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The most important step a man can take.
It’s not the first one, is it? It’s the next one.
Always the next step, Dalinar.

-Brandon Sanderson, “Oathbringer”
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Me gustaŕıa a su vez recordar a todos aquellos que me acompañaron durante mi
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Abstract

Strontium titanate (SrTiO3) is one of the most widely used substrates when
it comes to epitaxial growth of functional oxide thin films. It has been an
attractive subject of research mainly due to its incipient ferroelectric behavior
at low temperatures.

At room temperature, and under standard conditions it exhibits a cubic phase
(Pm3̄m) perovskite structure. However when temperature drops below 105 K
it undergoes an antiferrodistortive phase transition due to the rotation of the
oxygen octahedra, shifting to a tetragonal (I4/mcm) phase in the process. At
really low temperatures (∼4 K) a ferroelectric transition should take place,
were it not obstructed by quantum fluctuations (a situation known as quantum
paraelectricity). This ferroelectric transition may also be fostered by applying
epitaxial strain (modifying its lattice constants) or electric fields.

Making use of Monte Carlo simulations from second principles an attempt will
be made to replicate the aforementioned antiferrodistortive transition, as well
as to observe the material’s temperature-dependant behaviour while imposing
strain restrictions, enabling the obtention of a bulk SrTiO3 phase diagram.
This type of diagrams, known as Pertsev diagrams, are really sought after by
experimental groups as they represent a trustworthy guide while navigating the
different phases of the material at hand. This represents one of the most inter-
esting aspects of this work, as this kind of diagrams have never been published
while being produced with atomistic simulations (they are only accessible via
phenomenological Ginzburg-Landau models).

This novelty is mainly due to the large size of the simulations involved -between
2500 and 5000 atoms-, only possible thanks to the second-principles techniques
used in this work. They provide a much greater efficiency compared to traditional
DFT methods while maintaining a similar level of precision.

This has granted the opportunity to carry out an analysis of the domain struc-
ture within several phases of the material, some of which displaying inter-
esting, unexpected patterns. The previously mentioned rotations as well as
ferroelectricity-related distortions have been quantified by means of a generalized
mode projection system, developed specifically for this work.

Keywords: Strontium titanate, second-principles simulation, Monte Carlo
techniques, ferroelectricity, temperature-strain phase diagram, domains
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Resumen
El titanato de estroncio (SrTiO3) es uno de los materiales más utilizados como
substrato para crecer de forma epitaxial láminas delgadas de óxidos funcionales.
Se trata de un material ampliamente estudiado sobretodo debido a su compor-
tamiente de ferroeléctrico incipiente a bajas temperaturas.

A temperature ambiente, y en condiciones estándar posee una estructura per-
ovskita en fase cúbica (Pm3̄m). Sin embargo al descender por debajo de los 105
K sufre una transición antiferrodistortiva debida a la rotación de los octaedros
de ox́ıgeno, pasando a una fase tetragonal (I4/mcm) en el proceso. A muy
bajas temperaturas (∼4 K) debeŕıa observarse una transición ferroeléctrica, pero
está frustrada por las fluctuaciones cuánticas (se dice que es un paraeléctrico
cuántico). Esta transición ferroeléctrica se puede activar a través otros mecanis-
mos, como aplicando tensiones epitaxiales (modificaciones de su parámetro de
red) o campos eléctricos.

Mediante simulaciones Monte Carlo desde segundos principios se tratará de
replicar la transición antiferrodistortiva ya mencionada, aśı como observar su
comportamiento con la temperatura al aplicar restricciones de tensión, per-
mitiendo obtener un diagrama del fases de SrTiO3 en volumen. Este tipo de
diagramas, denominados diagramas de Pertsev, son muy codiciados por los
grupos experimentales ya que suponen una gúıa fiable para navegar entre las
diferentes fases que pudieran aparecer. Esto supone uno de los mayores puntos
de interés de este trabajo, ya que este tipo de diagramas nunca se han publicado
con simulaciones atómicas (solo son accesibles con modelos fenomenólogicos del
tipo de Ginzburg-Landau).

Esta novedad se debe principalmente al gran tamaño de las simulaciones uti-
lizadas -de entre 2500 y 5000 átomos-, posibles gracias al uso de técnicas de
segundos principios, que permiten una mayor eficiencia que los métodos DFT
tradicionales con una precisión similar.

Esto ha permitido, por ejemplo, un análisis de la estructura de dominios en
diversas fases del material, llegándose a observar patrones relativamente com-
plejos e inesperados. Tanto dichas rotaciones como las posibles distorsiones
ferroeléctricas se han cuantificado por medio de un sistema generalizado de
proyección de modos, desarrollado expĺıcitamente para este trabajo.

Palabras clave: Titanato de estroncio, simulación de segundos principios,
métodos Monte Carlo, ferroelectricidad, diagrama de fases temperatura-tensión,
dominios
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CHAPTER 1

INTRODUCTION

I Motivation for this Work

I.i Ferroelectricity

Ferroelectric materials have been an important subject of study in the field of solid state physics
over the last fifty years due to their wide range of properties and potential applications. Materials
displaying ferroelectricity possess an spontaneous electric polarization which is reversible under
the application of an external electric field, similarly to how ferromagnetic materials retain a
permanent magnetic moment.

Figure 1.1: Depiction of a
typical ferroelectrical
hysteresis cycle.

In fact the former were named directly due to their relation
with the latter, as both phenomenons share a host of their most
characteristic properties, namely the existence of hysteresis cycles
(Fig.1.1) in the reversal of their respective properties and the fact
that the materials which present them only do so below a certain
temperature threshold, generally known as its Curie temperature
(named so after Pierre Curie).

Whereas their persistent polarization (and their high dielectric
permitivity) render them useful for the development of smaller,
tunable capacitors and faster, more energy-efficient computer
memory [63], the fact that they also exhibit piezoelectric and
pyroelectric behaviours (implied by sheer symmetry arguments
regarding the nature of ferroelectricity) makes them suitable for
a wide variety of sensing applications, from infrared, pressure or
flow sensors to ultrasonic transducers for medical imaging [10].
They have also seen extensive use due to their catalytic properties, mainly a byproduct of the
polarization-induced surface charges [13, 34]. Moreover, lots of research is being driven towards
the development of multiferroic materials and heterostructures, which combine the strengths of
both ferromagnetism and ferroelectricity unlocking interesting potential applications [58].

1



CHAPTER 1. INTRODUCTION

Figure 1.2: SrTiO3

unit cell. Sr, Ti
and O atoms
are represented,
respectively by
green, blue and red
spheres.

The main goal of this work lies in furthering the understanding of the
driving mechanisms behind this interesting property by carrying out a com-
putational study of strontium titanate (SrTiO3), an edge-case within this
class of materials. Although in its bulk state it seems to start undergoing a
ferroelectric transition, its dielectric permitivity never diverges as it should
in a normal ferroelectric, stabilizing instead as it reaches 4 K [51]. This
anomalous behaviour, known as quantum paraelectricity, is explained in
terms of the soft-mode theory of ferroelectricity [8] as the frequency of the
soft-mode corresponding to the transition remaining stable (that is, never
reaching zero) due the effects of quantum fluctuations [77].

Nonetheless it has been shown both theoretically [56] and experimentally
[25] that ferroelectricity can be attained by simply applying a misfit strain,
a situation whose replication was attempted in the computer simulations
carried out in this work. Electric field induced ferroelectricity has recently
been recently reported [43], and could be simulated with the methods used
here too. As a final note, isotopic substitution of oxygen-16 for oxygen-18
also seems to raise the temperature at which the permitivity stabilizes [30].

I.ii Strontium Titanate

Strontium titanate (SrTiO3, herein refered to as STO) was first patented along with other
titanates (BaTiO3, CaTiO3) in the 1940s and 1950s, and it was thought to be a completely
artificial material until its natural counterpart, tausonite, was discovered in Siberia in 1982.

Figure 1.3: SrTiO3 in un-
polished (top) and substrate
(bottom) form.

Synthetics are usually transparent and colorless (see Fig.1.3),
although they can acquire different colours when doped by rare
earth elements or transition metals. It is a brittle material which
presents a refractive index of n = 2.410 (λ = 589.3 nm) and high
dispersion, melting at relatively high temperatures (2350 K).

Under standard conditions STO presents a cubic (Pm3̄m) per-
ovskite structure, each titanium atom laying in the center of
an oxygen octahedron with strontium filling the interstices (see
Fig.1.2), but diverges from said aristotype [48] as it undergoes an
antiferrodistortive phase transition comprising an out-of-phase
rotation of the oxygen octahedra at 105 K which devolves into
a tetragonal (I4/mcm) structure with its c axis pointing in the
same direction as the octahedral axis of rotation. Decreasing the
temperature even further results in the aforementioned display
of quantum paraelectricity.

Beside its more straightforward uses as material for optical win-
dows [42] or as a diamond simulant in jewellery during the second
half of the previous century, its properties as an incipient ferroelec-
tric plus a convenient lattice parameter (∼ 3.9 Å) have made it

an ideal choice as a substrate for growing other materials [38, 68], particularly perovskite oxides.
One remarkable example is LaAlO3 grown in STO, as the interface between both substances
(both insulators) can exhibit metallic conductivity [53], superconductivity and ferromagnetism
[2], amongst other properties which neither of them present individually. It has also seen usage
in catalysis [55] and photo-catalysis [57] related applications.
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II. COMPUTER-BASED EXPERIMENTATION

Although a slight variation of the Verneuil’s process is the most common option when it comes
to synthesizing bulk STO, in its thin film form it can be grown epitaxially by atomic layer
deposition [45] or via scanning tunneling microscopy. Synthesis of STO nanoparticles [76] and
nanorods [71] for research in catalysis and nanoscale ferroelectricity has also been reported. For
additional information on the synthesis, properties and uses of STO, refer to [70].

II Computer-based Experimentation

The end goal of this work revolves around the simulation of bulk STO at finite temperatures in
order to observe the previously mentioned antiferrodistortive phase transitions under strain-free
conditions, therefore partially replicating the results in [27].

Figure 1.4: Effects of epitaxial strain in de-
position layers. Image taken from Ref. [46].

Furthermore, by introducing in-plane strain con-
straints -both compressive and expansive- into said
simulations we hope to produce a temperature-
strain ‘Pertsev ’ phase diagram of bulk SrTiO3, pre-
viously obtained only for thin films by means of
Ginzburg-Landau-Devonshire theory [56].

Roughly speaking, Landau theory is a symmetry-
based analysis of equilibrium behavior within a
physical system near a phase transition [6], char-
acterizing said transitions in terms of a series ex-
pansion the system’s free energy F as a function
of an order parameter and/or some external field.

The simulation of STO under in-plane strain is
highly relevant due to its widespread use as an

epitaxial growth substrate, as lattice mismatch between the substrate and the material to be
grown (that is, a noticeable difference between their lattice parameters) generates epitaxial and
relaxation strains (see Fig.1.4) that may lead to dislocations and imperfections in the resulting
crystal. Moreover, control over STO’s incipient ferroelectricity may be achieved by applying an
epitaxial strain, rendering it useful for a wide variety of applications.

II.i Simulation Software

Computational material science has become a key research asset over the last few decades,
as recent advances in computer speed and technology have allowed the creation of simulation
techniques of ever-growing complexity, capable of exploring physical phenomena in scenarios
where direct experimentation may prove too challenging and/or costly. Nonetheless, experimental
results are still important in order to validate the predictions of computer models and simulations.

The main tool behind the simulations carried out in this work are second-principles techniques,
specifically the scale-up [16] implementation. This kind of simulations make use of models,
whose parameters are obtained by means of first-principles or ab initio techniques, in order
to replicate the accuracy of the latter with a substantial increase in calculation speed. This
performance increase grants the ability to simulate larger systems (see Fig.1.5), in which
size-related complex behaviours (such as domain structures) may arise.

3



CHAPTER 1. INTRODUCTION

Particularly, in this work we employ Monte Carlo techniques within the aforementioned second-
principles framework1 in order to explore the different phases of bulk STO at finite-temperatures.
This was done under periodic boundary conditions and fixed-bond topology constraints within
large (8× 8× 8 or 10× 10× 10) supercells. A mode-projection Python algorithm (Appendix
A) was devised in order to isolate and analyze the contributions from the different structural
distortions (AFDa, AFDi, FE) present in bulk STO, therefore characterizing the different phases
within the material.

III Objectives of this Bachelor Thesis

Having covered the most relevant aspects and motivations behind the present work, we may ask
a few questions about our prospective goals:

• Can we reliably observe the antiferrodistortive phase transition present in STO?
• If so, are we able to replicate previous theoretical and experimental results?
• Can we produce a strain-temperature phase diagram of STO?
• Does said diagram replicate the results from Ginzburg-Landau theory? Do experimental

results agree with either one of them?
• Can we observe any domain structures in our simulations?

These questions shall be answered within this thesis, following the structure outlined below:

Chapter 2 encloses a more in-depth description of the properties of strontium titanate exposed
in this introduction, along with state-of-the-art explanations. In Chapter 3 a brief summary of
modern first-principles simulation techniques, as well as the main ideas behind second-principles
density functional theory will be presented.

In Chapter 4 the experimental methodology of simulating and interpreting the phase transitions
studied in this work is explained, from the use of Monte Carlo techniques to the way in which
phase transitions and structural modes were analyzed. Chapter 5 contains the main results of
this work, concerning the antiferrodistortive phase transition and the temperature-strain phase
diagram. Finally within Chapter 6 the main conclusions of this project will be summarized,
altogether with some final remarks and suggestions for possible improvements and future research
pathways.

1The model used in this work was created by J.C. Wojde l et al. for [27] using the ABINIT [23] package
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III. OBJECTIVES OF THIS BACHELOR THESIS

Figure 1.5: 10×10×10 STO supercell, similar to the ones analyzed in this work. The strontium
(green) atoms fill the interstices between the oxygen (red) octahedra, containing the titanium
(blue) atoms. Image obtained using VESTA [50].
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CHAPTER 2

THEORETICAL BACKGROUND

The following chapter aims to introduce the theory behind some of the most relevant properties
of STO. First and foremost a description of the perovskite structure will be given, followed by
some explanations on the origin of ferroelectricity and the structural phase transitions studied
in this work.

I Perovskite Structure

The perovskite structure, typical of ABO3 type oxides such as STO, takes its name from the
homonymous mineral (CaTiO3) where it was first observed.

Figure 2.1: Depiction of the
perovskite structure, show-
ing the A cation (shaded) be-
tween eight oxygen octahe-
dra containing the B cations
(dark). Image taken from
Ref. [48].

The ideal perovskite structure, generally the high-temperature
stable phase or aristotype [48], often undergoes structural dis-
tortions to more energetically stable, lower-symmetry phases in
consequence to changes in different environmental factors such as
temperature, pressure and/or strain. Fig. 1.2 shows the conven-
tional unit cell used to represent this kind of compounds, while
Fig. 2.1 is a rendition of its key component: the oxygen octahedra.
Although cation displacement (generally the B site) is the main
factor when it comes to the display of ferroelectric properties, the
rotation of the octahedra within the cell (if present) is of utmost
important in establishing the overall space-group symmetry of
a given perovskite phase [19], usually differing from the Pm3̄m
space-group presented by the aristotype. While atoms in the A
site posses a 12-fold coordination, both the B site atoms and the
oxygen atoms have a 6-fold coordination.

An array of several interesting properties, namely their high di-
electric constant and absorption coefficient, as well as the display
of ferroelectric (and therefore piezoelectric and piroelectric) prop-
erties, have made them ideal candidates for optoelectronic and
photovoltaic applications [69], in addition to those mentioned in
Chapter 1 regarding ferroelectric materials.
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CHAPTER 2. THEORETICAL BACKGROUND

II Structural Phase Transitions

The aforementioned phase transitions in the perovskite structure are associated to atomic
displacements diverging from the aristotype structure, known as modes. Those most relevant
in the study of STO are the oxygen octahedra rotations, also known antiferrodistortive mode
(henceforth referred to as AFD), and the displacement of the B cation inside the octahedra,
known as the ferroelectric mode (FE, respectively) due to its relation with said property.

II.i Antiferrodistortive Mode

Although STO displays the aforementioned aristotypical cubic structure under standard condi-
tions at temperatures higher than 105 K, other titanates such as CaTiO3 present low-symmetry
phases fostered by the presence of antiferrodistortive modes up to around 1600 K, meaning this
kind of distortions are stable in a wide range of temperatures.

In 1972 Glazer introduced a classification system for the 23 possible different systems of
octahedral rotations in perovskites, always under the assumption that the octahedra remain
regular throughout [19]. Each system is represented by three letters representing the tilting
magnitude along each direction ([100], [010], [001]), with equal letters meaning equal tilt, each
accompanied by one symbol (+, - or 0) denoting, respectively, whether successive octahedra in
the same axis posses an in-phase tilting (also referred to as AFDi in this work), an anti-phase
one (conversely AFDa) or no tilting at all (see Fig. 2.4).

As reported by Chen [7] the most common system, displayed by around half perovskite oxides,
is that of GdFeO3 (a−a−c+), with anti-phase rotations within the x − y plane and in-phase
rotations in the z direction, usually associated with orthorhombic structures. In the case of bulk
STO the a0a0c− system is displayed below the 105 K phase transition, an anti-phase rotation
of the octahedra along the z-axis (AFDa

z) accompanied by a tetragonal structure elongated in
that same direction. Several other systems are displayed by STO within our simulations under
epitaxial strain constraints, although that shall be discussed more extensively in Chapter 5.

It must be noted that, while the B cation remains mostly isolated within the oxygen octahedron,
the coordination landscape of the A cation is greatly affected by these rotations, hence becoming
an important factor regarding the stability of each system [75].

(a) AFDi
z — a0a0c+ (b) AFDa

z — a0a0c−

Figure 2.2: Depiction of the main AFD modes present in STO: the in-phase (a) and the
anti-phase (b) rotation of the octahedra along the z axis. Images taken from Ref. [74].
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II. STRUCTURAL PHASE TRANSITIONS

II.ii Ferroelectric Mode

Within the 32 crystalline classes there are 21 with no inversion symmetry, out of which 20 exhibit
piezoelectric behaviour (polarization fostered by mechanical stress). Among those there are 10
polar classes, showcasing a spontaneous permanent polarization P that varies with temperature,
a property known as pyroelectricity. If the orientation of said polarization can be reversed under
the application of a strong enough electric field, meaning there are two accessible equilibrium
states, then ferroelectricity is achieved [36].

Figure 2.3: Depiction of a perovskitic
ferroelectric mode, caused by the B
cation’s offset. Image taken from
Ref. [? ]

Regarding the nature of the ferroelectric phase transi-
tions themselves one may also consider either the order-
disorder type, where microscopic dipoles with originally
random orientations suddenly align, or the displacive
type, comprised by those where a small, collective dis-
placement of individual atoms is required [36]. In this
work we shall concern ourselves with the latter, given
that displacements of the B cation within the oxygen oc-
tahedra are usually the origin of ferroelectric behaviour
in perovskites, as shown in Fig. 2.3. The non-cubic
surroundings of the O2− ions seem to be the reason
why perovskites are prone to this kind of transition, as
suggested by local field calculations [36].

This ferroelectric mode generally arises only below a certain temperature associated to the
phase transition, known as the Curie temperature T0. We now proceed to explain the material’s
response in the vicinity of said transition.

Landau Theory of Ferroelectricity

A reliable description of the equilibrium behaviour of systems near a ferroelectric phase transition
may be obtained using Landau theory, and it has indeed been used to obtain (phenomenologically)
strain-temperature phase diagrams in ferroelectrics such as STO [56]. Although a much more
in-depth description of this procedure can be found in [6] and many solid state physics textbooks
[36], for the sake of completeness a few simple derivations and a brief summary of its main
results are presented in this work:

As mentioned in Chapter 1, Landau theory is a symmetry-based analysis of physical systems in
the vicinity of a phase transition. Landau stated in his 1937 papers [40] that a system cannot
change smoothly between two phases of different symmetry. Additionally, the symmetry of
one phase is required to higher than that of the other, due to thermodynamical arguments.
The transition is subsequently characterized in terms of an order parameter, in this case the
polarization P , that starts off at zero in the high-symmetry phase and becomes non-zero when
symmetry drops.

The main simplifying assumption behind this theory is that the free energy F of the system
near its phase transition can be expressed as a series expansion of the order parameter, although
it is expected that this assumption breaks down at the transition point itself. Under these
conditions, and assuming a uniform scalar polarization for the sake of simplicity, one may choose
the following sixth order expansion as their initial ansatz

FP =
a

2
P 2 +

b

4
P 4 +

c

6
P 6 − EP, (2.1)

9



CHAPTER 2. THEORETICAL BACKGROUND

(a) Some relevant magnitudes. (b) Hysteresis cycle.

Figure 2.4: (a) Representation of the free energy F , the polarization P and the dielectric
susceptibility χ of a ferroelectric material near its critical temperature T0. (b) Ferroelectric P -E
hysteresis cycle along with several miniature representations of the system’s free energy F at
each step. Images taken from Ref. [6].

where only even powers are used due to symmetry considerations, as we assume the existence
of two equivalent orientations in the polarization. Minimizing F in terms of P we obtain an
expression for the electric field:

E = aP + bP 3 + cP 5. (2.2)

Differentiating this equation with respect to P and setting P = 0 yields an expression for the
dielectric susceptibility,

χ =
P

E
=

1

a
. (2.3)

In order to introduce the Curie-Weiss behaviour observed in ferroelectrics, we assume that
around the Curie temperature a = a0(T − T0), so that the expression for the dielectric stiffness
κ matches experimental results:

κ =
1

χ
= a0(T − T0). (2.4)

If said assumption is introduced in Eq. (2.1) we obtain a temperature-dependant expression for
the free energy,

FP =
1

2
a0(T − T0)P 2 +

b

4
P 4 +

c

6
P 6 − EP, (2.5)

where a0 and c are positive in all known ferroelectrics. Whether b turns out to be positive
or negative determines the nature of the phase transition, either a second-order (continuous)
transition or a first-order one, respectively. The temperature-dependent behaviour of the former
is presented in Fig. 2.4a, where it can observed that below the Curie temperature two distinct
polarization ground states emerge from a previously unpolarized one. The energy barrier between
both polarizations means that small electric fields wont spontaneously change the polarization
state of the system, meaning that even a simple model such as this one predicts ferroelectrical
hysteresis cycles, as shown in Fig. 2.4b.

This description of ferroelectricity, known as Landau-Devonshire theory, is only appropriate
for bulk systems with spatially uniform polarization, as it doesn’t bode well with boundary
conditions. Landau-Ginzburg theory solve those shortcomings by introducing power gradients
in Eq. (2.1), extending its applicability to general bulk systems or thin film scenarios [6].
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As a final note, were one to introduce strain coupling η in Eq. (2.1) as an additional order
parameter several new effects would appear: second-order transitions may turn first-order ones,
and the Curie temperature could vary considerably. Hydrostatic pressure may also reduce T0,
while biaxial stress may increase it (an effect observed in BaTiO3 crystals) [6].

II.iii Driving Mechanisms

In this section we shall delve into some of the most generally accepted explanations for the
appearance of these modes, starting from an empirical rule regarding ionic sizes and subsequently
moving on to the influence of the chemical bonds and the lattice vibrational modes.

Goldschmidt Tolerance Factor

No discussion about perovskite instabilities may be complete without mentioning the Goldschmidt
tolerance factor [21], an empirical rule quite ubiquitous throughout the existing literature. It is
a dimensionless number that quantifies the stability of a given perovskite oxide, or alternatively
the likelihood that it undergoes any structural distortion, based solely upon steric arguments
regarding the ionic radii of its constituent atoms.

Figure 2.5: Visual
derivation of the GTF.

Under compact sphere packing conditions, the following relations may
be extracted from simple geometric arguments emanating from the
cubic perovskite BO2 and AO planes, as depicted in Figure 2.5:

a = 2rB + 2rO

a
√

2 = 2rA + 2rO
(2.6)

where a is the cubic lattice parameter and ri corresponds to the ionic
radius of each atomic species. Substituting one in the other yields the
definition of the (ideal) Goldschmidt tolerance factor:

t = 1 =
1√
2

rA + rO
(rB + rO)

(2.7)

Goldschmidt showed [21] that any perovskite composition where t 6= 1
-that is, differing from the proportions of an ideal cubic perovskite-
will undergo structural distortions that improve the purportedly sub-
optimal bonding conditions. While a tolerance factor t larger than
unity indicates an relatively undersized B cation, rendering B-O polar
distortions such as the ferroelectric mode more likely, t < 1 indicates
a relatively undersized A cation, meaning enhanced A-O motion and
consequently a much higher probability to display some sort of Glazer
rotational system [7].

Making use of the ionic radii stated by Shannon in [65], we can observe that STO displays a
tolerance factor barely larger than one (t = 1.009), which corresponds nicely with the fact that
STO displays a cubic structure until it reaches its transition to the a0a0c− Glazer system.

As one would expect, it has been shown that there is a correlation between the magnitude of
the tolerance factor and the energy difference between the aristotype and the ground state [7].
The amplitude of the octahedral rotations also exhibits a similar trend.
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Chemical Bonding

Bonding properties between each the constituent atomic species within the perovskite are
instrumental when it comes to understanding which of the 23 Glazer rotation systems it will
display. As several explanations linking the nature of the bonds and the tilting of the oxygen
octahedra have been proposed over the years, from a pseudo Janh-Teller effect [14] to a group-
theoretical analysis of deviations from the aristotype cubic structure (Pm3̄m) [29], a thorough
discussion of them all vastly exceeds the scope of this work. Nonetheless, for the sake of
completeness we shall attempt to summarize below the most remarkable conclusions offered by
these studies.

Although both ionic and covalent bonding have been studied, the structures maximizing the
latter will be the most stable overall. We may then split our discussion into the properties of
A-O and B-O bonding.

Due to the sizeable difference in electronegativity between typical A atoms and O atoms, one
would expect their bond to be highly ionic. A cations of increasing electronegativity will enhance
the covalent nature of this bond, an effect magnified by deviations from the aristotype a0a0a0

structure due to the increased overlap between the A and O orbitals. The orthorhombic a+b−b−

system, already accounted for as the most common amongst the 23 Glazer systems, has been
shown to maximize the covalent nature of this bond while minimizing its repulsive overlap.
Hence this structure will be favored by perovskites sporting either a low enough Goldschmidt
factor (t < 0.975) or a relative electronegative A cation, such as calcium [75].

On the other hand, since AFD rotations do not change the coordination sphere of B cations
and the deformations in the oxygen octahedra are usually negligible, for the most part due
to an increased bond strength stemming from a typically higher electronegativity compared
to the A cation, they do not usually play an instrumental role in terms of determining the
rotation system. Despite the fact that both B-O σ and B-O π covalent interactions (the later
being only relevant when B is a transition metal) decrease with the B-O-B angle (180o in the
cubic aristotype), their effects are relatively small for low tilt angles, and may be compensated
by either ionic energy or covalency gains in the A-O bond [75]. This renders the ideal cubic
structure unstable and therefore comparatively rare, as previously mentioned.

Soft-Mode Theory

Figure 2.6: Brillouin zone
of a Primite Cubic (CUB)
unit cell. Image taken from
Ref. [64].

Another approach towards understanding the structural instabil-
ities of perovskite oxides was proposed in 1959 by Cochran et al.
[8], based upon the idea that perovskites become unstable against
a set of normal vibrational modes (the so called “soft modes”) in
the lattice. Basically, a given transition is characterized by one
of these soft modes, whose frequency decays rapidly approaching
T0, reaching zero at the exact temperature. This means that
the restoring force for that specific displacement pattern -related
to some generalized elastic constant- softens, hence the naming
choice [59]. This effectively establishes positive frequencies as a
requirement for crystal stability [8], something which can be eas-
ily visualized through the computation of the phonon dispersion
bands, such as those in Fig. 2.7.
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Figure 2.7: Phonon dispersion bands of cubic STO (left) calculated from first principles (lines)
and from our second principles model (circles). On the left, the projected density-of-states
(PDOS) obtained via both mechanisms. Image taken from Ref. [27].

Said figure contains the computed dispersion bands for our STO model, where we can see
the R-point mode frequency drop below zero, corresponding to the AFDa phase transition.
The location of the soft mode in the Brillouin zone (hereinafter BZ, see Fig.2.6) has several
implications regarding the nature of the phase transition. Whilst zone-center (Γ) soft modes,
such as the FE mode, represent transitions in which the number of atoms per unit cell remains
unchanged; zone-boundary (in this case R and M points, corresponding to the AFDa and AFDi

instabilities respectively) soft-modes imply an integer multiplication (a doubling in the case of
STO, see Fig. 4.2) on the number of atoms per unit cell below the critical temperature [59].

Further, the symmetry of the associated BZ point also affects the translational symmetry of
the mode itself, something specially relevant when it comes to projecting the modes onto the
system’s equilibrium geometry: while the AFDi mode (M-point) alternates sign for every unit
cell displacement in the plane perpendicular to the rotation, the AFDa mode (R-point) does so
in every direction and the FE mode (Γ-point) doesn’t do it at all (more in Chapter 4).

One of the most commonly accepted explanations for STO’s incipient ferroelectricity, also known
as quantum paraelectricity, comes from soft mode theory. Quantum fluctuations allegedly
stabilize the soft mode, preventing it from reaching zero at the transition temperature as would
happen in a paradigmatic ferroelectric (see Fig. 2.8). The relative permittivity subsequently
plateaus instead of diverging, as expected in a conventional ferroelectric (see Fig. 2.4a), until
reaching a temperature below which quantum effects complete cancel out the onset of ferroelec-
tricity and the permittivity remains constant. In the case of STO this happens at around 4K
[51].

Additionally, a link between this theory and the divergent behaviour of the dielectric susceptibility
χ in ferroelectrics, predicted by Landau theory, may be found in the Lyddane-Sachs-Teller
relation

ω2
LO

ω2
TO

=
χ(T )
χ∞

, (2.8)

where the ratio between the longitudinal and transverse optical frequencies of the soft mode is
equal to that of the dielectric susceptibility χ(T ) and its value in the visible range χ∞. This
and other arguments lead to this theory being considered a small but significant extension of
Landau’s theory of second order phase transitions [59].
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CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.8: Comparison of the soft mode frequency ω and the dielectric constant ε between a
quantum paraelectric (such as STO) and a typical ferroelectric material in the vicinity of the
critical temperature Tc.

As a final note, one of the main setbacks in soft mode theory, as presented by Cochran [8],
is that anharmonic interactions become highly relevant near the transition temperature T0,
meaning that one can no longer work within the framework of the harmonic oscillator.

II.iv Mode Competition

Although presented as isolated phenomena until now, there is extensive evidence of intrinsic
couplings between the FE and AFD instabilities. Even though the former ends up suppressed
in bulk STO by quantum effects (first-principles calculations predict a ferroelectric transition,
which disappears when these effects are introduced via Monte Carlo path-integral simulations), it
has also been shown that in the absence of AFD rotations STO does indeed display ferroelectric
behavior [61]. Further, increasing crystal volume was seen to enhance FE distortions while
weakening the AFD ones, suggesting a competitive relationship between both instabilities [61].
This competition though, present in many perovskites, turns into cooperation for large enough
octahedral tilts in compounds with tolerance factors in the 0.78 < t < 1 range [24]. This
cooperation was found to be independent of strain, and based purely on steric arguments.

Quantum fluctuations in STO were found to have a much stronger effect on the FE transition
than on its AFD counterpart, completely suppressing the former while barely affecting the
transition temperature of the latter [77]. Other similar compounds such as BaTiO3 are far
less influenced by these quantum effects, ostensibly due to their substantially higher transition
temperatures [77]. In fact, STO is so close to being ferroelectric that a simple isotopic exchange,
oxygen-18 instead of oxygen-16, triggers a transition at around 25K [5], which is yet another
reason why both modes are intertwined.

Finally, a discourse on the relationship of these instabilities would not be complete without
mentioning improper ferroelectricity, a phenomenon whereby the layering of polar and non-
polar perovskites (such as PbTiO3 and STO) displays ferroelectric behaviour due to the
AFD/FE coupling, instead of relying solely on the FE instability [4]. This grants control over
the temperature dependence of the polar order parameter, which may be used to obtain a
high, almost temperature independent dielectric constant, something really desirable from a
technological perspective [4].
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CHAPTER 3

COMPUTATIONAL TECHNIQUES

All properties of matter can be understood through the behavior of atoms, molecules and
solids. Modern computational methods have proved to be powerful tools towards acquiring said
knowledge, granting not only explanations to known phenomena but even predictive power in
some cases.

Nonetheless, such kind of simulation procedures generally require vast swathes of computing
power, even for modest systems no bigger than a few hundreds atoms. The technique used
throughout this work, known as Second-Principles Density Functional Theory (SPDFT) [16],
implements a novel approach that allows simulations containing up to thousands of atoms with
relative ease.

In this chapter we shall start from the ground up, building up from the Schrödinger equation
towards the main concepts behind SPDFT, while describing the various approximations involved.

I First-Principles Simulations

First-principles simulations -also known as ab-initio simulations- have seen increasing popularity
in the last few decades, on par with the ever-growing computational power available with the
purpose of predicting and explaining the different properties (optical, vibrational, electronic,
magnetic) of a given compound from elementary information about its structure and composition
[16].

First of all, some clarifications need to be made regarding the notation used throughout this
chapter. Atomic position vectors will be represented by an uppercase ~R with greek alphabet
subscripts, while electronic ones shall do so with a lowercase ~r and latin subscripts. Furthermore,
Hartree atomic units will be used in order to simplify the notation. In this unit system the
electron charge e and its mass me, the reduced Plank constant ~ and the inverse Coulomb
constant 4πε0 are all equal to one.

Properties of materials may be understood by looking at their atomic and electronic structure.
Given that material systems are usually within the limits of non-relativistic physics [1], we shall
approach their study by means of the Schrödinger equation:

ĤΨA(~R,~r) = EAΨA(~R,~r) (3.1)
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By solving Eq.3.1 the eigenfunctions ΨA of the systems are obtained, allowing in principle the
calculation of any physical property of the system. The Hamiltonian Ĥ on Eq. 3.1 may be
decomposed in several terms:

H = Te + Tn + Vee + Vnn + Ven + Vext (3.2)

corresponding to the kinetic energy of electrons Te and nuclei Tn, the electrostatic potential
between electrons Vee, nuclei Vnn and electrons and nuclei Vne and a possible external potential
Vext. Given a system formed by N electrons and M nuclei, their expressions are denoted by the
following equations:

Te = −
N∑
i

1

2
~∇2~ri Tn = −

M∑
i

1

2Mi

~∇2 ~Ri

Vne =
1

2

N,M∑
i,α

Zα

|~Rα − ~ri|

Vee =
1

2

N∑
i,j

1

|~ri − ~rj|
Vnn =

1

2

M∑
α,β

ZαZβ

|~Rα − ~Rβ|

(3.3)

In addition to the complexity of solving this equations even for a few atoms, due to the presence
of cross terms in the expressions of Vee, Vnn and Vne no analytical solution can be obtained.
Therefore, approximations need to be made in order to obtain sensible results.

I.i Born-Oppenheimer Approximation

This approximation relies on the fact that nuclei are far more massive than electrons, from
which stems the assumption that they will also move far more slowly. This means that, at first
approach, the movements of electrons and nuclei may be uncoupled and considered independent
from each other [32]. The wave function ψA(~R,~r) can then be decomposed as a product of

electronic ψe(~r) and nuclear ψn(~R) wave functions: ψA(~R,~r) = ψn(~R)ψe(~r).

This allows the redefinition of the Hamiltonian (Eq.3.2) as the sum of the nuclei’s kinetic energy
and an electronic Hamiltonian:

Ĥ = Tn + Ĥe Ĥe = Te + Vee + Vnn + Ven (3.4)

and the decomposition of the stationary Schrodinger equation into two separate equations

ĤΨ(~R,~r) = EΨ(~R,~r)⇒ [Tn + Ĥe]ψn(~R)ψe(~r) = Eψn(~R)ψe(~r) (3.5)

The first one corresponds with the eigenvalue equation for the electronic Hamiltonian Ĥe, a
differential equation taking electronic positions as variables and atomic positions as parameters
only:

Ĥeψe(~r) = EA(~R)ψe(~r) (3.6)

Both the eigenstates ψe(~r) and the eigenvalues EA(~R) obtained depend parametrically on the
positions of the atoms. Rewriting Eq.3.5 we obtain:

[Tn + E(~R)]ψn(~R)ψe(~r) = Eψn(~R)ψe(~r) (3.7)

In order to uncouple both equations, the effect of the momentum operator of the nuclei on the
electronic wave functions must be neglected:

Tnψe(~r) ≈ 0 (3.8)
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This is the core statement of the approximation, justified by the fact that even in the case of
the lightest possible nucleus, atomic hydrogen, the nuclear mass is around 1836 times that of
the electron. This alone makes it possible to disregard atomic motion when considering the
electrons only.

Under this considerations Eq.3.7 may be rewritten so as to obtain the following eigenvalue
equation for the nuclei:

[Tn + EA(~R)]ψn(~R) = Eψn(~R) (3.9)

where EA(~R), the eigenvalues from Eq. 3.6, represent the potential affecting the nuclei due to
their interaction with the electronic cloud surrounding them. Hence each arrangement of the
nuclei ~R has its own potential field, known as Adiabatic Potential Energy Surface or APES for
short. These surfaces are independent under the aforementioned conditions for the adiabatic
approximation. Were two electronic states ψe(~r) to have similar enough APES then whole
approximation would break down, as the correlation between them wouldn’t be negligible [32].

All in all the Born-Oppenheimer approximation is an instrumental tool in first-principles
simulations, as it simplifies the calculation of the stationary states of the system. It requires
only the solution of two uncoupled differential equations, turning the original problem into a
two-step process: First off the electronic equation (Eq.3.6) is solved, granting the APES E(~R)
needed for the resolution of the nuclear equation (Eq.3.9). Were it not to be used (namely, were
it not applicable to the system at hand), a complex system of coupled nuclear and electronic
equations would need to be solved.

II Hartree-Fock Method

The problem now lies in finding the solutions ψe to the electric equation (3.6). This is a highly
non-trivial task, as its a 3N-dimensional equation with no general analytic solution (besides
one-electron systems) due to the presence of cross-terms in the electronic repulsion term Vee.

This means its resolution requires the use of variational methods, particularly the Rayleigh-Ritz
method [41]. They are based [32] on the fact that the energy Et obtained with a trial wave
function ψt will always be greater than or equal to energy obtained with the exact solution Eex:

Et = 〈ψt| Ĥe |ψt〉 ≥ Eex (3.10)

This trial wave function is a combination of N independent wave functions, each associated to a
given electron and therefore independent of the positions of the others (for example, composed of
hydrogen-like orbitals). This trial wave function is then variationally optimized until a minimum
energy is found.

In 1928 Hartree [26] introduced a procedure, which he named self consistent field method (SCF),
where the electronic wave function was approximated by a product of atomic orbitals:

Ψ(~r1, ~r2, ..., ~rN) = ψ1(~r1)ψ2(~r2)...ψN(~rN) (3.11)

Although this greatly simplifies calculations, it does not comply with Pauli’s exclusion principle
because the wave function is not antisymmetrized under the permutation of two electronic
positions, as Slater pointed out in 1930 [66]. This is solved through the implementation of the
Slater determinant (Eq. 3.12), at which point Hartree’s approximation becomes the Hartree-Fock
(HF) approximation:
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Ψ(~r1, ~r2, ..., ~rN) =
1√
N !

∣∣∣∣∣∣∣∣
φ1(~r1) φ2(~r1) ... φN(~r1)
φ1(~r2) φ2(~r2) ... φN(~r1)
... ... ... ...

φ1(~rN) φ2(~rN) ... φN(~rN)

∣∣∣∣∣∣∣∣ (3.12)

Slater determinants are formed spin-dependent orthogonal orbitals, each independent from the
rest, the notation φa(~rb) representing electron a in position b. This formulation ensures Pauli’s
exclusion principle, as were two electrons to be in the same quantum state the determinant
would equal zero. Hartree’s approximation (Eq. 3.11) would correspond to the product of the
diagonal elements of the Slater determinant. The configuration energy of the system may be
obtained [32] by applying the electronic Hamiltonian Ĥe to the Hartree-Fock wave function
(3.12):

E =
∑
i

hi +
1

2

∑
ij

(Jij −Kij) + Vnn (3.13)

where the one electron energy hi = 〈φi| ĥi |φi〉, which includes both the Te and Vne terms, is
given by:

ĥi = −1

2

∑
i

~∇2~ri −
∑
α

Zα
~Rα − ~rα

(3.14)

the other two terms, Jij and Kij correspond to the Coulomb potential and the exchange energy
between electrons respectively:

Jij =

∫ ∫
|φi|2|φj|2

1

|~ri − ~rj|
d3rid

3rj Kij =

∫ ∫
φ∗iφjφ

∗
jφi

1

|~ri − ~rj|
d3rid

3rj (3.15)

While Jij corresponds to the classical electrostatic potential between electrons, Kij is a purely
quantum effect caused by the antisymmetrization of the wave function. It may be understood as
a Fermi hole surrounding the electron, a region with low probability of finding another electron
close by. It shall be noted that Jij >> Kij for i 6= j while Jii = Kii, hence no self-interaction
terms arise.

Applying the variational principle (3.10) we can obtain a system of equations by minimizing the
configuration energy with respect to the set of orbitals chosen for the Slater determinant:

δE

δφi
= 0 ∀φi (3.16)

Solving said system yields [32] the Hartree-Fock equations:

F̂iφi = εiφi F̂i = ĥi +
∑
i

(Jij −Kij) (3.17)

where F̂i are the Fock operators and εi the one-electron energies for each orbital considered.
The process of optimizing the orbitals is an iterative self-consistent algorithm, known as SCF
(for Self-Consistent Field), which goes as follows:

1. Initial estimation of the orbitals φi is made.
2. Find the solutions to the Hartree-Fock equations.
3. If the solutions differ from the estimations, go back to step 2 using said solutions as input.
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The cycle finishes when the orbital variation goes below a certain threshold. It is important to
note that different starting conditions for the orbitals may lead to different local minima in the
energy. When the process is finished, the one electron-energies correspond to the eigenvalues in
(3.17), and the total energy is just their sum [32].

The Hartree-Fock equations involve complex partial derivatives, hence numerical functions were
initially used to solve them. In 1951 Roothan [60] first introduced an analytical expression for
the orbitals. In molecules and solids this is known as LCAO (for Linear Combination of Atomic
Orbitals), where each orbital φi is approximated as a linear combination of atomic orbitals χk:

φi(~r) =
∑
k

ckχk(~r) (3.18)

Some relevant variations on this approximation are Slater-type orbitals (STOs) and Gaussian-
type orbitals (GTOs), which expand the orbitals φi in terms of exponential and Gaussian
functions respectively.

Furthermore special consideration is usually given to core orbitals, as they are usually not too
relevant when it comes to chemical bonding. Generally they are either considered ”frozen”, with
their ck coefficients remaining constant, or they are outright substituted by an effective external
potential applied on the valence electrons.

II.i Beyond Hartree-Fock

The HF approximation is not without its shortcomings. Electron–electron repulsion is only
accounted for in an average fashion, and so the HF method is therefore also referred to as a
mean-field approximation. This is due to the choice of using a single Slater determinant as
the trial wave function [32]. Likewise it completely neglects electronic correlation, yielding a
different energy for the system and rendering proper chemical bonding descriptions unfeasible:

Ecorr = Ereal − EHF (3.19)

One way of dealing with these issues is considering the HF approximation ΨHF as the first
term on a series expansion of the system’s wave function Ψ:

Ψ = c0ΨHF + c1Ψ1 + c2Ψ2 + ... |c0|2 >> |ci|2 (3.20)

where Ψi are Slater determinants compatible with the system’s geometry representing its
excited states. There are other methods available, such as Møller-Plesset perturbation theory or
coupled cluster methods, but they all lie beyond the scope of this work.

All HF-derived methods share the same downfall: performance. They all present prohibitively
high computational complexity, as they need to deal with at least N three-dimensional wave
functions (four-dimensional if electron spin is brought into the equation), while requiring even
more than that in order to account for electron correlation. This means they are only suited for
small molecules, rendering crystalline solid simulation unfeasible.
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III Density Functional Theory

Due to the high computational demands of HF-based methods, a new approach was needed
in order to tackle the simulation of medium-to-large molecules and solids. Density Functional
Theory (DFT) was born during the mid-sixties, based on the idea that the system’s energy can
be expressed as a functional (that is, a function of a function) of electronic density ρ(~r).

This is a comparatively more intuitive approach, as electronic density is much simpler than
the system’s wave function ψe while containing all its information. It is a real observable that
can be measured experimentally and contrasted with theoretical models. Furthermore, it also
represents a significant reduction in the number of parameters: A wave function for an N
electron system contains 4N variables, three spatial and one spin coordinate for each electron,
whereas the electron density is the square of the wave function integrated over N − 1 electron
coordinates, each spin density only depending on three spatial coordinates independently of the
number of electrons [9].

ρ(~r) = N

∫
|ψe|2d3~r2...d

3~rN (3.21)

The total energy of the system (3.4) is given [32] by:

E = 〈Ĥe〉 = 〈Te〉+ 〈Vee〉+ 〈Ven〉+ Vnn ⇒ 〈T 〉+ J + 〈Vx〉+ Ec + 〈Ven〉+ Vnn (3.22)

where J is the Coulomb energy between electrons, 〈VX〉 the exchange energy and Ec the
electronic correlation. The terms 〈Ven〉 and Vnn are now considered as part of an ”external”
potential Vext(~r) affecting the electron cloud, which can also include terms related to external
magnetic or electric fields.

III.i Hohenberg-Kohn Theorems

In 1964 Hohenberg and Kohn [28] provided a solid mathematical foundation for DFT, hitherto
an overlooked technique due to its lack thereof. While the first theorem states that the electronic
density is indeed an equivalent variable to the wave function for the ground state, the second
establishes a variational principle to obtain the ground state electronic density:

Theorem 1 (1st Hohenberg-Kohn (Existence) Theorem) For the ground state there is a one-
to-one correspondence between the electron density ρ and the nuclear potential Vext(~r) (within a
trivial additive constant), and thereby also with the Hamiltonian operator and the energy [32].
In other words, the energy is a unique functional of the electron density:

E0 = E0[ρ]

It must be noted that, although in its original formulation the first theorem only contemplated
non-degenerate ground states, its validity has also been proven for degenerate ground states
and the least energetic excited states of any irreducible representation.

Theorem 2 (2nd Hohenberg-Kohn (Variational) Theorem) The functional that delivers the
ground state energy of the system gives the lowest energy if and only if the input density ρ′(~r) is
the true ground state density ρ(~r). Hence a variational principle akin to (3.10) may be used to
find the ground state electron density:

E0[ρ′(~r)] ≥ E0[ρ(~r)]

Despite the fact that these two theorems provided a much needed basis, at the time DFT
was still lacking a reliable method to correctly calculate the total energy. This is where the
contributions from Khon and Sham come in.
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III.ii Khon-Sham Theory

The main setback of orbital-free DFT (as it has been hitherto presented) is the low quality
of the kinetic 〈T 〉 and exchange 〈Vx〉 energy functionals, usually obtained by considering a
non-uniform electron gas such as in the Thomas-Fermi-Dirac (TFD) model. This in itself was
another major flaw, as from a chemical perspective none of these theories predict any kind of
bonding [32].

In 1965 Khon and Sham [37] suggested that the kinetic energy could be calculated using an
auxiliary system S formed by N non-interacting electrons with the same electronic density
and under the same effective potential veff(~r) as the system at hand. As we are considering
independent electrons once again, we can utilize an independent orbital ψKSi model as done
previously in the Hartree-Fock approximation.[

−1

2
∇2 + veff (~r)

]
ψKSi = εKSi ψKSi (3.23)

The expression for the energy in the real system is therefore given by the following expression

EKS = TKS + JKS + EXC +

∫
n(~r)vef (~r)d

3~r (3.24)

where the TKS and JKS terms correspond exactly to the kinetic and Coulomb energies of the
electrons in the auxiliary system:

TKS =
1

2

∑
a

∫
(ψKSi )∗∇2ψKSi d3~r JKS =

1

2

∫
ρ(~r)ρ(~r′)

|~r − ~r′|
d3~rd3~r′ (3.25)

The term EXC corresponds to the electron correlation and exchange energy, defined as the sum
of the differences of the two previous terms between the real and auxiliary systems:

EXC = (T − TKS) + (Eee − JKS) (3.26)

The difference in kinetic energy is implicitly assumed to be small, so that (T − TKS) ≈ 0. In
the final integral, the term vef is given by the system’s geometry (nuclei) and any external
potential vext applied to the system, and it is formally defined [32] as:

vef (~r) =
δJKS
δρ(~r)

+
δEXC
δρ(~r)

+ vext =

∫
ρ(~r)

|~r − ~r′|
d3~r′ + vXC + vext (3.27)

The only unknown term in equation 3.27 is vXC , known as the exchange-correlation potential,
is the main problem with modern DFT methods. As of yet there is no easy way to obtain such
a functional, so approximations need to be made regarding its evaluation.

The most common approach -basically a reference point- is using an LDA (Local Density
Approximation) potential, which considers an homogeneous electron gas of constant density for
its derivation. In principle this only works for systems where ρ(~r) varies slowly, but it turns
out to give good enough results for a wide variety of cases. This happens because it leads to
a Fermi hole that, although imprecise, globally cancels self-interaction in the J term. This
approximation splits EXC into two contributions, one for exchange EX and one for correlation
EC , which are calculated via Monte Carlo methods [54].

Next step in complexity would be a GGA (Generalized Gradient Approximation) potential,
which takes into account not only local density of the gas ρ but also its gradient ∇ρ in order to
tackle inhomogeneity. Other options include Meta-GGA, hybrid functionals that incorporate the
exact exchange energy from HF methods, etc. The description of the aforementioned advanced
methods is considered beyond the scope of this work.
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CHAPTER 3. COMPUTATIONAL TECHNIQUES

IV Second-Principles Simulations

DFT-based first-principles methods have become the de-facto tool in modern times due to their
high precision and predictive power. Nonetheless they also present important time and length
scale limitations related to the computational complexity of the calculations involved (typically
O(N3)), which make the simulation of systems larger than a few angstroms or for periods longer
than a few femtoseconds pretty much unfeasible. In order to study this type of systems a new
simulation procedure was developed, known as Second-Principles Density Functional Theory
(SPDFT), allowing for calculations up to

IV.i Electronic Density

The main idea behind SPDFT is decomposing the electronic density n(~r) into two parts: a
reference electronic density n0(~r) (RED) which contains most of the electrons and a deformation
density δn(~r):

n(~r) = n0(~r) + δn(~r) (3.28)

In non-magnetic systems n(~r) represents the ground state electronic density. In fact in most
cases the ground state density is usually chosen as the system’s RED, which is a parameter
inside second-principles model and hence considerably reduces computing costs. This two-part
formulation grants the ability to express the system’s energy as a perturbative expansion as a
function of electronic density:

E ≈ E(0) + E(1) + E(2) + ... (3.29)

In order to determine the exact expressions of the E(i) terms we introduce the electronic density
of (3.28) into (3.24), the DFT energy functional equation. As the terms representing electron
kinetic energy and Hartree repulsion are linear with respect to electronic density the parts
corresponding to the RED and the deformation density may be separated [16].

Unfortunately the term corresponding to the exchange and correlation energy is not linear
with respect to electronic density, so an special treatment is required: in order to separate the
reference and perturbative contributions we suppose the latter is really is small compared to
the former, so that we can expand EXC around the RED:

EXC [n] = EXC [n0(~r)] +

∫
δEXC
δn(~r)

∣∣∣∣
n0

δn(~r)d3~r

+
1

2

∫
δ2EXC

δn(~r)δn(~r′)

∣∣∣∣
n0

δn(~r)δn(~r′)d3~rd3~r′ + ...

(3.30)

IV.ii Energy Terms

Equation 3.29 is usually cut off at order two, each of the individual terms representing different
physical contributions to the total energy. The base term E(0) is known as reference energy
and corresponds exactly with the DFT energy of the system’s ground state associated with the
RED:

E(0) =
∑
j~k

o
(0)

j~k
〈ψ(0)

j~k
| T̂ + vext |ψ(0)

j~k
〉+

1

2

∫
n0(~rn0(~r′)

|~r − ~r′|
d3~rd3~r′ + EXC [n0(~r)] + Enn (3.31)
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IV. SECOND-PRINCIPLES SIMULATIONS

The first order term E(1) corresponds to the one-electron excitations originated from the
electronic perturbation density δn(~r).

E(1) =
∑
j~k

[
oj~k 〈ψj~k| ĥ0 |ψj~k〉 − o

(0)

j~k
〈ψ(0)

j~k
| ĥ0 |ψ(0)

j~k
〉
]

(3.32)

Finally, the second order term E(2) corresponds to the two-electron contributions, namely the
inter-electron interaction screened by the second order exchange and correlation term:

E(2) =
1

2

∫
ĝ(~r, ~r′)δn(~r)δn(~r′)d3~rd3~r′ ĝ(~r, ~r′) =

1

|~r − ~r′|
+

δ2EXC
δn(~r)δn(~r′)

∣∣∣∣
n0

(3.33)

IV.iii Wannier Functions

The previous expressions for the energy were given in terms of Block orbitals, a highly delocalized
base which stems directly from the Bloch theorem [1]. This makes them a natural choice for
working with solids, as they share the periodicity of the crystal lattice. Computationally speaking
though, this same delocalization makes them a suboptimal choice for simulation purposes.
Wannier functions |χa〉 present a much more convenient alternative for second-principles, and
they are defined as follows [17]:

|χa〉 =
V

(2π)3

∫
BZ

d~ke−i
~k·~RA

J∑
m=1

T (~k)
ma |ψ

(o)

m~k
〉 (3.34)

where V is the volume of the unit cell, ~RA is the lattice vector of the cell where the Wannier

function is located, J is the number of bands in the manifold and T (~k) represents the unitary
transformations affecting the Block orbitals |ψ(o)

m~k
〉. The following expression gives a series

expansion of the Bloch wave functions in terms of the Wannier functions:

|ψj~k〉 =
∑
a

cja~ke
i~k·~RA |χa〉 (3.35)

where the cja~k coefficients are determined by imposing on |ψj~k〉 the condition of being Hamilto-
nian eigenstates.

Wannier functions may be obtained directly from first-principles [67], chosen so as to form an
orthogonal basis for the calculations. Their high localization compared to Block functions (they
are akin to their Fourier transform, after all) results in a reduced number of calculations, as
only matrix elements between close neighbours need to be obtained. In fact, this basis choice
alone considerably increases the computational efficiency of second-principles algorithms [16].

The electronic density may now be defined explicitly in terms of said Wannier basis as follows:

n(~r) =
∑
ab

dabχa(~r)χb(~r) (3.36)

where dab is the occupation matrix, related to the coefficients of the series expansion of the Block
basis in terms of the Wannier basis (Eq. 3.35) and the occupation level oj~k of said orbitals:

dab = oj~kc
∗
ja~k
cjb~ke

i~k(~RA−~RB) (3.37)
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CHAPTER 3. COMPUTATIONAL TECHNIQUES

The deformation matrix Dab is now introduced as a way to differentiate between the RED and
the deformation density,

Dab = dab − d(0)
ab , (3.38)

hence defining the latter as:

δn(~r) =
∑
ab

Dabχa(~r)χb(~r). (3.39)

Finally, we may rewrite the first and second order terms in the energy expansion as in terms of
this new basis:

E(1) =
∑
ab

Dabγab γab = 〈χa| ĥ0 |χb〉 (3.40)

The term γab is equivalent to the hopping parameter in a typical tight binding model [1], quan-
tifying the interaction between two electronic orbitals given by the Hamiltonian ĥ0, associated
the RED. The second order term also depends on the deformation matrix, as well as on the
previously defined screening operator ĝ:

E(2) =
∑
ab

∑
a′b′

DabDa′b′Uaba′b′ Uaba′b′ = 〈χaχa′| ĝ |χbχb′〉 (3.41)

It must be noted that all the expressions outlined in this section are only valid for non-magnetic
systems, such as the one concerning this work. Magnetic systems require another term in the
second order energy contribution, concerning spin polarization [16].
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CHAPTER 4

METHODOLOGY

Whereas the last chapter gave a broad overview on the theory behind the simulations, this
chapter aims to introduce the methodology followed in this work.

I Monte Carlo Simulations

The simulation of phase transitions requires the ability to carry out finite-temperature cal-
culations, a task that is computationally prohibitive for most first-principles codes, which
mainly focus on the optimization of the geometry of the system by some energy-minimization
procedures.

One of the most common approaches when it comes to simulating finite-temperature systems is
the use of what are known as Monte Carlo techniques. Owing their name to a famous casino
in the city of Monaco, they are a class of computational algorithms that rely on the use of
randomly generated numbers in order to perform their task. Although they were originally
developed in the late 1940s in Los Alamos laboratory as a means to study neutron diffusion
in fissile materials [49] (being of utmost importance in the development of the Manhattan
project), they have seen widespread adoption in many areas of natural and social sciences. Some
examples include the Metropolis-Hastings algorithm, used to sample statistical distributions
whence direct sampling is complicated or unfeasible; simulated annealing algorithms, used to
find global optima in functions with large search spaces, etc.

We harness these techniques to our advantage by means of a Markov chain procedure [39],
obtaining at every step a new state for the system using the previous one as a starting point.
A new position is randomly proposed for every atom in the supercell, consisting of a small,
random displacement away from its previous position. The atomic movements are accepted
based on the following Boltzmann probability

P (T ) = e
− ∆E

kBT , (4.1)

where ∆E is the energy variation that the new position would imply, kB is the Boltzmann
constant, and T the absolute temperature under study. The energy variation is calculated with
the second principles methods explained in Chapter 3, using the scale-up implementation [16].
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CHAPTER 4. METHODOLOGY

Figure 4.1: Schematic of the system’s geometry under several types of distortions: individual
atomic displacements (a), homogeneous strain (b) and inhomogeneous strain modelled as atomic
displacements (c, d). Image taken from Ref. [27]

This means that if ∆E < 0 the move is automatically accepted, but even if ∆E > 0 (i.e. the
movement implies an increase in the energy of the system), the new geometry can be accepted if
P (T ) > r, where r is a random number uniformly distributed between 0 and 1. Each iteration
over all atoms counts as one single Monte Carlo step, a complete simulation being comprised of
several thousands of them.

By the end of a given simulation, the displacements {~ui} of each individual atom (more precisely,
those recorded after a number of thermalization steps) are averaged out, obtaining the equilibrium
geometry (EG) of the system for that particular configuration1. Both the projection of the
AFD and FE modes and the calculation of the system’s polarization, procedures detailed in the
following sections, are computed using this geometry.

It must be noted that the application of Monte Carlo methods to molecular modeling means
that the dynamical behaviour of the system is overlooked in favor of its equilibrium state [39].
Although this does not interfere with our objective of finding the most stable phase in each
configuration, it does indeed limit the range of application of this type of techniques.

I.i Geometry Definition

The geometry of the system within the second-principles framework is divided in two parts,
similarly to how the electronic density n(~r) is also split into the RED n0(~r) and the deformation
density δn(~r). The position ~ri of each atom in the supercell is given by

~ri = (I +
↔
η)(~Ri + ~τi) + ~ui = (I +

↔
η)~Ui + ~ui, (4.2)

where
↔
η is the strain tensor, ~Ri the position of the unit cell where atom i is located within the

supercell, and ~τi its position of atom i within the unit cell. These last two terms may be merged,
obtaining its position within the reference atomic geometry (RAG) of the system ~Ui.

1The term ”configuration” meaning the simulation as defined by its set of experimental conditions, such as
temperature or strain constraints.
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II. MODE PROJECTION

The remaining term, ~ui, represents the displacement of each atom away from the reference
structure after strain effects have been applied. The equilibrium displacement ~vi, equivalent to
~ui in the EG, are obtained by averaging out ~ui over N Monte Carlo steps,

~vi =
1

N

N∑
step=1

~ustep,i. (4.3)

In principle there are no restrictions concerning the choice of RAG. It is more convenient,
however, to employ the ground state structure or some suitable high-symmetry configuration.
Both of these choices correspond to extremes of the PES, meaning that internal forces and
stresses on the cell are zero. Additionally, the higher the symmetry the fewer coupling terms
(determined from first-principles simulations) are needed to describe the system [16]. In our
case we used the aristotype structure as our RAG, with a cubic lattice parameter a0 = 3.845 Å
and the following atomic sites in each unit cell:

Species Position

Sr (0,0,0)
Ti (1/2, 1/2, 1/2)
Ox (0, 1/2, 1/2)
Oy (1/2, 0, 1/2)
Oz (1/2, 1/2, 0)

Table 4.1: STO atomic sites per unit cell.

Some additional comments shall be made regarding strain: The strain tensor
↔
η, as presented

above, is a triangular 6-element matrix, representing both shear and axial strain homogeneous
components only. This strain is dimensionless, meaning each of the lattice parameters ai may
be simply obtained with ai = a0(1 + ηi). Inhomogeneous strain is given by atomic displacement
patterns, as shown in Fig. 4.1.

II Mode Projection

In order to measure the phase transitions present in STO we devised a generalized approach
towards defining structural modes and projecting our equilibrium geometry onto them.

Starting from from the high-symmetry cubic perovskite structure, we define an structural mode
as an specific pattern of atomic motions ~P = {~νi} which may be comprised one or more unit
cells Λ, centered on the Ti-atom. Each atomic motion ~νi is normalized (|~νi| = 1) and has a
weight µi associated to it. Hence we define the amplitude a of the mode on a given unit cell Λ as

aΛ =
M∑
i=1

µi [~νi · ~vi(Λ)] , (4.4)

where the sum is taken over all the atoms M that take part in a particular mode. The specific
values of the weights depend on the case at hand, and will be addressed shortly.

A graphical depiction of the modes under study in this work is shown in Fig. 4.2, while Table
4.2 contains a more thorough definition, weights included. In particular, the ‘Hop’ parameter
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Atom Hop µ ~ν

Ox (0 0 0) 1/8 (0 1 0)
Oy (0 0 0) 1/8 (-1 0 0)
Ox (1 0 0) 1/8 (0 -1 0)
Oy (0 1 0) 1/8 (1 0 0)
Ox (0 0 1) 1/8 (0 1 0)
Oy (0 0 1) 1/8 (-1 0 0)
Ox (1 0 1) 1/8 (0 -1 0)
Oy (0 1 1) 1/8 (1 0 0)

(a) AFDi
z mode

Atom Hop µ ~ν

Sr (0 0 0) 1/8 (0 0 1)
Sr (1 0 0) 1/8 (0 0 1)
Sr (1 1 0) 1/8 (0 0 1)
Sr (0 1 0) 1/8 (0 0 1)
Sr (0 0 1) 1/8 (0 0 1)
Sr (1 0 1) 1/8 (0 0 1)
Sr (1 1 1) 1/8 (0 0 1)
Sr (0 1 1) 1/8 (0 0 1)
Ti (0 0 0) 1 (0 0 1)
Ox (0 0 0) 1/2 (0 0 -1)
Ox (1 0 0) 1/2 (0 0 -1)
Oy (0 0 0) 1/2 (0 0 -1)
Oy (0 1 0) 1/2 (0 0 -1)
Oz (0 0 0) 1/2 (0 0 -1)
Oz (0 0 1) 1/2 (0 0 -1)

(b) FEz mode

Atom Hop µ ~ν

Ox (0 0 0) 1/8 (0 1 0)
Oy (0 0 0) 1/8 (-1 0 0)
Ox (1 0 0) 1/8 (0 -1 0)
Oy (0 1 0) 1/8 (1 0 0)
Ox (0 0 1) 1/8 (0 -1 0)
Oy (0 0 1) 1/8 (1 0 0)
Ox (1 0 1) 1/8 (0 1 0)
Oy (0 1 1) 1/8 (-1 0 0)

(c) AFDa
z mode

Table 4.2: Definition of the modes under study. While the first two columns denote the atomic
species and the unit cell hopping, µ are the weights and ~ν the normalized atomic motions.

contained in Table 4.2 represents a unit cell displacement, indicating where the corresponding
atom in the pattern lies relative to the unit cell Λ where the projection is taking place.

Figure 4.2: Sketch of the atomic
displacements corresponding to the
modes analyzed in this work: the fer-
roelectric (FE) distortion and both the
in-phase (b) and anti-phase (c) anti-
ferrodistortive (AFD) rotations. The
z subscript denotes the polar orienta-
tion of the patterns. Image taken from
Ref. [27].

While the FE mode is basically the movement of all
Sr and Ti atoms in the opposite direction to that of
the oxygen atoms conforming the octahedron, the AFD
modes consist of the in-phase or anti-phase movement
of the oxygen atoms within the plane perpendicular to
the rotation axis.

It must be noted that, although all the modes as pre-
sented are oriented in the polar (z) direction, their
reorientation in the (x) and (y) directions is a relatively
trivial task

On the matter of the weights several lines of thought
were followed. In the case of the AFD modes the quan-
tity of interest is the average value of the atomic dis-
placements in the rotation plane, so that we can obtain
the rotation angle of the octahedra:

θ = arctan

(
aΛ

d(Ti, O)

)
, (4.5)

where d(Ti, O) = |~τO − ~τTi| is the distance between titanium and oxygen atoms. Taking into
account that we cannot consider the octahedra themselves as rigid due to the nature of Monte
Carlo simulations themselves, the best estimate of the in-plane displacements is the average
displacement of all the atoms composing the rotation. This is achieved by directly setting all
weights to µ = 1/8, as there 8 atomic motions ~ν in each of the AFD modes.
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On the other hand, in the case of the FE mode we are only concerned with the amplitude itself,
rather than its use in a later calculation (the polarization derived from this mode requires other
considerations, accounted for in the following section). Consequently the weights are targeted
towards giving an accurate representation of this motion, dividing the contribution of each atom
by the number of cells k wherein it participates in the calculation, that is µ = 1/k.

As a practical example of this system, imagine we have a supercell with a perfect a0a0c+ Glazer
system, meaning there are only in-phase rotations along the z axis and no distortions in the
oxygen octahedra. If one were to project the AFDi

z mode on this supercell the contributions
from the lower and upper octahedra would add up, returning the angle of rotation θ with Eq. 4.5.
If we projected the AFDa

z mode instead, the contributions from each octahedron would cancel
each other out, meaning the rotation angle would be zero for that mode. Conversely, in a perfect
a0a0c− Glazer system the two octahedra in the AFDi

z mode would cancel each other out, while
the angle obtained from the AFDa

z would match the rotation angle as expected.

Finally, two relatively simple adjustments were made regarding AFD rotations for the sake of
logical consistency. From a visual inspection of the patterns themselves as shown in Fig. 4.2
one can see that the projection of the AFDa pattern on two adjacent cells with the same angle
of rotation would yield equal amplitudes of opposite sign, resulting in opposite directions on
the rotations. This is rather counter-intuitive, as the aforementioned hypothetical supercell
displaying a perfect a0a0c− rotation system would yield amplitudes of alternating sign throughout
the supercell. Similarly, projecting the AFDi mode on adjacent cells in the x− y plane presents
a similar problem, as the perfect a0a0c+ system would give columns of alternating sign.

Suitable prefactors were included in Eq. 4.4 [ pa = (−1)x(−1)y(−1)z and pi = (−1)x(−1)y for
the AFDa

z and AFDi
z modes respectively, being (x, y, z) the position of Λ within the supercell ]

so as to counteract both these effects. It shall be noted that this situation stems directly from
symmetry arguments regarding the location of the soft modes associated to these distortions in
the Brillouin zone, as explained in Chapter 2.

III Polarization and Born effective charges

There are several approaches regarding the calculation of polarization, inspired by various models
or descriptions of physical phenomena. Whilst the use of static charges, basically partitioning
the electronic density between the different atoms, may seem like the most straightforward way,
the fact that in most molecules and solids there is no set criterion as to where the boundaries
between the ions lay makes them an ill-defined quantity. The concept of dynamic (or effective)
charges is introduced as a means to solve this difficulty, defining them in terms of the polarization
they produce (which can be measured experimentally) and not the other way around [18].

Within the realm of periodic solids, the Born effective charges are a tensor defined as a linear
order proportionality coefficient between the macroscopic polarization in a given direction Pα
and a cooperative atomic displacement vi,β in any given direction under the condition of zero
macroscopic electric field,

Z∗i,αβ = Ω0
∂Pα
∂vi,β

∣∣∣
E=0

, (4.6)

where Ω0 is the unit cell volume. The polarization may then be obtained by integrating along
the atomic displacements. Assuming the effective charges Z∗i,α remain mostly constant, this
integral can be approximated by
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Pα =
1

Ω0

∑
iβ

Z∗i,αβviβ. (4.7)

The Born effective charges used in this work are contained in Table 4.3 below. In our case the
Born tensor is diagonal due to the symmetry of the system, hence only the main directions
are shown. Further, due to the “acoustic sum rule” they all must add up (as vectors) to zero.
This is easy to understand if one considers that a rigid displacement of all the atoms on a given
direction should yield no polarization whatsoever [18].

As a side note, the polarization per unit cell in Chapter 5 was calculated using the same atomic
pattern and weights as the ferroelectric mode in Table 4.2, purely for the sake of consistency in
the domain plots (Figures 5.4 and 5.8) of the following chapter.

Species Z∗x Z∗y Z∗z
Sr 2.567 2.567 2.567
Ti 7.266 7.266 7.266
Ox -5.707 -2.063 -2.063
Oy -2.063 -5.707 -5.707
Oz -2.063 -2.063 -2.063

Table 4.3: Born effective charges, in elementary charge e units.
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CHAPTER 5

RESULTS

After having accounted for all the necessary explanations in Chapters 2 to 4, it is time to present
the outcome of our own work, concerning the antiferrodistortive phase transition present bulk
STO and its behaviour under epitaxial strain conditions.

I AFD Phase Transition under Strain-Free Conditions

As presented in Chapter 2, STO undergoes an antiferrodistortive phase transition from its
high-temperature cubic structure to the a0a0c− Glazer system (tetragonal) when its temperature
decreases below 105 K. With the intention of reproducing this phase transition in our simulations
we monitored both AFD modes and the cell strains in the 20-400K temperature range, using
8 × 8 × 8 supercells (10 × 10 × 10 in the simulations near the transition temperature, T0) in
Monte Carlo runs spanning 40,000 steps (80,000 respectively), 5,000 (10,000) of them being
thermalization steps. This large supercells were intended to stabilize the system, as the rotation
axis became unstable in smaller supercells due to the stochastic nature of Monte Carlo moves.
This orientation flip became more likely near the transition temperature T0, hence the increased
simulation size in its immediate vicinity.

The results of the aforementioned simulation run are shown in Fig. 5.1, wherein the AFDa

rotations and the axial strains are presented as a function of temperature T . The AFDi mode
remained inactive throughout as expected, and was consequently omitted in this representation.
The figure offers a clear view of the antiferrodistortive phase transition, albeit only qualitatively,
as explained in the following paragraphs:

First of all the most, striking deviation from the experiments is the transition temperature
T0, sitting at around 330 K. Wojdel et al. [27] associate this outcome to a known overbinding
issue related to the use of LDA functionals, a situation they attempt to rectify by introducing
a negative hydrostatic pressure in their simulations. Despite these adjustments they failed to
reproduce the 105K experimental value, obtaining a value for T0 in the ∼160 K range. This
discrepancy may be partly attributed to the fact that our approach treats the atoms as classical
objects, negating any effects from zero-point quantum fluctuations. As shown by Zhong and
Vanderbilt in [77] using model Hamiltonians from first-principles, quantum fluctuations may
reduce T0 by as much as 20 K.
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Figure 5.1: AFDa rotation (a) and supercell strain η (b) in bulk STO with no strain restrictions.

Furthermore, while our model predicts a 7.2o rotation at low temperatures (20K), first-principles
results [61] suggest a 5.5o rotation (0K) instead. Although the aforementioned overbinding
correction brings it down to around 5.6o, in line with first-principles, they both still exaggerate
the rotation when compared with experimental values [35] (2.0o at 1.5K).

This is a known problem with DFT methods, as they tend to overestimate this kind of octahedral
rotations by as much as 20% depending on the functional of choice. LDA comes out as one
of the worst in this regard, while hybrid functionals with relatively high HF exchange seems
to significantly reduce this discrepancy [15]. STO in particular appears to be indeed highly
sensitive to this choice, allegedly due to the anharmonic shape of its energy well and its relatively
low transition temperature when compared to similar perovskites (T0 ≥ 800K).

Finally, in line with the previously mentioned overestimation of the tilting angles the tetragonality
(c/a) is accordingly larger than the experimental value due to their intrinsic relationship. Our
results display a low temperature tetragonality of c/a ≈ 1.007, while it was experimentally
determined [52] to be c/a ≈ 1.001 instead. Further, a least-squares fit on the high-temperature
(T > 320K) strains yields a linear expansion coefficient of 7.0 · 10−6 K−1, comparable to the
value of 8.8 · 10−6 K−1 obtained from experiments [52].

II Fixed-Strain Simulations

Other than the AFD transition present in unstrained bulk STO, we also studied its behaviour
under expansive, static, and compressive epitaxial strain restrictions. Inside our simulations,
this means the in-plane strain components ηx and ηy were locked during the simulation run to
fixed values (+3%, 0% and −3% respectively) and their shared shear component ηxy was set to
zero. Once more 8× 8× 8 supercells were used, with simulations spanning 40,000 MC steps
(5,000 for thermalization) in the 20-300 K temperature range.

As previously mentioned in Chapter 1, the behaviour of STO under epitaxial strain restrictions
is highly relevant due to its widespread use as a substrate to grow other compounds, a situation
where lattice mismatch effects are usually unavoidable.

In this section we shall analyze the AFD rotations and cell strain in all three cases, along with
the polarization and FE displacements. Finally, a suitable phase diagram is provided as a means
to condense all the relevant information.
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II.i Expansive Strain

The application of expansive epitaxial strain in STO has reveled a complex landscape regarding
structural transitions, phases and domains that we shall uncover shortly. However, before doing
so several remarks need to be made about the figures in this section:

Due to the aforementioned domain structure displayed by numerous simulations, all the Figures
present their respective quantity as the average of the absolute value on a per-domain basis. As
an example, imagine there were to be two equally sized domains with a similar polarization but
in opposite directions. While the net supercell polarization would vanish, our chosen criterion
means that our Figures will display the absolute value of the polarization. This is also applicable
to the representations within the static and compressive strain sections. Having settled this
matter, we may begin with their corresponding analysis.

First of all, we may focus on the AFD rotations and cell strains presented in Fig. 5.2. The
expansive strain conditions mean that the octahedra have much more breathing room for moving
in the x− y plane, hence only rotations within it are observed. The relationship between this
in-plane rotations and the symmetry of the supercell is clear, as the strain’s z component ηz
remains negative throughout all temperatures as well.

The system starts off at low temperatures with equal AFDa rotations in the x and y directions
until it reaches a transition where one of them1 dominates over the other, increasing in amplitude
and cancelling the rotation in the other rotation. As we shall explained below, this phase with
equal in-plane rotations also presents polarization in the (110) direction, which disappears when
the transition takes place somewhere between 80 K and 110 K. From that point onwards the
dominant rotation gradually decreases until the a0a0a0 phase is reached at 300 K, although
the previously cancelled rotation component briefly reemerges in the 210-240 K temperature
range. The AFDi rotation detected at low temperatures corresponds to domain walls within the
supercell (Fig. 5.4), a pattern also seen under compressive strain restrictions (Fig. 5.8).

Moving onto the polarization and FE mode displacements (Fig 5.3), we can see that there is a
clear correlation between he rotation of the oxygen octahedra around an axis contained in the
plane and the existence of a polarization along the (110) direction, whose value, between 0.15
and 0.20 C/m2, is qualitatively consistent with experimental results [25].

1As there is no way to control which direction the system chooses to stabilize, the largest x− y plane rotation
is always presented as being in the x direction for the purpose of visual clarity.

Figure 5.2: (a) Antiphase rotations (AFDa), (b) in-phase rotations (AFDi), and (c) homogeneous
strain η in a supercell strain (η) in bulk STO under an expansive strain of 3%.
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Figure 5.3: Ferroelectric displacements (a) and supercell polarization P (b) in bulk STO under
expansive strain restrictions.

There is nonetheless a great deal to say about the domain structure present in the low-temperature
polar phases, which can be observed in Figure 5.4. We may refer to the three simulations as T1
(20 K), T2 (50 K), and T3 (80 K), in order of increasing temperature.

At first sight we can observe that there is a clear correspondence between the axis of the AFD
rotations and the direction of the polarization of the FE mode, at least in T1 and T3. T2 presents
a more complex situation, that will be discussed in detail below. It is also straightforward to
realize that the AFDi rotations only appear in the domain walls between different AFDa regions,
a situation which will also show up under compressive strain constraints.

In T1 there are two distinct domains, each with AFDa rotations and polarization perpendicular
to each other. This kind of periodic structures2, known as antiferrodistortive cycloids, have been
related to the appearance of macroscopic polarization due flexoelectric3 effects [62]. In these
parallel domain walls, acting as ferroelectric twin boundaries, the order parameter -i.e. the
rotation- changes direction by 90o (and hence vanishes at some point), leading to the activation
of secondary ferroelectric instabilities which may otherwise be supressed by the AFD mode.
This seems to be supported by the fact that the component of the polarization perpendicular
to the domain wall (100) drops from 0.21 C/m2 to 0.19 C/m2 in the cells conforming the wall,
leading to the slight discrepancy in Figure 5.3b which is not explained by the FE mode alone.

Moving onto T2, we can observe a complex domain structure characterized by point-like4

charge accumulations associated to something resembling antiferrodistortive vortices. It must
be noted, however, that these vortices correspond to the projection of the AFDa mode as
presented in Chapter 4, not just the rotation of the octahedra themselves. This becomes clear
by looking at Fig. 5.5, where the rotation of individual octahedra (which may be considered a
linear combination of both AFD modes) is presented against the aforementioned AFDa mode
projection.

Having made this distinction clear, and considering this domain configuration should be relatively
unstable due to the charge defects, it is not far fetched to think of this phenomenon as somehow
related to the recently predicted [22] and subsequently discovered [11] topological structures
known as polar skyrmions.

2Considering the periodic boundary conditions of the supercell, this patterns does indeed repeat indefinitely.
3Flexoelectricity referring to the property whereby a material exhibits a spontaneous electrical polarization

induced by some sort of strain gradient, in this case within the domain walls.
4More precisely column-like, as the pattern repeats vertically along the supercell.
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T = 20K

T = 50K

T = 80K

Figure 5.4: Domain representation of the polarization (a), ferroelectric displacements (b) and
AFD rotations (c,d) per unit cell in the x − y plane of bulk STO under expansive strain
restrictions in the first three temperatures.
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Figure 5.6: AFD rotations (a,b) and supercell strain η (c) in bulk STO under static strain
restrictions.

They are the electric counterpart of magnetic skyrmions, a quasiparticle formed by a coordinated
arrangement of spins (in our case, polarization domains) in the material. Their stability is
usually attributed to some sort of ‘topological protection’, meaning they cannot rearrange
themselves without overcoming a suitable energy barrier. Polar skyrmions are really interesting
from a technological standpoint, due to their potential applications in the development of
racetrack (domain-wall based) computer memory [22].

Figure 5.5: Simple octa-
hedral rotations (a) beside
their corresponding AFDa

mode rotations (b).

Finally, in T3 we can observe a paradigmatic monodomain structure,
that we assume to be the true ground state of the system. The
fact that T1 and T2 did not reach this situation stems directly
from the random nature of Monte Carlo simulations, whose strong
dependence of the first few random moves renders them unable to
reach the lowest energy configurations consistently.

II.ii Static Strain

In this case no polarization is displayed by STO despite the fact
that it boasts the same a−a−c0 rotation system at low tempera-
tures (Fig.5.6). There is nonetheless quite an interesting transition
between 110 K and 140 K from rotations around an in-plane axis,
AFDa, to rotations around a vertical axis to vertical ones, accom-
panied by a shift in the tetragonality (ηz becomes positive). This
doesn’t but reinforce the position of the octahedral rotations as the
main driving mechanism behind the unit cell’s shape and symmetry,
as explained in Chapter 2.

II.iii Compressive Strain

Last but not least, we observe a relatively ‘monotonous’ behaviour
in STO under compressive strain, as only one phase is displayed.
In Figure 5.7 we can see there are both AFDa and AFDi rotations
in this setup, although no FE displacements nor polarization were
detected. This is quite an striking situation, as it is generally
assumed that STO displays and out-of-plane polarization when epitaxially compressed. While
theoretical models based on Ginzburg-Landau theory [56] and experimental results [31] confirm
this assumption within a thin-film scenario, as far as we are concerned only surface polarization
-associated to relaxation effects- has been detected in bulk STO [3].
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Figure 5.7: AFD rotations (a,b) and supercell strain η (c) in bulk STO under a compressive
strain of -3%

.

The domain structure was similar throughout all temperatures, composed of horizontally stacked
layers of AFDa and AFDi rotations along the z axis similar to those in Figure 5.8, except in two
occasions (T = 210 K and T = 270 K) where a monodomain AFDa system was observed. The z
strain component ηz stays positive all the time, as one would expect from this rotation system.

Once more, these rotational layers are quite certainly not the state of minimum energy of the
system, and are most likely just local minima in the PES. By inducing rotations in the starting
geometry we observed that the system could indeed reach a monodomain structure at low
temperatures (at 20 K). Nonetheless, the fact that these metastable configurations arise in
pretty much every simulation we have carried out indicates that the energy barrier to escape
these metastable local minima is rather high, so it is difficult to get out of the energy valley.
This is corroborated by the fact that the only two cases were the monodomain configuration
is the most accessed state occur at relatively high temperatures (210 and 270 K). Certainly,
more statistics are required to clarify this issue, which unfortunately lies beyond the scope of
the present work.

II.iv Phase Diagram

The information concerning all the phases observed in this section has been condensed into the
phase diagram in Table 5.1, with all the appropriate information about the phases themselves
contained in Table 5.2.

Figure 5.8: Representation of the AFD domain structure in the x− z and y − z plane of STO
under compressive strain restrictions at a temperature of T = 50K.
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ηxy

+3% IP2-FE+ IP1 IP2n IP1 HT

0% IP2 OP

-3% OP+

20 50 80 110 140 170 210 240 270 300 T (K)

Table 5.1: Strain-temperature phase diagram of epitaxially strained STO.

In short, from our results we may classify the different phases in the sections above depending on
whether they present in-plane (IP) or out-of-plane (OP) rotations, ferroelectric behaviour (FE)
and/or domain structures (+). Additionally, in the case of in-plane rotations we may specify
whether they present rotations in one direction (IP1), two equal rotations in both directions
(IP2) or two unequal rotations each in one direction (IP2n). There is also a high-temperature
tetragonal phase (HT), where neither AFD rotations nor ferroelectricity persist.

It shall be noted that the space groups included in Table 5.2, taken from the analysis carried
out in Ref. [29], are simply those associated to each Glazer system without any additional
considerations. Hence they may not be completely accurate, as it is generally assumed that
the lattice parameters are determined by the rotation and not the other way around. As an
example, consider the IP1 phase: an unrestrained a−b0b0 system would generally have a lattice
constant a along its rotation axis larger than that the other two, as opposed to the current
situation where an external strain is imposed.

Comparing our phase diagram with the one presented by Pertsev et al. in [56], obtained
by means of Ginzburg-Landau theory (introduced in Chapter 2), we observe some striking
differences that are worth mentioning. We must note that their model does not contemplate the
appearance of any domain structures, and although they only analyzed strains between -2%
and 2%, these extreme cases should still be comparable to ours.

Firstly, under expansive strain both models coincide on the low-temperature scenario, with equal
rotations and polarization in the x− y plane. Similarities end there, as for higher temperatures

Phase Glazer System Space Group Lattice Domains

IP2-FE+ a−a−c0 Imma a = b > c Yes

IP1 a−b0b0 I4/mcm a = b > c No

IP2n a−b−c0 C2/m a = b > c No

HT a0a0c0 Pm3̄m a = b > c No

IP2 a−a−c0 Imma a = b > c No

OP a0a0c− I4/mcm a = b < c No

OP+ a0a0c− I4/mcm a = b < c Yes

Table 5.2: Characteristics of the different stable phases contained in the diagram of Table 5.1.
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they only predict another phase where the polarization remains but the rotations disappear,
exactly the opposite to what we observe. Their approach does not predict our HT phase until
far past 300K either, something unexpected considering our model’s tendency to exaggerate
transition temperatures (as seen under strain-free conditions).

Their model also predicts that our IP2-FE+ phase should remain stable under static strain
restrictions, while within our model said phase loses its in-plane polarization (IP2 instead). In
this same situation their model also predicts that an increase in temperature leads to a phase
similar to IP1, although our predicted OP phase also lies really close in their diagram. This
may be somehow related to the small x − y plane rotations observed in Figure 5.6 at 170K,
although additional statistics are needed in order to confirm this.

Finally, as mentioned in the previous section, Pertsev’s calculations indicate there should be
an out-of-plane polarization under compressive strain restrictions, in clear contradiction with
our model. Although this may be related to the aforementioned layers of rotational domains,
which are unaccounted for in their model, this may also be attributed to some other structural
mode not contemplated in our calculations. Sadly, an appropriate resolution of this matter was
outside the question mainly due to time-related limitations.
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FINAL CONSIDERATIONS

In this final chapter we shall summarize the main conclusions of this work, suggest additional
improvements regarding our current methodology and introduce possible future lines of research.

I Conclusions

All in all, we managed to achieve all the objectives presented in Chapter 1: we successfully
reproduced the antiferrodistortive phase transition qualitatively by means of second-principles
techniques, in addition to obtaining a (sadly limited) temperature-strain phase diagram of STO.

Furthermore, in the process of obtaining said diagram we encountered several phases of STO with
interesting domain structures, particularly when exposed to compressive and expansive strain
restrictions. In the first situation we observed purely rotational domains in the out-of-plane
direction, which might be related to the absence of ferroelectricity in bulk STO as opposed
to the thin film scenario. On the latter case the domains observed under expansive strain
involved an intertwine of both rotations and polarization, with charge defects associated to
antiferrodistortive vortexes.

On the other hand, the lack of predictive power regarding transition temperatures proved to
be underwhelming. Moreover, the fact that we observed domains in our simulations, although
doubtlessly interesting, means that we cannot ensure the system reaches a global energetic
minimum. Our systems become highly susceptible to the first few (random) deviations from
it starting cubic structure, which ultimately determine the equilibrium structure due to the
optimizing nature of Monte Carlo simulations, specially when considering low temperature
scenarios. On the plus side this represents a significant control mechanism, as the appearance
of a given metastable structure may be fostered through a simple modification of the system’s
starting geometry.

Finally, we demonstrated the capabilities of second-principles simulations when it comes handling
large systems -between 2,500 and 5,000 atoms-, an unthinkable feat using traditional techniques.
Due to the large amounts of data produced by these simulations, a Python package (more on
Appendix A) was developed in order to manage and automate most of the analysis procedures.

41



CHAPTER 6. FINAL CONSIDERATIONS

II Improvements and Future Work

Although the results presented in this work are complete and self-standing, we had our share of
complications derived from the COVID-19 pandemic when accessing our usual computational
resources. This hindered our progress in this work, slowing down everything considerably.

Had the circumstances been different, a more thorough exploration of the strain-temperature
grid would have yielded a interesting into how the different phases transform meld into each
other, instead of just looking at the three “edge cases” of strain analyzed in this work. This
would have also enabled the creation of a phase diagram much richer in detail than the one
currently presented, and hence substantially more useful.

In addition to this, a comprehensive study on the energetics of the domain structures could have
also been a worthy extension, seeing that appropriate modifications on the system’s starting
geometry could trigger its relaxation into either the minimum energy state or some sort of
metastable domain configuration. This would require a complete statistical analysis of the states
accessible to the system, something beyond the time limitations of this work. Furthermore, the
effects of hydrostatic pressure and/or external electric fields on the domain formation process
could have been considered, as this possibility was already accounted for within our code.

Finally, the antiferrodistortive rotational vortexes observed in Figure 5.4 definitely deserve a lot
more attention and study than what could be spared for them during this work. In fact, due to
their evident complexity and their potential from a technological standpoint, another whole
new thesis could be written just about them.
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CODE IMPLEMENTATION

As part of this work a Python package was developed in order to simplify the process of
executing scale-up simulations comprising a multi-dimensional parameter space, consisting
of temperatures, strains, hydrostatic pressures and applied electric fields. The code itself is
available both in GitHub (https://github.com/rcote98/ezSCUP) under GNUv3 license and
within the CD containing this work. Installation can be performed on any operating system by
just typing “pip install ezSCUP” within the command prompt, although downloading the
full source code is recommended if its usage in another project is expected.

Essentially the goal of this package is to provide an easy way to schedule a large number of
scale-up Monte Carlo simulations, while organizing their output so as to enable access from
Python itself. Even though the present work was (conceptually) relatively simple, as it involved
solely simulations in a range of strains and temperatures, the sheer number of calculations
involved would have been a nightmare to manage without this package.

I Structure

The main modules within the package, basically those a final user would come into contact with,
are the following:

• simulations.py: Contains the main simulation class (MCSimulation), which carries out
the simulations for a given parameter grid and creates a suitable folder structure to store
all the output; and the main analysis class (MCSimulationParser), that grants access to
the output of any given configuration in the parameter grid through Python itself.
• analysis.py: Contains all the code regarding mode projection, essential for analyzing

AFD rotations and ferroelectric displacements. There is a general class for creating new
projections as well as some specialized functions for the AFD and FE modes. There is
also another class to calculate the polarization from Born charges, both supercell-wide
and on a cell-by-cell basis.
• settings.py: General settings for the module as its behaviour. Simulations settings such

as number of total and equilibration MC steps, the strain components to fix or how
often partial files are printed out can by modifying the variables inside this file. A valid
SCALE-UP executable need to be setup in order to run any simulations.
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On the other hand, the following modules contain mainly auxiliary classes and functions, so
they may not be as relevant for the final user.

• parsers.py: Allows parsing SCALE-UP output files.
• handlers.py: Manages FDF file settings and launches the simulations.
• generators.py: Classes to generate auxiliary files, such as the geometry “.restart” files.
• structures.py: Defines the data structures used in the other modules.
• exceptions.py: Declarations of the exceptions within the package.
• files.py: Classes for writing the output “.csv” files.

II Simulations in this Work

The code for the simulations carried out in this work is presented under the examples section,
divided in strain-free and strain-fixed simulations.

The main.py files execute the simulations, which may be configured from the “User-defined
Settings” section within the same file. They run the simulations, storing their data in a folder
named output, and analyze it, producing basic graphs and data files that end up in two folders
named plots and csv respectively.

Additionally, the graph.py scripts read the data files stored in csv to create the production-level
figures displayed in Chapter main.py of this work. The domains.py produces the domain plots
in the same chapter, but reads the information from the simulation output directly instead.

It must be noted that the strain-free simulations are split into three parts, as mentioned in
Chapter 5, due to the increased supercell size used in the simulations near the AFD transition
temperature.
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