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Abstract

This paper studies the existence and asymptotic behavior of global weak solutions for a thin film equation 
with insoluble surfactant under the influence of gravitational, capillary, and van der Waals forces. We prove 
the existence of global weak solutions for medium sized initial data in large function spaces. Moreover, 
exponential decay towards the flat equilibrium state is established, where an estimate on the decay rate can 
be computed explicitly.
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1. Introduction

Surfactant is the short form for surface active agent and is a substance which – in contact with
a fluid – reduces surface tension. The induced dynamic is twofold: On the one hand, the resulting 
surface tension gradients influence the evolution of the thin film; on the other hand, the surfactant 
speads along the surface. The latter effect is known as Marangoni effect. Naturally, the surfactant 
induced dynamics are of particular interest in connection with thin fluid films, where surface 
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Fig. 1. Scheme of a thin film flow with insoluble surfactant.

tension forces have a very important impact. In particular, the interest in thin film equations 
with a layer of surfactant on the surface is motived by various applications. For instance coating 
flow technology, film drainage in emulsions, foams and medical treatment of lungs of premature 
infants.

The present work studies the dynamics of a viscous, incompressible, Newtonian thin film over 
a flat bottom equipped with a layer of insoluble surfactant on the free surface. Thus, to study the 
full problem one has to consider a free boundary problem for the Navier-Stokes equations cou-
pled with an advection-diffusion equation on the free surface. As this is a challenging issue, a 
common approach to simplify the problem is to consider the lubrication approximation to de-
rive evolution equations for the film height and the surfactant concentration which capture the 
behavior and the main properties of the full free boundary problem. Pioneering works in this di-
rection in absence of surfactant effects are due to Greenspan [32], Constantin, Dupont, Goldstein, 
Kadanoff, Shelley & Zhou [13], Bernis & Friedman [4], Beretta, Bertsch & Dal Passo [3] and 
Bertozzi & Pugh [5]. Also, Escher, Matioc & Matioc [23] considered the flow in porous media 
(see also Escher & Matioc [25], Matioc [39], Escher, Laurençot & Matioc [21], Laurençot & 
Matioc [35–38] and Bruell & Granero-Belinchón [10]) while the Stokes flow was considered by 
Escher, Matioc & Matioc [24] (see also Escher & Matioc [26] and Bruell & Granero-Belinchón 
[10]). A more recent reference is Pernas-Castaño & Velázquez [40], where the authors study 
the evolution of the interface between two different fluids in two concentric cylinders when the 
velocity is given by the Navier-Stokes equation and one of the fluids is thin.

Some of the main works on the evolution of a thin film with insoluble surfactant are the ones 
by Borgas & Grotberg [6], Gaver & Grotberg [29] and Jensen & Grotberg [34]. Under certain 
assumptions, Jensen & Grotberg [34] applied the lubrication approximation and cross-sectional 
averaging to derive the following system of evolution equations for the film height h = h(t, x)

and the surfactant concentration � = �(t, x) (see Fig. 1):

∂th = −∂x

[
h2

2
∂xσ (�) − G

3
h3∂xh + S

3
h3∂3

xh +A∂xh

h

]
in �T (1a)

∂t� = −∂x

[
�

(
h∂xσ (�) − G

2
h2∂xh + S

2
h2∂3

xh + 3A
2

∂xh

h2

)
−D∂x�

]
in �T . (1b)

Here, �T := (0, T ) × � denotes the time-space domain for the unknown functions h and 
�, with � ⊂ R being an open, bounded interval. The system (1) is supplemented with initial 
conditions

h(0, x) = h0(x) and �(0, x) = �0(x) for all x ∈ �,

where h0 and �0 are given functions and boundary conditions

∂xh = ∂x� = 0, S∂3h = 0 for all x ∈ ∂�.
x
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The appearing parameters represent a modified gravitational constant (G), surface tension co-
efficient (S), Hamaker constant (A), which corresponds to the effects of van der Waals forces, 
and surface diffusion coefficient (D). Moreover, σ is the constitutive equation of state relating 
the surface tension to the surfactant concentration. As the presence of surfactant reduces surface 
tension, σ is assumed to be positive and nonincreasing. A commonly used description for the 
dependence of the surface tension on the surfactant is given by (cf. [42,6,29])

σβ(s) := (β + 1)

[
1 − s +

(
β + 1

β

) 1
3

s

]−3

− β, s ∈ [0,1]

for β ∈ (0, ∞). For simplicity reasons, in the present work, we assume that σ is given by the 
limit for β → ∞ in σβ , that is

σ(s) = 1 − s, s ∈ [0,1].

This assumption is also used in applications and numerical investigations; see for instance [33,1,
2,44,45].

Let us mention that the scaling Jensen and Grotberg used for the surfactant concentration is 
given by

�(t, x) �→ �−1
m �(t, x),

where �m > 0 is the so-called critical micelle concentration. If the surfactant concentration �
exceeds the value �m, the molecules form micelles and thus there is no further decrease of surface 
tension to perceive. Consequently, it is natural to assume that the initial surfactant concentration 
�0 satisfies 0 ≤ �0 ≤ 1.

From the analytical point of view, the system (1) includes many challenges. Notice that the 
evolution equations in (1) form a system of two strongly coupled, degenerate, parabolic partial 
differential equations. Under the assumption that all the appearing parameters G, S, A, and D
are positive, the degeneracy occurs in the equation for the film height, when h approaches zero, 
i.e. when the surface touches the bottom. Moreover, (1) is a coupled system of mixed orders 
having cross diffusive terms. While the equation for the surfactant concentration � is an advec-
tion-diffusion equation of second order, the equation for the film height h is of fourth order. 
Notice that, if capillary effects are neglected (S = 0), then the system is of second order in both 
equation. In our considerations, we are going to consider both cases: The gravity driven film 
(S = 0) and the capillary driven film (S > 0).

Even if during the last decades modeling as well as numerical investigations for the thin film 
equation with surfactant have attracted lots of attention (see for instance [29,34,33,1,2,44,16]
and the references therein), the rigorous analytical studies have started recently. Existence of lo-
cal solutions for a thin film equation with insoluble surfactant driven by Marangoni forces only 
(G = S = A = D = 0) has been studied by Renardy [41]. In absence of capillary and van der 
Waals forces (S = A = 0), the authors Escher, Hillairet, Laurençot & Walker [18] used lubrica-
tion approximation to derive a system of differential equations describing the evolution of a thin 
film with soluble surfactant under the influence of Marangoni and gravitational forces. More-
over, they proved local well-posedness in the space of square integrable functions L2 by means 
of semigroup theory as well as asymptotic stability with exponential decay to equilibrium. We 
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would like to emphasize that their stability result is stated for positive initial data in the L2-based 
Sobolev space H 2. The result shows in particular, that starting with H 2 data close to the flat 
steady state there exists a unique global strong solution. A similar result for a two-phase thin 
film equation with insoluble surfactant was shown by Bruell [7] for the gravity (S = A = 0) as 
well as for the capillary driven film (G = A = 0). Due to the degeneracy of the equation with 
respect to the film height, it is natural to expect that in general strong solutions exist only lo-
cally in time. The existence of nonnegative global weak solutions for the thin film equation with 
insoluble surfactant was proved by Escher, Hillairet, Laurençot & Walker [17] for the gravity 
driven thin film (S = A = 0), and [19] for the corresponding capillary driven film (G = A = 0) 
and by Bruell [8] for the two-phase thin film equation with insoluble surfactant under the influ-
ence of capillary forces (see also [28,12]). The main ingredient in all these works concerning 
the existence of global weak solutions is a regularization argument to overcome the degeneracy, 
followed by a two-step compactness argument based on a priori estimates provided by an en-
ergy functional for the system. Finally, we would like to mention that traveling wave solutions 
of a gravity thin film equation with insoluble surfactant (S = A = 0) were studied by Escher, 
Hillairet, Laurençot & Walker [20] (see also [22]).

1.1. Aim and outline of the present paper

The aim of the present work is to prove the existence of global weak solutions of (1) under 
fairly low regularity assumptions with respect to the initial data. Similarly as in the companion 
paper [10], we work in scales of Wiener spaces. Exploiting the algebra inequality verified by 
the norms of the underlying spaces, we show a priori energy estimates in Wiener algebra, which 
guarantee the existence of global weak solutions and imply the exponential decay towards the flat 
equilibrium state. Moreover, the decay rate can be bounded by explicit constants, which depend 
on the parameters of the system and the size of the initial data. In addition we prove uniqueness of 
the weak solutions provided that they belong to a (slightly) higher regularity class. A similar ap-
proach has been employed before for the Muskat problem [27,14,15] (and the references therein) 
for the doubly parabolic Keller-Segel system [11], PDEs modeling small steepness porous flow 
[31] and the evolution of crystal surfaces [30]. We consider two cases: The gravity driven film, 
where surface tension effects are neglected (S = 0), which leads to a coupled system of second 
order equations; and the capillary driven film, where we take surface tension effects into account 
(S > 0). In the latter case the evolution equations (1) build a coupled system of mixed orders. Let 
us emphasize that in our work we take all acting forces (gravity, surface tension, van der Waals) 
into account. To the best of our knowledge this is the first analytical existence result for the full 
system (1) where G, S, A, D > 0. The outline of the paper is as follows: We start in Section 2
with some preliminaries and auxiliary results concerning the scale of Wiener spaces. In Section 3
we reformulate the problems in terms of the distance to the (flat) equilibrium and state our main 
results. Eventually Sections 4 and 5 are devoted to the proofs of the main theorems for the gravity 
(S = 0) and capillary (S > 0) driven flow, respectively.

2. Preliminaries

We start by introducing the functional analytical framework. Let T := [−π, π). For n ∈ N
we denote by

Wn,p(T ) =
{
u ∈ Lp(T ) such that ‖u‖p

n,p := ‖u‖p
p + ‖∂n

x u‖p
p < ∞

}
(2)
W (T ) L L
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the standard Lp-based Sobolev spaces on T . We recall the expression of the k−th Fourier coef-
ficient and the Fourier series of a 2π -periodic integrable function u,

û(k) = 1

2π

∫
T

u(x)e−ixkdx, u(x) =
∑
k∈Z

û(k)eixk.

We introduce the Wiener spaces Ȧs(T ) as

Ȧs(T ) =
{

u ∈ L1(T ) such that ‖u‖Ȧs (T ) :=
∑
k∈Z

|k|s |û(k)| < ∞
}

. (3)

We note that Ȧ0(T ) = A(T ) is a Banach algebra and {Ȧs(T ) | s ≥ 0} form a Banach scale. 
Furthermore, the following inequalities hold true:

• Let p ≥ q ≥ 0, then

‖f ‖Ȧq ≤ ‖f ‖Ȧp for all f ∈ Ȧp(T ). (4)

• Let s ∈ {0} ∪ [1, ∞) be a fixed parameter and f, g ∈ Ȧs(T ), then, due to the convexity of xs

in this range,

‖fg‖Ȧs ≤ 2s−1 (‖f ‖Ȧs ‖g‖Ȧ0 + ‖f ‖Ȧ0‖g‖Ȧs

) ≤ 2s‖f ‖Ȧs ‖g‖Ȧs , (5)

while, as a consequence of subadditivity of xs , for s ∈ (0, 1), we have

‖fg‖Ȧs ≤ 2‖f ‖Ȧs ‖g‖Ȧs .

• Due to the Hölder inequality, we have the following interpolation inequality

‖f ‖Ȧsθ ≤ ‖f ‖1−θ

Ȧ0 ‖f ‖θ

Ȧs for all 0 < θ < 1. (6)

3. Reformulation of the problem and main results

3.1. Reformulation

In what follows we assume that σ(s) = 1 − s. Then, system (1) is given by

∂th = −∂x

[
−h2

2
∂x� − G

3
h3∂xh + S

3
h3∂3

xh +A∂xh

h

]
, in �T (7a)

∂t� = −∂x

[
�

(
−h∂x� − G

2
h2∂xh + S

2
h2∂3

xh + 3A
2

∂xh

h2

)
−D∂x�

]
, in �T , (7b)

with initial conditions

h(0, x) = h0(x) and �(0, x) = �0(x) for all x ∈ �,
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and boundary conditions

∂xh = ∂x� = 0, S∂3
xh = 0 for all x ∈ ∂�. (8)

The problem is posed on a spatial interval � = (0, L) with the above lateral boundary conditions. 
However, without losing generality, instead of considering an interval and no-flux boundary con-
ditions, we are going to consider periodic solutions h, � of (7) on a flat torus T (which can be 
identified with [−π, π)). This generalization actually simplifies our approach and it was already 
used in [10] for similar problems. Let us explain why our formulation in the flat torus is actually 
equivalent to the original problem posed on the interval (0, L). If (h0, �0) are the initial data on 
an interval � = [0, L] satisfying the boundary conditions (8), we set

h̄0(x) := h0(|x|), �̄0(x) := �0(|x|) for x ∈ [−L,L].

In view of the symmetry of (7), the evenness of initial data is preserved and any solution of (7)
on [0, L] with initial data (h0, �0) satisfying the boundary conditions (8), can be identified with 
the corresponding solution to even initial data (h̄0, �̄0) on the periodic cell [−L, L] restricted to 
the half-domain [0, L]. In the sequel we drop the bar notation and consider periodic solutions of 
(7) defined on T with initial conditions

h(0, x) = h0(x) and �(0, x) = �0(x) for all x ∈T ,

where h0, �0 are given periodic functions. It follows immediately from the structure of the equa-
tions (7) that the initial mass is preserved in time:

Lemma 1 (Conservation of mass). Let (h, �) be a solution of (7) on a time interval [0, T ), then

∫
T

h(t, x) dx =
∫
T

h0(x) dx and
∫
T

�(t, x) dx =
∫
T

�0(x) dx for all t ∈ [0, T ).

If (h0, �0) are nonnegative bounded initial data, we set

h	 = 1

2π

∫
T

h0(x)dx and �	 = 1

2π

∫
T

�0(x)dx.

The constants h	 and �	 represent the mean of the initial data and they are a steady state of the 
system (7). In our studies we consider the evolution of the distance of a solution (h, �) to the 
steady state (h	, �	). For this purpose, we define new unknowns

f = h − h	, 
 = � − �	, (9)

which have zero mean. In the new variables (9), the system (7) can be rewritten as
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∂tf − h2
	

2
∂2
x
 +

(A
h	

− G
3

h3
	

)
∂2
xf + S

3
h3

	∂
4
xf =

4∑
j=1

Nj , in (0, T ) ×T

(10a)

∂t
 − (
h	�	 +D

)
∂2
x
 +

(
3A�	

2h2
	

− G
2

�	h
2
	

)
∂2
xf + S

2
�	h

2
	∂

4
xf =

8∑
j=5

Nj , in (0, T ) ×T

(10b)

with initial conditions

f (0, x) = f0(x) and 
(0, x) = 
0(x) for all x ∈ �,

where f0(x) = h0(x) − h	 and 
0(x) = �0(x) − �	 are the initial displacement functions from 
the flat states h	 and �	, respectively. The nonlinear terms Ni , i = 1, . . . , 8, on the right hand 
side of (10) are defined as

N1 = ∂x

[(
f 2

2
+ f h	

)
∂x


]
,

N2 = ∂x

[G
3

(
3h2

	f + 3f 2h	 + f 3
)

∂xf

]
,

N3 = −∂x

[S
3

(
3h2

	f + 3f 2h	 + f 3
)

∂3
xf

]
,

N4 = ∂x

⎡⎣A f

h2
	(1 + f

h	
)
∂xf

⎤⎦ ,

N5 = ∂x

[(
�	f + 
h	 + 
f

)
∂x


]
,

N6 = ∂x

[G
2

(
�	f

2 + 2�	h	f + 
h2
	 + 
f 2 + 2
h	f

)
∂xf

]
,

N7 = −∂x

[S
2

(
�	f

2 + 2�	h	f + 
h2
	 + 
f 2 + 2
h	f

)
∂3
xf

]
,

N8 = ∂x

[



3A
2h2

	

(f 2 + 2h	f )∂xf

(h	 + f )2 + �	

3A
2h2

	

(f 2 + 2h	f )∂xf

(h	 + f )2 − 

3A
2h2

	

∂xf

]

= ∂x

[
3A
2

2f �	h	 + f 2�	 − 
h2
	

h2
	(f + h	)2

∂xf

]
.

Note that, for |r| < 1, we have

1

1 + r
=

∞∑
(−1)j+1rj−1, (11)
j=1
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1

(1 + r)2 =
∞∑

j=1

j (−1)j+1rj−1, (12)

1

(1 + r)3 = 1

2

∞∑
j=2

j (j − 1)(−1)j rj−2. (13)

Consequently, under the assumption that

‖f ‖L∞ ≤ ‖f ‖Ȧ0 < h	, (14)

we can use (11) and (12) and write

N4 =A
[(

f

h2
	

∂2
xf +

(
∂xf

h	

)2
) ∞∑

j=1

(−1)j+1
(

f

h	

)j−1

− f

h3
	

(∂xf )2
∞∑

j=1

j (−1)j+1
(

f

h	

)j−1 ]
.

(15)

Similarly, invoking (12) and (13) we have that

N8 = ∂x

[
3A
2

2f �	h	 + f 2�	 − 
h2
	

h2
	(f + h	)2

∂xf

]

= 3A
2h4

	

⎡⎢⎣2f �	h	 + f 2�	 − 
h2
	(

f
h	

+ 1
)2 ∂2

xf + 2∂xf �	h	 + 2f ∂xf �	 − ∂x
h2
	(

f
h	

+ 1
)2 ∂xf

⎤⎥⎦

− 3A
h4

	

⎡⎢⎣2f �	h	 + f 2�	 − 
h2
	(

f
h	

+ 1
)3

(∂xf )2

h	

⎤⎥⎦
= 3A

2h4
	

[(
2f �	h	 + f 2�	 − 
h2

	

)
∂2
xf

+
(

2∂xf �	h	 + 2f ∂xf �	 − ∂x
h2
	

)
∂xf

] ∞∑
j=1

j (−1)j+1
(

f

h	

)j−1

− 3A
h4

	

[(
2f �	h	 + f 2�	 − 
h2

	

) (∂xf )2

h	

]
1

2

∞∑
j=2

j (j − 1)(−1)j
(

f

h	

)j−2

. (16)

We fix the initial data h0, �0 for problem (7). Thereby, the constants h	 and �	 are uniquely 
determined and we are going to state our results in terms of f , 
 for (10).

3.2. Main results

In what follows the constants G, A, representing the gravitational and van der Waals forces as 
well as the diffusion coefficient D are assumed to be strictly positive.
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Definition 1. Set ζ = 3 for the capillary driven flow (S > 0) and ζ = 1 for the gravity driven 
flow (S = 0). We say that (f, 
) ∈ (

L1(0, T ;Wζ,1(T ))
)2

is a weak solution of (10) on [0, T )

corresponding to initial data (f0, 
0) if and only if

−
∫
T

f0φ(0)dx −
T∫

0

∫
T

f ∂tφdxdt +
T∫

0

∫
T

∂2
xφ

(
−h2

	

2

 +

(A
h	

− G
3

h3
	

)
f

)
dxdt

+
T∫

0

∫
T

∂4
xφ

S
3

h3
	f dxdt +

4∑
j=1

T∫
0

∫
T

∂−1
x Nj∂xφdxdt = 0

and

−
∫
T


0ψ(0)dx −
T∫

0

∫
T


∂tψdxdt

+
T∫

0

∫
T

∂2
xψ

(
− (

h	�	 +D
)

 +

(
3A�	

2h2
	

− G
2

�	h
2
	

)
f

)
dxdt

+
T∫

0

∫
T

∂4
xψ

S
2

�	h
2
	f dxdt +

8∑
j=5

T∫
0

∫
T

∂−1
x Nj∂xψdxdt = 0

for all (φ, ψ) ∈ C∞
c ([0, T ) ×T ), where ∂−1

x denotes the operator given by ̂∂−1
x u(n) = − i

n
û(n).

Let r, s ≥ 0. For (f, 
) : [0, T ) → Ȧr (T ) × Ȧs(T ), we define the following functional:

E r
s (f,
) : [0, T ) → [0,∞), E r

s (f,
)(t) := ‖f (t)‖Ȧr + ‖
(t)‖Ȧs . (17)

We start by formulating our main result for the gravity driven flow, that is when S = 0. To this 
end, let us define

�1(t) := h	 + 19h2
	G

3
+ A

h2
	

(
1 − E 0

0 (f,
)(t)

h	

)−1 [
2 +

(
1 − E 0

0 (f,
)(t)

h	

)−1 ]
+ �	

+ 3A
2h3

	

(
1 − E 0

0 (f,
)(t)

h	

)−2 {
7�	 + 3

2
h	 +

(
1 − E 0

0 (f,
)(t)

h	

)−1

4�	

}
+ G

(
4�	h	 + 5h2

	

)
, (18)

�2(t) := 13

2
h	 + 2�	 + Gh2

	 + 3A
2h3

	

(
1 − E 0

0 (f,
)(t)

h	

)−2
h	

2
, (19)
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and the constants

C1 := G
3

h3
	 − A

h	

−
∣∣∣∣∣3A�	

2h2
	

− �	h
2
	

G
2

∣∣∣∣∣ , (20)

C2 := h	�	 +D − h2
	

2
. (21)

Then, we have the following result:

Theorem 1 (Global existence for S = 0). Let f0 ∈ Ȧ0(T ), 
0 ∈ Ȧ0(T ) be the nonzero initial 
data for (10) such that

E 0
0 (f0,
0) < min{h	,�	}.

Assume that C1, C2 > 0. If

γ1 := C1 − �1(0)E 0
0 (f0,
0) > 0,

γ2 := C2 − �2(0)E 0
0 (f0,
0) > 0,

then there exists at least one global solution (f, 
) of (10) in the sense of Definition 1 with 
regularity

(f,
) ∈
(
L

2
r
(
0, T ;Wr,∞(T )

)∩ L1
(

0, T ;C1+α(T )
)

∩ L2(0, T ;H 2(T ))
)2

,

for any r ∈ [0, 2), α ∈ [0, 12 ) and T > 0. Moreover, the weak solution satisfies the following 
exponential decay:

‖f (t)‖L∞ + ‖
(t)‖L∞ ≤ E 0
0 (f0,
0)e

−δt ,

where

δ = min{γ1, γ2} > 0. (22)

Furthermore, if the solution (f, 
) satisfies the regularity

(f,
) ∈
(
L1

(
0, T ; Ȧ2(T )

))2
,

then the weak solution is unique.

Remark 1. The condition E 0
0 (f0, 
0) < min{h	, �	} in Theorem 1 implies in particular that

‖f0‖L∞ < ‖f0‖Ȧ0 < h	 and ‖
0‖L∞ < ‖
0‖Ȧ0 < �	.

This corresponds to a positivity condition of h0 and �0 and ensures that (14) is initially satisfied.
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Remark 2. Note that the size restriction is explicitly computable and that the initial data do not 
need to be small in Sobolev spaces (one should compare the results in this paper with the global 
result in [9]). In particular, we prove the existence of global weak solutions and their decay 
towards the flat state for highly oscillating initial data. Let us further explain this with an explicit 
example. Consider the case where van der Waals forces are neglected, that is A = 0 and set 
G =D = 1. We choose the initial data (h0, �0) to be

h0(x) = 1 + μ sin(1000x) and �0(x) = 1

2
+ μ cos(1000x),

for 0 < μ < 1
4 . Then,

h	 = 1, �	 = 1

2
, E 0

0 (h0 − h	,�0 − �	) = 2μ,

and the constants C1, C2, �1(0), and �2(0) are given by

C1 = 1

12
, C2 = 1, �1(0) = 89

6
, �2(0) = 17

2
.

Then, for μ < 1
356 ∼ 0.003, this family of initial data satisfies the hypotheses and Theorem 1

guarantees the existence of a global weak solution (h, �) corresponding to the initial data 
(h0, �0). Moreover the solution decays exponentially towards the flat equilibrium and

‖h(t) − h	‖L∞ + ‖� − �	‖L∞ ≤ 2μe−δt ,

where δ = 1
12 − 89

3 μ. Furthermore, observe that

‖h0‖Ċ1 = ‖�0‖Ċ1 = O(1) while ‖h0‖H 2 = ‖�0‖H 2 = O(103).

Next we formulate our main theorem for the capillary driven flow, that is for the full system 
(7) with S > 0. In addition to (18)–(21), we define

�3 := S
2

(14h	�	 + 4h2
	) + 19

3
Sh2

	, (23)

C3 := S
3

h3
	 − �	h

2
	

S
2

. (24)

Then, we have the following result:

Theorem 2 (Global existence for S > 0). Let f0 ∈ Ȧ0(T ), 
0 ∈ Ȧ0(T ) be the nonzero initial 
data for (10) such that

E 0
0 (f0,
0) < min{h	,�	}.

Assume that C1, C2, C3 > 0. If
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γ1 := C1 − �1(0)E 0
0 (f0,
0) > 0,

γ2 := C2 −
(

�2(0) + Sh2
	

2

)
E 0

0 (f0,
0) > 0,

γ3 := C3 − �3E
0
0 (f0,
0) > 0,

then there exists at least one global solution (f, 
) of (10) in the sense of Definition 1 with 
regularity

f ∈L
4
s
(
0, T ;Ws,∞(T )

)∩ L1
(

0, T ;C3+α(T )
)

∩ L2
(

0, T ;H 2(T )
)

, s ∈ [0,4),


 ∈L
4
r
(
0, T ;Wr,∞(T )

)∩ L1
(

0, T ;C1+α(T )
)

∩ L2
(

0, T ;H 1(T )
)

, r ∈ [0,2)

for any T and 0 ≤ α < 1
2 . Moreover, the weak solutions satisfies the following exponential decay:

‖f (t)‖L∞ + ‖
(t)‖L∞ ≤ E 0
0 (f0,
0)e

−δt ,

where

δ = min{γ1, γ2, γ3} > 0. (25)

Furthermore, if the solution (f, 
) satisfies the regularity

(f,
) ∈ L1
(

0, T ; Ȧ4(T )
)

× L1
(

0, T ; Ȧ2(T )
)

,

then the weak solution is unique.

The remainder or this paper is devoted to the proof of the above theorems.

4. Proof of Theorem 1: global existence and decay when S = 0

Let us start by outlining the steps of the proof. First, we provide in Subsection 4.1 some a 
priori estimates of a solution (f, 
) ∈ (

C1(0, T ; Ȧ0(T ))
)2

of (10). Under the assumptions on 
the initial data in Theorem 1, which in particular require that

E 0
0 (f0,
0) < min{h	,�	},

we will show that the solution (f, 
) preserves this estimate, that is

E 0
0 (f,
)(t) < min{h	,�	} for all 0 < t < T .

Notice that the above inequality implies that

‖f (t)‖Ȧ0 ≤ E 0
0 (f,
)(t) < min{h	,�	} < h	 for all 0 < t < T,

‖
(t)‖ ˙0 ≤ E 0(f,
)(t) < min{h	,�	} < �	 for all 0 < t < T .
A 0
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Hence, the positivity conditions for h and �,

‖f (t)‖L∞ ≤ ‖f (t)‖Ȧ0 < h	, ‖
(t)‖L∞ ≤ ‖
(t)‖Ȧ0 < �	

are preserved for all t ∈ [0, T ). Then we obtain that, for small enough initial energy E 0
0 (f0, 
0), 

the following inequality holds:

d

dt
E 0

0 (f,
)(t) + δE 2
2 (f,
)(t) ≤ 0

for some δ > 0 dependent on the initial data. This inequality implies that a local solution (f, 
)

can not leave a ball in (L∞((0, T ); Ȧ0(T )) ∩ L1(0, T ; Ȧ2(T )))2; thus, there is no finite time 
singularity in these functional spaces. In Subsection 4.2 we implement a standard Galerkin 
approximation argument to prove the existence of global weak solutions. The existence of a 
classical local solution of the Galerkin approximate system is guaranteed by the Picard–Lindelöf 
Theorem. These approximate solutions (fM, 
M)M∈N are analytic. In particular, they satisfy

(fM,
M) ∈
(
C1([0, TM); Ȧ0(T ))

)2
,

where TM > 0 denotes the maximal time of existence of (fM, 
M). The a priori estimates from 
before ensure the global existence of the approximate solutions and provide the necessary a 
priori bounds in order to use compactness arguments and pass to the limit M → ∞, which 
yields a global weak solution of (10) in the sense of Definition 1. Now, let (fM, 
M) be such 
approximate solution corresponding to the initial data (f0, 
0), which satisfy the hypothesis of 
Theorem 1, then, in view of the Poincaré-like inequality in (4), we see that E 0

0 (fM, 
M)(t) is a 
Lyapunov functional, i.e., that

d

dt
E 0

0 (fM,
M)(t) + δE 0
0 (fM,
M)(0) ≤ 0 for all 0 < t < ∞.

The latter implies the exponential decay towards the equilibrium (f ∗, 
∗) = (0, 0) for the global 
weak solution (see Subsection 4.3). Eventually, in Subsection 4.4 it is shown that a global weak 
solution in (

L1(0, T ; Ȧ2(T ))
)2

is unique.

4.1. A priori estimates in Ȧ0(T )

Let T ∈ (0, ∞] and

(f,
) ∈
(
C1([0, T ), Ȧ4(T ))

)2

be a local smooth solution of (10) with initial data
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(f0,
0) ∈ (
Ȧ(T )

)2

satisfying the condition

E0
0 (f0,
0) < min{h	,�	}.

By continuity there exists 0 < t∗ ≤ T such that the above estimate is satisfied on [0, t∗), that is

E0
0 (f,
)(t) < min{h	,�	} for all t ∈ [0, t∗). (26)

Let us moreover assume that t∗ is the maximal time such that (26) holds true on [0, t∗). Hence, 
either

E0
0 (f,
)(t∗) = min{h	,�	} (27)

or t∗ = T . Notice that the restriction (14) holds true on the time interval [0, t∗). In the following 
let t ∈ [0, t∗). We compute

∂t |f̂ (k)| =
Re

( ¯̂
f (k)∂t f̂ (k)

)
|f̂ (k)| ,

so, using that S = 0,

d

dt
‖f ‖Ȧ0 ≤ h2

	

2
‖
‖Ȧ2 +

(A
h	

− G
3

h3
	

)
‖f ‖Ȧ2 + ‖N1‖Ȧ0 + ‖N2‖Ȧ0 + ‖N4‖Ȧ0, (28)

d

dt
‖
‖Ȧ0 ≤ − (

h	�	 +D
)‖
‖Ȧ2 +

∣∣∣∣∣3A�	

2h2
	

− �	h
2
	

G
2

∣∣∣∣∣‖f ‖Ȧ2 + ‖N5‖Ȧ0 + ‖N6‖Ȧ0 + ‖N8‖Ȧ0

(29)

We recall that

ûv(k) =
∑
j∈Z

û(j)v̂(k − j)

and by the hypothesis of the theorem

‖f ‖Ȧ0 ≤ h	, ‖
‖Ȧ0 ≤ �	.

Using the algebra property of the Wiener space As(T ), i.e.

‖fg‖Ȧs ≤ 2s‖f ‖Ȧs (T )‖g‖Ȧs (T ), for all f,g ∈ Ȧs(T ), s ∈N,

together with the interpolation inequality

‖f ‖ ˙sθ ≤ ‖f ‖1−θ
0 ‖f ‖θ

s , for all 0 < θ < 1, s ≥ 0,
A (T ) Ȧ (T ) Ȧ (T )
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the contribution of the nonlinear terms Nk , k = 1, 2, and 4, can be estimated as

‖N1‖Ȧ0 ≤
(‖f ‖2

Ȧ0

2
+ ‖f ‖Ȧ0h	

)
‖
‖Ȧ2 + (‖f ‖Ȧ1‖f ‖Ȧ0 + ‖f ‖Ȧ1h	

)‖
‖Ȧ1

≤
(

3

2
‖f ‖Ȧ0h	 + h	‖
‖Ȧ0

)
‖
‖Ȧ2 + h	‖f ‖Ȧ0‖f ‖Ȧ2

≤ E 0
0 (f,
)

5

2
h	‖
‖Ȧ2 + h	E

0
0 (f,
)‖f ‖Ȧ2 ,

‖N2‖Ȧ0 ≤ G
3

[(
3h2

	‖f ‖Ȧ0 + 3‖f ‖2
Ȧ0h	 + ‖f ‖3

Ȧ0

)
‖f ‖Ȧ2

+
(

3h2
	‖f ‖A1 + 6‖f ‖Ȧ1‖f ‖Ȧ0h	 + 3‖f ‖2

Ȧ0‖f ‖Ȧ1

)
‖f ‖Ȧ1

]

≤ 19h2
	G

3
‖f ‖Ȧ0‖f ‖Ȧ2

≤ 19h2
	G

3
E 0

0 (f,
)‖f ‖Ȧ2 ,

and

‖N4‖Ȧ0 ≤ A
[(‖f ‖Ȧ0

h	

‖f ‖Ȧ2

h	

+
(‖f ‖Ȧ1

h	

)2
) ∞∑

j=1

(‖f ‖Ȧ0

h	

)j−1

+ ‖f ‖Ȧ0

h	

(‖f ‖Ȧ1

h	

)2 ∞∑
j=1

j

(‖f ‖Ȧ0

h	

)j−1 ]

≤ A
[(‖f ‖Ȧ0

h	

‖f ‖Ȧ2

h	

+
(‖f ‖Ȧ1

h	

)2
)(

1 − ‖f ‖Ȧ0

h	

)−1

+ ‖f ‖Ȧ0

h	

(‖f ‖Ȧ1

h	

)2 (
1 − ‖f ‖Ȧ0

h	

)−2 ]

≤ A‖f ‖Ȧ0

h	

‖f ‖Ȧ2

h	

(
1 − ‖f ‖Ȧ0

h	

)−1 [
2 +

(
1 − ‖f ‖Ȧ0

h	

)−1 ]

≤ A
E 0

0 (f,
)

h	

‖f ‖Ȧ2

h	

(
1 − ‖f ‖Ȧ0

h	

)−1 [
2 +

(
1 − ‖f ‖Ȧ0

h	

)−1 ]
,

where we used the convergence of the geometric series 
∑∞

j=1 rj−1 for |r| < 1, and

∞∑
j=1

jrj−1 = ∂r

∞∑
j=1

rj = 1

(1 − r)2 , |r| < 1.

Similarly, the nonlinear terms Nj , j = 5, 6, and 8 are bounded by
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‖N5‖Ȧ0 ≤ (
�	‖f ‖Ȧ0 + (

4h	 + �	

)‖
‖Ȧ0

)‖
‖Ȧ2 + �	‖f ‖Ȧ0‖f ‖Ȧ2

≤ E 0
0 (f,
)

(
4h	 + 2�	

)‖
‖Ȧ2 + �	E
0
0 (f,
)‖f ‖Ȧ2 ,

‖N6‖Ȧ0 ≤ G
[(

4�	h	‖f ‖Ȧ0 + 4‖
‖Ȧ0h
2
	

)
‖f ‖Ȧ2 + h2

	

(‖
‖Ȧ0‖
‖Ȧ2 + ‖f ‖Ȧ0‖f ‖Ȧ2

)]
≤ GE 0

0 (f,
)
[(

4�	h	 + 4h2
	

)
‖f ‖Ȧ2 + h2

	

(‖
‖Ȧ2 + ‖f ‖Ȧ2

)]
,

‖N8‖Ȧ0 ≤ 3A
2h4

	

[(
3‖f ‖Ȧ0�	h	 + ‖
‖Ȧ0h

2
	

)
‖f ‖Ȧ2

+
(

4‖f ‖Ȧ0�	h	‖f ‖Ȧ2 + h2
	

2

[‖
‖Ȧ0‖
‖Ȧ2 + ‖f ‖Ȧ0‖f ‖Ȧ2

])] ∞∑
j=1

j

(‖f ‖Ȧ0

h	

)j−1

+ 3A
h3

	

[
2�	‖f ‖Ȧ0‖f ‖Ȧ2

] ∞∑
j=2

j (j − 1)

(‖f ‖Ȧ0

h	

)j−2

≤ 3A
2h3

	

[(
3‖f ‖Ȧ0�	 + ‖
‖Ȧ0h	

)‖f ‖Ȧ2

+
(

4‖f ‖Ȧ0�	‖f ‖Ȧ2 + h	

2

[‖
‖Ȧ0‖
‖Ȧ2 + ‖f ‖Ȧ0‖f ‖Ȧ2

])](
1 − ‖f ‖Ȧ0

h	

)−2

+ 3A
h3

	

[
2�	‖f ‖Ȧ0‖f ‖Ȧ2

](
1 − ‖f ‖Ȧ0

h	

)−3

.

Grouping terms, we find that

‖N8‖Ȧ0 ≤ 3A
2h3

	

(
1 − ‖f ‖Ȧ0

h	

)−2 {
7�	‖f ‖Ȧ0‖f ‖Ȧ2 + 1

2
h	[‖f ‖Ȧ0‖f ‖Ȧ2 + h	

2
‖
‖Ȧ0‖
‖Ȧ2]

+ h	‖
‖Ȧ0‖f ‖Ȧ2 +
(

1 − ‖f ‖Ȧ0

h	

)−1

4�	‖f ‖Ȧ0‖f ‖Ȧ2

}
≤ 3A

2h3
	

E 0
0 (f,
)

(
1 − ‖f ‖Ȧ0

h	

)−2 {
7�	‖f ‖Ȧ2 + 1

2
h	[‖f ‖Ȧ2 + h	

2
‖
‖Ȧ2]

+ h	‖f ‖Ȧ2 +
(

1 − ‖f ‖Ȧ0

h	

)−1

4�	‖f ‖Ȧ2

}
.

We recall the definition (20) and (21), then we add equations (28) and (29), use the previous 
estimates for Nj , j = 1, 2, 4, 5, 6, and 8 and obtain that

d

dt
E 0

0 (f,
)(t) ≤ −
(
C1 − �1(t)E

0
0 (f,
)(t)

)
‖f (t)‖Ȧ2 −

(
C2 − �2(t)E

0
0 (f,
)(t)

)
‖
(t)‖Ȧ2

(30)

for t ∈ [0, t∗), with �1 and �2 defined in (18) and (19), respectively. Using the hypothesis of the 
Theorem 1, we have that
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d

dt
E 0

0 (f,
)(t)

∣∣∣∣
t=0

< 0,

so, there exists a time 0 < t0 ≤ t∗ such that

E 0
0 (f,
)(t) ≤ E 0

0 (f0,
0) for all t ∈ [0, t0]. (31)

Let us assume that t0 is the maximal time such that (31) holds true on [0, t0] We want to propagate 
this decay for all times, that is, we aim to show that t0 = t∗, which in turn implies that t0 = t∗ = T , 
by (27). Let us emphasize that E 0

0 (f, 
)(t) ≤ E 0
0 (f0, 
0) for t ∈ [0, t0] guarantees that

�j(t) ≤ �j(0), j = 1,2 for all t ∈ [0, t0]. (32)

Thereby, for any t ∈ [0, t0] we have that

C1 − �1(t)E
0
0 (f,
)(t) ≥ C1 − �1(0)E 0

0 (f0,
0) = γ1 > 0,

C2 − �2(t)E
0
0 (f,
)(t) ≥ C2 − �2(0)E 0

0 (f0,
0) = γ2 > 0.

In particular, we obtain that

d

dt
E 0

0 (f,
)(t) < 0 for all t ∈ [0, t0).

Assume that t0 < t∗. By continuity, see (31), we deduce that E 0
0 (f, 
)(t0) = E 0

0 (f, 
)(0), but 
this implies that, again,

d

dt
E 0

0 (f,
)(t)

∣∣∣∣
t=t0

≤ 0,

and that contradicts the maximality assumption on t0. Thus, we have shown that in fact

E 0
0 (f,
)(t) ≤ E 0

0 (f0,
0) for all t ∈ [0, t∗) (33)

and thereby t∗ = T , in view of (27). Then,

d

dt
E 0

0 (f,
)(t) ≤ −γE 2
2 (f,
)(t) for all t ∈ [0, T ), (34)

where δ := min{γ1, γ2}. Eventually, the energy estimate for the gravity driven equation (S = 0) 
reads

E 0
0 (f,
)(t) + δ

t∫
0

E 2
2 (f,
)(τ) dτ ≤ E 0

0 (f0,
0), ∀ t ∈ [0, T ).

Similarly, using the equations for f and 
 together with the previous regularity, we find that
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t∫
0

‖∂tf (τ )‖Ȧ0 + ‖∂t
(τ)‖Ȧ0 dτ ≤ c,

for all t ∈ [0, T ), where c > 0 is a constant depending on the initial data.

4.2. Existence of global weak solutions

We use a standard Galerkin approximation to obtain in the limit a global weak solution of (10)
where surface tension effects are neglected, i.e. S = 0. Let us fix M ∈ Z+. Set

fM(t, x) :=
∑

|k|≤M

f̂ (t, k)eikx and 
M(t, x) :=
∑

|k|≤M

θ̂(t, k)eikx

and the initial data

fM(0, x) :=
∑

|k|≤M

f̂0(k)eikx and 
M(0, x) :=
∑

|k|≤M

θ̂0(k)eikx

to coincide with the Fourier truncation of the f0 and 
0, respectively. Recall that the convergence 
of the Fourier series of the initial data is guaranteed by the assumption that f0, 
0 ∈ Ȧ0(T ). We 
consider the Galerkin approximate problems:

∂tfM − h2
	

2
∂2
x
M +

(A
h	

− G
3

h3
	

)
∂2
xfM + S

3
h3

	∂
4
xfM =

∑
j=1,2,4

NM
j , in (0, T ) ×T

∂t
M − (
h	�	 +D

)
∂2
x
M +

(
3A�	

2h2
	

− G
2

�	h
2
	

)
∂2
xfM + S

2
�	h

2
	∂

4
xfM

=
∑

j=5,6,8

NM
j , in (0, T ) ×T

where the nonlinearities NM
j are given by

NM
1 = ∂xPM

[(
f 2

2
+ f h	

)
∂x


]
,

NM
2 = ∂xPM

[G
3

(
3h2

	f + 3f 2h	 + f 3
)

∂xf

]
,

NM
4 =APM

[(
f

h2
	

∂2
xf +

(
∂xf

h	

)2
)

M∑
j=1

(−1)j+1
(

f

h	

)j−1

− f

h3
	

(∂xf )2
M∑

j=1

j (−1)j+1
(

f

h	

)j−1 ]
,

NM = ∂xPM

[(
�	f + 
h	 + 
f

)
∂x


]
,
5
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NM
6 = ∂xPM

[G
2

(
�	f

2 + 2�	h	f + 
h2
	 + 
f 2 + 2
h	f

)
∂xf

]
,

NM
8 = 3A

2h4
	

PM

[(
2f �	h	 + f 2�	 − 
h2

	

)
∂2
xf

+
(

2∂xf �	h	 + 2f ∂xf �	 − ∂x
h2
	

)
∂xf

] M∑
j=1

j (−1)j+1
(

f

h	

)j−1

− 3A
h4

	

PM

[(
2f �	h	 + f 2�	 − 
h2

	

) (∂xf )2

h	

]
1

2

M∑
j=2

j (j − 1)(−1)j
(

f

h	

)j−2

.

Here, the operator PM denotes the Fourier truncation operator

PMg(x) =
∑

|k|≤M

ĝ(k)eikx for any g ∈ Ȧ0(T ).

The Picard–Lindelöf Theorem ensures the existence of classical solutions

fM,
M ∈ C1([0, TM);C∞(T )),

where TM > 0 is the maximal existence time. Furthermore, the approximate problems pro-
vide the same a priori bounds as in the previous sections. Consequently the Galerkin solutions 
(fM, 
M)M∈N exist globally and for any T > 0 we have the bounds:

(fM,
M)M∈N is uniformly bounded in
(
L∞ (

0, T ; Ȧ0(T )
)

∩ L1
(

0, T ; Ȧ2(T )
))2

(35)

and

(∂tfM, ∂t
M)M∈N is uniformly bounded in
(
L1

(
0, T ; Ȧ0(T )

))2
. (36)

Following the lines in [10], the above uniform regularities of the Galerkin approximations 
(fM, 
M)M∈N guarantee the existence of a weakly convergent subsequences (not relabeled) 
such that

(fM,
M)
∗
⇀ (f,
) in

(
L∞(0, T ;L∞(T ))

)2
.

Similarly, using interpolation in Wiener spaces, the finite measure of the spatial domain and 
the fact that Ȧr (T ) ⊂ Ẇ r,∞(T ) for any r ≥ 0, we obtain the existence of a subsequence (not 
relabeled), such that

(fM,
M) ⇀ (f,
) in
(
L

2
r (0, T ; Ẇ r,p(T ))

)2
, 0 ≤ r < 2, 1 ≤ p < ∞. (37)

In particular, using that the norm of a Banach space is weakly lower semicontinuous, we have 
the following bound
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‖(f,
)‖
L

2
r (0,T ;Ẇ r,p(T ))2

≤ lim inf
M→∞ ‖(fM,
M)‖

L
2
r (0,T ;Ẇ r,p(T ))2

≤ C(f0,
0).

From the previous fact, using the finiteness of the domain and taking the limit in p, we can infer 
that actually

lim sup
p→∞

‖(f,
)‖
L

2
r (0,T ;Ẇ r,p(T ))2

≤ C(f0,
0),

so

(f,
) ∈
(
L

2
r (0, T ; Ẇ r,∞(T ))

)2
, 0 ≤ r < 2.

Furthermore (35), (36) imply that

(fM,
M)M∈N is uniformly bounded in
(
L2(0, T ;H 1(T ))

)2
,

which is due to Ȧs(T ) ⊂ Ḣ s(T ) for any s ≥ 0 and an interpolation inequality for fractional 
Sobolev spaces. Eventually, as a consequence of (35), (36) and the Aubin-Lions compactness 
result [43, Corollary 4] with

X = H 2, B = C1+s , Y = L2,

we obtain (up to a subsequence) that

(fM,
M) → (f,
) in
(
L1(0, T ;C1+s(T ))

)2
, 0 ≤ s <

1

2
.

Passing to the limit in the weak formulation of the Galerkin approximation yields the existence 
of a global weak solution of (10) in the sense of Definition 1.

4.3. Exponential trend to equilibrium

Using (30) and the definition of δ > 0 in (22), we have that

d

dt
E 0

0 (fM,
M)(t) ≤ −δE 2
2 (fM,
M)(t) for all t ≥ 0. (38)

Using the Poincaré-like inequality (4), we also conclude that

d

dt
E 0

0 (fM,
M)(t) ≤ −δE 0
0 (fM,
M)(t) for all t ≥ 0,

which in turn implies the exponential decay towards the equilibrium:

E 0
0 (fM,
M)(t) ≤ E 0

0 (f0,
0)e
−δt for all t ≥ 0.

Using (37) and the lower semi-continuity of the weak-∗ convergence, we have that
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‖f (t)‖L∞(T ) + ‖
(t)‖L∞(T ) ≤ lim inf
k→∞ E 0

0 (fM,
M)(t) ≤ E 0
0 (f0,
0)e

−δt .

4.4. Uniqueness

The proof follows a standard contradiction argument. For the sake of brevity, we only sketch 
the idea. Assume that there exist two different solutions (f1, 
1) and (f2, 
2) starting from the 
same initial data

(f0,
0) ∈
(
Ȧ0(T )

)2
.

Assume also that these solutions satisfy

(fi,
i) ∈
(
L1(0, T ; Ȧ2(T ))

)2
.

Using the smallness of the initial data, the same estimates as in Subsection 4.1 yield that

d

dt

(‖f1 − f2‖Ȧ0 + ‖
1 − 
2‖Ȧ0

)
≤ C

[‖f1 − f2‖Ȧ0 + ‖
1 − 
2‖Ȧ0

] (‖f1‖Ȧ2 + ‖f2‖Ȧ2 + ‖
1‖Ȧ2 + ‖
2‖Ȧ2 + 1
)
.

Now the statement is a consequence of Gronwall’s inequality and the fact that (f1, 
1)(0) =
(f2, 
2)(0).

5. Proof of Theorem 2: global existence and decay when S > 0

The proof essentially follows the arguments in the previous section, the main difference rely-
ing in the fact that for S > 0 we have that (10) is a system of mixed orders. Thereby the energy 
estimates require some additional investigation. The existence of local solutions of the approx-
imate Galerkin systems are straightforward due to Picard–Lindelöf’s theorem and follows as in 
Subsection 4.2. The energy estimates then ensure that the approximate solutions exist globally. 
Furthermore, the energy estimates provide the necessary a priori bounds to pass to the limit in 
the Galerkin approximation; thereby guaranteeing the existence of a global weak solution in the 
sense of Definition 1. In view of the weak lower semicontinuity of the norm, the global weak 
solution inherits the energy estimates for the approximate solutions and we can conclude the 
regularity and exponential decay of the solution.

5.1. A priori estimates in Ȧ0(T )

To perform our energy estimates let us assume that there exists a local smooth solution

(f,
) ∈
(
C1([0, T ), Ȧ4(T ))

)2

of the fourth-order system (10) where S > 0, corresponding to initial data (f0, 
0), satisfying

E 0(f0,
0) < min{h	,�	}.
0
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Similarly as before, we have that

d

dt
‖f ‖Ȧ0 ≤ h2

	

2
‖
‖Ȧ2 +

(A
h	

− G
3

h3
	

)
‖f ‖Ȧ2 − S

3
h3

	‖f ‖Ȧ4 +
4∑

j=1

‖Nj‖Ȧ0, (39)

d

dt
‖
‖Ȧ0 ≤ − (

h	�	 +D
)‖
‖Ȧ2 +

∣∣∣∣∣3A�	

2h2
	

− �	h
2
	

G
2

∣∣∣∣∣‖f ‖Ȧ2 + S
2

h2
	�	‖f ‖Ȧ4 +

8∑
j=5

‖Nj‖Ȧ0 .

(40)

Keeping in mind the definitions of Ci, i = 1, 2, 3, in (20), (21), and (24), we take the sum of the 
two inequalities above and obtain that

d

dt
E 0

0 (f,
) + C1‖f ‖Ȧ2 + C2‖
‖Ȧ2 + C3‖f ‖Ȧ4 ≤
8∑

j=1

‖Nj‖Ȧ0 .

Recalling (30), we have that

d

dt
E 0

0 (f,
) + C3‖f ‖Ȧ4

≤ ‖N3‖Ȧ0 + ‖N7‖Ȧ0 −
(
C1 − �1(t)E

0
0 (t)

)
‖f (t)‖Ȧ2 −

(
C2 − �2(t)E

0
0 (t)

)
‖
(t)‖Ȧ2,

where �1 and �2 are defined in (18) and (19), respectively. Thus we are left to estimate the 
remaining terms ‖N3‖Ȧ0 and ‖N7‖Ȧ0 . Similarly as before, using the interpolation inequality in 
Wiener spaces, we estimate

‖N3‖Ȧ0 ≤ 19

3
Sh2

	E
0
0 (f,
)‖f ‖Ȧ4,

and

‖N7‖Ȧ0 ≤ S
2

(
6�	h	‖f ‖Ȧ0 + h2

	‖
‖Ȧ0

)
‖f ‖Ȧ4

+ S
2

(
8�	h	‖f ‖A1 + 4‖
‖A1h

2
	

)
‖f ‖Ȧ3 .

Note that by Young’s inequality, we have that

‖
‖Ȧ1‖f ‖Ȧ3 ≤ ‖
‖Ȧ1‖f ‖
1
4

Ȧ0‖f ‖
3
4

Ȧ4 ≤ ‖
‖Ȧ1

(
1

4ε
‖f ‖Ȧ0 + 3ε

4
‖f ‖Ȧ4

)
,

for any ε > 0. In particular, as 
 and f are nonzero (provided the initial data are nonzero), we 
can take

ε = E 0
0 (f,
)

.
‖
‖Ȧ1
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Thus,

‖
‖Ȧ1‖f ‖Ȧ3 ≤ ‖
‖2
Ȧ1

4E 0
0 (f,
)

‖f ‖Ȧ0 + 3E 0
0

4
‖f ‖Ȧ4 ≤ ‖
‖Ȧ2E 0

0 (f,
)

4
+ 3E 0

0 (f,
)

4
‖f ‖Ȧ4 .

Then, we conclude that

‖N7‖Ȧ0 ≤ S
2

(
(14h	�	 + 4h2

	)E
0
0 (f,
)‖f ‖Ȧ4 + h2

	E
0
0 (f,
)‖
‖Ȧ2

)
.

Using (23), we can group terms as follows:

d

dt
E 0

0 (f,
)(t) ≤ −
(
C1 − �1(t)E

0
0 (f,
)(t)

)
‖f (t)‖Ȧ2

−
(
C2 −

(
�2(t) + Sh2

	

2

)
E 0

0 (f,
)(t)

)
‖
(t)‖Ȧ2

−
(
C3 − �3E

0
0 (f,
)(t)

)
‖f (t)‖Ȧ4 .

Repeating the argument from Section 4, we conclude that

E 0
0 (f,
)(t) ≤ E 0

0 (f0,
0)e
−δt (41)

where δ is defined in (25). The energy estimate for the capillary driven thin film (S > 0) reads

E 0
0 (f,
)(t) +

t∫
0

δE 4
2 (f,
)(τ) dτ ≤ E 0

0 (f0,
0)

and

t∫
0

‖∂tf (τ )‖Ȧ0 + ‖∂t
(τ)‖Ȧ0 dτ ≤ c,

for all t ∈ [0, T ), where c > 0 is a constant depending on the initial data.

5.2. Existence of global weak solutions

In a similar way as in Subsection 4.2, we obtain the existence of a sequence of global Galerkin 
approximations (fM, 
M)M∈N . Then, the energy estimates from above guarantee that for any 
T > 0:

(fM)M∈N is uniformly bounded in L∞(0, T ; Ȧ0(T )) ∩ L1(0, T ; Ȧ4(T )) ⊂ L2(0, T ; Ḣ 2(T ))

and
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(
M)M∈N is uniformly bounded in L∞(0, T ; Ȧ0(T )) ∩ L1(0, T ; Ȧ2(T )) ⊂ L2(0, T ; Ḣ 1(T )).

Moreover, the time derivatives satisfy

(∂tfM, ∂t
M)M∈N is uniformly bounded in
(
L1(0, T ; Ȧ0(T ))

)2

for any T > 0. Consequently, we obtain the existence of a subsequence (not relabeled) such that

fM ⇀ f in L
4
s (0, T ; Ẇ s,p(T )), 0 ≤ s < 4, 1 ≤ p < ∞


M ⇀ 
 in L
2
r (0, T ; Ẇ r,p(T )), 0 ≤ r < 2, 1 ≤ p < ∞.

(42)

Moreover,

fM → f in L1(0, T ;C3+α(T )), 0 ≤ α <
1

2
,

fM ⇀ f in L2(0, T , Ḣ 2(T ))

and


M → 
 in L1(0, T ;C1+α(T )), 0 ≤ α <
1

2
,


M ⇀ 
 in L2(0, T , Ḣ 1(T )).

Equipped with these convergences we can pass to the limit in the weak formulation and conclude 
the global existence of a weak solution of (10) for S > 0 in the sense of Definition 1.

5.3. Exponential trend to equilibrium

The proof follows the same ideas as in Subsection 4.3. The sequence of Galerkin approxima-
tion (fM, 
M)M∈N satisfies the energy estimates. In particular, we have the exponential decay 
towards the equilibrium in (41):

E 0
0 (fM,
M)(t) ≤ E 0

0 (f0,
0)e
−δt for all t ≥ 0,

where δ > 0 is defined in (25). Using (42) and the lower semi-continuity of the weak-∗ conver-
gence, we have that

‖f (t)‖L∞(T ) + ‖
(t)‖L∞(T ) ≤ lim inf
k→∞ E 0

0 (fM,
M)(t) ≤ E 0
0 (f0,
0)e

−δt

for all t ≥ 0, which proves the claim.
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5.4. Uniqueness

Also the proof for the conditional uniqueness is similar to the one in Subsection 4.4. Assume 
that there exist two different solutions (f1, 
1) and (f2, 
2) starting from the same initial data

(f0,
0) ∈ (
Ȧ(T )

)2
.

Moreover, we suppose that the solutions satisfy the additional regularity

(fi,
i) ∈
(
L1(0, T ; Ȧ4(T )) × L1(0, T ; Ȧ2(T ))

)2

for i = 1, 2. Similarly as for the energy estimate we compute that

d

dt

(‖f1 − f2‖Ȧ0 + ‖
1 − 
2‖Ȧ0

)
≤ C

[‖f1 − f2‖Ȧ0 + ‖
1 − 
2‖Ȧ0

]
× (‖f1‖Ȧ2 + ‖f2‖Ȧ2 + ‖f1‖Ȧ4 + ‖f2‖Ȧ4 + ‖
1‖Ȧ2 + ‖
2‖Ȧ2

)
.

Now the assertion follows by applying Gronwall’s inequality and recalling that the solutions 
(fi, 
i), i = 1, 2 share the same initial data.
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