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 
Abstract— This work presents an in-depth investigation of the 

nonlinear behavior of two mutually injection-locked oscillators 
through inductor coupling. An analytical formulation, solved 
through an innovative procedure, facilitates the understanding of 
the qualitative transformations in the system solutions when 
increasing the coupling factor. The analysis demonstrates that, in 
a manner similar to the unilaterally injection-locked oscillators, 
families of disconnected/connected curves are obtained when 
increasing this factor, although the patterns, associated with 
distinct operation modes, are more complex. Then, an accurate 
numerical method to predict the behavior of coupled transistor-
based oscillators is presented, based on nonlinear admittance 
models of the individual oscillators. Mathematical conditions are 
derived to solve the coupled system through a two-level contour-
intersection technique. In this way, all the solutions coexisting for 
a given set of element and parameter values are calculated 
simultaneously, in an exhaustive manner. The cases of two coupled 
oscillators at the fundamental frequency and at 1:3 frequency 
ratio are considered. Possible applications include the oscillator 
phase-noise reduction and the implementation of sensors using the 
phase shift between the two oscillator elements. 

Index Terms— oscillators, harmonic balance, stability analysis, 
phase-noise analysis 

I. INTRODUCTION 

ecently, successful implementations of mutually injection-
locked oscillators through inductor coupling have been 
demonstrated [1]-[14]. In a two-oscillator system, the 

tuning range versus a tuning parameter is increased due to the 
two resonance frequencies exhibited by the coupled resonators 
[7]-[9]. Other applications include sensors [4], [10]-[13] and 
near-field wireless data systems in the vein of [14] at 
13.35 MHz and 30 MHz. In addition, the oscillator coupling 
enables a reduction of phase-noise, which follows the rule 
SN = S – 10log10N [15] where S is the spectral density of a single 
oscillator [16] and N is the number of oscillator elements.  

Despite the interest in inductively coupled oscillators, there 
is a lack of insightful analysis tools for these configurations, in 
which several oscillation modes may coexist. The work [3] 
proposes a useful eigenvector/eigenvalue analysis [17]-[19] of 
the full oscillator system, which takes advantage of the circulant 
structure of the coupling matrix. The coexistent oscillation 
modes are identified; however, the analysis described is not 
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valid in the presence of asymmetries. In turn, the recent work 
[20] presents an investigation of two mutually injection-locked 
oscillators that is not restricted to identical oscillators. 
However, the analysis relies on a linearization of the total 
admittance functions of the individual oscillators about their 
standalone free-running solutions [21]-[26], which limits its 
accuracy to weak coupling conditions [27]-[28]. 

As shown in this work, nonlinear effects can be observed 
from rather small values of the inductive coupling factor k. To 
account for these effects, we will extend [20] by addressing the 
coupled system under significant deviations of the oscillator 
elements with respect to their free-running solutions. Initially, 
an analytical formulation is derived, which provides insight into 
the qualitative transformations undergone by the system when 
increasing the mutual coupling. Each oscillator is affected by 
the other, so the behavior is more complex than in oscillators 
injection locked by an independent source [29]-[30]. As will be 
demonstrated, families of disconnected curves that merge from 
a certain k value are obtained versus a tuning parameter.  

To analyze a realistic system of transistor-based coupled 
oscillators, one must keep in mind the coexistence of solutions 
revealed by the analytical investigation. In fact, unveiling the 
behavior pattern of inductively coupled oscillators is the main 
contribution of this work. The use of time-domain integration 
would require a global exploration of all the possible initial 
values (which is virtually impossible) since each stable solution 
has its own basin of attraction [31]-[32]. The problem would be 
similar in the envelope domain [33]-[35]. On the other hand, 
when using harmonic balance (HB) one must be able to lead 
each oscillator to an oscillatory state, which can be done 
connecting an auxiliary generator (AGs) to each oscillator 
element [29]-[36]. The amplitude of each AG, together with 
their phase shift and the oscillation frequency, must be 
optimized to fulfill (simultaneously) the oscillation condition at 
the two oscillator elements. However, this procedure often fails 
due to the need to fulfill four goals, corresponding to the zero 
value of the real and imaginary part of the admittance function 
in each oscillator [18], [29], using only two 
observation/analysis nodes. Here an alternative numerical 
method will be presented. The oscillators are described with 
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numerical nonlinear admittance functions, extracted from HB, 
while the passive coupling network is described with a linear 
admittance matrix. Advantage is taken of the fact that the 
oscillator admittance functions do not depend on the excitation 
phase. Instead, the phase shift between the oscillator elements 
is considered in the formulation of the entire system, which is 
solved separately from HB, using custom software. The 
methodology constitutes the first generalization of the semi-
analytical formulation of coupled-oscillator systems [21]-[22] 
to oscillators described with nonlinear admittance functions. 
Furthermore, judicious mathematical conditions allow 
extending the contour-intersection technique in [37]-[38] to the 
coupled system. This procedure (which is not based on 
continuation [39]-[41]) allows the simultaneous and exhaustive 
detection of all the oscillation modes coexisting for a given 
parameter value. 

 The paper is organized as follows. Section II summarizes the 
linearized analysis of two inductively coupled injection-locked 
oscillators at the ratio 1:1 presented in [20]. Section III 
describes the nonlinear analytical investigation of this system. 
Section IV presents the numerical analysis method, applicable 
to realistic transistor-based oscillators. Section VI describes the 
extension of this method to the oscillator coupling at the ratio 
1:N. 

II. TWO MUTUALLY INJECTION-LOCKED OSCILLATORS AT 1:1 

WITH LINEAR OSCILLATOR MODELS 

A. System description 

Let a general system of two inductively coupled oscillators 
at the frequency ratio 1:1 be considered. The system is shown 
in Fig. 1(a). The passive-linear coupling network (in dashed 
line) will be described with its admittance matrix: 
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      (1) 

where L1 and L2 are the inductors of the first and second 
oscillator and M = kꞏ(L1L2)1/2 is the coupling inductance. Note 
that, in the general case, the admittance matrix yij may include 
parasitics. The oscillators are described by their individual 
admittance functions YT1(V,) and YT2(V,), where V and  are 
the amplitude and frequency of the excitation voltage. 
Assuming mutually injection-locked operation at the frequency 
, the coupled system can be described (at the fundamental 
frequency) with the complex system: 
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where V1 and V2 are the oscillation amplitudes and  is the phase 
shift between the two voltage signals. Note that the admittance 
–j/(Li) associated with the coupled inductor in each oscillator 
has to be subtracted from the functions YT1 and YT2 since this 
inductive effect is included in (1).  

Several previous works [19]-[26] have successfully 
developed semi-analytical formulations of complex systems 
based on admittance-type oscillator models extracted from HB 
simulations. However, in all these works the admittance-type 
models are linearized about their corresponding standalone 
free-running solutions, which is valid under the assumption of 
a small deviation from these solutions once each oscillator is 
introduced into the system. In the case of (2), the two 
admittance functions YT1(V1,) and YT2(V2,) are linearized 
[20] about their respective free-running solutions, which, as 
will be shown, limits the validity of the analysis to small k 
values. Here we will address for the first time the nonlinear 
operation of the inductively coupled system, considering the 
two bi-variable nonlinear functions YT1(V1,) and YT2(V2,), 
instead of their linearized approximations. To facilitate the 
comparison between the linear and nonlinear cases, the next 
sub-section summarizes the results obtained in [14], with 
linearized oscillator models. 

 
Fig. 1. Inductively coupled oscillators. (a) General system. (b) Extraction of the 
individual oscillator models with the aid of an AG. Finite differences are 
applied to linearize each oscillator admittance function about its free-running 
solution. (c) Simple circuit used for the validation of the analytical expressions 
in Section II and III through comparison with HB simulations. The element 
values a = -0.03 A/V, b = 0.01 A/V3, L1,2 = L = 33 nH, C2 = 76.7 pF, R1,2 = 
R = 100 Ω. 

B. Formulation based on linearized models 

The system based on linearized oscillator models (valid for 
small k) will allow obtaining the variation of the coupled-
system solution versus a parameter  (a capacitor value, for 
instance). The frequency and amplitude of the free-running 
solution (in standalone operation) of each of the two distinct 
oscillators are given by oi and Voi, where i = 1,2. In practice, 
these free-running solutions can be calculated with the aid of an 
AG [Fig. 1(b)], optimizing its amplitude VAG and frequency AG 
to obtain a zero value of the AG current-to-voltage: YAGi, where 
i = 1, 2 [18], [29]. In fact, the AG admittance function agrees 
with the defined oscillator-admittance function YTi(Vi,). In the 
linearized analysis, this function is described with its first-order 
Taylor series expansion about the free-running solution 
fulfilling YTi(Voi,i) = 0. The amplitude derivative /Ti iY V   is 

calculated by setting the AG frequency to AG = oi and 
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considering a small increment in the voltage amplitude VAG 
about Voi [17]. Note that a full HB analysis, with as many 
harmonic components as desired, is carried out after the 
application of the increment in VAG. Likewise, the frequency 
derivative /TiY    is calculated by setting the AG amplitude 

to VAG = Voi and considering a small increment in the AG 
frequency about oi [23]-[24]. Finally, the derivative /TiY    

will be obtained through the same procedure: considering a 
small increment in  about the free-running point Voi, oi. 

Synchronized operation of the inductively coupled oscillator 
system at the frequency  will be assumed. Under a small 
variation of the parameter , it will be approximately described 
as follows:  
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  (3) 

where for simplicity the two oscillators are assumed to have the 
same free-running frequency o1 = o2. In addition, the 
following quantities (evaluated at o) have been defined: 

1 1 11 2 2 22
2 2

1 2

' 1 ' 1
,  T T T TY Y y Y Y y

j j
L L       

     
     
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   (4) 

To obtain the solution, (3) is split into real and imaginary 
parts, which provides a system of four real equations in four 
unknowns: V1, V2, , . In practice, the system is solved by 
sweeping , and solving for V1, V2,  and .  

The above analysis has been applied to two oscillators of the 
Van der Pol type [shown in Fig. 1(c)], with the element values 
a = -0.03 A/V, b = 0.01 A/V3, L1 = L2 = 33 nH, C2 = 76.7 pF, 
R1 = R2 = 100 Ω. The two oscillators are assumed identical, 
except for C1 = C2+C1, acting like the analysis parameter 
 = C1. System (3) only enables a valid prediction of the steady-
state solutions for very small k values. In the analysis of Fig. 
2(a), the coupling factor is set to k = 0.01. In that figure, the 
phase  has been represented versus C1. The results of the 
analytical formulation are compared with a HB simulation with 
15 harmonics (connecting an AG to each oscillator). The 
excellent agreement is because the derivatives of YT1 and YT2 are 
calculated with the HB system as an inner tier [26], considering 
the same number of harmonic terms. As will be shown in the 
next section, under a coupling factor as small as k = 0.1, the 
coupled system exhibits a nonlinear behavior that prevents the 
linearization of the oscillator admittance functions about the 
individual free-running oscillations.  

The stability and phase-noise analyses are based on the 
introduction of a small perturbation of complex frequency in 
system (3), which involves a subsequent linearization with 
respect to each solution obtained versus C1, as shown in the 
previous work [19]. Fig. 2(b) presents the variation of the real 

part of the dominant poles versus the phase shift  of the steady-
state solution. A real pole crosses through zero at each turning 
point of the solution curve, which is stable between the  values 
90º and -90º. Fig. 2(c) presents the variation of the phase-noise 
at 1 kHz offset from the carrier versus the phase shift . This 
phase noise is compared with the one obtained in free-running 
conditions, represented in dotted line. For this small coupling 
factor, a phase noise reduction of 3 dB is obtained in small 
phase-shift intervals about 0º and 180º. 

 
Fig. 2. Validation of the analysis method through comparison with circuit-level 
HB simulations. (a) Phase shift  versus C1. (b) Real part of the dominant 
poles versus . The stable interval is comprised between 90º and -90º. (c) Phase-
noise spectral density at 1 kHz offset versus . It is compared with the free-
running value, in dotted line. 

III. NONLINEAR ANALYTICAL FORMULATION OF TWO 

MUTUALLY INJECTION-LOCKED OSCILLATORS  

The inductive coupling factor can take any value 0 < k <1, so 
in most cases it will not be possible to linearize the admittance 
functions YT1(V,) and YT2(V,) of the two individual 
oscillators about their respective free-running solutions. In the 
following derivations, this linearization is avoided, and the 
oscillators are described with nonlinear admittance models.  

A. Formulation 

The nonlinear behavior of the two inductively-coupled 
oscillators can be understood by particularizing (2) to the 
system of two van der Pol oscillators in Fig. 1(c). The cubic 
nonlinearity in each oscillator is modeled with its 
corresponding describing function limited to the fundamental 
frequency, which provides the following matrix system: 
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where L1,2 = L, R1,2 = R, GT = a +1/R and, for compactness, the 
following definitions have been introduced: 
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The complex system (5) contains four unknowns V1, V2, , . 
The initial objective is to eliminate the phase shift , and derive 
a system of three real equations in the remaining three 
unknowns V1, V2, . It is taken into account that (5) is 
homogeneous, so its associated matrix must be singular, which 
provides: 
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where the following additional definition has been used: 
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From the first row of (5), one can derive the complex equation: 
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Now, splitting the complex equation (7) into real and imaginary 
parts and obtaining the squared magnitude of (8), one obtains 
the following system of three real equations in the three real 
unknowns V1, V2 and : 
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In the above system, one can make the amplitudes V1 and V2 
disappear and, thus, obtain a real equation in the frequency : 
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The above equation cannot be solved explicitly but provides the 
two error functions (H+ and H-), respectively corresponding to 
the plus and minus signs before the square root. The zeroes of 
(10) provide the frequencies of the potential solutions. Note that 
additional conditions on V1 and V2 must be fulfilled. The error 
functions H obtained for C1 = 77 pF and several values of the 
coupling factor k are shown in Fig. 3. For each k, the frequency 
values of the potential solutions correspond to the crossings 
through zero.  

Once the potential-solution frequencies are known, one can 
apply a straightforward procedure to obtain the solution 
amplitudes. Using (9)(a) and (9)(b), one derives the following 
directly solvable equations: 
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On the other hand, actual solutions must also fulfill (9)(c): 
2
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   (12)  

Once the amplitudes V1 and V2 are known, the phase shift 
between the two elements is obtained from (8).  

 
Fig. 3. Analytical study. Error functions for the frequency calculation when 
considering three different values of the coupling factor k. 

 
 In case the two oscillators are identical, 0C  , one obtains 
the two in-phase (0º) and out-of-phase (180º) modes with the 
identical amplitudes V1 = V2 resulting from the eigenvalue 
analysis in [3] and [17]. However, as will be shown here, and 
for relatively low values of the coupling factor k, there will also 
be two other modes with different amplitudes (V1  V2) in the 
two oscillators. The frequency of the non-symmetric modes is 
determined by the condition: 
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The phase shift values can be obtained from the first equation 
in (5):  
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where (13) has been taken into account. Because the amplitudes 
V1 and V2 are positive and different, there can only be two 
possible values of phase shift, given by / 2   . Thus, the 

amplitudes of the remaining solutions fulfill: 

    

2
2 2 1

2
1 1 2

3
( )     (a)

4

3
( )     (b)

4

T

T

G bV V T V

G bV V T V





   
 
    
 



      (16) 

where the upper (lower) signs in (a) and (b) are associated and 
correspond to a same solution. Note that the relationships (16) 
can also be derived from (12). These non-symmetrical solutions 
under identical oscillators are obtained here for the first time to 
our knowledge.  

B. Behavior when increasing the coupling factor k 

 Using the above procedure, we have obtained the solution 
curves of the two inductively coupled Van der Pol oscillators 
versus the capacitance C1 (in the first oscillator) when 
increasing k. The potential-solution frequencies are calculated 
performing a double sweep in C1 and , and obtaining the zero-
value contours of H. Then, the solution curves are achieved 
using the additional equations (11) and (12). When considering 
different values of the coupling factor k = 0.1, 0.12 and 0.2, one 
obtains the evolution shown in Fig. 4 (k = 0.1), Fig. 5 (k = 0.15) 
and Fig. 6 (k = 0.2). In each case, the oscillation frequency, 
amplitudes and phase shift are represented in (a), (b) and (c), 
respectively, versus C1. For validation, the results are compared 
with circuit-level HB simulations using two AGs. However, 
one must note the following: (i) The HB convergence is 
facilitated by the simple topology of the cubic-nonlinearity 
oscillators. (ii) The HB solution curves could only be obtained 
by first providing the values resulting from the analytical 
formulation to the AGs used in this HB simulation. The AG 
optimization confirmed the validity of these analytical 
solutions. Then the solution curves could be completed in HB 
due to the inherent continuation procedure of the HB sweep.  

For the lower k values (Fig. 4), one obtains three 
disconnected solution curves. One is a closed eight-shaped 
curve, whereas the other two curves are open. Note that in the 
amplitude representation of Fig. 4(a) there are actually two 
curves for each solution, since the amplitudes are different in 
the two oscillators. In the closed solution curve of Fig. 4(a), 
containing an expanded view, the amplitudes of the two 
oscillators have high values. They are both in an oscillatory 
state and mutually injection locked. On the other hand, in each 
of the two open curves, one of the two oscillators is dominant 
(a different one in each solution), and the other one responds to 
the coupled signal. This is evidenced by the difference in the 

amplitude values [Fig. 4(a)]. In one of the open solutions 
[extending from 60 pF to 95 pF in the representation of Fig. 
4(a)], the higher amplitude is V1 (in the order of 1.7 V) and the 
lower one is V2 (below 0.5 V). In the other open solution, the 
situation is opposite.  

 
Fig. 4. Analytical study. Coupling factor k = 0.1. Analytical results are 
compared with HB simulations. (a) Frequency variation versus C1. (b) 
Amplitude variation. (c) Variation of the phase shift.  

 
As gathered from Fig. 4(b), for each C1, there are three 

solution frequencies. This is can be seen at 0C  , where two 
of these frequencies agree with those of the two in-phase and 
out-of-phase modes 1 / (1 )LC k    (for which the 

amplitudes of the two oscillators are equal V1 = V2) [20], and 

the third frequency is 21/ (1 )LC k    (for which V1  V2). 

Regarding the phase shift, and in agreement with (13) to (16), 
for two identical oscillators ( 0C  ), besides the two modes 
with phase shifts 0º and 180º, there are two other modes with 

the phase shifts  90º, the same frequency 21/ (1 )LC k    

and distinct amplitudes .    
When increasing k, the closed eight-shaped curve splits into 

two sections and each section merges with one of the open 
curves [Fig. 6], to give rise to two distinct open solution curves. 
In these open curves, each oscillator is dominant at each side of 
the middle value 0C  . The described curve merging can be 
compared with the structural behavior of a single oscillator 
injection locked by an independent source [29]-[30], [42]-[43]. 
In that case, when increasing the amplitude of the injection 
source, a single closed curve and a single open curve merge into 
a unique curve, which for the lower values of the input 
amplitude exhibits turning points or folding. Here, when 
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increasing k, we obtain a double family of curves, one 
corresponding to each operation mode. In one of the two modes 
V1 is higher (lower) than V2 for 0C  ( 0C  ). The opposite 
is true of the other mode. The curves exhibit turning points for 
intermediate k values (Fig. 5), at which the HB simulations 
undergo a discontinuous jump. The curves become less intricate 
when increasing k, as gathered from Fig. 5 and Fig. 6.  

 
Fig. 5. Analytical study. Coupling factor k = 0.15. Analytical results are 
compared with HB simulations. (a) Frequency variation versus C1. (b) 
Amplitude variation. (c) Variation of the phase shift.  

 
The variation of the phase shift versus the analysis parameter 

C1 is shown in Fig. 4(c), 5(c) and 6(c). As stated, for the lower 
k values and C = 0 there are always two modes with the 
respective phase shifts 0º and 180º, as well as two additional 
modes with  90º. In the closed solution curves versus C1, the 
phase variations are strong and cover the whole range -180º to 
180º. When increasing k the closed curves split and merge, and 
the modes with  90º at C = 0 disappear [Fig. 5(c)]. In the 
open curves, the phase excursion decreases with k. Thus, for 
sensor applications, one should use a relatively small k.  

To understand the stability properties of the coexisting 
modes, one should note that the eight-shaped solution curves 
obtained for the lower k values exhibit 4 turning points (T1, T2, 
T3, T4), as seen in Fig. 4. At each turning point a real pole 
crosses through zero. Performing a stability analysis, one 
obtains that the section of the eight-shaped curve comprised 
between T1 and T4 is stable, and so is the section between T2 
and T3. Thus, there are two coexistent stable modes. at the 

turning points, the oscillators become unlocked and there is a 
transition to a doubly autonomous quasi-periodic regime. On 
the other hand, the open solution curves are always unstable.  

 
Fig. 6. Analytical study. Coupling factor k = 0.2. Analytical results are 
compared with HB simulations. Hopf bifurcations are indicated. (a) Frequency 
variation versus C1. (b) Amplitude variation. (c) Variation of the phase shift.  

 
After each eight-shaped curve splits and merges with one of 

the open solution curves, Hopf bifurcations will take place 
(from certain k) in the two single and distinct open curves. This 
is illustrated in Fig. 7(a), which presents the stability analysis 
of the two independent oscillation modes obtained for k = 0.2 
using pole-zero identification [44]-[46]. The real part of the 
dominant poles has been represented versus C1. The two modes 
are stable in the central interval about C = 0. This stable 
interval is bounded by secondary Hopf bifurcations [Fig. 7(a)] 
at which a pair of complex-conjugate poles crosses the 
imaginary axis to the right-hand side of the complex plane [29], 
[42], [47]. When the Hopf bifurcation occurs, the system 
evolves into a self-oscillating mixer regime. The detected Hopf 
bifurcations have been superimposed in Fig. 6. The length of 
the stable intervals is different for the two modes. When the two 
modes are simultaneously stable, one or another will be 
experimentally observed depending on the initial conditions. 
This has been validated with the time-domain simulations in 
Fig. 7(b) and (c). Note that the coexistence of stable periodic 
modes with different phase shift is possible due to presence of 
unstable DC and quasi-periodic solutions [48]-[49], acting as 
separators of the basins of attraction of the two coexistent stable 
modes. 
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Fig. 7. Stability analysis using pole-zero identification of the two independent 
oscillation modes obtained for k = 0.2. Validation with time-domain 
simulations. (a) Pole-zero identification. The secondary Hopf bifurcations of 
each mode are indicated. (b) and (c) Time-domain simulations. Steady-state 
waveforms in the two oscillators obtained for two different initial conditions at 
C = 0, with 0º and 180º phase shift, respectively. 

 
To summarize, under small k values, there is a closed 

solution curve through which the two oscillators are in an 
oscillatory state and mutually injection locked, plus two other 
disconnected curves in which system behaves as if only the first 
(second) oscillator is in an oscillatory state and the second (first) 
oscillator is responding to this oscillation signal. From certain 
k, two distinct parts of the previously closed curve merge 
separately with the disconnected curves and give rise to two 
open curves at different frequencies, each corresponding to a 
different oscillation mode. After this merging, the two open 
curves exhibit strong folding due to the presence of turning 
points, or infinite-slope points. The higher phase sensitivity is 
obtained for the smaller k values, through the closed solution 
curves.  

IV. NONLINEAR NUMERICAL ANALYSIS OF TWO MUTUALLY 

INJECTION-LOCKED OSCILLATORS  

In this section, a general numerical analysis of two inductively 
coupled transistor-based oscillators will be presented. As 
explained below, for this numerical analysis the coupled system 
is best formulated in the following manner: 

 

1 1

2 2 1

211 12

21 22

( , ) 0

0 ( , )
0

( , , ) ( , , )

( , , ) ( , , )

A

A

j
p p

p p

Y V

Y V V

V ey k y k

y k y k






   
   

  
  

          
    

  (17) 

where the nonlinear-admittance functions 1 1( , )AY V   and 

2 2( , )AY V   may not strictly correspond to the standalone 

oscillator circuits; they may represent just part of these 

oscillators. In that case, the passive admittance matrix 

( , , )py k     accounting, in principle, for the coupling network 

(and depending on the coupling factor k), would also include 
part of the linear networks of these oscillators. For convenience, 
the analysis parameter  (a tuning capacitor, for instance) might 

be also be included in ( , , )py k    . The subtraction of the 

linear elements to be included in the coupling network is 
performed after the calculation of those functions (with the aid 
of auxiliary generators).  
 

 
Fig. 8. Coupled system using differential bipolar-based oscillators. (a) 
Schematic. (b) Photograph. (c) Sketch indicating the procedure to extract the 

admittance functions 1 1( , )AY V   and 2 2( , )AY V   of the individual oscillators.  

 
The procedure will be illustrated through its application to 

the system of two differential bipolar-based oscillators shown 
in Fig. 8(a)-(b). When uncoupled, they oscillate at the 
frequency fo = 25 MHz  (for C1 = C2 = 22 pF). To obtain each 
function ( , )AiY V  , where i = 1,2, each oscillator is simulated 

with an AG connected between the terminals at which this 
admittance function is defined, as shown in Fig. 8(c). Then a 
double sweep in  and V is carried out. The flexibility in the 
choice of the analysis terminals, as well as the order of the 
nested sweeps (with the one in V being the internal one), should 
avoid potential convergence problems of HB. In principle, 
system (17) could be solved through a Newton iteration, after a 
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suitable analytical modelling of the nonlinear active admittance 
functions, though this is beyond the scope of this initial paper. 
On the other hand, the advantage of the procedure presented in 
the following is that it enables an exhaustive search of solution 
curves and operation modes, which would not be possible 
through an ordinary error-minimization/continuation method 
[39]-[41]. 

To solve (17), advantage is taken of the fact that each of the 
admittance functions 1 1( , )AY V   and 2 2( , )AY V   depends only 

on the amplitude and frequency of its own excitation. The 
singular determinant associated with the autonomous system 
(17) is: 

  

1 1 11 12

21 2 2 22

1 11 2 22 12 21

( , ) ( , , ) ( , , )
det

( , , ) ( , ) ( , , )

0

A p p

p A p

A p A p p p

Y V y k y k

y k Y V y k

Y y Y y y y

    
    
 

  

   

 

   (18) 
 
 
The advantage of the above equation is that it does not depend 
on the phase shift. Thus, for each pair of values ,k  , (18)can 

be compactly re-written as: 

1 2det( , , ) 0V V           (19) 

Solving (17) for je   in terms of V1 and V2, one obtains: 

1 11 1

12 2

( )A pj

p

Y y V
e

y V
 
         (20) 

And setting the magnitude of the expression in (20) to 1 one 
obtains the following system of three equations in three 
unknowns 1 2, ,V V  : 

1 2

1 2

1 1 11 1

12 2

det ( , , ) 0                            (a)

det ( , , ) 0                            (b)

( , ) ( )
1     (c)

( )

r

i

A p

p

V V

V V

Y V y V
H

y V





 







   

  (21) 

where the superscripts r and i indicate real and imaginary parts. 
The practical solution of (21) is carried out in two stages. In a 
first stage, for each pair of values , , one obtains two surfaces 

 1 1 2 1 2, ,det ( , )rS V V V V  and  2 1 2 1 2, ,det ( , )iS V V V V . Then, 

one should calculate the intersection of the surface S1 with the 
plane of zero value det 0r  , and the intersection of the surface 

S2 with the plane of zero value det 0i  . For each , , these 

intersections provide two curves 1 2( , )rC V V  and 1 2( , )iC V V  in 

the plane defined by V1 and V2. Then, the potential solution 
points of (19) at the particular values ,  are given by the 
intersections between the two curves rC  and iC :  

, 1 2 1 2 1 2( , ) ( , ) ( , )r iP V V C V V C V V          (22) 

where P stands for point. For each  and sweeping , 

, 1 2( , )P V V   gives rise to one or more curves in the plane defined 

by V1 and V2, denoted as: 1 2( , )D V V , where D refers to 

“determinant”. However, equation (21)(c) must also be 
fulfilled.  

As an example, Fig. 9(a) presents the curves 1 2( , )D V V , 

composed by the points at which 1 2det( , , ) 0V V    obtained for 

the coupling factor k = 0.21 and the capacitor value C2 = 21 pF, 
which have been traced in blue. Note that all the points in the 
blue curves of Fig. 9(a) fulfill both det 0r   and det 0i  . As 
stated, the actual solution points should also satisfy H = 1 [in 
(21)(c)]. For convenience, two functions are considered, 
respectively obtained by solving for je   from each of the two 
complex equation composing the matrix system (17). These 
independent solutions are: 

    1 11 1 21 1

12 2 2 22 2

( )

( )
A p pj

p A p

Y y V y V
e

y V Y y V
 
   


    (23) 

Note that when (18) is fulfilled, the two equations are identical. 
For each pair of values , , by setting the magnitude of each 
of the two expressions in (23) to 1, one obtains one or more 
curves in the plane V1, V2. These curves are defined by: 

1 11 1
1 1 2 1 2

12 2

21 1
2 1 2 1 2

2 22 2

( )
( , ) ,  1

( , ) ,  1
( )

A p

p

p

A p

Y y V
H V V V V abs

y V

y V
H V V V V abs

Y y V

          
          

   (24) 

When sweeping , the intersections of H1(V1,V2) and 
H2(V1,V2) provide one or more curves in the plane defined by 
V1 and V2. These curves are denoted as: 1 2( , )H V V . They have 

been traced in red Fig. 9(a). Solution points must correspond to 
intersections of D  and H , which can be calculated thanks to 

the fine tuning enabled by the frequency sweep. In the plane 
defined by V1 and V2, each point of the curves 1 2( , )D V V  and 

1 2( , )H V V  corresponds to a distinct frequency . Only 

intersections at the same  constitute solution points, which is 
verified through a simple error condition.  

In the case of Fig. 9(a), only four intersections occur in the 
plane V1 and V2 between 1 2( , )D V V  and 1 2( , )H V V . Two of 

them correspond to actual solution points as shown in Fig. 9(b) 
and Fig. 9(c), where D  and H  are traced in terms of V1 and 

V2 versus the frequency . The solution points are clearly 
distinguished. 
  



TMTT-2020-07-0813 
 

9 

 
Fig. 9. Numerical method applied to the coupled transistor-based system in Fig. 
1(b). Procedure to calculate the solution curves using conditions (18) and (24). 

(a) Curves 1
1 2( , )C V V  and 2

1 2( , )C V V  for k = 0.21. (b) Curves 1C  and 2C  in 

the plane , V1 (c) Curves 1C  and 2C  in the plane , V2.  (d) Solution curves 

obtained by assembling the solution points resulting for each  = C1. 
 

Now variations in the parameter  will be considered. In the 
case of the two coupled differential oscillators of Fig. 1(b), this 
parameter corresponds to the capacitance C1 in the first 
oscillator. Fig. 10 presents a family of solution curves versus 
variations in the capacitor C1 for different values of the coupling 
factor k. Fig. 10 presents the resulting evolution of the 
oscillation frequency. Comparing with the results of the 
analytical formulation in Section III, one obtains the same 
qualitative behaviour. For small k [Fig. 10(a)] there are two 
pairs of disconnected curves, as in the case of Fig. 4. For better 
clarity, only the upper-amplitude closed curve has been 
represented, skipping the lower amplitude curves. For very 
small k (0.05), the closed curve exhibits two turning points only 
[Fig. 10(a)-(b)], as in Section II. For k = 0.1, a small loop 
appears in the upper section of this curve, so there are four 
turning points. As k is further increased, the closed curves split 
and each section merges with one of the open curves, to give 
rise to an open solution curve [Fig. 10(c)]. For each k, there are 
two open curves, one for each mode. As shown in Fig. 10(d), 
the phase shift  exhibits a strong variation through the closed 
solution curves, where it goes from -180º to 180º. This phase 

shift varies in a limited range after the curve merging, as shown 
in Fig. 10(c).   

 
Fig. 10. Numerical method applied to the system of two inductively-coupled 
transistor-based oscillators in Fig. 8(a)-(b). Evolution of the solution curves 
versus the capacitor C1 with the coupling factor. (a) Frequency. (b) Amplitude 
under low k. (c) Amplitude under higher k (c) Phase shift.  

 
The solution predicted by the numerical technique has been 

compared with experimental measurements. With this aim, the 
coupling factor k of the two coupled differential oscillators has 
been estimated from the measurement of the scattering matrix 
of the coupled inductors. The resulting value is k = 0.21. Fig. 
11(a) and Fig. 11(b) present a comparison of the predicted and 
measured variations of the oscillation amplitudes and phase 
shift versus the capacitor C1. The measurement points exhibit a 
good agreement with the analysis results corresponding to one 
of the oscillation modes. Fig. 11(c) presents the phase-noise 
spectrum obtained with the conversion-matrix approach [50] at 
C1 = 22 pF. The results are compared with the experimental 
characterization using the R&S® FSWP8 Phase Noise 
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Analyzer. Both in simulations and measurements the phase-
noise spectrum is compared with the one obtained in uncoupled 
conditions (standalone operation). An improvement of about 3 
dB is obtained, in agreement with the theory. 

 

 
Fig. 11. Coupled transistor-based system. The experimentally characterized 
coupling factor is k = 0.21. Comparison of the predicted and measured 
variations of the oscillation frequency, amplitudes and phase shift versus the 
capacitor C1.   

 
The two periodic modes obtained for k = 0.21 are stable, with 

different basins of attraction. Fig. 12 presents time-domain 
simulations and experimental measurements, demonstrating the 
physical coexistence of the two modes. The basin of attraction 
of one of the modes is much larger than that of the other, so the 
out-of-phase mode was rarely observed in practice. Note that 
there can be situations in which only one of the modes is stable. 
This will happen, for instance, if only one the four sections 
(delimited by the turning points) of the original eight-shaped 
curve is stable.  

V. COUPLING AT THE FREQUENCY RATIO 1:N 

The nonlinear analysis of two mutually injection-locked 
oscillators at the ratio 1: N is more involved than the one at 1:1, 
considered in Section III. To formulate the system, coupling 
effects are considered at the resonance frequency N, 
corresponding to the fundamental frequency of the higher-
frequency oscillator. Thus, the fundamental component of the 
first oscillator is only affected by the second oscillator through 

the coupling of its harmonic component NV  at N.  Assuming 

injection-locked operation at , the system is described as: 
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(25) 
where ,1TY  is the total admittance function of the lower-

frequency oscillator at its fundamental frequency, ,A NY  is the 

nonlinear active admittance function of this oscillator at the 
harmonic frequency N, ,A bY  is the nonlinear active admittance 

function of the higher-frequency oscillator at N and ypij are 
parameters of the admittance matrix of the coupling network, 
which may include additional linear elements. Its dependence 
on ( , , )k   has been dropped for simplicity. The phase origin 

is set at the Nth harmonic component of the first oscillator, so 
VN is real. 
 

 
Fig. 12.  Coexistence of stable modes demonstrated with time-domain 
simulations and measurements. (a) and (c), waveforms in equivalent nodes of 
the two oscillators resulting from time-domain simulations under different 
initial conditions. (b) Spectrum corresponding to (a). (d) Spectrum 
corresponding to (c). (e) Measured waveforms: in-phase solution.  (f) Measured 
waveforms: out-of-phase solution. 

 
The equation ,1 0TY   in (25)(a) can be taken as a constraint 

when addressing the coupled system (25)(b). This can be done 
by extracting the admittance function , 1( , , , )A N NY V V    under 

the fulfillment of ,1 0TY  . If the oscillator at  has good 
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convergence properties in standalone (non-coupled) operation, 
the function , 1( , , , )A N NY V V    can be calculated by introducing 

two AGs into this oscillator, one at  (AG1) and the other at N 
(AG2). The AG2 is not optimized but used as an excitation 
source to calculate the admittance , 1( , , , )A N NY V V   . A double 

sweep is performed in  and VN, optimizing V1 and  at each 
step in order to fulfill  ,1 0TY  . The function , 1( , , , )A N NY V V   , 

calculated under the constraint ,1 0TY  , will be introduced in 

(25)(b). If the oscillator at  does not exhibit good convergence 
properties, the function , 1( , , , )A N NY V V   can be obtained using 

the method in [26] for the calculation of synchronized-solution 
curves in a single injection-locked oscillator. Thus, extracting 

, 1( , , , )A N NY V V    should not be a problem. 

The procedure to solve (25)(b) is identical to the one 
described in Section III. The search for solution points of (25)
(b) must be performed using the function , 1( , , , )A N NY V V    

calculated in the previous analysis and the pairs of values VN 
and  must be limited to those resulting from that analysis. The 
values of VN and  constitute a near conic surface. Instead, the 
points Vb,  have not limitation and define a plane.  

 

 
Fig. 13 Coupled oscillator system with two differential transistor-based 
oscillators at the ratio 1:3. (a) Schematic. (b) Photograph. 

 
The method has been applied to analyze the system in Fig. 

13, coupled at the ratio 1:3. When isolated from each other, the 
two circuits oscillate at the respective frequencies 10 MHz and 
30 MHz. Fig. 14(a) presents the near conic surface in the space 
defined by V1, V3 and . The “unfolded” surface in the space 
defined by V3,  and  is shown in Fig. 14(b). The solution 
curves obtained through (25) are shown in Fig. 15. In this 
figure, the voltage amplitude in one of the oscillators, the 
synchronized oscillation frequency  and the phase shift  have 

been represented versus the capacitance in the higher-frequency 
oscillator for different k values. For the implementation shown 
in Fig. 13(b), the coupling factor estimated from the 
measurement of the scattering parameters of the coupled 
inductors is k = 0.15. Fig. 16(a) and (b) present before and after 
synchronization when varying C1. Fig. 16(c) presents the phase-
noise spectrum of the oscillator at 30 MHz, experimentally 
characterized with the R&S® FSWP8 Phase Noise Analyzer, in 
both coupled and free-running operation.  

 
Fig. 14. Analysis of the system of two coupled differential oscillators at the 
frequency ratio 1:3 shown in Fig. 13. (a) Near conic surface in the space defined 
by V1, V3 and . (b) “Unfolded” surface in the space defined by V3,  and .   
 

   
Fig. 15. Solution curves obtained through (26) for k = 0.05, 0.1, 0.125 and 0.15. 
(a) Voltage amplitude in one of the collectors of the 30 MHz oscillator, (b) 
Synchronized oscillation frequency, and (c) phase shift. The three magnitudes 
have been represented versus the capacitance deviation with respect to their 
free-running value. 
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Fig. 16. Measured spectrum of the coupled oscillator system shown in Fig. 13 
for k = 0.15. (a) Spectrum prior to the synchronization. (b) Synchronized 
spectrum. The capacitance and frequency are in agreement with the results 
shown in Fig. 14(b). (c) Phase-noise spectrum of the oscillator at 30 MHz, 
experimentally characterized with the R&S® FSWP8 Phase Noise Analyzer. 

VI. CONCLUSION 

An in-depth investigation of the operation of two inductively 
coupled oscillators under strong coupling conditions has been 
presented. This is based on an analytical formulation of the 
coupled system, and the behavior pattern obtained when 
increasing the coupling factor has been found to be general and 
thus also observed in realistic transistor-based oscillators. 
Under the bilateral injection locking, one obtains two distinct 
families of solutions curves, one corresponding to each major 
operation mode. For the lower values of the coupling factor one 
obtains a closed solution curve and two open curves, which, for 
a higher coupling factor merge into two distinct curve families. 
A numerical method has also been developed for the realistic 
analysis of coupled transistor-based oscillators, which enables 
an exhaustive detection of all the coexisting oscillation modes. 
The method tackles the system equations in an original way that 
enables the use of contour-intersection techniques. The 
numerical method has been successfully extended to the case of 
oscillator coupling at the frequency ratio 1:N. This requires the 
extraction of the model of the lower frequency oscillation under 
the constraint of the fulfillment of the oscillation condition at 
its fundamental frequency. The methods have been applied to 
two pairs of coupled transistor-based oscillators at different 
frequency ratios and very good results have been obtained in 
comparison with the measurement results.  
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