
  
Abstract— A reduced-order envelope-domain formulation of 

coupled-oscillator systems based on realistic nonlinear models of 
the oscillator elements is presented for the first time to our 
knowledge. The formulation, based on numerical models of the 
transistor-based oscillators, enables an accurate prediction of the 
nonlinear dynamics of the coupled system, including the oscillation 
build-up, the locked and unlocked states, and the oscillator on-off 
switching. To increase the applicability of the method, both 
admittance- and impedance-type models are extracted through 
harmonic balance simulations, under a voltage and current 
excitation, respectively, at the node/branch where the oscillator is 
connected to the coupled system. They are used to derive a 
nonlinear differential-equation system able to describe the 
transient dynamics of the entire structure. Because the oscillators 
are coupled through current injection, the impedance-based 
formulation is formally different from the admittance one, so it 
requires a dedicated derivation. For illustration, the method has 
been applied to exhaustively investigate the nonlinear dynamics of 
a system of three FET-based oscillators at 5 GHz. Very good 
agreement has been obtained with both circuit-level envelope 
transient (when applicable) and with measurements. 
 

Index Terms— Coupled-oscillator systems, transient analysis 

I. INTRODUCTION 
OUPLED-OSCILLATOR systems are used in a variety of 
applications, including power combination, beam steering, 

wireless distribution of synchronization signals and sensors 
[1]–[12]. However, the simulation of these systems is 
demanding. Time-domain analyses might not be applicable at 
microwave frequencies and harmonic balance (HB) requires the 
individual fulfillment of the oscillation condition in each 
oscillator circuit. This can be achieved by introducing one 
auxiliary generator (AG) [13], [14] in each oscillator element, 
so, in a system of 𝑀𝑀 coupled oscillators, 𝑀𝑀 oscillation 
conditions must be satisfied [15], given by the zero value of the 
current-to-voltage ratio at each of the introduced AGs, 𝑌𝑌𝐴𝐴𝐴𝐴 ,𝑖𝑖 =
0, where 𝑖𝑖 = 1 to 𝑀𝑀. In commercial software, this is solved 
through the simultaneous optimization of the AG amplitudes, 
phase shift, frequency and analysis parameter(s). However, and 
due to the lack of symmetry of the coupled system, convergence 
failures will arise from a certain number of oscillator elements 
[16]. On the other hand, the circuit-level envelope-transient 
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formulation [17]–[19] requires a proper initialization of each of 
the 𝑀𝑀 oscillator elements, and, in the presence of a high number 
𝑀𝑀 of elements, convergence problems may be encountered 
when one or more of these elements undergo strong amplitude 
and frequency variations, for instance, under unlocked 
conditions. In order to cope with the mentioned analysis 
problems, several previous works [15], [16], [20] propose the 
use of oscillator models extracted from a HB simulation of the 
standalone oscillator circuit. These models are based on the 
linearization of the admittance function 𝑌𝑌 of each oscillator 
about its standalone free-running oscillation, fulfilling 
𝑌𝑌(𝑉𝑉𝑜𝑜 ,𝜔𝜔𝑜𝑜) = 0. The linearization is carried out obtaining the 
free-running oscillation with the aid of an AG and then applying 
finite differences [13] to its amplitude and frequency about the 
free-running point.  

The above semi-analytical method has the advantage of 
enabling an efficient and realistic prediction of the behavior of 
practical systems of transistor-based oscillators. However, 
because the HB models are extracted linearizing the oscillator 
circuits about their free-running solutions (usually assumed 
equal), only periodic and modulated states with small amplitude 
and frequency deviations with respect to their original free-
running points can be simulated. Thus, the linearization 
severely limits the scope of application of the semi-analytical 
method, since it is unable to cover the oscillation build-up, as 
well as unlocked regimes or the behavior under the oscillator 
switching. Although the full nonlinear dynamics can be 
addressed with reduced-order models of the Van der Pol type 
[21], the accuracy of these models is usually insufficient when 
dealing with transistor-based oscillators, containing several 
nonlinearities and parasitic elements.  

The purpose of this work is to develop a realistic envelope-
domain formulation of coupled-oscillator systems, based on 
nonlinear reduced-order models of the oscillator elements. 
Unlike the linearization performed in [15], [16], [22], each 
oscillator model relies on a nonlinear admittance function, 
𝑌𝑌(𝑉𝑉,𝜔𝜔), that is extracted through a double sweep in the 
excitation amplitude 𝑉𝑉 and frequency 𝜔𝜔 of an AG, performing 
a HB simulation at each sweep step. The resulting set of bi-
variate nonlinear-admittance functions 𝑌𝑌𝑖𝑖(𝑉𝑉𝑖𝑖 ,𝜔𝜔𝑖𝑖) will be used 
to develop an envelope-domain formulation of the coupled 
system. This will be obtained by associating a time-

European Regional Development Fund (ERDF/FEDER) under the research 
project TEC2017-88242-C3-1-R. The authors are with Dpto. Ingeniería de 
Comunicaciones, Universidad de Cantabria., ETSIIT, Av. Los Castros 39005, 
Santander, Spain (e-mail: sanchosm@unican.es) 

Sergio Sancho, Member, IEEE, Almudena Suarez, Fellow, IEEE, Franco Ramirez, Senior Member, IEEE 

Envelope Domain Formulation for the Analysis 
of the Nonlinear Transient Dynamics of 

Coupled Oscillators 

C 



differentiation operator to the frequency dependence, as done in 
the circuit-level piecewise envelope transient  [17]–[19], [23]. 
This work expands [24], with a generalization of the oscillator 
modeling technique and a detailed exploration of the nonlinear 
dynamics of the coupled system. The generalized method 
should be applicable to transistor-based oscillators of arbitrary 
topology, and the reduced-order envelope-domain system 
should be able to predict both locked and unlocked states, as 
well as the build-up transients. This realistic and efficient 
analysis of the nonlinear dynamics of the coupled system is 
presented here for the first time, to the best of our knowledge.  

As stated, the nonlinear oscillator models are extracted from 
circuit-level HB, and, as any other HB simulation, the 
procedure may be subject to convergence problems. Most often, 
these problems come from the singularity of the Jacobian 
matrix of the HB system during the Newton iteration [19], [25]. 
As is well known in nonlinear-circuit analysis [26], [27], the 
singularities can be circumvented through a continuation 
method [26]–[28]. One of the most commonly used is the 
parameter switching [26], [27], based on switching the actual 
analysis parameter to a fast-varying state variable, and 
transforming the physical parameter into an unknown to be 
determined. In our model extraction, a conceptually analogous 
procedure would be to change the independent excitation from 
voltage to current. The current excitation leads to a nonlinear 
model of impedance type, depending on the excitation 
frequency and the current amplitude. However, the oscillators 
are coupled through current injection, so the impedance-based 
formulation requires a dedicated derivation, here presented for 
the first time. The possibility to use both admittance and 
impedance models generalizes the method and significantly 
increases its applicability. For illustration, the method has been 
used to exhaustively investigate the nonlinear dynamics of a 
system of three FET-based oscillators at 5 GHz. Very good 
agreement has been obtained with both circuit-level envelope 
transient (when applicable) and with measurements.  

The paper is organized as follows. Section II presents the 
coupled-system analysis based on admittance models. Section 
III describes the analysis based on impedance models. Section 
IV presents a detailed investigation of the dynamics of a system 
of coupled transistor-based oscillators.  

II. ENVELOPE-DOMAIN ANALYSIS BASED ON A NONLINEAR- 
ADMITTANCE FORMULATION 

A. System formulation 
The HB system governing the behavior of each free-running 

oscillator is written as: 

 𝐼𝐼(𝐴̅𝐴,𝑉𝑉,𝜙𝜙,𝜔𝜔) = 0, 

𝐻𝐻�(𝐴̅𝐴,𝑉𝑉,𝜙𝜙,𝜔𝜔) = 0 

(1a) 

(1b) 

Equation (1a) is the first harmonic equation of the Kirchhoff 
current law (KCL) at a particular observation node q, and 
system (1b) contains the rest of the HB equations. The variables 
(𝑉𝑉,𝜙𝜙) agree with the amplitude and phase of the first harmonic 
component of the voltage signal at the node q, whereas the 
vector 𝐴̅𝐴 contains the rest of the harmonics of the state variables 
and 𝜔𝜔 is the free-running oscillation frequency. Applying the 
implicit function theorem [13], the components in 𝐴̅𝐴 can be 

derived from equation (1b) in terms of (𝑉𝑉,𝜙𝜙,𝜔𝜔) and then 
introduced in (1a), obtaining 𝐼𝐼(𝑉𝑉,𝜔𝜔) = 𝑌𝑌(𝑉𝑉,𝜔𝜔)𝑉𝑉𝑒𝑒𝑗𝑗𝑗𝑗 = 0, 
where 𝑌𝑌(𝑉𝑉,𝜔𝜔) is the admittance function at q, calculated at the 
first harmonic. In practice, this function will be obtained 
connecting an AG in parallel at the node 𝑞𝑞 [Fig. 1(a)]. Then, a 
double sweep is carried out in the AG amplitude 𝑉𝑉 and 
frequency 𝜔𝜔, performing a HB simulation at each sweep step 
[29], [30]. The admittance function is calculated as:  

 
𝑌𝑌(𝑉𝑉,𝜔𝜔) =

𝐼𝐼1(𝑉𝑉𝐴𝐴𝐴𝐴 = 𝑉𝑉,𝜔𝜔𝐴𝐴𝐴𝐴 = 𝜔𝜔)
𝑉𝑉

 (2) 

where 𝐼𝐼1 is the first harmonic component of the current entering 
the node 𝑞𝑞 from the AG. Now the case of a system of 𝑀𝑀 coupled 
oscillators, such as the one shown in Fig. 1(b), will be 
considered. The oscillator components are assumed different, 
so a function 𝑌𝑌𝑖𝑖(𝑉𝑉𝑖𝑖 ,𝜔𝜔) will be derived for each i-th oscillator 
element. In each case, the observation node 𝑞𝑞𝑖𝑖 corresponds to 
the one at which the oscillator is connected to the coupling 
network. The schematic of the admittance-based system is 
shown in Fig. 1(b).  

 

(a) 

 

(b) 
Fig. 1. (a) Schematic of the circuit used to calculate the admittance function 
𝑌𝑌(𝑉𝑉,𝜔𝜔). (b) Schematic of the system of coupled oscillators indicating the 
variables used in the admittance-based formulation.  

To derive the differential-equation system, one will initially 
consider the steady-state system in a locked condition at the 
fundamental frequency 𝜔𝜔: 

𝑌𝑌𝑖𝑖(𝑉𝑉𝑖𝑖 ,𝜔𝜔)𝑋𝑋𝑖𝑖 + 𝜅𝜅𝑖𝑖 = 0, 𝜅𝜅𝑖𝑖 = �𝑌𝑌𝑖𝑖𝑖𝑖𝑐𝑐 (𝜔𝜔)
𝑀𝑀

𝑘𝑘=1

𝑋𝑋𝑘𝑘 = 0 (3) 

where 𝑖𝑖 = 1, … ,𝑀𝑀. In (3), each 𝑋𝑋𝑖𝑖 ≡ 𝑉𝑉𝑖𝑖𝑒𝑒𝑗𝑗𝜙𝜙𝑖𝑖  is the first 
harmonic of the voltage signal of each i-th oscillator at the node 
𝑞𝑞𝑖𝑖, and 𝜅𝜅𝑖𝑖 is the first harmonic of the current entering the 
coupling network. The current phasors 𝜅𝜅𝑖𝑖 have been expressed 
in terms of the admittance matrix of the linear coupling 
network, whose components are 𝑌𝑌𝑖𝑖𝑖𝑖𝑐𝑐 (𝜔𝜔). System (3) will be 
fulfilled in locked conditions at the frequency 𝜔𝜔 = 𝜔𝜔𝑠𝑠 for the 
values (𝑉𝑉𝑖𝑖 ,𝜙𝜙𝑖𝑖 ,𝜔𝜔𝑠𝑠) which, in general, will be different from 



those of the individual free-running oscillators (when isolated 
from the system).  

Now the transient of the coupled-oscillator system will be 
addressed. During this transient the amplitude and phase of 
each oscillator are time varying. The corresponding system is 
derived from (3) by modifying the frequency variable in the 
form 𝜔𝜔 → 𝜔𝜔𝑜𝑜 + 𝐷𝐷𝑡𝑡/𝑗𝑗 [23], where 𝐷𝐷𝑡𝑡  is the time-derivative 
operator and 𝜔𝜔𝑜𝑜 is the mean value of the free-running 
frequencies of the oscillators in the array, which is arbitrarily 
taken as fundamental frequency of the Fourier basis. Thus, we 
obtain the following system of nonlinear differential equations: 

𝑌𝑌𝑖𝑖 �𝑉𝑉𝑖𝑖(𝑡𝑡),𝜔𝜔𝑜𝑜 +
𝐷𝐷𝑡𝑡
𝑗𝑗
� 𝑋𝑋𝑖𝑖(𝑡𝑡) + �𝑌𝑌𝑖𝑖𝑖𝑖𝑐𝑐 �𝜔𝜔𝑜𝑜 +

𝐷𝐷𝑡𝑡
𝑗𝑗
� 𝑋𝑋𝑘𝑘(𝑡𝑡)

𝑛𝑛

𝑘𝑘=1

= 0, 

𝑖𝑖 = 1, … ,𝑀𝑀 

(4) 

We emphasize that, unlike the analyses [15], [16], [20], the 
nonlinear admittance functions 𝑌𝑌𝑖𝑖(𝑉𝑉𝑖𝑖 ,𝜔𝜔) in (4) are not 
linearized about the locked steady state. On the contrary, the 
nonlinear dependence of these functions on the amplitude 
variable will be used to predict the full transient dynamics. 

During the transient state, the time variation of the phasors 
𝑋𝑋𝑖𝑖(𝑡𝑡) is in general much slower than the time scale associated 
with the oscillation frequency 𝜔𝜔𝑜𝑜. Thus, these components are 
narrowband signals that can be expressed as [17]: 

 
𝑋𝑋𝑖𝑖(𝑡𝑡) = � 𝑋𝑋𝑖𝑖(𝜔𝜔)𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗𝑑𝑑𝑑𝑑, 𝑖𝑖 = 1, … ,𝑀𝑀

𝜔𝜔𝑏𝑏

−𝜔𝜔𝑏𝑏
 (5) 

where 𝜔𝜔𝑏𝑏 is the maximum bandwidth of the time-varying 
phasors. Using this result, the dependence of the admittance 
functions on the complex frequency can be approached by a 
first-order Taylor series, providing: 

𝑎𝑎0𝑖𝑖 (𝑉𝑉𝑖𝑖)𝑋𝑋𝑖𝑖(𝑡𝑡) + 𝑎𝑎1𝑖𝑖 (𝑉𝑉𝑖𝑖)𝑋̇𝑋𝑖𝑖(𝑡𝑡) + �𝑌𝑌𝑖𝑖𝑖𝑖𝑐𝑐 (𝜔𝜔𝑜𝑜)
𝑛𝑛

𝑘𝑘=1

𝑋𝑋𝑘𝑘(𝑡𝑡) = 0 (6) 

where: 

 
𝑎𝑎0𝑖𝑖 (𝑉𝑉𝑖𝑖) ≡ 𝑌𝑌𝑖𝑖(𝑉𝑉𝑖𝑖 ,𝜔𝜔𝑜𝑜),     𝑎𝑎1𝑖𝑖 (𝑉𝑉𝑖𝑖) ≡ −𝑗𝑗

𝜕𝜕𝑌𝑌𝑖𝑖(𝑉𝑉𝑖𝑖 ,𝜔𝜔𝑜𝑜)
𝜕𝜕𝜕𝜕

 (7) 

for 𝑖𝑖 = 1, … ,𝑀𝑀. Note that once the nonlinear admittance 
functions 𝑎𝑎0𝑖𝑖 (𝑉𝑉𝑖𝑖) are available, the derivatives 𝑎𝑎1𝑖𝑖 (𝑉𝑉𝑖𝑖) are 
extracted through finite differences in a straight-forward 
manner [30]. On the other hand, the frequency dependence of 
the linear coupling-network admittance matrix has been 
neglected, since its components remain nearly constant in the 
frequency range [𝜔𝜔𝑜𝑜 − 𝜔𝜔𝑏𝑏 ,𝜔𝜔𝑜𝑜 + 𝜔𝜔𝑏𝑏]. System (6) provides for 
the first time to our knowledge a set of nonlinear ODEs 
describing the transient behavior of a multi-oscillator system. 
In order to better understand the system dynamics, it is more 
illustrative to express the equation of each oscillator of (6) in 
terms of the phase and amplitude variables: 

       𝑎𝑎0𝑖𝑖 (𝑉𝑉𝑖𝑖)𝑉𝑉𝑖𝑖(𝑡𝑡) + 𝑎𝑎1𝑖𝑖 (𝑉𝑉𝑖𝑖)�𝑉̇𝑉𝑖𝑖(𝑡𝑡) + 𝑗𝑗𝑉𝑉𝑖𝑖(𝑡𝑡)𝜙̇𝜙𝑖𝑖(𝑡𝑡)� + 

        +�𝑌𝑌𝑖𝑖𝑖𝑖𝑐𝑐 (𝜔𝜔𝑜𝑜)
𝑛𝑛

𝑘𝑘=1

𝑉𝑉𝑘𝑘(𝑡𝑡)𝑒𝑒𝑗𝑗�𝜙𝜙𝑘𝑘(𝑡𝑡)−𝜙𝜙𝑖𝑖(𝑡𝑡)� = 0 
(8) 

for 𝑖𝑖 = 1, … ,𝑀𝑀. Each equation depends nonlinearly on the 
voltage amplitudes and phases through the functions 𝑎𝑎0,1

𝑖𝑖 (𝑉𝑉𝑖𝑖) 
and the exponential components, respectively. Splitting each 
complex equation in (8) into real and imaginary parts, the whole 
system can be rewritten in compact form as: 

 𝑦𝑦�̇(𝑡𝑡) = 𝑓𝑓̅ �𝑉𝑉�(𝑡𝑡),𝜙𝜙�(𝑡𝑡)� , 𝑦𝑦� = �𝑉𝑉
�
𝜙𝜙�� (9) 

where the set of state variables is composed of the components 
in the vectors 𝑉𝑉� = (𝑉𝑉1, … ,𝑉𝑉𝑀𝑀)𝑡𝑡 and 𝜙𝜙� = (𝜙𝜙1, … ,𝜙𝜙𝑀𝑀)𝑡𝑡. 
Expressing the first harmonic in terms of the phase and 
amplitude variables as 𝑉𝑉𝑖𝑖(𝑡𝑡)𝑒𝑒𝑗𝑗(𝜔𝜔𝑜𝑜𝑡𝑡+𝜙𝜙𝑖𝑖(𝑡𝑡)), it is seen that the 
instantaneous frequency of each i-th oscillator is 𝜔𝜔𝑜𝑜 + 𝜙̇𝜙𝑖𝑖(𝑡𝑡). 

The procedure to obtain system (9) is summarized as: 
1) Obtain the nonlinear admittance functions 𝑌𝑌𝑖𝑖(𝑉𝑉𝑖𝑖 ,𝜔𝜔) of the 
whole set of oscillators (𝑖𝑖 = 1, … ,𝑀𝑀) in circuit-level HB using 
the AG technique [29], [30] and build the functions 𝑎𝑎0𝑖𝑖 (𝑉𝑉𝑖𝑖) and 
𝑎𝑎1𝑖𝑖 (𝑉𝑉𝑖𝑖). 
2) Build the nonlinear system of ODEs (9) from these functions 
and use it to simulate the transient trajectories of the amplitude 
and phase of each oscillator of the array through time-
integration.  

From (8), it can be straightforwardly derived that: 

𝑓𝑓̅ �𝑉𝑉�(𝑡𝑡),𝜙𝜙�𝛼𝛼(𝑡𝑡)� = 𝑓𝑓̅ �𝑉𝑉�(𝑡𝑡),𝜙𝜙�(𝑡𝑡)� , ∀𝛼𝛼 ∈ ℛ (10) 

where 𝜙𝜙�𝛼𝛼(𝑡𝑡) ≡ (𝜙𝜙1 + 𝛼𝛼, … ,𝜙𝜙𝑛𝑛 + 𝛼𝛼)𝑡𝑡. This property shows 
that due to its autonomous nature, system (8) remains invariant 
under time shifts, resulting in a constant phase shift affecting all 
the oscillator elements. These kinds of systems are more 
sensitive to  numerical noise, which can distort the trajectory of 
the state variables 𝑦𝑦�(𝑡𝑡), so it is advisable [31] to use an implicit 
time-domain integration method, such as Backward-Euler. This 
improves the numerical stability of the simulated trajectory 
𝑦𝑦�(𝑡𝑡). Using Backward-Euler, system (9) is discretized as. 

 𝑦𝑦�(𝑡𝑡𝑘𝑘) − 𝑦𝑦�(𝑡𝑡𝑘𝑘−1)
𝑡𝑡𝑘𝑘 − 𝑡𝑡𝑘𝑘−1

= 𝑓𝑓̅ �𝑉𝑉�(𝑡𝑡𝑘𝑘),𝜙𝜙�(𝑡𝑡𝑘𝑘)� (11) 

The vector 𝑦𝑦�(𝑡𝑡𝑘𝑘) of state variables at each 𝑘𝑘-th iteration is 
calculated by solving system (11) through an optimization 
method, such as Newton-Raphson. In the simulation, the time 
steps Δ𝑡𝑡𝑘𝑘 = 𝑡𝑡𝑘𝑘 − 𝑡𝑡𝑘𝑘−1, 𝑘𝑘 = 1, … ,𝑃𝑃 must be small enough to 
capture the dynamic variation of the envelopes 𝑦𝑦�(𝑡𝑡). A 
discussion on the initial conditions is given later in this 
subsection.  

Note that using this formulation, the system of 𝑀𝑀 coupled 
oscillators is modeled with system (11) of 𝑀𝑀 nonlinear complex 
equations, which reduces noticeably the computational cost 
when compared with the circuit-level envelope transient 
system, especially for a high number 𝑀𝑀 of oscillator elements. 
In contrast with the circuit-level envelope transient technique, 
system (11) is not subject to uncertainties regarding the start-up 
of the oscillator elements. This is seen as follows. If the 
coupling currents entering the 𝑖𝑖-th oscillator is set to zero (𝜅𝜅𝑖𝑖 =
0), the oscillators operate under free-running conditions, and 
system (8) simplifies to: 

 𝑎𝑎0𝑖𝑖 (𝑉𝑉𝑖𝑖)𝑉𝑉𝑖𝑖(𝑡𝑡) + 𝑎𝑎1𝑖𝑖 (𝑉𝑉𝑖𝑖)�𝑉̇𝑉𝑖𝑖(𝑡𝑡) + 𝑗𝑗𝑉𝑉𝑖𝑖(𝑡𝑡)𝜙̇𝜙𝑖𝑖(𝑡𝑡)� = 0 (12) 



for 𝑖𝑖 = 1, … ,𝑀𝑀. Following the same procedure as in [30], a 
single equation describing the dynamics of the amplitude 
variable 𝑉𝑉𝑖𝑖 (of each oscillator) can derived from each complex 
equation in (12), obtaining: 

   𝑉̇𝑉𝑖𝑖(𝑡𝑡) = 𝑔𝑔𝑖𝑖(𝑉𝑉𝑖𝑖), 

  𝑔𝑔𝑖𝑖(𝑉𝑉) = −
𝑅𝑅𝑅𝑅 𝑎𝑎0𝑖𝑖 (𝑉𝑉)𝑅𝑅𝑅𝑅 𝑎𝑎1𝑖𝑖 (𝑉𝑉) + 𝐼𝐼𝐼𝐼 𝑎𝑎0𝑖𝑖 (𝑉𝑉)𝐼𝐼𝐼𝐼 𝑎𝑎1𝑖𝑖 (𝑉𝑉)

�𝑎𝑎1𝑖𝑖 (𝑉𝑉)�2
𝑉𝑉 

(13) 

where 𝑅𝑅𝑅𝑅, 𝐼𝐼𝐼𝐼 denote real and imaginary parts, respectively. 
Making use of expression (13), the condition for the dc solution 
of each 𝑖𝑖-th oscillator to be unstable is 𝑔𝑔𝑖𝑖′(0) > 0, which agrees 
with the oscillation start-up condition [23], [30]. Since equation 
(13) is one-dimensional, there always exists an interval 𝐼𝐼 of 𝑉𝑉𝑖𝑖 
values in the neighborhood of 𝑉𝑉𝑖𝑖 = 0 that belong to the unstable 
manifold of the dc solution. Then, any initial condition 
𝑉𝑉𝑖𝑖(𝑡𝑡0 = 0) ∈ 𝐼𝐼 will lead the trajectory of system (11) towards 
the oscillating solution, provided the time steps Δ𝑡𝑡𝑘𝑘 take 
reasonable values. This property remains when introducing 
each 𝑖𝑖-th oscillator in the coupled system, where the coupling 
currents 𝜅𝜅𝑖𝑖 are activated. This is because, under weak-coupling 
conditions [𝑌𝑌𝑖𝑖𝑖𝑖𝑐𝑐 (𝜔𝜔𝑜𝑜) ≪ 𝑌𝑌𝑖𝑖(0,𝜔𝜔0)], each 𝜅𝜅𝑖𝑖 is a small-amplitude 
current that, in the neighborhood of the dc solution (𝑉𝑉𝑖𝑖 ≃ 0, 𝑖𝑖 =
1, … ,𝑀𝑀 ), behaves as a second order perturbation, as derived 
from (3). 

B. Application examples 
The new analysis method will be illustrated through its 

application to two different coupled-oscillator systems. One is 
based on simple Van der Pol oscillators, which will facilitate 
the comparison with circuit-level envelope-transient 
simulations. The other is composed of FET-based oscillators, 
and the results will be compared with experimental 
measurements. 
1) Van der Pol oscillators 

Initially, the system composed of 𝑀𝑀 = 3 coupled oscillators 
of the Van der Pol type, shown in Fig. 2, will be considered. 
The schematic of each oscillator is shown in Fig. 3. It is 
composed of an RLC resonator in parallel with a nonlinear 
voltage-controlled current source, exhibiting negative 
resistance in small signal. The oscillators are coupled through 
resistively loaded microstrip lines (width = 0.28 mm, length = 
33.9 mm) [32]. The admittance matrix of the 𝑛𝑛 −port coupling 
network is calculated in commercial software, providing the 
coupling terms 𝑌𝑌𝑖𝑖𝑖𝑖𝑐𝑐 (𝜔𝜔𝑜𝑜). Note that since the array is 
unidimensional, the coupling terms of non-adjacent ports 
vanish, obtaining 𝑌𝑌𝑖𝑖𝑖𝑖𝑐𝑐 (𝜔𝜔𝑜𝑜) = 0 for |𝑖𝑖 − 𝑘𝑘| > 1. As a result, the 
equations of each oscillator in (8) and (19) are explicitly 
coupled to the adjacent ones only.  

The free-running frequency of each i-th oscillator can be 
tuned by means of the capacitor 𝐶𝐶𝑖𝑖. Two qualitatively different 
cases have been considered. In the first case, the capacitances 
of the three oscillators are set to the same value: 𝐶𝐶𝑖𝑖 = 10 pF, 
𝑖𝑖 = 1,2,3, corresponding to the free-running frequency 𝜔𝜔𝑜𝑜 ≈
2𝜋𝜋 ∙ 1.6 GHz. Therefore, the functions 𝑎𝑎0𝑖𝑖 (𝑉𝑉𝑖𝑖) and 𝑎𝑎1𝑖𝑖 (𝑉𝑉𝑖𝑖) are 
identical for the three oscillators. These functions have been 
identified through the HB simulation of a single oscillator 
isolated from the system, following the procedure described in 

[30]. Then, the transient trajectories of the amplitude and phase 
variables of each oscillator have been calculated by integrating 
system (9). The initial conditions for the amplitude and phase 
variables have been respectively set near zero (𝑉𝑉𝑖𝑖 =
0.01 𝑉𝑉,   𝑖𝑖 = 1,2,3), and zero (𝜙𝜙𝑖𝑖 = 0,   𝑖𝑖 = 1,2,3). The 
simulation results are shown in Fig. 4. As can be seen, the 
amplitude and phase trajectories go through a transient state of 
duration 𝑡𝑡𝑠𝑠 ≈ 30 ns. Once the steady state is reached, the 
amplitude components become constant, whereas the time 
variation of the phase components exhibit the same constant 
slope 𝜙̇𝜙1 = 𝜙̇𝜙2 = 𝜙̇𝜙3 = Δ𝜔𝜔, providing a common instantaneous 
frequency 𝜔𝜔𝑜𝑜 + Δ𝜔𝜔. This scenario corresponds to a locked 
solution at the frequency 𝜔𝜔𝑠𝑠 = 𝜔𝜔𝑜𝑜 + Δ𝜔𝜔. In the same figures, 
the simulation of the same coupled system through circuit-level 
envelope transient with 7 harmonics in commercial software 
has been superimposed, with very good agreement. 

 

Fig. 2.  Schematic of the system of 𝑀𝑀 = 3 coupled oscillators. The oscillators 
are coupled through resistively loaded microstrip lines (width=0.28 mm, 
length=33.9 mm) 

 

Fig. 3. Schematic of the Van der Pol oscillator. The circuit parameter values are 
𝑎𝑎 = −0.03 Ω−1, 𝑏𝑏 = 0.01 A/V3, 𝐿𝐿 = 1 nH, 𝑅𝑅 = 50 Ω.  

          New technique     ∙  Envelope transient 

 
       (a) 

 
  (b) 

Fig. 4.  System of three coupled Van der Pol oscillators. Locked case, with 𝐶𝐶𝑖𝑖 =
10 pF, 𝑖𝑖 = 1,2,3. (a) Amplitude trajectories. (b) Phase trajectories 

In the second case, the capacitances of the three oscillators 
have been set to 𝐶𝐶1,3 = 11 pF, 𝐶𝐶2 = 10 pF. This is a scenario 
in which the admittance functions 𝑌𝑌𝑖𝑖(𝑉𝑉𝑖𝑖 ,𝜔𝜔) (𝑖𝑖 = 1,2,3) are not 
equal. In this case, as can be seen in Fig. 5(b), the instantaneous 
frequencies of the outermost oscillators 𝜔𝜔𝑜𝑜 + 𝜙̇𝜙1,3 are different 
from the central one 𝜔𝜔𝑜𝑜 + 𝜙̇𝜙2. Thus, this capacitor selection 
leads the system to an unlocked state. The different oscillation 
frequencies existing in the coupled systems make the amplitude 
and phase variables exhibit an oscillatory behavior [see Fig. 
5(a)]. As in the previous case, the results show an excellent 



agreement with those obtained with circuit-level envelope 
transient, superimposed in the figure. 

          New technique     ∙  Envelope transient 

 
       (a)  

    (b) 
Fig. 5.  System of three coupled Van der Pol oscillators. Unlocked case, with 
𝐶𝐶1,3 = 11 pF, 𝐶𝐶2 = 10 pF. (a) Amplitude trajectories. (b) Phase trajectories. 

2) Transistor-based oscillators 
The formulation has also been applied to a system of three 

FET-based oscillators that share the same topology, as shown 
in Fig. 6(a). Each oscillator is designed using a field-effect 
transistor (NE3210S01) on a RO4003C substrate. A varactor 
diode (SMV1233) is used as a tuning element with the dc 
voltage 𝜂𝜂𝑖𝑖, 𝑖𝑖 = 1,2,3. The coupled system is shown in Fig. 6(b)-
(c). The observation node q of each oscillator agrees with the 
output node, where a resistance 𝑅𝑅𝑜𝑜 = 50 Ω is connected in 
parallel with the coupling network.  

The bivariate nonlinear admittance function is obtained 
through a double sweep in amplitude and frequency, in the 
intervals 𝑉𝑉𝑖𝑖 ∈ [10−4, 1.2] V, 𝑓𝑓 ∈ [5,5.12] GHz,  The build-up 
transient to a locked solution of the coupled system is shown in 
Fig. 7, where it is compared with circuit-level envelope-
transient simulations and with experimental measurements. 
These measurements are carried out connecting the oscillator 
output signal to a Keysight Infiniium 90804A oscilloscope. The 
photograph of the measurement set-up is shown in Fig. 6(d). 
The oscillation start-up is triggered at 𝑡𝑡 = 0 by an ON/OFF 
signal applied to the drain bias voltage of the oscillators. As can 
be seen, there is a good agreement. However, the original sweep 
in the bivariate function does not allow the efficient prediction 
of build-up transients and unlocked states with large amplitude 
and frequency excursions. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 6. Coupled-oscillator system using FET-based oscillators. (a) Schematic of 
the FET-based oscillator. (b) Schematic of the coupled system. (c) Photograph 
of implemented system. (d) Measurement set-up. 

 

Fig. 7.  System of three coupled FET oscillators. Here shown is the measured 
output voltage of the oscillator 𝑖𝑖 = 1 when evolving to the locked case, with 
𝜂𝜂1,3 = 2.095 V, 𝜂𝜂2 = 2 V. The amplitude transient trajectories that are 
simulated with systems (9) and (20), and with the envelope transient technique, 
are superimposed. 



III. ENVELOPE-DOMAIN ANALYSIS BASED ON A NONLINEAR- 
IMPEDANCE FORMULATION 

A. Motivation 
As will be shown, the impedance-based oscillator models 

extend the applicability of the nonlinear envelope-domain 
analysis of the coupled system. As is well known, HB is a 
numerical method based on error minimization, which may fail 
to converge in particular circuits. This is often preceded by a 
stepping procedure, in which the analysis parameter (which 
may be a simple level coefficient applied to the input sources) 
undergoes multiple reductions without ever reaching the 
desired value. The failure is due to the singularity of the 
Jacobian matrix of the HB system. Geometrically, this 
singularity implies an infinite slope of the solution curve versus 
the analysis parameter, which explains why the parameter 
stepping is unable to cope with the problem  [26]–[28]. In in-
house software, it is circumvented through the implementation 
of complementary continuation methods. One of the most 
commonly used is parameter switching, based on switching the 
actual analysis parameter to a fast-varying state variable, and 
transforming the physical parameter into an unknown to be 
determined. This parameter switching leads to a structural 
change in the Jacobian matrix that avoids the singularity.  

As in any other HB simulation, the procedure to obtain the 
nonlinear oscillator models may be subject to convergence 
problems of the kind described in the previous paragraph. In 
fact, both the real and imaginary parts of the admittance 
functions constitute surfaces in the spaces defined by 𝑉𝑉,𝜔𝜔 and 
these real and imaginary parts. The singularity of the Jacobian 
matrix for some pairs of values 𝑉𝑉,𝜔𝜔  would lead to a folding of 
the surfaces. This can be seen in Fig. 8, where the real and 
imaginary parts of the admittance function 𝑌𝑌(𝑉𝑉,𝜔𝜔) of the 
oscillator in Fig. 6(a) evaluated at the output node, have been 
represented versus V and ω.  

As can be seen, the admittance function 𝑌𝑌(𝑉𝑉,𝜔𝜔) of Fig. 8 is 
folded and thus multivalued in a small interval of 𝑉𝑉 values. Due 
to the folding, a double sweep in the parameters (𝑉𝑉,𝜔𝜔) does not 
provide all the points of the surface, which will prevent the 
simulation of complex regimes, with relatively large excursions 
of amplitude and frequency. To circumvent this situation, one 
can change the excitation signal from the voltage 𝑉𝑉, used to 
extract the admittance-type model, to a current 𝐼𝐼, which will 
provide an impedance-type model 𝑍𝑍(𝐼𝐼,𝜔𝜔). This is conceptually 
equivalent to the parameter switching used in in-house HB. 
Thus, the goal has been to develop an alternative impedance-
based formulation, which should be able to increase the scope 
of application of the new methodology. 

 

 

(a) 

 

(b) 

Fig. 8. Real (a) and imaginary (b) parts of the function 𝑌𝑌(𝑉𝑉, 𝑓𝑓), with 𝑓𝑓 = 𝜔𝜔/2𝜋𝜋. 
There exists a small interval of 𝑉𝑉 values inside [0.6,0.8] V where 𝑌𝑌(𝑉𝑉, 𝑓𝑓) is 
multivalued. The varactor diode tuning voltage is 𝜂𝜂 = 2 V. 

B. Impedance-based formulation 
In the impedance-based formulation, each oscillator is 

modelled in terms of a nonlinear impedance function 𝑍𝑍𝑁𝑁 
containing the active device, in series with a linear impedance 
function 𝑍𝑍𝐿𝐿(𝜔𝜔), as shown in Fig. 9. The partitioning into 𝑍𝑍𝑁𝑁 
and 𝑍𝑍𝐿𝐿(𝜔𝜔) is carried out taking as a reference the node where 
the oscillator will be connected to the coupled system. As will 
be shown in the next section, the passive linear impedance 
function 𝑍𝑍𝐿𝐿(𝜔𝜔), usually corresponding to the oscillator load or 
a simple resonant circuit, can be easily calculated through an 
AC simulation. The HB system describing each single oscillator 
can be written as: 

 𝑍𝑍(𝐴̅𝐴′, 𝐼𝐼,𝜔𝜔)𝐼𝐼𝑒𝑒𝑗𝑗𝑗𝑗 = 0, 

𝐻𝐻�′(𝐴̅𝐴′, 𝐼𝐼,𝜑𝜑,𝜔𝜔) = 0 

(14a) 

(14b) 

where 𝑍𝑍(𝐴̅𝐴′, 𝐼𝐼,𝜔𝜔) ≡ 𝑍𝑍𝑁𝑁(𝐴̅𝐴′, 𝐼𝐼,𝜔𝜔) + 𝑍𝑍𝐿𝐿(𝜔𝜔) will be called the 
total impedance function. Equation (14a) is the first harmonic 



equation of the Kirchhoff voltage law (KVL) at the closed 
branch and system (10b) contains the rest of the HB equations. 
The variables (𝐼𝐼,𝜑𝜑) agree with the amplitude and phase of the 
first harmonic component of the current through the closed 
branch, whereas the vector 𝐴̅𝐴′ contains the rest of the harmonics 
of the state variables. Applying the implicit function theorem, 
the components in 𝐴𝐴′�  can be derived from equation (14b) in 
terms of (𝐼𝐼,𝜑𝜑,𝜔𝜔) and then introduced in (14a), obtaining the 
equation [𝑍𝑍𝑁𝑁(𝐼𝐼,𝜔𝜔) + 𝑍𝑍𝐿𝐿(𝜔𝜔)]𝐼𝐼𝑒𝑒𝑗𝑗𝑗𝑗 = 𝑍𝑍(𝐼𝐼,𝜔𝜔)𝐼𝐼𝑒𝑒𝑗𝑗𝑗𝑗 = 0 that 
models the free-running oscillator. 

 

Fig. 9. Schematic of each oscillator in the system when using the impedance-
based formulation. The linear impedance function 𝑍𝑍𝐿𝐿(𝜔𝜔) corresponding to a 
passive linear block, can be easily calculated through an AC simulation, usually 
corresponding to the oscillator load or a simple resonant circuit. 

The total impedance function 𝑍𝑍(𝐼𝐼,𝜔𝜔) can be calculated using 
circuit-level HB following the procedure schematized in Fig. 
10. A two-terminal network is introduced between the two parts 
of the oscillator circuit. This network is composed of a single-
tone current source with amplitude 𝐼𝐼𝐴𝐴𝐴𝐴, phase zero and 
frequency 𝜔𝜔𝐴𝐴𝐴𝐴 , in parallel with an ideal band stop filter of 
impedance 𝑍𝑍𝑓𝑓(𝜔𝜔) = 𝛿𝛿(𝜔𝜔 − 𝜔𝜔𝐴𝐴𝐴𝐴). Then, the circuit of Fig. 10 
is simulated in circuit-level HB, applying a double sweep in the 
amplitude 𝐼𝐼𝐴𝐴𝐴𝐴  and frequency 𝜔𝜔𝐴𝐴𝐴𝐴 , and extracting the total 
impedance function as: 

 
𝑍𝑍(𝐼𝐼,𝜔𝜔) =

𝑉𝑉𝐴𝐴𝐴𝐴(𝐼𝐼𝐴𝐴𝐴𝐴 = 𝐼𝐼,𝜔𝜔𝐴𝐴𝐴𝐴 = 𝜔𝜔)
𝐼𝐼

 (15) 

where 𝑉𝑉𝐴𝐴𝐴𝐴  is the first harmonic of the voltage signal 𝑣𝑣𝐴𝐴𝐴𝐴 .  

 

Fig. 10. Schematic of the circuit used to obtain the total impedance function 
𝑍𝑍(𝐼𝐼,𝜔𝜔).  

Once the total impedance function 𝑍𝑍𝑖𝑖(𝐼𝐼𝑖𝑖 ,𝜔𝜔) of each i-th 
oscillator has been obtained, it can be used to build the 
formulation of the coupled system in the following way. The 
associated block impedances, 𝑍𝑍𝑁𝑁𝑖𝑖 (𝐼𝐼𝑖𝑖 ,𝜔𝜔) and 𝑍𝑍𝐿𝐿𝑖𝑖 (𝜔𝜔), are 
connected to the node 𝑞𝑞𝑖𝑖 of each oscillator. The model of the 
coupled system will be derived by making use of the variables 
(𝑈𝑈𝑖𝑖 ,𝑋𝑋𝑖𝑖 , 𝜅𝜅𝑖𝑖), 𝑖𝑖 = 1, … ,𝑀𝑀, corresponding to the first harmonic 
components of the current entering the nonlinear elements 𝑍𝑍𝑁𝑁𝑖𝑖 , 

the voltage at the node 𝑞𝑞𝑖𝑖, and the current entering the coupling 
network, respectively.  

 

Fig. 11. Schematic of the system of coupled oscillators using the impedance-
based formulation. 

In the first place, the model of each free-running oscillator 
will be obtained. According to the schematic of Fig. 11, the 
KVL equation of each i-th oscillator is given by: 

𝑍𝑍𝑁𝑁𝑖𝑖 𝑈𝑈𝑖𝑖 + 𝑍𝑍𝐿𝐿𝑖𝑖 (𝜔𝜔)(𝑈𝑈𝑖𝑖 + 𝜅𝜅𝑖𝑖) = 𝑍𝑍𝑖𝑖(𝐼𝐼𝑖𝑖 ,𝜔𝜔)𝑈𝑈𝑖𝑖 + 𝑍𝑍𝐿𝐿𝑖𝑖 (𝜔𝜔)𝜅𝜅𝑖𝑖 = 0 (16) 

As in the admittance-based formulation, the current phasors 
entering the coupling network will be expressed in terms of the 
admittance matrix of the network: 

 
𝜅𝜅𝑖𝑖 = �𝑌𝑌𝑖𝑖𝑖𝑖𝑐𝑐

𝑛𝑛

𝑘𝑘=1

𝑋𝑋𝑘𝑘 = �𝑌𝑌𝑖𝑖𝑖𝑖𝑐𝑐
𝑛𝑛

𝑘𝑘=1

𝑍𝑍𝑁𝑁𝑘𝑘(𝐼𝐼𝑘𝑘 ,𝜔𝜔)𝑈𝑈𝑘𝑘 (17) 

Now, introducing (17) in (16), the following system of 
frequency-domain equations is obtained: 

𝑍𝑍𝑖𝑖(𝐼𝐼𝑖𝑖 ,𝜔𝜔)𝑈𝑈𝑖𝑖 + �𝐶𝐶𝑖𝑖𝑘𝑘(𝐼𝐼𝑘𝑘 ,𝜔𝜔)𝑈𝑈𝑘𝑘

𝑛𝑛

𝑘𝑘=1

= 0, 

𝐶𝐶𝑖𝑖𝑘𝑘(𝐼𝐼𝑘𝑘 ,𝜔𝜔) ≡ 𝑌𝑌𝑖𝑖𝑖𝑖𝑐𝑐 𝑍𝑍𝐿𝐿𝑖𝑖 (𝜔𝜔)�𝑍𝑍𝑖𝑖(𝐼𝐼𝑘𝑘 ,𝜔𝜔) − 𝑍𝑍𝐿𝐿𝑖𝑖 (𝜔𝜔). � 

(18) 

with 𝑖𝑖 = 1, … ,𝑀𝑀. Equations (18) model the system of coupled 
oscillators in terms of the current phasors 𝑈𝑈� = (𝑈𝑈1, … ,𝑈𝑈𝑀𝑀). 
The system of equations governing the system dynamics during 
the transient state can be obtained from (18) applying the 
procedure followed in (3)-(6), obtaining: 

𝑍𝑍𝑖𝑖(𝐼𝐼𝑖𝑖(𝑡𝑡),𝜔𝜔0)𝑈𝑈𝑖𝑖 − 𝑗𝑗
𝜕𝜕𝜕𝜕𝑖𝑖(𝐼𝐼𝑖𝑖(𝑡𝑡),𝜔𝜔0)

𝜕𝜕𝜕𝜕
𝑈̇𝑈𝑖𝑖 + 

+��𝐶𝐶𝑖𝑖𝑘𝑘(𝐼𝐼𝑘𝑘(𝑡𝑡),𝜔𝜔0)𝑈𝑈𝑘𝑘 − 𝑗𝑗
𝜕𝜕𝐶𝐶𝑖𝑖𝑘𝑘(𝐼𝐼𝑘𝑘(𝑡𝑡),𝜔𝜔0)

𝜕𝜕𝜕𝜕
𝑈̇𝑈𝑘𝑘�

𝑛𝑛

𝑘𝑘=1

= 0 
(19) 

where 𝑖𝑖 = 1, … ,𝑀𝑀 and, as in the admittance-based formulation, 
𝜔𝜔𝑜𝑜 is the mean value of the free-running frequencies of the 
oscillators in the array. Splitting each complex equation in (19) 
into real and imaginary parts, the whole system can be rewritten 
in compact form as an autonomous system: 

 𝑈𝑈�̇(𝑡𝑡) = 𝑔̅𝑔�𝑈𝑈�(𝑡𝑡)�, 𝑢𝑢� ≡ �𝑈𝑈�
𝑟𝑟

𝑈𝑈�𝑖𝑖
� (20) 

where 𝑈𝑈�𝑟𝑟  and 𝑈𝑈�𝑖𝑖 are the vectors containing the real and 
imaginary parts of the current phasors in 𝑈𝑈�(𝑡𝑡).  

The procedure to obtain system (20) is summarized as: 



1) Obtain the total impedance functions 𝑍𝑍𝑖𝑖(𝐼𝐼𝑖𝑖 ,𝜔𝜔) of each i-th 
oscillator in circuit-level HB using the two-terminal network of 
Fig. 10. 
2) Calculate the functions 𝑍𝑍𝐿𝐿𝑖𝑖 (𝜔𝜔) of each i-th oscillator through 
an AC simulation.  
3) Build nonlinear system of ODEs (20) from these functions 
and use it to simulate the transient trajectories of the state 
variables 𝑈𝑈�(𝑡𝑡) through time integration. 

As in the case of the admittance-based formulation, the 
impedance-based formulation describes the system of 𝑀𝑀 
coupled oscillators with a system of 𝑀𝑀 nonlinear complex 
ODEs, which will be solved in the form (11). This noticeably 
reduces the computational cost in comparison with the circuit-
level envelope transient, especially in the case of a high number 
𝑀𝑀 of oscillator elements. As in the case of the admittance-based 
model, system (20) is not subject to uncertainties regarding the 
start-up of the oscillator elements, for the same reasons 
provided at the end of Section II-A. 

 

Fig. 12.  Schematic of the FET-based oscillator, showing the 𝑍𝑍𝐿𝐿 and 𝑍𝑍𝑁𝑁 blocks. 

C. Application to the system of three FET-based coupled 
oscillators. 

To apply the impedance-based formulation to the oscillator 
in Fig. 6(a), this circuit is divided into two parts as shown in 
Fig. 12: The nonlinear part that contains the active device, 
providing the impedance function 𝑍𝑍𝑁𝑁𝑖𝑖 (𝐼𝐼𝑖𝑖 ,𝜔𝜔), and the linear part, 
providing the impedance 𝑍𝑍𝐿𝐿𝑖𝑖 (𝜔𝜔). All the oscillators contain the 
same linear impedance function 𝑍𝑍𝐿𝐿(𝜔𝜔) ≡ 𝑍𝑍𝐿𝐿𝑖𝑖 (𝜔𝜔), whereas the 
nonlinear impedances can be different, depending on the tuning 
and bias voltages. In the present analysis, the tuning voltage 𝜂𝜂𝑖𝑖 
has been taken as a parameter. Then, the nonlinear impedance 
function of each i-th oscillator will be denoted as 𝑍𝑍𝑁𝑁𝑖𝑖 (𝐼𝐼𝑖𝑖 ,𝜔𝜔) =
𝑍𝑍𝑁𝑁(𝐼𝐼𝑖𝑖 ,𝜔𝜔, 𝜂𝜂𝑖𝑖), where the function itself 𝑍𝑍𝑁𝑁(𝐼𝐼,𝜔𝜔, 𝜂𝜂) is common to 
the three oscillators. The total impedance function of each 
oscillator is then given by a common function that will be 
expressed as: 

 𝑍𝑍𝑖𝑖 = 𝑍𝑍(𝐼𝐼𝑖𝑖 ,𝜔𝜔, 𝜂𝜂𝑖𝑖) = 𝑍𝑍𝐿𝐿(𝜔𝜔) + 𝑍𝑍𝑁𝑁(𝐼𝐼𝑖𝑖 ,𝜔𝜔, 𝜂𝜂𝑖𝑖) (21) 

This function is built by obtaining the function 𝑍𝑍(𝐼𝐼,𝜔𝜔) 
through the procedure described in Section II-B for a collection 
of 𝑃𝑃 values of 𝜂𝜂. Then, function (21) is evaluated through linear 
interpolation in the set of 𝜂𝜂 values. In this subsection, in order 
to provide a formulation able to simulate the system behavior 
under small variations of the tuning voltages 𝜂𝜂𝑖𝑖, a collection of 

𝑃𝑃 = 2 tuning values (𝜂𝜂0 − Δ𝜂𝜂, 𝜂𝜂0 + Δ𝜂𝜂), with 𝜂𝜂0 = 2 V and 
Δ𝜂𝜂 = 0.1 V, has been chosen. This provides a linear 
dependence of the function 𝑍𝑍(𝐼𝐼𝑖𝑖 ,𝜔𝜔, 𝜂𝜂𝑖𝑖) on the tuning voltage 𝜂𝜂𝑖𝑖: 

𝑍𝑍(𝐼𝐼𝑖𝑖 ,𝜔𝜔, 𝜂𝜂𝑖𝑖) = 𝑍𝑍(𝐼𝐼𝑖𝑖 ,𝜔𝜔, 𝜂𝜂0) + 

      +
𝑍𝑍(𝐼𝐼𝑖𝑖 ,𝜔𝜔, 𝜂𝜂0 + Δ𝜂𝜂) − 𝑍𝑍(𝐼𝐼𝑖𝑖 ,𝜔𝜔, 𝜂𝜂0 − Δ𝜂𝜂)

2Δ𝜂𝜂
(𝜂𝜂𝑖𝑖 − 𝜂𝜂0) 

(22) 

To show the regular behavior of the impedance surface, Fig. 
13 provides the real and imaginary parts of the total impedance 
function 𝑍𝑍(𝐼𝐼,𝜔𝜔) for the same tuning voltage 𝜂𝜂 = 2 V as in the 
analysis of Fig. 8. As can be seen, the use of the impedance-
based formulation avoids the multivalued behavior in all the 
expected excursion of the current amplitude during its transient 
dynamics. 

 

(a) 

 

(b) 

Fig. 13. Real (a) and imaginary (b) parts of the function 𝑍𝑍(𝐼𝐼,𝑓𝑓), with 𝑓𝑓 =
𝜔𝜔/2𝜋𝜋. The use of the impedance-based formulation avoids the multivalued 
behavior in all the range of current amplitude values used in the analysis. The 
varactor diode tuning voltage is 𝜂𝜂 = 2 V. 

In the first analysis, the tuning values 𝜂𝜂1,3 = 2.1 V, 𝜂𝜂2 = 2 
V have been used. The initial conditions for the current 
variables of system (20) have been set to 𝑈𝑈𝑖𝑖𝑟𝑟 = 𝑈𝑈𝑖𝑖𝑖𝑖 = 0.1 mA, 



for 𝑖𝑖 = 1,2,3. The fundamental frequency used in the 
simulation of system (19) is 𝑓𝑓0 = 5.07 GHz, given by the mean 
value of the free-running frequencies of the three oscillators. 
The transient evolution to the steady state of the amplitudes 
𝐼𝐼𝑖𝑖(𝑡𝑡) of the current phasors, calculated through system (20), are 
shown in Fig. 14. As can be seen, the system evolves towards a 
locked state after a transient of duration 𝑡𝑡𝑠𝑠 ≈ 14 ns, where the 
amplitude variables become constant. As in the previous 
analysis, the results have been validated with the envelope 
transient technique. 

 

Fig. 14.  System of three coupled FET oscillators: transient to the locked state. 
Simulated amplitude trajectories for the locked case, with 𝜂𝜂1,3 = 2.1 V, 𝜂𝜂2 = 2 
V. The results of the envelope-transient simulation are superimposed. 

In the second analysis, the three tuning voltages have been 
equated to the value 𝜂𝜂1,2,3 = 2 V. The simulation results are 
shown in Fig. 15, where an unlocked state is observed. The 
transient duration is similar to the one in the locked case, and 
both the new technique and the envelope transient show a 
similar oscillatory behavior. Note that, in this case, each 
oscillator exhibits a different oscillation frequency, yielding a 
beat frequency that constitutes a system unknown. The small 
discrepancies in these beat frequencies give rise to a slightly 
larger discrepancy between the semi-analytical formulation and 
the circuit level simulation than in the case of the injection-
locked regime in Fig. 14. 

 

Fig. 15.  System of three coupled FET oscillators: transient to the unlocked 
state. Simulated amplitude trajectories for the unlocked case, with 𝜂𝜂1 = 𝜂𝜂2 =
𝜂𝜂3 = 2 V. The results of the envelope-transient simulation are superimposed. 

Finally, the transient trajectory of the amplitude of the 
oscillator 𝑖𝑖 = 1 has been measured when evolving to the locked 
case of Fig. 7. Since the oscilloscope provides the output 
voltage signals, these variables have been extracted from the 
simulation results in the following way. Once system (20) has 
been solved through numerical integration, the output voltage 
phasor of each i-th oscillator can be calculated from the current 
phasor 𝑈𝑈𝑖𝑖(t) as: 

          𝑋𝑋𝑖𝑖(𝑡𝑡) = 𝑍𝑍𝑁𝑁𝑖𝑖 (𝐼𝐼𝑖𝑖(𝑡𝑡),𝜔𝜔0, 𝜂𝜂𝑖𝑖)𝑈𝑈𝑖𝑖(𝑡𝑡)    

                                            −𝑗𝑗
𝜕𝜕𝑍𝑍𝑁𝑁𝑖𝑖 (𝐼𝐼𝑖𝑖(𝑡𝑡),𝜔𝜔, 𝜂𝜂0)

𝜕𝜕𝜕𝜕
𝑈̇𝑈𝑖𝑖(𝑡𝑡), 

(23) 

where 𝑍𝑍𝑁𝑁𝑖𝑖 (𝐼𝐼𝑖𝑖(𝑡𝑡),𝜔𝜔0, 𝜂𝜂𝑖𝑖) = 𝑍𝑍𝑖𝑖(𝐼𝐼𝑖𝑖(𝑡𝑡),𝜔𝜔0, 𝜂𝜂𝑖𝑖) − 𝑍𝑍𝐿𝐿𝑖𝑖 (𝜔𝜔0). The 
measured transient to the locked state is compared in Fig. 7 with 
the amplitude 𝑉𝑉1(𝑡𝑡) = |𝑋𝑋1(𝑡𝑡)| resulting from the simulation of 
system (20) and extracted from (23), and the envelope transient 
results. The results obtained with the admittance-based model 
have been superimposed, usable in this case because of the 
smaller excursion of amplitudes when evolving to a locked 
solution.  

IV. NONLINEAR DYNAMICS OF THE SYSTEM OF THREE FET-
BASED COUPLED OSCILLATORS 

The new technique allows the study of the influence of any 
circuit parameter on the coupled system dynamics. To illustrate 
this point, in the next two subsections, the evolution of the 
steady-state solution as the tuning voltages 𝜂𝜂𝑖𝑖 are varied will be 
analyzed. After that, in a third subsection, the ability of the new 
formulation to predict the system response to input modulated 
signals will be tested. 

A. Bifurcation map 
In this analysis, the tuning voltages of the outermost 

oscillators have been expressed as 𝜂𝜂1,3 = 2.1 𝑉𝑉 + Δ𝜂𝜂, where Δ𝜂𝜂 
is a detuning voltage that has been swept in the range [-25,20] 
mV. The tuning voltage of the central oscillator has been fixed 
to 𝜂𝜂2 = 2 V. In Fig. 16, the magnitude of the time varying 
current amplitude of the central oscillator 𝐼𝐼2(𝑡𝑡) has been 
represented versus the parameter Δ𝜂𝜂 . The initial transient to the 
steady state solution has been removed from each simulation. 
Then, from the projection of 𝐼𝐼2(𝑡𝑡) (or any other state variable) 
versus Δ𝜂𝜂, one can infer the system bifurcation behavior. 
Locked states should provide a constant value of the current 
magnitude, which in the projection of Fig. 16 corresponds to a 
single point. In contrast, unlocked states should provide a 
vertical point distribution, corresponding to the projection of 
the time-varying magnitude.  

The locked state simulation of Fig. 14 corresponds to the 
value Δ𝜂𝜂 = 0 and as can be seen in the central region about this 
value, a single point is obtained for each Δ𝜂𝜂, indicating that this 
envelope has become constant and a locked state has been 
attained. As the detuning parameter Δ𝜂𝜂 is moved away from this 
central value, a local/global bifurcation takes place, which gives 
rise to the onset of an autonomous quasi-periodic solution, 



exhibiting a zero value of the beat frequency at the bifurcation 
point. To the best of our knowledge, this is the first time that 
this kind of bifurcation map is obtained in a realistic coupled-
oscillator system, described with reduced order-models of its 
transistor-based oscillator elements. The system behavior in the 
vicinity of the bifurcation points will be analyzed in the next 
subsection. 

 

Fig. 16.  System of three coupled FET oscillators: bifurcation map. The tuning 
voltages of the outermost oscillators have been expressed as 𝜂𝜂1,3 = 2.1 𝑉𝑉 + Δ𝜂𝜂, 
where Δ𝜂𝜂 is a detuning voltage that has been swept in the range [-25,20] mV. 
The tuning voltage of the central oscillator has been fixed to 𝜂𝜂2 = 2 V. For 
each Δ𝜂𝜂 value, the resulting time varying current amplitude of the central 
oscillator 𝐼𝐼2(𝑡𝑡) has been represented 

B. Near-locking behavior 
Near the locking conditions (Δ𝜂𝜂 ≈ 7 mV), the transient 

trajectories exhibit the behavior shown in Fig. 17. There is a 
long transient during which the current amplitudes of the three 
oscillators seem to keep constant (which would indicate a 
locked behavior). However, after a long time 𝑡𝑡𝑢𝑢, the current 
amplitudes reach an oscillatory steady state of low frequency, 
so the coupled system is actually unlocked. It is observed that 
the time-varying current amplitudes of the outermost oscillators 
𝑖𝑖 = 1,3 oscillate in quadrature, whereas in the unlocked state 
simulated in Fig. 15 for a much higher detuning (Δ𝜂𝜂 ≈ −100 
mV), these components oscillate in phase. The results of the 
impedance-based formulation have been compared with those 
of the circuit-level envelope transient. As can be seen, both 
simulations predict the same phenomenon. The difference in the 
value of 𝑡𝑡𝑢𝑢 is due to the fact that this value is extremely 
dependent on the initial conditions. These conditions are not 
exactly the same in the two simulations, since system (20) is of 
sixth order, whereas the order of the circuit-level envelope 
transient system is much higher. Again, to the best of our 
knowledge, this is also the first time that a realistic coupled-
oscillator system is simulated in near locked conditions using 
reduced-order models of its transistor-based oscillator 
elements. 

 

(a) 

 

(b) 

Fig. 17. System of three coupled FET oscillators: simulated amplitude 
trajectories for the near-locking case, with 𝜂𝜂1 = 𝜂𝜂3 = 2.107 V and 𝜂𝜂2 = 2 V. 
(a) Impedance-based formulation. (b) Circuit-level envelope transient 
simulation. 

In order to obtain the spectrum corresponding to the quasi-
locked state of Fig. 17, first, the first harmonic voltage signals 
𝑋𝑋𝑖𝑖(𝑡𝑡) at each oscillator output node have been calculated 
through (23). Then, the Fourier transform 𝑋𝑋𝑖𝑖(𝑓𝑓) of each time-
varying harmonic component 𝑋𝑋𝑖𝑖(𝑡𝑡) is obtained. Finally, the 
power spectrum is calculated as 𝑝𝑝𝑖𝑖(𝑓𝑓) = |𝑋𝑋𝑖𝑖(𝑓𝑓)|2/𝑅𝑅𝑜𝑜, with 
𝑅𝑅𝑜𝑜 = 50 Ω. Note that the variable 𝑓𝑓 is the frequency offset from 
the fundamental frequency 𝑓𝑓0 used in the simulation of system 
(19). In Fig. 18(a), the power spectrum 𝑝𝑝1(𝑓𝑓) is shown. The 
measured output power spectrum under the same appears in 
Fig. 18(b). As can be seen, both spectra show a similar 
distribution of maxima, corresponding to a near-locking state 
[33].  



 

(a) 

 
(b) 

Fig. 18. System of three coupled FET oscillators: spectrum of the output signal 
of the oscillator 𝑖𝑖 = 1 in the near-locking state of Fig. 17. (a) Spectrum 
simulated with the new technique. (b) Measured spectrum.  

C. Operation under oscillator bias modulation  
In this subsection, the ability of the new formulation to 

predict the system response to input modulated signals has been 
tested. For this purpose, the drain bias voltage 𝑉𝑉𝐷𝐷𝐷𝐷𝑖𝑖  of each 𝑖𝑖-th 
oscillator has been included as a parameter following the same 
procedure as in (21), obtaining a common total impedance 
function:    

𝑍𝑍𝑖𝑖 = 𝑍𝑍�𝐼𝐼𝑖𝑖 ,𝜔𝜔, 𝜂𝜂𝑖𝑖 ,𝑉𝑉𝐷𝐷𝐷𝐷𝑖𝑖 � = 𝑍𝑍𝐿𝐿(𝜔𝜔) + 𝑍𝑍𝑁𝑁�𝐼𝐼𝑖𝑖 ,𝜔𝜔, 𝜂𝜂𝑖𝑖 ,𝑉𝑉𝐷𝐷𝐷𝐷𝑖𝑖 � (24) 

The system of coupled oscillators has been simulated when 
the drain bias voltage 𝑉𝑉𝐷𝐷𝐷𝐷2 (𝑡𝑡) of the middle oscillator is a pulse-
shaped signal. In this case, the total impedance function 𝑍𝑍2 of 
that oscillator must be updated for each time value in system 
(20) according to the drain bias value 𝑉𝑉𝐷𝐷𝐷𝐷2 (𝑡𝑡). To carry out this 
simulation, the impedance function (24) has been calculated in 
circuit-level HB in a grid (𝑃𝑃 × 𝑄𝑄) composed of 𝑃𝑃 = 2 tuning 
values (𝜂𝜂0 − Δ𝜂𝜂, 𝜂𝜂0 + Δ𝜂𝜂) with 𝜂𝜂0 = 2 V and Δ𝜂𝜂 = 0.1 V, and 
𝑄𝑄 = 50 drain bias values, which are equispaced in the range  
𝑉𝑉𝐷𝐷𝐷𝐷 ∈ [0.9,1.6] V.  

In the simulation, the pulsed-shaped bias voltage 𝑉𝑉𝐷𝐷𝐷𝐷2 (𝑡𝑡), 
takes the values 1.4 V and 1 V, whereas the outermost bias 
voltages are fixed to 𝑉𝑉𝐷𝐷𝐷𝐷

1,3 = 1.4 V. The initial conditions for the 
current variables of system (20) have been set to 𝑈𝑈𝑖𝑖𝑟𝑟 = 𝑈𝑈𝑖𝑖𝑖𝑖 =

0.1 mA, for 𝑖𝑖 = 1,2,3. The transient evolution to the steady 
state of the amplitudes 𝐼𝐼𝑖𝑖(𝑡𝑡) of the current phasors has been  
calculated through system (20). Then, these simulation results 
have been introduced in (23) to calculate the first harmonic 
voltage signals 𝑋𝑋𝑖𝑖(𝑡𝑡) at each oscillator output node. The 
magnitudes 𝑉𝑉𝑖𝑖(𝑡𝑡) = |𝑋𝑋𝑖𝑖(𝑡𝑡)| of these signals are shown in Fig. 
19(a). The results of the envelope-transient simulation are 
superimposed. 

 

(a) 

 
(b) 

Fig. 19. System of three coupled FET oscillators. (a) Simulated amplitude 
trajectories under oscillator bias modulation, with 𝜂𝜂1 = 𝜂𝜂3 = 2.1 V and 𝜂𝜂2 = 2 
V. The drain bias voltage of the middle oscillator is a pulsed-modulated signal 
𝑉𝑉𝐷𝐷𝐷𝐷2 (𝑡𝑡) taking the values 1.4 V and 1 V, whereas the outermost bias voltages 
are fixed to 𝑉𝑉𝐷𝐷𝐷𝐷

1,3 = 1.4 V. The results of the envelope-transient simulation are 
superimposed. (b) Measured output voltage 𝑣𝑣2(𝑡𝑡) of the middle oscillator, 
showing the same qualitative behavior as the simulation results. 

In order to show the capabilities of the technique, the initial 
transient to the modulated state has also been shown in the 
figure, which is in agreement with the envelope transient 
simulation. As can be seen, the system evolves alternatively 
from the unlocked (𝑉𝑉𝐷𝐷𝐷𝐷2 = 1 V) to the locked state (𝑉𝑉𝐷𝐷𝐷𝐷2 = 1.4 
V), with good agreement between both techniques. The period 
of the pulse-shaped bias has been set to 𝑇𝑇𝐷𝐷𝐷𝐷 = 0.8 𝜇𝜇𝜇𝜇 to allow 
the observation of the different behavior of the magnitudes in 
the unlocked (oscillating) and locked (non-oscillating) states. 

Finally, the coupled system response to a pulsed-shaped 
bias voltage 𝑉𝑉𝐷𝐷𝐷𝐷2 (𝑡𝑡) has been measured. The time-domain 



output voltage signal 𝑣𝑣2(𝑡𝑡) of the middle oscillator is shown in 
Fig. 19(b). As can be seen, the amplitude of this signal shows 
the qualitative behavior predicted by the simulation results as  
𝑉𝑉𝐷𝐷𝐷𝐷2 (𝑡𝑡) moves the system between the two states. In the 
measurement, the period of the pulse-shaped bias is 𝑇𝑇𝐷𝐷𝐷𝐷 =
8 𝜇𝜇𝜇𝜇.  

V. CONCLUSION 
A realistic formulation to predict the transient dynamics of 

coupled-oscillator systems has been presented. The formulation 
relies on nonlinear reduced-order models of the individual 
oscillators, extracted from harmonic-balance simulations. To 
increase the applicability, both nonlinear admittance- and 
impedance-type models are considered, extracted under a 
voltage and current excitation, respectively, at the node/branch 
where the oscillator is connected to the coupled system. The 
formulation has been illustrated through its application to a 
system of three FET-based coupled oscillators at 5 GHz, and 
the results have been compared with circuit-level envelope-
transient simulation–– which will fail or be impractical under a 
large number of elements––as well as with experimental 
measurements. The reduced-order envelope-domain system 
should be able to predict both locked and unlocked states, as 
well as the build-up transients. This realistic and efficient 
analysis of the nonlinear dynamics of the coupled system is 
presented here for the first time, to the best of our knowledge. 
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