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Abstract
Using the theory of determinantal point processes we give upper bounds for the Green
and Riesz energies for the rotation group SO(3), with Riesz parameter up to 3. The
Green function is computed explicitly, and a lower bound for theGreen energy is estab-
lished, enabling comparison of uniform point constructions on SO(3). The variance
of rotation matrices sampled by a certain determinantal point process is estimated,
and formulas for the L2-norm of Gegenbauer polynomials with index 2 are deduced,
which might be of independent interest.
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processes
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1 Introduction and results

In this paper we study properties of a finite collection of randomly generated points
in SO(3), the rotation group of 3-dimensional Euclidean space, sampled bya certain
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Constructive Approximation

determinantal point process (dpp). It turns out that these points tend to be well dis-
tributed, a property that is important for discretization, integration and approximation.
Our goal is not to compute actual collections of evenly distributed rotation matrices,
but rather to provide a comparison tool that allows one to decide the effectiveness of
any given method.

If one is given an algorithm to generate finite (but arbitrarily large) collections of
matrices, common methods to measure how well distributed these are include either
calculating some discrete energy of them or looking at the speed of convergence of the
countingmeasure towards uniformmeasure.Most work in this direction has been done
on spheres of various dimensions, see the monography [8] for a very complete survey
of the state of the art of this question; the particular question of finding collections
of spherical points with small energy was posed by Shub and Smale in [21] and is
nowadays known as Smale’s 7th problem [22].

In order to extend part of the work done on spheres to the context of rotation
matrices, we will obtain bounds on various energies for points generated through a
certain dpp (technically speaking, a dpp is a counting measure where one identifies the
measure with its set of atoms). Briefly, such a process is obtained by taking a Hilbert
spaceH(X) (usuallyH(X) = L2(X)) of an underlying measure space (X , μ) and an
N -dimensional subspace H ⊂ H(X), with projection kernel K onto H. Then, under
mild conditions on X , one is guaranteed almost surely the existence of such a process
with N distinct points in X associated to K.

The theory of those processes has been summarized in [7]; there one also finds a
pseudo-code which samples points from any given dpp. Amain feature of the underly-
ing points is that they tend to repel each other, and hence have become the theoretical
basis of construction of well-distributed points on various symmetric spaces, see for
instance [2,5,6,19].

Since one can sometimes compute the expected value of the energy of points coming
from these processes with high precision, they have been used as a tool to understand
the asymptotic properties of the discrete energy in that context; and in particular, for
even dimensional spheres, with the exception of the usual 2-sphere, the best known
bounds for some energies have been proved using this approach.

We will employ the same method for SO(3), considering first the (discrete) Riesz
s-energy for A = {α1, . . . , αN } ⊂ SO(3):

Es
R(A) :=

∑

j �=k

1

‖α j − αk‖sF
,

with α j being thought of as rotation matrices, ‖ · ‖F being the Frobenius or L2-norm,
and s ∈ (0,∞). In contrast to this, the continuous Riesz s-energy is given by replacing
the double sum by the double integral over SO(3). We further set

E s
R(N ) = inf|A|=N

Es
R(A).
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The investigation of these sums is very popular and results usually describe the
behavior of the first leading terms. This seems particularly interesting in case s equals
the dimension, where we have following result.

Theorem 1.1 If N = (2L+3
3

)
for L ∈ N, then the Riesz 3-energy satisfies

12
√
2π E3

R(N ) ≤ N 2 log(N ) + (
3γ + log(82 · 6) − 21

4

)
N 2 + O(N 5/3 log(N )),

where γ is the Euler–Mascheroni constant.

The right-hand side is the expected value of the Riesz 3-energy with underlying
points generated by a certain dpp. Now, given any particular method of generating
finite point sets in SO(3), one can numerically compute their 3-energy and compare
it to the value above to decide if the points are evenly distributed. This comparison
would clearly rise in significance at the presence of lower bounds on the 3-energy.
From [8, Th. 9.5.4] we have

lim
N→∞

E3
R(N )

N 2 log N
= β3

Vol(SO(3))
=

4π
3

16
√
2π2

= 1

12
√
2π

.

Here β3 is the volume of the unit ball in R
3 and Vol(SO(3)) is the volume, i.e., the

Haursdoff measure, of SO(3) as a subset ofR3×3 ≡ R
9; see [15] for a computation of

that volume. We can thus see that random points from our dpp give the correct order
of the asymptotic. The first order asymptotics for other s–energies are also understood
(see the Poppy Seed Bagel Theorem [8, Th. 8.5.2] for s > 3 and the Fundamental
Theorem [8, Th. 4.2.2] for s < 3). However, we have not found estimates on the next
order term for the minimal 3–energy on SO(3), which leads to the following open
question.

Open Problem 1.2 Find bounds on the second term asymptotics for E3
R(N ) or more

generally for E s
R(N ).

We now turn our attention to the Green energy, where we obtain bounds with the
continuous Green energy as coefficient of the factor N 2 (zero in this case), and narrow
the domain of the leading coefficient of the second term.

To recap, a Green function GL for a linear differential operator L is an integral
kernel to produce solutions for inhomogeneous differential equations and is unique
modulo Ker(L). In our case, we deal with the Laplace–Beltrami operator �g , and
note that Ker(�g) is the set of harmonic functions—which are just constants on a
compact Riemannian manifold (M, g). We will construct G = G�g in such a way that
it integrates to zero and speak of the Green function.

The (discrete) Green energy for A = {α1, . . . , αN } ⊂ SO(3) will be given by

EG(A) :=
∑

i �= j

G(αi , α j ),
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and we let

EG(N ) = inf|A|=N
EG(A).

It is noteworthy that G(α, β)d(α, β) ≈ 1 for α close to β in geodesic distance d(·, ·),
and a set of points with small Green energy is hence expected to be well-distributed,
which is indeed the main result in [4]. We know that if {α1, . . . , αN } attains the
minimal possible energy, then the associated discrete measure approaches the uniform
distribution in SO(3) as N → ∞. A set of points with small Green energy is also
expected to be well-separated, see [9].

Now, G(·, β) is for any β ∈ SO(3) a zero mean function by definition, and if
{α1, . . . , αN } were simply chosen uniformly and independently in SO(3), then the
expected value of theGreen energywould equal 0, so in particularwe have EG (N ) ≤ 0.
In this note we prove the following much stronger result.

Theorem 1.3 If N = (2L+3
3

)
for L ∈ N, then

−3 3
√

πN 4/3 + O(N ) ≤ EG(N ) ≤ −4
( 3
4

)4/3
N 4/3 + O(N ).

The right-hand side is the expected value of theGreen energywith underlying points
generated by a dpp, and that is where we have the restriction for N , as the process is
related to subspaces H that we can project onto. The lower bound is valid for all N .

As mentioned above, another classical measure of the distribution properties of
{α1, . . . , αN } is the speedof convergence to uniformmeasure,which canbe understood
by choosing some range sets {A j } j∈I measurable with respect to the Haar measure μ

and investigating the behavior of

sup
j∈I

∣∣∣#{k : αk ∈ A j } − Nμ(A j )

∣∣∣

as N grows large. We will tackle this problem probabilistically, where we turn the
count of points in A j into a random variable.

In analogy to spherical caps on spheres, the range sets for SO(3) will be the balls
B(α, 2ε) := {β ∈ SO(3) : ω(α−1β) < 2ε} for ε ∈ (

0, π
2

)
and ω(·) being the

rotation angle distance introduced in the following sections. For given random points
{α1, . . . , αN } and fixed α ∈ SO(3), we define random variables via characteristic
functions

Xk
α,ε = χB(α,2ε)(αk) and ηα,ε =

N∑

k=1

Xk
α,ε.

Now, for a collection of random uniform points chosen independently in SO(3), denot-
ing by 1 the identity matrix in SO(3), we have

E[ηα,ε] = Nμ(B(α, 2ε)) = Nμ(B(1, 2ε)),
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and the variance can also be computed from the independence of the points:

Var[ηα,ε] = E[η2α,ε] − E[ηα,ε]2 = N
(
μ(B(1, 2ε)) − μ(B(1, 2ε))2

)
.

We are able to bound the variance of this quantity for our dpp, proving that it is much
smaller than in the previous case.

Theorem 1.4 Let N = (2L+3
3

)
for L ∈ N, and ε ∈ (

0, π
2

)
be fixed. Then the points

generated by the dpp given in Lemma 2.3 satisfy

E[ηα,ε] = Nμ(B(α, 2ε)) = Nμ(B(1, 2ε)),

and moreover

Var(ηα,ε) = O
( ε2

cos(ε)

)
N 2/3 log(N ).

From Theorem 1.4 and for any fixed ε, we then have by Chebyshev’s inequality

sup
α∈SO(3)

P

(∣∣ηα,ε − Nμ(B(1, 2ε))
∣∣ ≥ T

)
≤ Var(ηα,ε)T

−2;

for example, letting T = N 1/3 log(N ) and with some little arithmetic we obtain

sup
α∈SO(3)

P

(∣∣ 1
N ηα,ε − μ(B(1, 2ε))

∣∣ ≥ log(N )

N2/3

)
= O

( 1
log(N )

)
.

In other words, for large N the counting and Haar measures are very similar with high
probability.

2 Introductory Concepts

In this section we collect some definitions and previous results that we will use and
that are intended to make this manuscript reasonably self-contained. Definitions of
Chebyshev polynomials and alike are postponed to Sect. 2.4.

2.1 Structure, distances and integration in SO(3)

The special orthogonal group SO(3) is the compact Lie group of 3 by 3 orthogonal
matrices over R that represent rotations in R

3; i.e., with determinant equal to one. It
is a 3 dimensional manifold and since it is naturally included in R9 it is customary to
let it inherit its Riemannian submanifold structure.
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Following [14], using Euler angles (ϕ1, θ, ϕ2) ∈ [0, 2π) × [0, π ] × [0, 2π), every
element R ∈ SO(3) can be decomposed as R = sz(ϕ1)sx (θ)sz(ϕ2) where

sz(ϕ1) :=
⎛

⎝
cos(ϕ1) − sin(ϕ1) 0
sin(ϕ1) cos(ϕ1) 0

0 0 1

⎞

⎠ , sx (θ) :=
⎛

⎝
1 0 0
0 cos(θ) − sin(θ)

0 sin(θ) cos(θ)

⎞

⎠

are rotations around the z-axis and x-axis respectively. The normalized Haar mea-
sure (i.e., the unique left and right invariant probability measure in SO(3)) is given
by dμ(R) = 1

8π2 sin(θ)dϕ1dθdϕ2, and it corresponds to the inherited Riemannian
submanifold structure of SO(3) up to the normalizing constant.

The Riemannian distance associated to the structure of SO(3) is certainly a natural
and useful concept, but for us it will be more convenient to use the so called rotation
angle distance defined as follows: for α, β ∈ SO(3),

ω(α−1β) = arccos

(
Trace(α−1β) − 1

2

)
∈ [0, π ].

Its convenience stems from the following fact, see for example, [14, page 173]:
Given a function f ∈ L1(SO(3)) such that we can find f̃ ∈ L1([0, π ]) with f (x) =
f̃ (ω(x)), then ∫

SO(3)
f (x) dμ(x) = 2

π

∫ π

0
f̃ (t) sin2

( t
2

)
dt . (1)

By the monotone convergence theorem (1) is also valid if f , f̃ are just assumed to be
non-negative and measurable.

2.2 Laplace–Beltrami operator and Green function in SO(3)

The Laplace–Beltrami operator �g is defined on any Riemannian manifold (M, g)
in terms of the Levi-Civita connection. Following [10], if γ1(t), . . . , γn(t) is a set of
geodesics in an n-dimensional manifold such that γ j (0) = p ∈ M for all 1 ≤ j ≤ n,
and such that {γ̇ j (0)} form an orthonormal basis of the tangent space TpM (geodesic
normal coordinates), then the action of �g on C2-functions f at p is given by

�g f (p) = −
n∑

j=1

d2

dt2

∣∣∣
t=0

f (γ j (t)).

Note the convention given by the minus sign in front of the sum, which sometimes
leads to confusion given the Laplacian in R

n . The convention we use here is widely
accepted, see for example [17]. A Green function G = G�g is a distributional solution
to

�gG(·, y) = δ(·, y) − 1

μdV (M)
,
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where μdV (M) is the Riemannian volume form in M. Defined this way it is unique
modulo Ker(�g) and it is common practice to add a constant in such a way that for
all y ∈ M the function G(·, y) has zero mean, see [3]. We use this convention and
simply refer to G as the Green function.

It further follows from classical Fredholm theory that

G�g (x, y) =
∞∑

j=1

φ j (x)φ̄ j (y)

λ j
, (2)

where 0 = λ0 < λ1 ≤ λ2 ≤ · · · is the sequence of eigenvalues for �g and {φ j },
j ≥ 1 is a complete orthonormal set of associated eigenfunctions. Hence, this is true
locally on any smooth manifold.
In the case M = SO(3), we obtain a Green function which is independent of any par-
ticular chart, thus valid globally. The eigenvalues and eigenfunctions of�g are known
from the classical theory of continuous groups and have been intensively studied, see
[14,16], [25, §15]:

Lemma 2.1 The eigenvalues of �g in SO(3) are λ� = �(� + 1) for � ≥ 0. Moreover,
if H� is the eigenspace associated to λ�, then the dimension of H� is (2� + 1)2 and an
orthonormal basis of H� is given by

√
2� + 1D�

m,n where −� ≤ m, n ≤ � and D�
m,n

are Wigner’s D-functions.

The actual form of the Wigner D-functions will not be important for us, since
we will only use the fact that they constitute an orthogonal basis and the following
summation formula:

�∑

m=−�

�∑

n=−�

D�
m,n(α)D�

m,n(β) = U2�

(
cos

(ω(α−1β)
2

)); (3)

where U2�(x) is the Chebyshev polynomial of second kind and degree 2�, which will
be briefly introduced in Sect. 2.4. For more on formula (3) see [16, Eq. 4.65] or [24,
pp. 40–41] for a nice summary. The following simple form for the Green function is
derived in Sect. 2.4, and to the best of our knowledge, this is the first time it has been
formulated.

Lemma 2.2 The Green function for the Laplace–Beltrami operator on SO(3) can be
written in terms of the metric ω, i.e., for α, β ∈ SO(3) with α �= β:

G(α, β) = (
π − ω(α−1β)

)
cot

(ω(α−1β)
2

) − 1.

2.3 Determinantal point processes

We point the reader to the excellent monograph [7] for an introduction to point pro-
cesses, and we briefly summarize part of this material below. As in [5,6], we will use
only a fraction of the theory.
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A simple point process on a locally compact Polish space�with reference measure
μ is a random, integer-valued positive Radon measure η, that almost surely assigns at
most measure 1 to singletons—we shall think of it as a counting measure

η =
∑

j

δx j ,

with x j �= xs for j �= s. One usually identifies η with a discrete subset of �.
The joint intensities of η with respect to μ, if they exist, are functions ρk : �k →

[0,∞) for k > 0, such that for pairwise disjoint sets {Ds}ks=1 ⊂ �, the expected value
of the product of number of points falling into Ds is given by

E

[ k∏

s=1

η(Ds)

]
=

∫

D1×...×Dk

ρk(y1, . . . , yk) dμ(y1) . . . dμ(yk),

and ρk(y1, . . . , yk) = 0 in case y j = ys for some j �= s.
A simple point process is determinantalwith kernelK if and only if for every k ∈ N

and all y j ’s

ρk(y1, . . . , yk) = det
(
K(y j , ys)

)

1≤ j,s≤k
.

Let (M, g) be a compact Riemannian manifold with measure dμ = μdV . Let
H ⊆ L2(M) be any N -dimensional subspace in the set of square-integrable functions.
It follows from the Macchi-Soshnikov theorem [7, Thm. 4.5.5] that a simple point
process with N points exists in M associated to H. An important property of that dpp
is given by [7, Form. (1.2.2)]: For any measurable function f : M × M → [0,∞],

E

[ ∑

i �= j

f (xi , x j )

]
=

∫∫

M
f (x, y)

(
KH(x, x)KH(y, y) − |KH(x, y)|2

)
dμ(x, y);

(4)
where we write dμ(x, y) as an abbreviation for dμ(x) dμ(y) and

• E
[
g(x1, . . . , xN )

]
means expected value of some function defined fromM×· · ·×

M (N copies of M) to [0,∞], when x1, . . . , xN are chosen from the point process
associated to H;

• KH(x, y) is the (orthogonal) projection kernel on H, namely for any f ∈ L2(M)

the orthogonal projection of f onto H can be computed via:

�H( f )(x) =
∫

y∈M
f (y)KH(x, y) dμ(y) ∈ L2(H).

Note that if ϕ1, . . . , ϕN is an orthonormal basis of H, then we can write

KH(x, y) =
N∑

j=1

ϕ j (x)ϕ j (y), (5)
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and clearly ∫

SO(3)
KH(x, x) dμ(x) = N .

Coming back to the case of interest and following ideas in [6], we choose as subspace
H the span of the first eigenspaces of�g . Recall the definition of classical Gegenbauer

polynomials C(λ)
n (t), λ > −1/2, a sequence of degree n polynomials orthogonal with

respect to the weight (1 − t2)λ−1/2 in [−1, 1], normalized in such a way that

C(λ)
n (1) =

(
2λ + n − 1

2λ − 1

)
.

An equivalent definition of these polynomials is given by the formal power series

(1 − 2tα + α2)−λ =
∞∑

n=0

C(λ)
n (t)αn .

Lemma 2.3 Let L ≥ 0 and HL ⊆ L2(SO(3)) be the span of the union of eigenspaces
for eigenvalues λ0, . . . , λL of �g. Then, we define

N := dim(HL) =
(
2L + 3

3

)
= C(2)

2L (1) = 4

3
L3 + O(L2).

Moreover , the projection kernel is:

KL(α, β) := KHL (α, β) = C(2)
2L

(
cos

(ω(α−1β)
2

))
.

We then consider the dpp associated to HL .

2.4 Proofs of the basic lemmas

The degree n+1Chebyshev polynomials of first and second kind satisfy the recurrence
relation

Pn+1(x) = 2x Pn(x) − Pn−1(x), (6)

with T0 ≡ 1, T1(x) = x and U−1 ≡ 0, U0(x) ≡ 1 in their respective notation. With
this said, using (2), (3), and (5), we obtain

KL(α, β) =
L∑

�=0

(2� + 1) U2�

(
cos

(ω(α−1β)
2

)); (7)

G(α, β) =
∞∑

�=1

2� + 1

�(� + 1)
U2�

(
cos

(ω(α−1β)
2

))
. (8)

123



Constructive Approximation

Further we list some equations for later reference and the reader’s convenience.

2T2�+1(x) = U2�+1(x) − U2�−1(x) [1, Eq. 22.5.8],
Tn(1) = 1 [13, Eq. 8.944.1],
d
dx T2�+1(x) = (2� + 1) U2�(x) [13, Eq. 8.949.1],
d
dxU2L+1(x) = 2C(2)

2L (x) [13, Eq. 8.949.4],
C(λ)
n (1) = (2λ+n−1

2λ−1

) [13, Eq. 8.937.4].

(9)

Proof of Lemma 2.3 Let y := cos
(ω(α−1β)

2

)
, then by (7) and (9)

KL(α, β) = d

dx

L∑

�=0

T2�+1(x)
∣∣∣
y

= d

dx

1

2
U2L+1(x)

∣∣∣
y

= C(2)
2L

(
y
)
.

The formula for the dimension of HL can be proved as follows. The eigenspace asso-
ciated to λ� = �(� + 1) has dimension (2� + 1)2 since this is the number of elements
of its basis D�

m,n . Thus dim(HL ) is given by
∑L

�=0(2� + 1)2= (2L+3
3

)
. ��

Proof of Lemma 2.2 In (8) we apply the equality

U2�(cos(t)) = sin
(
(2� + 1)t

)

sin(t)
[13, Eq. 8.940.1],

and argue, under the assumption w := ω(α−1β)∈ (0, π ], as follows

G(α, β) =
∞∑

�=1

2� + 1

�(� + 1)

sin
(
(2� + 1)w

2

)

sin
(

w
2

)

= 1

sin
(

w
2

)
∞∑

�=1

(
sin

(
(2� + 1)w

2

)

� + 1
+ sin

(
(2� + 1)w

2

)

�

)

= 1

i

(
− log

(
1 − eiw

) + log
(
1 − e−iw))

cot
(

w
2

) − 1;

where we used the well known fact that the power series for log(1− x) at 1 converges
at the boundary of its disc of convergence (except for x = 1) and equals the logarithm
at these values:

∞∑

�=1

sin
(
(2� + 1)w

2

)

� + 1
= 1

2i

∞∑

�=1

ei
w
2 (2�+1) − e−i w

2 (2�+1)

� + 1

= e−i w
2

2i

∞∑

�=1

eiw(�+1)

� + 1
− ei

w
2

2i

∞∑

�=1

e−iw(�+1)

� + 1

= −e−i w
2

2i

(
log

(
1 − eiw

) + eiw
) + ei

w
2

2i

(
log

(
1 − e−iw) + e−iw)
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= −e−i w
2

2i
log

(
1 − eiw

) + ei
w
2

2i
log

(
1 − e−iw) − sin(w

2 ),

and similarly

∞∑

�=1

sin
(
(2� + 1)w

2

)

�
= −ei

w
2

2i
log

(
1 − eiw

) + e−i w2

2i
log

(
1 − e−iw)

.

Further, by 1 − e−iw = 2ie−i w2 sin(w
2 ), we conclude

log
(
1 − e−iw) − log

(
1 − eiw

) = log
(
2ie−i w2 sin(w

2 )
) − log

( − 2iei
w
2 sin(w

2 )
)

= log
(
2ei

−w+π
2 sin(w

2 )
) − log

(
2ei

w−π
2 sin(w

2 )
)

= (−w + π) i2 − (w − π) i2 = i(π − w),

where we used a property of the principal branch of the complex logarithm:
log(reiϕ) = log(r) + iϕ. ��

3 Riesz s-energy: Proof of Theorem 1.1

Recall that if A is a real matrix, we have ‖A‖2F := Trace(At A). We set throughout

N = N (L) = C(2)
2L (1) for L ∈ N.

Lemma 3.1 For α, β ∈ SO(3), we have ‖α − β‖F = √
8 sin

(ω(α−1β)
2

)
.

Proof We abbreviate w = ω(α−1β), and use the half-angle formula for sine:

‖α − β‖2F = Trace
[
(α − β)t (α − β)

] = 6 − 2Trace(α−1β)

= 8
2 − (

Trace(α−1β) − 1
)

4
= 8

1 − cos(w)

2
= 8 sin2

(
w
2

)
.

��
Recall the definition of Euler’s Beta function B(a, b) := ∫ 1

0 ta−1(1 − t)b−1 dt for
a, b > 0. We are now ready to state our first proposition.

Proposition 3.2 For s ∈ (0, 3) and N = N (L)= (2L+3
3

)
, we have

E s
R(N ) ≤ 2

8s/2π
B

( 3−s
2 , 1

2

)
N 2 + O(N 1+s/3).

If s ∈ {1, 2}, we have more information on the term O(N 1+s/3): It is respectively

−
√
2

π

( 3
4

)4/3
N 4/3 + O(N ) and − 4

15

( 3
4

)5/3
N 5/3 + O(N 4/3).
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Proof We use (4), Lemmas 2.3, 3.1, invariance of Haar measure, and (1):

∫∫

SO(3)

KL(α, α)2 − KL(α, β)2

‖α − β‖sF
dμ(α, β)

=
∫∫

SO(3)

[
C(2)
2L (1)

]2 − [
C(2)
2L

(
cos

(ω(α−1β)
2

))]2

8
s
2 sins

(ω(α−1β)
2

) dμ(α, β)

= 2

8
s
2 π

∫ π

0

(
N 2 − [

C(2)
2L

(
cos

( t
2

))]2) sin2−s ( t
2

)
dt

= 4

8
s
2 π

N 2
∫ π/2

0
sin2−s(t) dt − 4

8
s
2 π

∫ 1

0

[
C(2)
2L (t)

]2
(1 − t2)

1−s
2 dt .

The next line is, apart from the factor 4
8s/2π

, the continuous Riesz s-energy:

∫ π/2

0
sin2−s(t) dt =

∫ 1

0

t1−s t√
1 − t2

dt = 1

2

∫ 1

0
t
1−s
2 (1 − t)−1/2 dt = 1

2
B

( 3−s
2 , 1

2

)
.

On the other hand, for 0 < s < 3 we have

∫ 1

0

[
C(2)
2L (t)

]2
(1 − t2)

1−s
2 dt =

∫ π/2

0

[
C (2)
2L (cos(t))

]2sin2−s(t) dt

�
∫ 1/L

0

[
C (2)
2L (cos(t))

]2
t2−s dt +

∫ π/2

1/L

[
C (2)
2L (cos(t))

]2
t2−s dt

≤ [
C (2)
2L (1)

]2 t3−s

3 − s

∣∣∣
1/L

0
− CL2

1 + s

1

t1+s

∣∣∣
π/2

1/L
= O(L3+s);

where we have used that |C (2)
2L (t)| ≤ |C (2)

2L (1)| for all t ∈ [−1, 1] and [23, Eq. 7.33.6],
i.e., for every c > 0 there is C ≥ 0 such that

|C (2)
2L (cos(θ))| ≤ CL

θ2
,

c

L
≤ θ ≤ π

2
.

The case s = 1 is Lemma 6.2; the case s = 2 follows from Lemma 6.4:

∫ 1

0

[
C(2)
2L (t)

]2
√
1 − t2

dt =
∫ π/2

0

[
C(2)
2L (cos(t))

]2 dt = π

2

2L∑

u=0

cu,u = 8π

15
L5 + O(L4),

where cu,u = c(2)
u,u(2L) with notation as in Lemma 6.4. ��

In the next proof we use (1) and the digamma function ψ , see Sect. 6.
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Proof of Theorem 1.1 We proceed as in the previous proof and use Lemma 6.4. In
particular, we use the notation of that lemma for c j,k = c(2)

j,k(2L):

∫ π/2

0

[
C(2)
2L (1)

]2 − [
C(2)
2L

(
cos(t)

)]2

sin(t)
dt

= 2
2L∑

r=1

∫ π/2

0

1 − cos(2r t)

sin(t)
dt

2L−r∑

u=0

cr+u,u

= 4
2L∑

r=1

∫ π/2

0

[
Ur−1

(
cos(t)

)]2 sin(t) dt
2L−r∑

u=0

cr+u,u

= 4
2L∑

r=1

∫ 1

0

[
Ur−1(t)

]2 dt
2L−r∑

u=0

cr+u,u = (�).

We use (14) and obtain

(�) = 2(γ + log(4))
2L∑

r=1

2L−r∑

u=0

cr+u,u + 2
2L∑

r=1

ψ
(
r + 1

2

) 2L−r∑

u=0

cr+u,u =: S1 + S2.

By cr+u,u = c(2)
r+u,u(2L) = (r + u + 1)(2L − r − u + 1)(u + 1)(2L − u + 1), we

have

2L−r∑

u=0

cr+u,u = 16

15
L5 + 2

3
L2r3 − 4

3
L3r2 − r5

30
+ Oa+b<5(L

arb),

and hence, by well known formulas for the sum of powers of integers:

S1 = 2
(
γ + log(4)

) (
16

15
L52L + 2

3
L24L4 − 4

3
L3 8

3
L3 − 1

30

32

3
L6

)
+ O(L5)

= 16

9

(
γ + log(4)

)
L6 + O(L5).

Invoking Lemma 3.3 yields

1

2
S2 = 16

15
L5(2L ψ(2L) − 2L

) + 2

3
L2

( (2L)4

4
ψ(2L) − (2L)4

42

)

− 4

3
L3

( (2L)3

3
ψ(2L) − (2L)3

32

)
− 1

30

( (2L)6

6
ψ(2L) − (2L)6

62

)

+ O(L5 log(L))

= 8

9
L6ψ(2L) − 14

9
L6 + O(L5 log(L)).
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Since N 2 = C(2)
2L (1)2 = 16

9 L6
(
1 + O(L−1)

)
, and

( 3
4N

)1/3 = L
(
1 + O(L−1)

)1/6 we
see

1

3
log

( 3
4N

) = log(L) + O(L−1);

and using harmonic numbers Hn := ∑n
k=1

1
k = log(n) + γ + O(n−1) which satisfy

ψ(2L) = H2L−1 − γ , see [1, Eq. 6.3.2]:

(�) = 16

9
L6

(
ψ(2L) + γ + log(4)

)
− 7

4

16

9
L6 + O(L5 log(L))

= N 2
(
log

(
2(3N/4)1/3 − 1

) + γ + log(4)
)

− 7

4
N 2 + O(N 5/3 log(N ))

= 1

3
N 2 log(N ) + 1

3

(
3γ + log

(
83 34

) − 21

4

)
N 2 + O(N 5/3 log(N ));

proving the claim when multiplied by 4
83/2π

. ��
Lemma 3.3 Let ψ(t) be the digamma function and m ≥ 0, then

n∑

k=1

kmψ
(
k + 1

2

) = nm+1

m + 1
ψ(n) − nm+1

(m + 1)2
+ O(nm log(n)).

Proof Since ψ(t) = log(t) + O( 1t ) for t > 2, we have

n∑

k=1

kmψ
(
k + 1

2

) =
∫ n

1
tm log(t) dt + O(nm log(n));

as the sum can be bounded from above and below by the same integral, apart from
integration boundaries, where we obtain the error term. We finish by integrating:(
tm+1

m+1 log(t) − tm+1

(m+1)2

)∣∣∣
n

1
. ��

4 Green energy: Proof of Theorem 1.3

We prove the lower and upper bound separately in the following two sections.

4.1 Estimate of the Green energy: lower bound

We follow an exposition due to N. Elkies, found in [18, Lem. 5.2 pp. 149–154]. The
results in [18] are stated in detail for Riemann surfaces, i.e., one–dimensional complex
manifolds, although it is mentioned that the argument can be extended to more general
manifolds. Here we work out the details for SO(3).
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The idea is to find a function with nice properties smaller than G, and to bound its
energy from below. For α, β ∈ SO(3) and t > 0, we define:

Gt (α, β) =
∞∑

�=1

e−�(�+1)t 2� + 1

�(� + 1)
U2�

(
cos

(ω(α−1β)
2

))
.

Quantitative estimates depend on asymptotics for this function. The following is the
version of Elkies’ result for SO(3).

Lemma 4.1 For all t > 0 and α �= β we have

G(α, β) ≥ Gt (α, β) − t .

Proof Using uniform convergence, we differentiate term by term and define

ht (α, β) := −∂tGt (α, β) =
∞∑

�=1

e−�(�+1)t (2� + 1)
�∑

m=−�

�∑

n=−�

D�
m,n(α)D�

m,n(β).

Given a smooth test function φ, with uniformly converging representation as
∑∞

�=0 φ�,
where φ� = ∑

m,n ϕ�
m,nD�

m,n

√
2� + 1, we set

u(α, t) :=
∫

SO(3)
ht (α, β)φ(β) dμ(β) =

∞∑

�=1

e−�(�+1)tφ�(α),

where we interchanged integration and summation by uniform convergence and used
that {D�

m,n

√
2� + 1} is an orthonormal basis. Now we have uniformly

lim
t→0

u(α, t) = φ(α) −
∫

SO(3)
φ(β) dμ(β) = φ(α) − φ0.

For t > 0 fixed, we can interchange differentiation and integration yielding

�gu(α, t) + ∂t u(α, t) = 0.

By the strong maximum principle (Theorem A.2), we have for every t > 0:

min
α∈SO(3)

u(α, t) ≥ min
α∈SO(3)

u(α, 0).

The same PDE and estimates hold for

v(α, t) = u(α, t) + φ0.
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If φ ≥ 0, then so is v(α, t) for all t > 0 by the maximum principle as v(α, 0) = φ(α).
Hence

u(α, t) = v(α, t) − φ0 ≥ −φ0 for φ ≥ 0.

We further set

I(α, t) :=
∫

SO(3)
Gt (α, β)φ(β) dμ(β) =

∞∑

�=1

e−�(�+1)t φ�(α)

�(� + 1)
,

where we interchanged sum and integral again. Differentiating term-wise for t > 0
yields

∂tI(α, t) = −
∞∑

�=1

e−�(�+1)tφ�(α) = −u(α, t) ≤ φ0 for φ ≥ 0.

Finally, for fixed α let t > ε > 0, then by the fundamental theorem of calculus:

I(α, t) − I(α, ε) =
∫ t

ε

−u(α, s) ds ≤ φ0(t − ε)

and thus, for all non-negative test functions φ

∫

SO(3)

(
Gt (α, β) − Gε(α, β) − (t − ε)

)
φ(β) dμ(β) ≤ 0.

Since the integrand is continuous, this proves that for t > ε

Gt (α, β) − t ≤ Gε(α, β) − ε,

and for any fixed α, β with α �= β taking the limit as ε → 0 proves the result. ��
Now by Lemma 4.1, we have for some t > 0 which will be determined later, and

any collection of distinct points {α1, . . . , αN } ⊂ SO(3):

N∑

s �=k

G(αs , αk) + N (N − 1)2t ≥
N∑

s �=k

G2t (αs, αk)

=
∞∑

�=1

2� + 1

�(� + 1)

�∑

m=−�

�∑

n=−�

N∑

s �=k

e−�(�+1)2tD�
m,n(αs)D�

m,n(αk)

=
∞∑

�=1

2� + 1

�(� + 1)

�∑

m=−�

�∑

n=−�

(∣∣∣∣
N∑

k=1

e−�(�+1)tD�
m,n(αk)

∣∣∣∣
2

−
N∑

k=1

e−�(�+1)2t
∣∣∣D�

m,n(αk)

∣∣∣
2
)

≥ −
∞∑

�=1

2� + 1

�(� + 1)

�∑

m=−�

�∑

n=−�

N∑

k=1

e−�(�+1)2t
∣∣∣D�

m,n(αk)

∣∣∣
2 = −NG2t (α, α).
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Thus our remaining task is to find an asymptotic for Gt (α, α) in t . First we note that

e−�(�+1)t

�(� + 1)
= 4

e−�(�+1)t

(2� + 1)2

(
1 + 1

4�(� + 1)

)
= 4

e−�(�+1)t

(2� + 1)2
+ O(l−4).

For 0 < t � 1 we then obtain

Gt (α, α) =
∞∑

�=1

e−�(�+1)t (2� + 1)2

�(� + 1)
=

∞∑

�=1

(
4e−�(�+1)t + e−�(�+1)t

�(� + 1)

)

= 4et/4
∫ ∞

0
e−(2x+1)2t/4 dx + O(1)

= 2et/4
∫ ∞

1
e−x2t/4 dx + O(1)

= 4et/4√
t

∫ ∞
√
t/2

e−x2 dx + O(1)

= 4et/4√
t

∫ ∞

0
e−x2 dx + O(1) = 2

√
π

t
+ O(1).

If we choose 2t = 3√π

N2/3 , then we conclude

G2t (α, α) = 2 3
√

πN
1
3 + O(1),

and hence
N∑

s �=k

G(αs, αk) ≥ −3 3
√

πN
4
3 + O(N ),

proving the lower bound in Theorem 1.3.

4.2 Estimate of the Green energy: upper bound

According to (4), we have to estimate the integral

I =
∫∫

SO(3)
G(α, β)

(
KL(α, α)2 − KL(α, β)2

)
dμ(α, β),

which by Lemmas 2.2 and 2.3 and by invariance of Haar measure equals

∫

SO(3)

((
π − ω(α)

)
cot

(
ω(α)
2

) − 1
) (

C(2)
2L (1)2 −

[
C(2)
2L

(
cos

(
ω(α)
2

))]2)
dμ(α).

The integrand is in L1(SO(3)) since the singularity of the cotangent is removed by the
zero of the difference of Gegenbauer polynomials, thus being a continuous function
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on a compact set. We can then apply (1) getting:

I = 2

π

∫ π

0

((
π − t

)
cot

( t
2

) − 1
) (

C(2)
2L (1)2 −

[
C(2)
2L

(
cos

( t
2

))]2)
sin2

( t
2

)
dt .

Since

∫ π

0

((
π − t

)
cot

( t
2

) − 1
)
sin2

( t
2

)
dt = 0,

we indeed have

−I = 2

π

∫ π

0

((
π − t

)
cot

( t
2

) − 1
)[

C(2)
2L

(
cos

( t
2

))]2
sin2

( t
2

)
dt .

We simplify by noticing that

∫ π

0

[
C(2)
2L

(
cos

( t
2

))]2
sin2

( t
2

)
dt = 2

∫ 1

0

[
C(2)
2L (t)

]2√1 − t2 dt

=
∫ 1

−1

[
C(2)
2L (t)

]2√1 − t2 dt

=
∫ 1

−1

[
C(2)
2L (t)

]2√1 − t2(1 + t) dt,

where we used that odd functions integrate to zero over symmetric intervals. But

∫ 1

−1

[
C(2)
2L (t)

]2√1 − t(1 + t)3/2 dt = π

2

(
2L + 3

2L

)
, (10)

by the following equality, valid for ν > 1
2 and found in [13, Eq. 7.314]:

∫ 1

−1
(1 − x)ν− 3

2 (1 + x)ν− 1
2
∣∣C(ν)

n (x)
∣∣2 dx = π1/2�(ν − 1

2 )�(2ν + n)

n!�(ν)�(2ν)
.

We have then proved that

−I = 2

π

∫ π

0

(
π − t

)
cot

( t
2

)[
C(2)
2L

(
cos

( t
2

))]2
sin2

( t
2

)
dt + O(L3)

= 4

π

∫ 1

0

(
π − 2 arccos(t)

)
t
[
C(2)
2L (t)

]2 dt + O(L3)

= 4
∫ 1

0
t
[
C(2)
2L (t)

]2 dt − 4

π

∫ 1

0
2 arccos(t)t

[
C(2)
2L (t)

]2 dt + O(L3).
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Next we use Lemmas 6.1 and 6.2 in

∫ 1

0
t2

[
C(2)
2L (t)

]2 dt <

∫ 1

0
t
[
C(2)
2L (t)

]2 dt <

∫ 1

0

[
C(2)
2L (t)

]2 dt,

and obtain

∫ 1

0
t
[
C(2)
2L (t)

]2 dt = L4 + O(L3).

Finally we use
0 ≤ 2 arccos(t) ≤ π

√
1 − t, for t ∈ [0, 1]

so that, by (10),

∫ 1

0
2 arccos(t)t

[
C(2)
2L (t)

]2 dt <

∫ 1

0
π

√
1 − t t

[
C(2)
2L (t)

]2 dt

< π

∫ 1

−1

[
C(2)
2L (t)

]2√1 − t(1 + t)3/2 dt = O(L3).

Hence

I = −4L4 + O(L3),

and the upper bound in Theorem 1.3 follows from N = 4
3 L

3 + O(L2).

5 Variance: Proof of Theorem 1.4

Let A = B(1, 2ε) ⊆ SO(3) be as in the introduction, namely

A = {β ∈ SO(3) : ω(β) < 2ε} = {
β ∈ SO(3) : ‖β − 1‖F <

√
8 sin(ε)

}
,

where the equality follows fromLemma 3.1. Note that by rotation invariance it suffices
to study the variance of the random variable

ηA =
N∑

k=1

χA(αk),

where {α1, . . . , αN } are generated by our dpp. The expected value of ηA satisfies
E[ηA] = μ(A)N , and the variance of ηA is, by definition (using χA(αk)

2 = χA(αk)),

Var(ηA) = E[η2A] − E[ηA]2 = E

[ ∑

i �= j

χA(αi )χA(α j )

]
+ μ(A)N − μ(A)2N 2.
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The expected value of the right-hand side equals, by (4), (with f (x, y) = χA(x)χA(y))

∫∫

α,β∈A

[
C(2)
2L (1)

]2 − [
C(2)
2L

(
cos

(ω(α−1β)
2

))]2 dμ(β, α)

= μ(A)2N 2 −
∫∫

α,β∈A

[
C(2)
2L

(
cos

(ω(α−1β)
2

))]2 dμ(β, α).

In other words, we have

Var(ηA) = μ(A)N −
∫∫

α,β∈A

[
C(2)
2L

(
cos

(ω(α−1β)
2

))]2 dμ(β, α),

and therefore, using invariance of Haar measure, (1), and (10)

Var(ηA) −
∫

A

∫

Ac

[
C(2)
2L

(
cos

(ω(α−1β)
2

))]2 dμ(β) dμ(α)

= μ(A)N −
∫

SO(3)
χA(α)

∫

SO(3)

[
C(2)
2L

(
cos

(ω(β)
2

))]2 dμ(β) dμ(α)

= μ(A)N −
∫

SO(3)
χA(α)N dμ(α) = 0.

All in one we have proved the variance version of [20, Eq. 28]:

Var(ηA) =
∫

A

∫

Ac

[
C(2)
2L

(
cos

(ω(α−1β)
2

))]2 dμ(β) dμ(α).

Now, note that

Ac = {
β ∈ SO(3) : ‖β − 1‖F ≥ √

8 sin(ε)
}
,

and by the triangle inequality ‖β − 1‖F ≤ ‖β − α‖F + ‖1− α‖F for α ∈ A, we see
that

Ac ⊂ Sα := {
β ∈ SO(3) : ω(α−1β) ≥ f

(
ω(α)

)}
,
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where f
(
ω(α)

) := 2 arcsin
(
sin(ε)− sin

(
ω(α)
2

))
. With the characteristic function χα

of Sα , χα(β) = χ[ f (ω(α)),π](ω(α−1β)), we integrate over SO(3) and use (1):

∫
χα(β)

[
C(2)
2L

(
cos

(ω(α−1β)
2

))]2
dμ(β)

=
∫

χα(αβ)
[
C(2)
2L

(
cos

(ω(β)
2

))]2
dμ(β)

= 2

π

∫ π

f (ω(α))

[
C(2)
2L

(
cos

( t
2

))]2
sin2

( t
2

)
dt

= 4

π

∫ π/2

f (ω(α))
2

[
C(2)
2L

(
cos(t)

)]2
sin2(t) dt

= 4

π

∫ cos
(

f (ω(α))
2

)

0

[
C(2)
2L (t)

]2√
1 − t2 dt .

Applying (1) one more time yields with χA(β) = χ[0,2ε)(ω(β))

Var(ηA) ≤
∫

SO(3)
χA(α)

∫

SO(3)
χα(β)C(2)

2L

(
cos

(ω(α−1β)
2

))2 dμ(β) dμ(α)

= 4

π

∫

SO(3)
χA(α)

∫ cos( f (ω(α))
2 )

0

[
C(2)
2L (t)

]2√
1 − t2 dt dμ(α)

= 16

π2

∫ ε

0
sin2(x)

∫ √
1−(sin(ε)−sin(x))2

0

[
C(2)
2L (t)

]2√
1 − t2 dt dx

= 16

π2

∫ ε

0
sin2(x)

∫ √
1−(sin(ε)−sin(x))2

cos(ε)

[
C(2)
2L (t)

]2√
1 − t2 dt dx

+ 16

π2

∫ ε

0
sin2(x)

∫ cos(ε)

0

[
C(2)
2L (t)

]2√
1 − t2 dt dx =: I1 + I2.

Next we change the order of integration, thus for t ∈ [cos(ε), 1], we integrate over
{t}×[z(t), ε], where z(t) := arcsin

(
sin(ε)−√

1 − t2
)
. We do this since x ∈ [z(t), ε]

implies
√
1 − (sin(ε) − sin(x))2 ∈ [t, 1]. Thus

I1 = 16

π2

∫ 1

cos(ε)

[
C(2)
2L (t)

]2√
1 − t2

∫ ε

z(t)
sin2(x) dx dt .

Further, by a standard estimate and the mean value theorem, we get

∫ ε

z(t)
sin2(x) dx ≤ sin2(ε)

(
arcsin

(
sin(ε)

) − arcsin
(
sin(ε) −

√
1 − t2

))

≤ sin2(ε)

√
1 − t2

cos(ε)
,
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and hence by Lemma 6.1

I1 ≤ 16 sin2(ε)

π2 cos(ε)

∫ 1

0

[
C(2)
2L (t)

]2
(1 − t2) dt = sin2(ε)

cos(ε)
O(L2 log(L)).

We now estimate I2. Using sin(ε) = √
1 − cos2(ε) ≤ √

1 − t2 for t ∈ [0, cos(ε)],
Lemma 6.1, and sin(x)

sin(ε) ≤ 1 yields

I2 ≤ 16

π2

∫ ε

0
sin2(x)

∫ cos(ε)

0

[
C(2)
2L (t)

]2√
1 − t2

√
1 − t2

sin(ε)
dt dx = ε2O(L2 log(L)).

Theorem 1.4 is now proved.

6 The L2–norm of Gegenbauer polynomials

First we recall the digamma function ψ(x) := d
dx log (�(x)) and its property:

ψ(n + 1
2 ) =

n∑

k=1

2

2k − 1
− γ − log(4), for n ∈ N, (11)

see [1, Eq. 6.3.4], where γ ≈ 0.577 is the Euler-Mascheroni constant.

Lemma 6.1 The Gegenbauer polynomials C(2)
n−2(x) satisfy

∫ 1

0
(x2 − 1)

[
C(2)
n−2(x)

]2 dx = −2n2 − 1

16

(
ψ(n + 1

2 ) + γ + log(4)
)

+ n2

8
.

Lemma 6.2 The Gegenbauer polynomials C(2)
n−2(x) satisfy

∫ 1

0

[
C(2)
n−2(x)

]2 dx = n4

16
+ 4n2 − 1

64

(
ψ(n + 1

2 ) + γ + log(4)
)

− 5

32
n2.

For the proofs, we need a result from [11], showing the following recursive formula
for squares of Gegenbauer polynomials:

( n

2λ

)2 [
C(λ)
n (x)

]2 =
n−1∑

k=0

λ + k

λ

[
C(λ)
k (x)

]2 − (1 − x2)
[
C(λ+1)
n−1 (x)

]2
,

which, for λ = 1, i.e., Chebyshev polynomials of 2nd kind [11, Corollary 6.2], is

(n + 1)2

4

[
Un+1(x)

]2 −
n∑

k=0

(k + 1) [Uk(x)]
2 = (x2 − 1)

[
C(2)
n (x)

]2
. (12)
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Proof of Lemma 6.1 We will use a well known identity for m ≤ n:

Um(x)Un(x) =
m∑

k=0

Un−m+2k(x), (13)

which follows by induction on m, starting and re-applying the recurrence (6). Using
(13) with m = n in (12) and integrating yields

∫ 1

0
(x2 − 1)

[
C(2)
n (x)

]2 dx

= (n + 1)2

4

n+1∑

k=0

∫ 1

0
U2k(x) dx −

n∑

k=0

(k + 1)
k∑

s=0

∫ 1

0
U2s(x) dx

= (n + 1)2

4

n+1∑

k=0

T2k+1(1) − T2k+1(0)

2k + 1
−

n∑

k=0

(k + 1)
k∑

s=0

T2s+1(1) − T2s+1(0)

2s + 1

= (n + 1)2

4

n+1∑

k=0

1

2k + 1
−

n∑

k=0

k∑

s=0

k + 1

2s + 1
,

where we used (9) and that T2n+1(x) is odd. By (11), we state for later use:

∫ 1

0
[Un(x)]2 dx =

n∑

k=0

1

2k + 1
= 1

2

(
ψ(n + 3

2 ) + γ + log(4)
)
, for n ∈ N0. (14)

We continue with

∫ 1

0
(x2 − 1)

[
C(2)
n (x)

]2 dx

= (n + 1)2

8

(
ψ(n + 5

2 ) + γ + log(4)
)

−
n∑

k=0

k + 1

2
ψ(k + 3

2 ) − (γ + log(4))
(n + 2)(n + 1)

4

= (n + 1)2

8
ψ(n + 5

2 )

−
n+1∑

k=1

k

2
ψ(k + 1

2 ) − (n + 3)(n + 1)

8
(γ + log(4)).

Also, we find by induction:

n∑

k=1

k

2
ψ(k + 1

2 ) = 1

16

[
(2n + 1)2ψ(n + 3

2 ) − 2(n + 1)2 + γ + log(4)
]
,
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where we used the recurrence ψ(z + 1) = ψ(z) + 1
z , see [1, Eq. 6.3.5]. Thus

∫ 1

0
(x2 − 1)

[
C(2)
n−2(x)

]2 dx

= 2(n − 1)2 − (2n − 1)2

16
ψ(n + 1

2 ) + n2

8

− 2(n + 1)(n − 1) + 1

16
(γ + log(4))

= −2n2 − 1

16

(
ψ(n + 1

2 ) + γ + log(4)
)

+ n2

8
,

finishing the proof. ��

The proof of Lemma 6.2 first needs some preparation.

Lemma 6.3 Let c j,k for j, k ∈ {0, . . . , n} be real numbers such that

(1) c j,k = c j+r ,k+r for j + k = n − r with r ∈ {1, . . . , n},
(2) c j,k = cn− j,k for j ≥ k,
(3) c j,k = ck, j .

Then for any function f : N0 → R, we have1

n∑

j,k=0

c j,k f (| j − k|) =
n∑

j,k=0

c j,k f (|n − j − k|) = 2
n∑′

r=0

f (r)
n−r∑

u=0

cr+u,u . (15)

Proof We first fix some r ∈ {1, . . . , n} and regard the second sum. Observe that for
all tuples such that ji + ki = n − r and ĵi + k̂i = n + r , we also have |n − ji − ki | =
|n − ĵi − k̂i | = r . These tuples are listed in the following table:

i 1 2 . . . n − r + 1
ji 0 1 n − r
ki n − r n − r − 1 . . . 0
ĵi r r + 1 n
k̂i n n − 1 r

So for all r , ( ji , ki ) �→ ( ji + r , ki + r) = ( ĵi , k̂i ) is a bijection with c ji ,ki = c ĵi ,k̂i and

n∑

j,k=0

c j,k f (|n − j − k|) = 2
n∑

j,k=0
j+k<n

c j,k f (n − j − k) + f (0)
n∑

u=0

cn−u,u .

1 The apostrophe on the sum-symbol sigma means taking half the first term.
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The first sum of (15) can be restricted to j > k when doubled, apart from the sum
f (0)

∑n
u=0 cu,u . Again, we list all tuples with ji − ki = r = n − ĵi − k̂i :

i 1 2 . . . n − r + 1
ji r r + 1 n
ki 0 1 . . . n − r
ĵi n − r n − r − 1 0
k̂i 0 1 n − r

Similarly, ( ji , ki ) �→ (n − ji , ki ) = ( ĵi , k̂i ) is a bijection with c ji ,ki = c ĵi ,k̂i , and

n∑

j>k=0

c j,k f ( j − k) =
n∑

j,k=0
j+k<n

c j,k f (n − j − k).

Rewriting the first sum above via j = r + u and k = u for some u ∈ {0, . . . , n − r}
and using that cn−u,u = cu,u finishes the argument. ��

Requirement 2. in Lemma 6.3 is valid for all j, k. To see this, let j < k, then

c j,k
2.+3.= c j,n−k

1.= c j+(k− j),n−k+(k− j) = ck,n− j
3.= cn− j,k .

Lemma 6.4 Let n ∈ N and λ ∈ (−1/2, 0) ∪ (0,∞). For j, k ∈ {0, . . . , n} we define

c(λ)
j,k = c(λ)

j,k(n) = 1

[�(λ)]4
�(λ + j)�(λ + n − j)

j !(n − j)!
�(λ + k)�(λ + n − k)

k!(n − k)! .

Then

[
C(λ)
n

(
cos(t)

)]2 =
n∑

u=0

c(λ)
u,u + 2

n∑

r=1

cos(2r t)
n−r∑

u=0

c(λ)
r+u,u .

In particular,

∫ π/2

0
[C (λ)

n (cosϕ)]2 dϕ = π

2

n∑

u=0

c(λ)
u,u .

Proof We will use Lemma 6.3 with [13, Eq. 8.934]:

C(λ)
n (cos(ϕ)) =

n∑

k,�=0
k+�=n

�(λ + k)�(λ + �)

k!�![�(λ)]2 cos((k − �)ϕ),
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in conjunction with the angle-sum and half-angle formula for cosine and sine:

[
C(λ)
n (1)

]2 − [
C(λ)
n

(
cos(t)

)]2 =
n∑

j,k=0

c(λ)
j,k

(
1 − cos

(
(n − 2 j)t

)
cos

(
(n − 2k)t

))

=
n∑

j,k=0

c(λ)
j,k

1

2

(
1 − cos

(
( j − k)2t

) + 1 − cos
(
(n − j − k)2t

))

=
n∑

j,k=0

c(λ)
j,k

(
sin2

(
( j − k)t

) + sin2
(
(n − j − k)t

)) = 4
n∑

r=1

sin2(r t)
n−r∑

u=0

c(λ)
r+u,u .

Hence, with
[
C(λ)
n

(
cos(t)

)]2 = [
C(λ)
n (1)

]2 −
([
C(λ)
n (1)

]2 − [
C(λ)
n

(
cos(t)

)]2)

[
C(λ)
n

(
cos(t)

)]2 = 2
n∑′

r=0

n−r∑

u=0

c(λ)
r+u,u − 4

n∑

r=1

sin2(r t)
n−r∑

u=0

c(λ)
r+u,u

=
n∑

u=0

c(λ)
u,u + 2

n∑

r=1

(
1 − 2 sin2(r t)

) n−r∑

u=0

c(λ)
r+u,u,

and we finish using 1 − 2 sin2(r t) = cos(2r t).

Proof of Lemma 6.2 With the notation of Lemma 6.4, where c j,k = c(2)
j,k(n − 2):

n−2−r∑

u=0

cr+u,u =
n−1−r∑

u=1

(r + u)(n − u)u(n − r − u)

= 4r2−1
120

(
r
(
5n2 − 1

4

) − r3 − 5n(n2 − 1)
)

− 2r

64
(4n2 − 1) +

(
2n + 2

5

)
1

8
.

Further, we see by induction
∑n−2

r=1
1

4r2−1
= n−2

2n−3 , and thus by Lemma 6.4

∫ 1

0

[
C(2)
n−2(x)

]2 dx

=
n−2∑

u=0

cu,u + 2
n−2∑

r=1

∫ π
2

0
cos(2r t) sin(t) dt

n−2−r∑

u=0

cr+u,u

=
n−2∑

u=0

cu,u − 2
n−2∑

r=1

1

4r2 − 1

n−2−r∑

u=0

cr+u,u

= n5 − n

30
− 1

60

n−2∑

r=1

(
r
(
5n2 − 1

4

) − r3 − 5n(n2 − 1)
)
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+2
n−2∑

r=1

1

4r2 − 1

(
2r

64
(4n2 − 1) −

(
2n + 2

5

)
1

8

)

= 2n4 − 5n2

32
+

n−1∑

r=0

1

4r2 − 1

2r − 1

32
(4n2 − 1),

as
( 4n2−1

32 − (2n+2
5

) 1
4

) n−2
2n−3 has a simple form. Equation (14) finishes the proof. ��
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Appendix A: The strongmaximum principle onmanifolds

We state the classical strong maximum principle Theorem A.1 for open, bounded,
and connected subsetsU ⊂ R

n , and regard second order parabolic partial differential
operators L + ∂

∂t acting on functions C2
1 (U × (0, T ]), i.e., twice differentiable with

respect to spatial variables and once with respect to time. T > 0. A special case of
this is extended in Theorem A.2. We set for smooth coefficients:

Lu(x, t) = −
∑n

i, j
ai j (x, t)

∂
∂xi

∂
∂x j

u(x, t) +
∑n

j
b j (x, t)

∂
∂x j

u(x, t), (16)

and without loss of generality, ai j (x, t) = a ji (x, t).

Definition A.1 L + ∂
∂t is said to be uniformly parabolic if there is a C > 0, such that

∑

i, j

ai j (x, t)ξiξ j ≥ C‖ξ‖22, where ξ ∈ R
n, (x, t) ∈ U × (0, T ]. (17)

Theorem A.1 (Thm. 11, page 396 of [12]) Let u ∈ C2
1 (U × (0, T ]) ∩ C(Ū × [0, T ])

be such that

Lu + ∂

∂t
u = 0,

for U ⊂ R
n as above, L + ∂

∂t uniformly parabolic, and L as in (16). If the maximum
or minimum of u is attained at a point (x0, t0) ∈ U × (0, T ], then u equals this value
everywhere in U × [0, t0].

Given a manifold M with or without boundary, we set M◦ = M \ ∂M, and for
x ∈ M, define Mx as the connected component of M containing x . Now, the next
theorem should be known, but we haven’t found a reference.
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Theorem A.2 Let (M, g) be an n-dimensional (smooth) compact Riemannianmanifold
with or without boundary, not necessarily connected. Suppose u ∈ C2

1 (M
◦ × (0, T ])∩

C(M × [0, T ]) satisfies for (x, t) ∈ M◦ × (0, T ]:

�gu(x, t) + ∂

∂t
u(x, t) = 0.

If the maximum or minimum of u is attained at a point (x0, t0) ∈ M◦ × (0, T ], then u
equals this value everywhere inMx0×[0, t0]. In particular, themaximumandminimum
of u are attained in

(
∂M × [0, T ]) ∪ (

M◦ × {0}).
Proof For every α ∈ M◦, there is an open neighborhood Uα ⊂ M and a chart xα :
Uα → Bα ⊂ R

n , such that xα(Uα) is an open ball Bα , and the local representation of
�g in Uα is of type (16), and satisfies (17) for C = 1/2. This follows from the fact
that the Laplace–Beltrami operator at a point β in the interior can be written as the
usual Laplacian at β, and by continuity of the coefficients, there is an open set of β

where the inequality (17) is true for C = 1/2.
Assume there were a t0 > 0 such that the maximum/minimum of u would be

attained at (α, t0). Writing �g with respect to the chart xα as �α , and regarding the
equation

�αu(x−1
α (x), t) + ∂

∂t
u(x−1

α (x), t) = 0,

in Bα × (0, T ], a neighborhood of (xα(α), t0), we deduce by Theorem A.1 that
u(x, t) ≡ u(α, t0) for all (x, t) ∈ Bα × [0, t0].

Further, Mα is covered by finitely many intersecting charts as above, and Theo-
rem A.1 would yield that u is constant and equals u(α, t0) in all of Mα × [0, t0]. The
maximum/minimum is in particular attained at the boundary as claimed. ��
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