertainty associated to se-
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lected parameters, by sweeping a range of acceptable parameter values. This
approach allows to link the resulting uncertainty to a specific parameter.
Multi-physics ensembles (MPE; see e.g. Garćıa-Dı́ez et al, 2015) provide a
way to link modelling uncertainties to specific processes. These ensembles
are generated using a single RCM by switching between different alternative
physical parameterizations, which are the model components representing
sub-grid-scale processes such as cloud microphysics, radiation, turbulence,
etc. Physical parameterization are one of the key differences between dif-
ferent RCMs and, therefore, MPEs mimic multi-model ensembles with the
advantage of a fixed dynamical core and the rest of non-sampled physics
schemes. Of course, these fixed components also limit model diversity and,
therefore, MPEs cannot replace multi-model ensembles. Quite a few anal-
yses tested the ability of different MPEs to encompass the regional climate
in different areas (Fernández et al, 2007; Evans et al, 2012; Solman and
Pessacg, 2012; Jerez et al, 2013; Garćıa-Dı́ez et al, 2015; Katragkou et al,
2015; Stegehuis et al, 2015; Devanand et al, 2018). Some of these analyses
mentioned internal variability as potential source of background noise that
impacts the sensitivity to the physical parameterization schemes (Tourpali
and Zanis, 2013; Stegehuis et al, 2015), though internal variability was not
formally investigated.

Few studies consider both physics sensitivity and internal variability. For
instance, Laux et al (2017) explicitly aim to separate the effects of internal
variability from those of changes in land-use, suggesting that internal vari-
ability has a significant impact on precipitation. Crétat and Pohl (2012)
also studied the effect of physical parameterizations on internal variability
and questioned the robustness of previous physics sensitivity studies which
did not take into account internal variability.

The Flagship Pilot Study on Convective phenomena at high resolution
over Europe and the Mediterranean (FPS-Convection) is an ongoing ini-
tiative endorsed by CORDEX. This initiative aims at studying convective
processes with CPM over the Alpine region (Coppola et al, 2020) by produc-
ing both multi-model and multi-physics ensembles of RCM simulations. The
initial results showed large discrepancies between individual ensemble mem-
bers in their representation of selected heavy precipitation events. In this
work, we take advantage of the ensembles produced in the FPS-Convection
to follow up the study of Coppola et al (2020), in which the origin of these
discrepancies was determined out of the scope. Since causation is difficult to
address in a multi-model approach, we focus on the multi-physics ensemble
within the FPS-Convection RCMs that serve to drive the CPM. We quan-
titatively compare the signal arising from the use of different model compo-
nents (physical parameterizations) against that associated to the background
noise referred to internal variability at different time scales. The objective
is twofold: (1) to assess whether modelling discrepancies in Coppola et al
(2020) fall within the range of internal variability and (2) to quantify how
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much uncertainty in a multi-physics ensemble can be explained by internal
variability.

The paper is structured as follows: The methodology and data used
in this work are detailed in Section 2. Section 3 presents and discusses the
results. First, applied to a case study presented in Coppola et al. (2020) and,
second, we extend the study to consider the role and relative magnitude of
internal variability with respect to multi-physics uncertainty over an annual
cycle. Finally, the conclusions are summarized in Section 4.

2 Data & methods

2.1 Multi-physics ensemble

In this work, we explore the uncertainty associated to physical parameteri-
zations by using multi-physics ensembles (MPE, hereafter) generated in the
context of the FPS-Convection. This initiative considers multiple RCMs,
but here we will focus only on the sub-ensemble of simulations using the
Weather Research and Forecasting (WRF) model (Skamarock et al, 2008).
This modelling system provides the ability to switch among different physical
parameterization schemes for a given sub-grid-scale process. Additionally,
WRF allows for online telescopic nesting, running several nested domains si-
multaneously and exchanging information across domains at each time step.
This approach gives rise to much smaller artifacts close to the borders of
the inner domains, as compared to the standard procedure of running the
model offline, nested into the output of a coarser resolution domain.

All institutions participating in FPS-Convection and using WRF have
coordinated a MPE by setting different physical configurations so that at
least one option differs among them (Table 1). The MPE considers different
options varying the parameterization schemes for cloud micro-physics pro-
cesses, surface and land processes, planetary boundary layer, and radiative
processes. All other model configuration and experimental setup are fixed,
including the model version (ARW-WRF v3.8.1).

All FPS-ConvectionWRF simulations consider a high-resolution (∼3km),
convection-permitting domain centered over the Alpine region (ALP-3) nested
into a coarser-resolution (∼12 km), and much larger, pan-European domain.
Except for the deep convection parameterization scheme, that is switched off
in ALP-3, physical configuration does not differ between both domains. All
WRF ensemble members used one-way nesting, so there is no communica-
tion from the convection-permitting back to the coarser domain. Therefore,
the convection-permitting inner domain did not alter in any way the results
for the pan-European domain used in this work. Our analyses focus only
on this pan-European domain, since we are interested in the uncertainty of
the synoptic conditions over Europe, which drive the needed moisture that
leads to unstable conditions over the Alpine area (see Section 3.1). The
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ALP-3 domain is not large enough to alter significantly the large-scale syn-
optic conditions, so, in order to reproduce the case studies of Coppola et al
(2020) in the ALP-3 domain, the right sequence of observed events should
be preserved first in the pan-European domain forcing simulations.

We use WRF data from two different FPS-Convection experiments driven
by 6-hourly initial and lateral boundary conditions taken from the ERA-
Interim Reanalysis (Dee et al, 2011):

Experiment A is described in Coppola et al (2020) and consisted of a
preliminary test with all participating models, including WRF. Three heavy
precipitation events in the Alpine region were simulated in two modes, iden-
tified as “weather-like” and “climate mode”. Weather-like simulations were
started one day before the onset of the events, aiming at simulating the event
as closely as possible to the reality, aided by the predictability provided by
the initial conditions. As the proximity of the initial conditions constrains
the internal variability, we did not consider weather-like simulations in this
study. Climate-mode simulations were started one month before the event,
so that initial conditions were not a source of predictability in this case and
the models were mainly driven by the lateral boundary conditions, which
is typical in regional climate modeling. We focus on a single event that
occurred around the 23rd June, 2009, and was covered by climate-mode
simulations running for the period from 1st June to 1st July, 2009 (see Sec-
tion 3.1). WRF members of the ensemble showed the largest differences in
terms of predictability of this particular event. WRF simulations for this ex-
periment used a pan-European domain at 0.11◦×0.11◦ horizontal resolution
(EUR-11), corresponding to the official EURO-CORDEX domain setup.

Experiment B consists of RCM evaluation simulations covering a 15-year
period starting in 1999. All the WRF simulations started using the same
initial conditions, with soil states generated by a 1-year spin-up run (1998).
As in experiment A, the WRF model contributed with a MPE. However, the
physical parameterizations for this experiment were slightly adjusted with
respect to those used in experiment A (see Table 1) in order to consider
more complex physics schemes and to avoid uncertainties from the interac-
tion between distinct PBL and surface layer schemes. It should be noted
that WRF simulations for this experiment used a slightly coarser ∼15 km
horizontal resolution (EUR-15) than those in Experiment A, covering the
same domain. This change was motivated to comply with the recommended
odd nesting ratios for telescopic domains (5:1 in this case, from EUR-15 to
ALP-3), which avoids interpolation between the staggered Arakawa-C grids
used. In this way, fluxes across nested domains are more accurate and com-
putationally efficient. In this study we used the first year (1999) of these
simulations.
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2.2 Multi-initial-conditions ensemble

A MICE was run to assess the role of internal variability in explaining the
uncertainty developed by the MPE. We used WRF configurations AI and BI
(see Table 1) to match the setup of experiments A and B, respectively, using
a set of 6 different initial conditions. The set of perturbed initial conditions
was generated using the lagged method (see e.g. Laux et al, 2017), i.e. by
starting the simulations the day before (AI-r1), 2 days before (AI-r2), and so
on, up to a 5-day lag (AI-r5). This is a simple way of perturbing the initial
conditions while maintaining the physical consistency among variables. The
extra simulated days are excluded, and we analyze only the period common
to the MPE. The standard, no-lag runs AI and BI (say, AI-r0 and BI-r0)
are part of both the 8-member MPE and this 6-member MICE.

We ran the 1-year MICE corresponding to experiment B (BI-r1 to BI-
r5) only for the EUR-15 domain, without the inner ALP-3 nesting, so as to
significantly reduce computational demands. Since no feedback from ALP-
3 back to EUR-15 was allowed in the MPE, our EUR-15 MICE is fully
comparable to EUR-15 MPE.

2.3 Quantification of uncertainty

In order to quantify the uncertainty (spread) in the two ensembles, we fol-
lowed the approach of Lucas-Picher et al (2008b), who used an unbiased
estimator of the inter-member variance:

σ
2
X(s, t) =

1

M − 1

M
�

m=1

(X(s, t,m)− �X�(s, t))2 (1)

where X(s, t,m) is the value of a given variable X at position s (summariz-
ing, in this case, typical bi-dimensional position indices i, j), at time step t

and from ensemble member m. M is the total number of ensemble members.
The term �X�(s, t) is the ensemble mean at a given position s and time t:

�X�(s, t) = 1

M

M
�

m=1

X(s, t,m). (2)

To avoid confusion, we keep in this methodological summary the notation
of Lucas-Picher et al (2008b) and earlier publications on internal variability,
although the use of Greek letters (σ2) to refer to a sample variance estimator
is uncommon, and usually reserved for the population parameters to be
estimated (Wilks, 2011). Note that even though this measure was proposed
to quantify internal variability, it is just a measure of spread or uncertainty,
that can be applied to any ensemble. This is typically employed to quantify
internal variability on MICE. In this work, we apply it to both MPE and
MICE.
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The uncertainty, as represented by Eq. 1, is a spatio-temporal field. The
evolution of uncertainty in time (UT ) is calculated by considering the spatial
average of the inter-member variance σ

2
X

as

UT 2 ≡ σ
2
X

s

(t) =
1

S

S
�

s=1

σ
2
X(s, t) (3)

where S is the total number of grid cells in the domain. UT 2 represents the
domain average of the inter-member variance. To emphasize the quadratic
nature of this uncertainty measure, we use the symbol UT 2 in Eq. 3 but, in
the following, we consider always its square root UT , which has the units
of the variable, and allows for an easier interpretation. In the same way, a
spatial distribution of the uncertainty (US) is obtained by considering the
time average of the inter-member variance σ

2
X

as

US2 ≡ σ
2
X

t

(s) =
1

T

T
�

t=1

σ
2
X(s, t) (4)

where T is the total number of time steps in the period. This expression is
an estimate of the expected value of the inter-member variance over a period
of interest.

We consider transient eddy variability (TEV ) as a reference for inter-
member variability. Passing weather systems create a natural time variabil-
ity in meteorological fields, which sets a limit to the maximum variability
attainable at a given location. This variability is seasonally dependent, so
Caya and Biner (2004) proposed to use a monthly estimator and compute a
spatial average to make it comparable to UT:

TEV 2 ≡ σ̂
2
X(τ,m) =

1

S

S
�

s=1

�

X(s, t,m)−X
τ

(s,m)
�2τ

(5)

where the τ operator computes the monthly average, i.e. the mean for all
time steps t corresponding to a given month τ . Again, the σ-notation is from
previous literature but, in the following, we will simply refer to this monthly-
averaged, transient-eddy variance as TEV. Note that TEV depends on the
model and also suffers from sampling uncertainty, which will be quantified
by computing it from different ensemble members.

Finally, the long-term impact (LTI) of the inter-member uncertainty
on the climatology of a meteorological field is estimated by calculating the
variance of the climate among ensemble members as

LTI2 ≡ σ
2
X
(s) =

1

M−1

M
�

m=1

�

X
t
(s,m)−

�

X
t
�

(s)
�2

(6)

where X
t
(s,m) is the time average (i.e. the climatology) of each ensemble

member m and
�

X
t
�

(s) is the ensemble mean of the climatologies. Note
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that LTI measures the ”uncertainty” of climate, while US measures the
”climate” of the uncertainty. The latter is sensitive to the correspondence
of meteorological events (e.g. heavy precipitation convective events) in time
and space, while the former measures systematic deviations among members
that lead to a different mean state (climate).

3 Results & discussion

3.1 Event reproducibility

As an example, we focus first on a heavy precipitation case study ana-
lyzed by Coppola et al (2020). The event was mostly driven by large-scale
features, which consisted of a cut-off low over the Balkans inducing a persis-
tent northeasterly flow over Austria. This unstable flow was warm and wet
enough to trigger extreme precipitation by orographic lifting upon reaching
the Alps. Observations reveal precipitation peaking on the 23rd June, 2009,
over Austria. RCM simulations consistently reproduced this heavy precipi-
tation event under weather-like initialization (see Section 2.1), but Coppola
et al (2020) reported mixed results when considering the climate-mode ini-
tialization. Some members of the multi-model/multi-physics ensemble com-
pletely missed the precipitation event or represent highly damped versions
of it (see Figure 4 of Coppola et al (2020)). They speculated on a poten-
tially weak background synoptic forcing for this event, which we investigate
in this work.

Notably, the WRF MPE alone also exhibited mixed results in reproduc-
ing the event. For illustration, Figure 1 (left) shows the accumulated pre-
cipitation on 23rd June for 4 WRF configurations. Only WRF configuration
AF is able to reproduce the event, with extended precipitation over Austria.
Other WRF configurations (AB, AE, AD) miss the event and show some
precipitation over southern Italy or very scarce precipitation (configurations
AC, AG, AI, not shown in Figure 1).

The synoptic situation, as represented by the 850hPa geopotential height
(Figure 1, right), shows the cut-off low located as observed (ERA-Interim)
over the Balkans for the AF configuration. For the rest of the MPE mem-
bers, a low-pressure system is simulated in southern Italy, which alters the
circulation so that the warm-moist airflow over the Alps is strongly reduced
and precipitation is eventually not occurring or occurring over other areas
(southern Italy).

Given that MPE members differ only in their physical parameterization
schemes, one might be tempted to assume that configuration AF outper-
forms the rest. That would imply e.g. that the use of the YSU non-local
boundary layer scheme somehow helps in developing the cut-off low at the
right location, as opposite to the MYNN2 local mixing scheme. This is the
only difference between configurations AF and AD. Moreover, YSU alone
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cannot explain the ability of AF to represent the event, because configuration
AB also used this PBL scheme. The only difference between configurations
AF and AB is the land surface model (LSM). AF used Noah-MP, a much ex-
tended version (Niu et al, 2011) of the Noah LSM (used in AB), considering
a multi-layer snow model with more realistic snow physics, canopy shadows,
snow on canopy, an aquifer layer, and many other improvements. Other con-
figurations used Noah-MP (AD, AE or AI), though, and the low pressure
system and precipitation still did not occur on the right place. Therefore,
either the exact parameterization combination of configuration AF is the
key or there must be a different explanation for the discrepancies.

Note that WRF was run using one-way, online telescopic nesting and,
therefore, we can also rule out the proximity of the high precipitation event
to the ALP-3 domain boundaries as potential cause for the different model
results in Coppola et al (2020). Boundary artifacts close to the inner bound-
aries are greatly reduced in this setup and still some WRF members repro-
duced the event while others missed it.

An alternative hypothesis is that the different development of the event
in the different MPE members is just the result of internal variability. To
test this hypothesis, we considered a MICE based on configuration AI, which
did not develop the event under the standard MPE initialization setup (start
date: 00UTC, 1st June, 2009). Configuration AI (AI-r0) developed a low
over southern Italy (Figure 2a), as many of the other configurations (Fig-
ure 1). Many of the MICE members also developed a low over this area
(see e.g. Figure 2), but member AI-r1 (start date: 00UTC, 31st May, 2009)
presents a low in the right place, when compared against ERA-Interim.
This was achieved by perturbing the initial conditions, starting the simula-
tion one day earlier, and preserving exactly the same model configuration.
Note that this is not a matter of improved initial conditions, since there are
more than 20 days simulated from the geopotential height fields shown in
Figures 1 (right) and 2, well beyond the limit of deterministic predictabil-
ity of an atmospheric state. This is the result of internal variability. The
slight perturbations in the initial conditions grew up by the non-linear dy-
namical model. This process is in competition with the constraints imposed
by the lateral boundary conditions, which bring the flow towards that of
ERA-Interim close to border of the domain. This constraint can be seen in
Figures 1 (right) and 2.

In this particular flow state, there seem to be two preferred weather
regimes over the southern Mediterranean area or, at least, our model sim-
ulations were only able to generate these two weather regimes: one with
a low evolving over southern Italy and the other with the low positioned
over the Balkans. The observed flow took the Balkan low path even though
the model has difficulties to reproduce this path. Note that these weather
regimes and their probability of occurrence are likely model dependent. In
any case, this is just one particular event. Once we have shown that internal
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variability can trigger flow deviations similar to those from different physi-
cal parameterizations, we focus on quantifying their relative uncertainty, i.e.
the spread of MPE and MICE ensembles.

The evolution of inter-member variance in time for MPE and MICE (Fig-
ure 3) can reach comparable values. MPE member simulations take exactly
the same initial and lateral boundary conditions from ERA-Interim, hence
the uncertainty (essentially the member-to-member variability) at the start
is very small (close to zero during the first day), indicating that all members
produce similar circulation patterns. As the different physical parameteri-
zations have an effect on the model, each member simulated a different syn-
optic situation and the uncertainty increases. Regarding the MICE, since
its members were initialized before the MPE start date shown in Figure
3, the spread among members is larger than in the MPE in the beginning
of June. MICE uncertainty (i.e. internal variability) remains fairly stable
along the 1-month time span of the simulation. After about 10 days, the
magnitude of MPE and MICE inter-member variance are comparable, with
internal variability (MICE spread) generally larger than MPE spread. This
suggests that the different physical parameterizations used in the MPE in-
troduce smaller differences among members than those arising from internal
variability.

A qualitative look at the UT evolution (Figure 3) shows that, even if
uncertainty remains quite stable, there are periods of increased uncertainty
that seem to be synchronous in both ensembles. These must be periods of ei-
ther weaker lateral boundary forcing (the only external forcing) or increased
internal variability due to a particular situation of the internal dynamics.
Notably, the period 22-26 June, when the heavy precipitation event occurred
over Austria, is a period of increased uncertainty, where internal variabil-
ity surpasses MPE spread. Also, MPE spread seems to develop a linear
trend along the 1-month period. If sustained, this trend would overcome
internal variability in longer periods. Unfortunately, FPS-Convection ex-
periment A only considered 1-month-long simulations. In order to explore
MPE vs. MICE uncertainty over a longer period, we use the output from
FPS-Convection experiment B in the next section.

Experiment B produced a MPE with slightly different model configura-
tions (Table 1) and also on a slightly coarser domain (EUR-15). In order to
discard a sensitivity to this coarser resolution, we simulated a new MICE
using AI configuration but on a much coarser 0.44◦ × 0.44◦ horizontal res-
olution (EUR-44). Its spread (dashed line on Figure 3) is very similar to
that of EUR-11, which suggests that a major part of the uncertainty is due
to the large-scale synoptic pattern and not to smaller scale variability.
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3.2 Analysis over an annual cycle

We extended the analysis to an one-year period taking advantage of FPS-
Convection experiment B (Section 2.1). In particular, we extended Figure 3
to one year using the year 1999 from the WRF MPE of experiment B and
a MICE based on configuration BI. The resulting inter-member variance in
time (Figure 4) shows a very similar behaviour of MPE spread and inter-
nal variability (MICE spread) along the whole year. MPE members started
again from the same initial conditions. Therefore, they show very low dif-
ferences on January 1st, which increases after about 10 days. After this
10-day transient evolution affected by the initial conditions, both ensembles
show comparable inter-member variance, exhibiting an annual cycle with
increased uncertainty in summer. Moreover, even weekly to monthly vari-
ability in these UT time series seems to match in both ensembles. Notably
in the last months (Oct-Dec), and also in many other peaks along the year.
This suggests that the differences introduced by the different physics formu-
lations along the time are amplified by the model in a similar way than the
perturbations of the initial conditions. No systematic effect is noticeable in
the circulation. Put in another way, for this variable at least, multi-physics
uncertainty can be fully explained by internal variability.

As in previous studies (Caya and Biner, 2004; Lucas-Picher et al, 2008b),
we used transient-eddy variability (Equation 5) as a reference for uncer-
tainty. This is the natural variability of a meteorological field associated to
weather systems traveling along the storm track. TEV can be computed
from any of the ensemble members. We used simulation BI (top line in
Figure 4), which is the only member common to both MPE and MICE. To
evaluate the uncertainty associated to the selection of this particular mem-
ber, we computed the monthly TEV from each member, and its standard
deviation for each ensemble and for each month is shown as error bars in
Figure 4. TEV spread is very low and any member could have been used as
the reference. As already found in previous studies in mid-latitudes, TEV is
larger in winter than in summer, due to the more frequent passage of weather
systems from the Atlantic. The faster atmospheric circulation in winter im-
poses a strong boundary forcing, which may explain the lower spread among
ensemble members. TEV and the associated boundary forcing is lower dur-
ing summer. As a result, the model has more freedom to develop its own
circulation features, increasing the spread between the members. During
summer, the spread reaches approximately half of the TEV, which would be
the maximum attainable. This maximum is what one would expect from a
GCM, which has no lateral boundary constraints. For such a model, MICE
spread (i.e. internal variability) would increase during 1-2 weeks to reach
the TEV line and remain around this limit along the year. In this sense,
RCM internal variability is negligible compared to GCM internal variability
during winter, but it represents an important fraction (approximately one
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half, in this example) during summer.
The similarity between MPE and MICE uncertainty is not restricted

to domain averages. In Figure 5, we show the spread in space, by averag-
ing inter-member variance in time for each model grid point (Equation 4).
Both maps show a typical spatial distribution of internal variability in mid-
latitudes, with increasing variability from the southwestern to the north-
eastern part of the domain. The patterns are remarkably similar, with
MPE inter-member variance (Figure 5a) only slightly larger than internal
variability (Figure 5b). Both reach about 35 m over the Baltic Sea and a
steeper gradient towards the outflow (eastern) boundary than in the inflow
(western) one. The westerly input flow is slowly modified by the RCM as it
travels along the domain, but it is suddenly modified at the outflow bound-
ary to match again the ERA-Interim flow at the eastern border. Christensen
et al (2001) suggested that, for a domain over Europe, the lower uncertainty
in south-western Europe is also due to the fact that the area is mainly sea,
and not only due to the distance to the boundaries. Seasonal winter (DJF)
and summer (JJA) patterns of MPE and MICE inter-member variance (not
shown) are very similar to those in Figure 5. They show higher (lower)
intensity in JJA (DJF), reaching 45 m (25 m) over the Baltic Sea.

The systematic effects of the physical parameterizations on the circu-
lation can be seen in the long-term impact (Figure 6a). LTI summarizes
the variability of the climatology for the different ensemble members (Equa-
tion 6). Note that this variability is about one order of magnitude smaller
than the uncertainty measures shown previously (cf. the scales of Figures 5
and 6). Nevertheless, LTI has an impact on the simulated climate, while the
(time) mean inter-member variance explored previously is mainly due to a
lack of correlation (Caya and Biner, 2004). The largest differences among
the simulations using different parameterizations occur in the center of the
domain, between Germany and Poland, and extend towards the Alpine re-
gion. Remarkably, systematic differences develop also on the northwestern
boundary.

The LTI of internal variability (Figure 6b) shows a distinct pattern, with
the largest values in the northern half of the domain. The magnitude is
comparable to that of the MPE, though. Therefore, even though the spatial
patterns are different, the systematic differences among MPE members are
still comparable to the internal variability. This would suggest that one-year
simulations are not enough to distinguish the systematic effect of a particular
parameterization configuration compared to the impact of different initial
conditions on the circulation. Since the MICE is just composed of multiple
realizations of the same model configuration, its LTI must tend to zero as the
simulation length increases and the climatology of all members tends towards
the “true” model climatology. Longer simulations, such as those currently
under way in the FPS-Convection, should provide a better assessment of
the LTI of the MPE. For example, for 10-year simulations, the values on
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Figure 6b should be divided by a factor of
√
10 ≈ 3.2 (Lucas-Picher et al,

2008b). Up to this point, we have focused on the circulation (850 hPa
geopotential height) and we have seen that multi-physics uncertainty is hard
to distinguish from internal variability. The results for the circulation at 700
hPa or 500 hPa (not shown) are qualitatively similar.

3.3 Surface variables

Since circulation is only indirectly affected by physical parameterizations, in
this section we focus on near-surface (2-meter) temperature. This is just one
example of a variable affected by surface radiative and heat flux balances,
which are parameterized in RCMs. In particular, the set of parameteriza-
tions tested in the FPS-Convection WRF ensemble (Table 1) directly affects
cloud cover, surface energy (and mass) exchange and transport. As a re-
sult, this MPE shows a spread in surface temperature that substantially
exceeds internal variability (Figure 7). Other near-surface variables, such
as 10-meter wind, were also checked (not shown) and showed qualitatively
similar results as near-surface temperature.

The evolution of inter-member variance for near-surface temperature,
both for the MPE and MICE is different from the geopotential height shown
in Figure 4. The annual cycle is clearer in the TEV than in the variance,
which only shows a hint of a seasonal cycle during April through October.
In summer, MPE and MICE spread evolution is uncorrelated, with some
peak MPE uncertainty events (e.g. end of July) clearly standing out of
internal variability. However, the strong winter variability seems coherent
between MPE and MICE spread. Even if multi-physics spread is usually
the greatest, internal variability seems to modulate it. This is in appar-
ent contradiction with the results of Crétat and Pohl (2012), who claimed
that physical parameterizations modulate IV. They show that two MICE
under different physical parameterization configurations develop a different
amount of IV on average. However, they also show (their Figure 4b) a co-
herent evolution in time of the IV between model configurations. In our
setup, physical parameterizations cannot modulate IV time evolution since
the model configuration is fixed in the MICE. Still, Figure 7 shows that,
despite the different spread amounts in MICE and MPE, both evolve coher-
ently in time. It is likely that a third variable, such as the strength of the
external forcing (i.e. boundary conditions), modulates the degree to which
both physics and IV uncertainties can grow.

Transient-eddy variability for surface temperature (monthly step line in
Figure 7) shows again the mid-latitude maximum during winter. A key dif-
ference compared to the geopotential height is the large variability of TEV
within MPE members, as compared to the MICE members. In fact, un-
certainty in MPE nearly doubles internal variability during some months.
Notably, a peak uncertainty event by the end of July reaches the TEV line
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(especially, when considering its uncertainty), indicating that surface tem-
perature patterns for the different physics differ as much as two random
temperature patterns in this month. Note, however, that TEV was com-
puted using a single month and, therefore, this estimate does not consider
interannual variability. This might explain the reversal of the TEV cycle
during November and December. The strong uncertainty in the November
UT estimate is likely pushing up the TEV value for this month.

The spatial distribution of the inter-member variance for surface tem-
perature (Figure 8) reveals, as before, a similar pattern of increasing spread
towards the northeast in both ensembles. In this case, despite the similar
pattern, MPE shows larger spread values in accordance with Figure 7. MPE
reaches a maximum value of about 3.5 K while MICE reaches about 2 K.

Finally, apart from the higher day-to-day uncertainty of the MPE for
surface temperature, a systematic, long-term impact is clearly developed
for this variable (Figure 9a). Unlike the circulation variable, the long-term
impact of MPE for temperature is of comparable magnitude to its uncer-
tainty. Also, it falls well above the long-term impact of internal variability
(Figure 9b), suggesting that for variables directly influenced by physical pa-
rameterizations (such as surface temperature), one-year simulations suffice
to discern the systematic effect of a given parameterization with respect to
another. Not only the magnitude, but also the spatial pattern of LTI differs
between that of internal variability and the effect of parameterizations. The
latter shows three main maxima over Africa, central Europe and Russia. As
expected, impact is negligible over the sea, where surface temperatures are
prescribed.

4 Conclusions

In this study we quantified the uncertainty arising from WRF model MPEs,
on two different time scales, developed within the FPS-Convection interna-
tional initiative. Additionally, for each MPE, new MICEs were performed
to assess the role of internal variability in explaining the different ability
of MPE members to reproduce specific convective events. The study was
carried out for a one-month period focusing on a particular case study of
heavy precipitation over Austria, and extended to one-year timescale.

The analyses over the one-month period already shed light on the 2 main
objectives of this work: (1) The failure of someWRF model configurations to
reproduce the case study, as reported by Coppola et al (2020), is not related
to physical parameterizations, but to the absence of a synoptic circulation
pattern that favoured the event. Some members of the MICE were able
to reasonably reproduce the observed synoptic pattern without modifying
the model parameterization setup. (2) From a quantitative perspective, the
spread due to the parameterization differences has a magnitude comparable
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to that from internal variability. Therefore, in these one-month simulations,
the effect of the different physical parameterizations on the circulation can-
not be distinguished from internal variability.

The extended study over a one-year period showed similar results for cir-
culation variables (geopotential height). Multi-physics spread is comparable
to internal variability both in its time evolution along the year and its spatial
pattern. In this regard, we found multi-physics circulation uncertainty to
behave according to previous RCM internal variability studies (Lucas-Picher
et al, 2008b), with an annual cycle exhibiting increased uncertainty during
summer and a spatial pattern of increased uncertainty towards the outflow
boundaries of the regional domain.

The results, however, depend on the variable, with surface variables
(known to be sensitive to parameterized processes) showing higher MPE
spread. For example, for near-surface temperature the spread associated to
parameterizations was above that due to the internal variability. This sug-
gests that it is easier to discern both sources of uncertainties when analyzing
variables more constrained by the model physics, which is typically the case
in RCM parameterization sensitivity studies (Fernández et al, 2007; Evans
et al, 2012; Solman and Pessacg, 2012; Jerez et al, 2013; Garćıa-Dı́ez et al,
2015; Katragkou et al, 2015; Stegehuis et al, 2015; Devanand et al, 2018).

As a reference for uncertainty, we computed transient-eddy variability,
and quantified its spread due to the multi-physics and to internal variabil-
ity. This type of uncertainty also depends on the variable. For the circu-
lation, transient-eddy variability of the different physical model configura-
tions is similar to the internal variability range. However, for near-surface
temperature, the different physics configurations exhibit a different level of
transient-eddy variability. This requires further analysis on longer simula-
tions to properly estimate the inter-annual contribution, but this is beyond
the scope of the present work.

The long-term impact of the internal variability has been found to be of
comparable magnitude to that of multi-physics for atmospheric circulation
variables on year-long simulations. For surface temperature, however, the
long-term impact of the multi-physics is larger, standing out of internal
variability. For both variables, the spatial patterns of MPE and MICE
differ, and this calls for a detailed study of each physical parameterization
considered.

The techniques for quantification of internal variability (Lucas-Picher
et al, 2008b) were applied here to explore also multi-physics spread, which
proved to be a useful method for comparing both sources of uncertainty.
They revealed that uncertainty arising from perturbations of the model
physics (full replacement of a physics scheme) are seen from the circula-
tion point of view as perturbations of initial conditions, i.e. as internal
variability “noise”. Both types of perturbations seem amplified in a similar
way by the dynamical system and synchronously constrained by the lateral
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boundary conditions. This view of a structured near-surface perturbation
as a random upper air circulation noise was also found, in a completely
different context, by Fernández et al (2009).

The inability of an RCM to reproduce the observed day-to-day circu-
lation due to internal variability is not a matter of concern for mean cli-
mate studies, given that long-term climate is preserved (Caya and Biner,
2004). However, with the arrival of convection-permitting simulations and
the increasing interest in the climate of extremes, RCM internal variability
re-emerges as a matter of concern for model evaluation. As an example, the
FPS-Convection focuses on high-impact (low probability) convective phe-
nomena that occur mainly during the summer season, when lateral bound-
ary forcing is the weakest. The evaluation of models under these conditions
poses a real challenge that can only be addressed by computationally expen-
sive experiments including the simulation of long periods and/or the simula-
tion of a corresponding MICE to disentangle the role of internal variability
in the results. Other alternatives would be to constrain internal variability
by using techniques such as spectral nudging, which has its own drawbacks
(Alexandru et al, 2009), or frequently reinitializing the RCM (Lo et al, 2008;
Lucas-Picher et al, 2013).

Finally, the magnitude of internal variability in an RCM has been shown
to depend on the domain size and location (Giorgi and Bi, 2000; Rinke and
Dethloff, 2000; Alexandru et al, 2007). Given that, for circulation variables,
MPE variability behaves as internal variability, we could argue that a similar
dependence on domain size and location might affect MPE variability. The
generalization of these results for other domain sizes and for regions with a
weaker lateral boundary forcing is left for a forthcoming study.
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Supercomputing Centre (JSC). We acknowledge the E-OBS dataset from
the EU-FP6 project UERRA (https://www.uerra.eu) and the Copernicus
Climate Change Service, and the data providers in the ECA&D project
(https://eca.knmi.nl).

References

Alexandru A, de Elia R, Laprise R (2007) Internal variability in re-
gional climate downscaling at the seasonal scale. Monthly Weather Re-
view 135(9):3221–3238, DOI 10.1175/MWR3456.1,URL https://doi.

org/10.1175/MWR3456.1

Alexandru A, de Elia R, Laprise R, Separovic L, Biner S (2009) Sensitiv-
ity study of regional climate model simulations to large-scale nudging
parameters. Monthly Weather Review 137(5):1666–1686, DOI 10.1175/
2008MWR2620.1

Bassett R, Young P, Blair G, Samreen F, Simm W (2020) A Large En-
semble Approach to Quantifying Internal Model Variability Within the
WRF Numerical Model. Journal of Geophysical Research Atmospheres
125(7):e2019JD031,286, DOI 10.1029/2019JD031286
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Katragkou E, Garćıa-Dı́ez M, Vautard R, Sobolowski S, Zanis P, Alexandri
G, Cardoso RM, Colette A, Fernandez J, Gobiet A, Goergen K, Kara-
costas T, Knist S, Mayer S, Soares PMM, Pytharoulis I, Tegoulias I, Tsik-
erdekis A, Jacob D (2015) Regional climate hindcast simulations within
EURO-CORDEX: evaluation of a WRF multi-physics ensemble. Geosci-
entific Model Development 8(3):603–618, DOI 10.5194/gmd-8-603-2015

Kumar D, Ganguly AR (2018) Intercomparison of model response and
internal variability across climate model ensembles. Climate Dynamics
51(1):207–219, DOI 10.1007/s00382-017-3914-4

Laux P, Nguyen PNB, Cullmann J, Van TP, Kunstmann H (2017) How
many RCM ensemble members provide confidence in the impact of land-
use land cover change? International Journal of Climatology 37(4):2080–
2100, DOI 10.1002/joc.4836

Lo JCF, Yang ZL, Pielke Sr RA (2008) Assessment of three dynamical cli-
mate downscaling methods using the weather research and forecasting
(WRF) model. Journal of Geophysical Research: Atmospheres 113(D9),
DOI 10.1029/2007JD009216, URL https://agupubs.onlinelibrary.

wiley.com/doi/abs/10.1029/2007JD009216

Lucas-Picher P, Caya D, Biner S, Laprise R (2008a) Quantification of
the lateral boundary forcing of a Regional Climate Model using an ag-
ing tracer. Monthly Weather Review 136(12):4980–4996, DOI 10.1175/
2008MWR2448.1, URL https://doi.org/10.1175/2008MWR2448.1
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Exp. Id. Institution MP PBL LSM

A

AB Forschungszentrum Jülich (FZJ-IBG3), Germany Thomp. YSU NOAH
AC National Observatory of Athens (NOA), Greece Thomp. MYNN2 NOAH
AD University of Hohenheim (UHOH), Germany Thomp. MYNN2* NOAH-MP
AE Intitute Pierre Simon Laplace (IPSL), France Thomp. MYNN2 NOAH-MP
AF Bjerknes Centre for Climate Res. (BCCR), Norway Thomp. YSU NOAH-MP
AG Aristotle University of Thessaloniki (AUTH), Greece WDM6 YSU NOAH
AH Instituto Dom Luiz (IDL), Portugal WDM6 MYNN2 NOAH
AI Universidad de Cantabria (UCAN), Spain WDM6 MYNN2* NOAH-MP

B

BB Forschungszentrum Jülich (FZJ-IBG3), Germany Th-AA YSU NOAH
BC National Observatory of Athens (NOA), Greece Thomp. MYNN2 NOAH
BD University of Hohenheim (UHOH), Germany Th-AA MYNN2 NOAH-MP
BE Intitute Pierre Simon Laplace (IPSL), France Th-AA MYNN2 NOAH-MP
BF Bjerknes Centre for Climate Res. (BCCR), Norway Thomp. YSU NOAH-MP
BG Aristotle University of Thessaloniki (AUTH), Greece WDM6 YSU NOAH-MP
BH Instituto Dom Luiz (IDL), Portugal WDM6 MYNN2 NOAH
BI Universidad de Cantabria (UCAN), Spain WDM6 MYNN2 NOAH-MP

Table 1: WRF multi-physics configurations considered in this study (see
Section 2.1) for experiment A (one-month simulation, EUR-11 domain) and
experiment B (one-year simulation, EUR-15). For each ensemble member,
the table shows an Id. code, the institution performing the simulation and
the physical parameterizations used. The ensembles explore the use of differ-
ent schemes for micro-physics (MP), planetary boundary layer and surface
layer (PBL), land surface (LSM), and shallow convection (ShC) processes.
The PBL schemes denoted with asterisk (*) used a different surface layer
scheme despite sharing the MYNN2 PBL. See Table 2 for details of each
parameterization scheme.
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Acronym Physical scheme

Thomp. Thompson et al (2008) scheme with ice, snow and graupel processes suitable for high-resolu
Th-AA New Thompson aerosol-aware scheme considering water- and ice-friendly aerosols
WDM6 WRF Double-Moment 6-class microphysics scheme with cloud condensation nuclei for warm
YSU Yonsei University non-local closure PBL scheme with revised MM5 Monin-Obukhov surface
MYNN2 Mellor-Yamada Nakanishi and Niino Level 2.5 (*combined with revised MM5 Monin-Obukho
NOAH Noah LSM with multilayer soil temperature and moisture, snow cover and frozen soil physics
NOAH-MP Noah LSM-Multi Physics. NOAH with multiple options for land-atmosphere processes
GRIMS Shallow cumulus scheme from the Global/Regional Integrated Modeling System
UW University of Washington shallow cumulus scheme from the Community Earth System Model

Table 2: Physical schemes used in the multi-physics experiments shown in
Table 1.
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Figure 1: Left: Accumulated precipitation (mm) on June, 23rd 2009 accord-
ing to E-OBS (Haylock et al (2008); top) and as simulated in the ALP-3
domain by experiment A for WRF MPE members AF, AD, AB and AE.
Right: 850hPa geopotential height (m) according to ERA-Interim (top) and
the corresponding MPE ensemble members in the EUR-11 domain in pink.
An ERA-Interim 1500m-isoline (the same in all panels) is represented for
reference in black.
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Figure 2: As Figure 1 (right), but for 4 MICE members: AI-r0 to AI-r3.
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Figure 3: Inter-member variance in time (Equation 3) for 850hPa geopo-
tential height (m) in EUR-11 domain of experiment A (June 2009). The
spread is computed separately for MPE (blue) and MICE (red). The latter
was computed both at 0.11◦ and 0.44◦ horizontal resolution with similar
number of ensemble members.

32



8
5

0
h

P
a

 g
e

o
p

. 
h

e
ig

h
t 
U

T
 (

m
)

0

20

40

60

80

●

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec1999:

TEV (BI)

UT MPE

UT MICE

Figure 4: Inter-member variance in time (UT) for 850hPa geopotential
height (m) in EUR-15 domain of experiment B (year 1999). The uncer-
tainty is computed separately for MPE (blue) and MICE (red). Transient-
eddy variability (Equation 5, black line) was computed from BI configuration
and error bars show its standard deviation for MPE and MICE.
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Figure 5: Spatial distribution of the inter-member variance (US) for the
850 hPa geopotential height (m) in EUR-15 domain of experiment B (year
1999). a) multi-physics ensemble. b) multi-initial-conditions ensemble.
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Figure 6: Long-term impact of multi-physics (a) and multi-initial-conditions
(b) on 850hPa geopotential height (m).
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Figure 7: As Fig. 4 but for surface temperature over land.
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Figure 8: Spatial distribution of the inter-member variance for surface tem-
perature (K) in EUR-15 domain of experiment B (year 1999). a) multi-
physics ensemble. b) multi-initial-conditions ensemble.
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Figure 9: Long-term impact of multi-physics (a) and multi-initial-conditions
(b) on surface temperature (K).
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