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a b s t r a c t

We define a family of random sets of points, the Diamond
ensemble, on the sphere S2 depending on several parameters. Its
most important property is that, for some of these parameters,
the asymptotic expected value of the logarithmic energy of the
points can be computed rigorously and shown to attain very
small values, quite close to the conjectured minimal value.
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1. Introduction and main results

Sets of points on the sphere S2 that are well-distributed in some sense conform an interest-
ing object of study, see for example [6] for an interesting survey with different approaches to
well-distributed points and [4] for a complete monography. One usually seeks for points with small
cap discrepancy or maximal separation distance or, as we do in this paper, minimal potential energy.
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1.1. Riesz and logarithmic energy

Given s ∈ (0, ∞), the Riesz potential or s–energy of a set on points ωN = {x1, . . . , xN} on the
sphere S2 is

Es(ωN ) =

∑
i̸=j

1
∥xi − xj∥s . (1)

This energy has a physical interpretation for some particular values of s, i.e. for s = 1 the Riesz
energy is the Coulomb potential and in the special case s = 0 the energy is defined by

Elog(ωN ) =
d
ds

⏐⏐⏐⏐
s=0

Es(ωN ) =

∑
i̸=j

log ∥xi − xj∥−1

and is related to the transfinite diameter and the capacity of the set by classical potential theory,
see for example [15].

1.2. Smale’s 7th problem

Shub and Smale [20] found a relation between the condition number (a quantity measuring
the sensitivity of zero finding) of polynomials and the logarithmic energy of associated spherical
points. Inspired by this relation, they proposed a problem that is nowadays known as Smale’s 7th
problem [21]: find a constructive (and fast) way to produce N points with quasioptimal logarithmic
energy. More exactly, on input N , one must produce a set of N points ωN on the unit sphere such
that

Elog(ωN ) − mN ≤ c logN,

where c is some universal constant and mN is the minimum possible value of Elog among all
collections of N spherical points.

1.3. The value of mN

A major difficulty in Smale’s 7th problem is that the value of mN is not even known up to
precision logN . A series of papers [5,9,18,22] gave upper and lower bounds for the value of mN . The
last word has been given in [3] where this value is related to the minimum renormalized energy
introduced in [19] proving the existence of an O(N) term. The current knowledge is:

mN = Wlog(S2)N2
−

1
2
N logN + Clog N + o(N), (2)

where

Wlog(S2) =
1

(4π )2

∫
x,y∈S2

log ∥x − y∥−1 dxdy =
1
2

− log 2 (3)

is the continuous energy and Clog is a constant. Here, as usual, o(N) is a function of N with the
property that limN→∞ o(N)/N = 0. Combining [9] with [3] it is known that

−0.223282 . . . ≤ Clog ≤ 2 log 2 +
1
2
log

2
3

+ 3 log
√

π

Γ (1/3)
= −0.055605 . . . ,

and indeed the upper bound for Clog has been conjectured to be an equality using two different
approaches [3,8]. This conjecture on the value of Clog was recently proved to be equivalent to two
other well-known conjectures in potential theory: the Vortices Conjecture and the Cohn–Kumar
Conjecture for the 2d Coulomb potential, see [17].
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1.4. Explicit constructions toward Smale’s 7th problem

Several point sequences that seem to have low logarithmic energy have been proposed. In [11]
we find a number of families of points (some of them are random and some of them are not) to-
gether with numerical evidence of their properties for values as high as N = 50.000 spherical points.
However, obtaining theoretical results for the properties of these sequences has proved a very hard
task. Of course one can just run a generic optimization algorithm starting on those sequences and
get seemingly optimal collections of points but theoretical results about the asymptotical properties
of the output of such methods are quite out of reach.

Theoretical computations of the energy of constructively feasible families of points have only
been done in a few cases.

Points coming from the spherical ensemble (that can be seen after a stereographic projection as
the eigenvalues of A−1B where A and B are random Gaussian matrices, see [14]) have been proved
in [1] to have average logarithmic energy

Wlog(S2)N2
−

1
2
N logN + c1 N + o(N),

where c1 = log 2 − γ /2 = 0.404539 . . . (here, γ is the Euler–Mascheroni constant).
On the other hand, points obtained (after the stereographic projection) as zeros of certain random

polynomials have been studied in [2] proving that the expected value of the logarithmic energy in
this case is

Wlog(S2)N2
−

1
2
N logN + c2 N + o(N),

where c2 = −Wlog(S2) = 0.193147 . . .
Both c1 and c2 are quite far from the known upper bound for Clog and thus these methods are

far from providing an answer to Smale’s problem.

1.5. Main result: the Diamond ensemble

In this paper, we define a collection of random points, the Diamond ensemble ⋄(N), depending on
several parameters. For appropriate choices of the parameters, our construction produces families of
points that very much resemble some already known families for which the asymptotic expansion
of the logarithmic energy is unknown, such as the octahedral points or the zonal equal area nodes,
see [11,12,18]. Indeed our paper can be seen as a follow up of [18, Theorem 3.2].

A quasioptimal choice of these parameters is described in Section 4.3, we call the resulting set
the quasioptimal Diamond ensemble, and its main interest is that we can prove the following bound.

Theorem 1.1. The expected value of the logarithmic energy of the quasioptimal Diamond ensemble
described in Section 4.3 is

Wlog(S2)N2
−

1
2
N logN + c⋄ N + o(N),

where c⋄ = −0.049222 . . . satisfies

14340 c⋄ = 19120 log 239 − 2270 log 227 − 1460 log 73 − 265 log 53 − 1935 log 43
−930 log 31 − 1710 log 19 − 1938 log 17 + 19825 log 13 + 1750 log 7
−4250 log 5 − 131307 log 3 + 56586 log 2 − 7170.

The value of the constant is thus approximately 0.0058 far from the value conjectured in [3,8].
The Diamond ensemble is fully constructive: once a set of parameters is chosen, one just has to
choose some uniform random numbers θ1, . . . , θp ∈ [0, 2π ] and then the N points are simply given
by the direct formulas shown in Section 4.3. It is thus extremely easy to generate these sequences
of points.

As one can guess from the expression of c⋄, obtaining the exact value for that constant requires
the computation of a huge number of elementary integrals and derivatives and has been done using
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the computer algebra package Maxima [16]. Our proof of Theorem 1.1 is thus, in some sense, a
computer aided proof. A more simple example (with more simple parameters) that can actually be
done by hand is presented in Section 4.1.

1.6. Structure of the paper

In Section 2 we present a formula for computing the energy of the roots of unity of some
parallels. In Section 3 we define the Diamond ensemble and through the formula of Section 2 we
compute its associated logarithmic energy. In Section 4 we present some concrete examples of the
Diamond ensemble. In particular a simple model that can be made by hand, a more elaborated
example and the quasioptimal Diamond ensemble in terms of minimizing logarithmic energy. In
that section we also give the asymptotic expansion of the logarithmic energy associated to every
single example. Section 5 is devoted to proofs and Appendix contains some bounds for the error
of the trapezoidal rule.

2. A general construction and a formula for its average logarithmic energy

Fix z ∈ (−1, 1). The parallel of height z in the sphere S2
⊂ R3 is simply the set of points x ∈ S2

such that ⟨x, (0, 0, 1)⟩ = z, where ⟨·, ·⟩ is the euclidean inner product. A general construction of
points can then be done as follows:

(1) Choose a positive integer p and z1, . . . , zp ∈ (−1, 1). Consider the p parallels with heights
z1, . . . , zp.

(2) For each j, 1 ≤ j ≤ p, choose a number rj of points to be allocated on parallel j.
(3) Allocate rj points in parallel j (which is a circumference) by projecting the rj roots of unity

onto the circumference and rotating them by random phase θj ∈ [0, 2π ].
(4) To the already constructed collection of points, add the North and South pole (0, 0, 1) and

(0, 0, −1).

We will denote this random set by Ω(p, {rj}, {zj}). Explicit formulas for this construction are easily
produced: points in parallel of height zj are of the form

x =

(√
1 − z2j cos θ,

√
1 − z2j sin θ, zj

)
(4)

for some θ ∈ [0, 2π ] and thus the set we have described agrees with the following definition.

Definition 2.1. Let Ω(p, {rj}, {zj}) be the following set of points

Ω(p, {rj}, {zj}) =

⎧⎪⎨⎪⎩
N = (0, 0, 1)

xij =

(√
1 − z2j cos

(
2π i
rj

+ θj

)
,

√
1 − z2j sin

(
2π i
rj

+ θj

)
, zj
)

S = (0, 0, −1)

(5)

where rj is the number of roots of unity that we consider in the parallel j, 1 ≤ j ≤ p is the number
of parallels, 1 ≤ i ≤ rj and 0 ≤ θj ≤ 2π is a random angle rotation in the parallel j.

The following proposition is easy to prove.

Proposition 2.2. Let x be chosen uniformly and randomly in the parallel of height zi and let y be chosen
uniformly and randomly in the parallel of height zj. The average value of − log ∥x − y∥ is

−
log
(
1 − zizj + |zi − zj|

)
2

.

The following result follows directly from Proposition 2.2.
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Corollary 2.3. Let xij be as in Definition 2.1. Then, for j ̸= k,

Eθj,θk

[
−

rk∑
l=1

rj∑
i=1

log
(
∥xij − xlk∥

)]
= −rjrk

log
(
1 − zjzk + |zj − zk|

)
2

,

where θj, θk are uniformly distributed in [0, 2π ].

From Corollary 2.3 we will prove the following result which gives us an expression for the
expected logarithmic energy of the set Ω(p, {rj}, {zj}).

Proposition 2.4. The average logarithmic energy of points drawn from Ω(p, {rj}, {zj}) is

Eθ1,...,θp∈[0,2π ]p
[
Elog(Ω(p, {rj}, {zj}))

]
=

−2 log(2) −

p∑
j=1

rj

[
log(4) +

1
2
log(1 − z2j ) + log rj

]

−

p∑
j,k=1

rjrk
log
(
1 − zjzk + |zj − zk|

)
2

.

It turns out that, for any fixed choice of r1, . . . , rp, one can compute exactly the optimal choice
of the heights z1, . . . , zp.

Proposition 2.5. Given {r1, . . . , rp} such that ri ∈ N, there exists a unique set of heights {z1, . . . , zp}
such that z1 > · · · > zp and Eθ1,...,θp∈[0,2π ]p

[
Elog(Ω(p, {rj}, {zj}))

]
is minimized. The heights are:

zl =

p∑
j=l+1

rj −
l−1∑
j=1

rj

1 +

p∑
j=1

rj

= 1 −

1 + rl + 2
l−1∑
j=1

rj

N − 1
,

where N = 2 +
∑p

j=1 rj is the total number of points.

From now on we will denote by Ω(p, {rj}) the set Ω(p, {rj}, {zj}) where the zj are chosen as in
Proposition 2.5. With this choice of zj we have the main result of this section:

Theorem 2.6. Let p = 2M − 1 be an odd integer. If rj = rp+1−j and zj are chosen as in Proposition 2.5
we then have

Eθ1,...,θp∈[0,2π ]p
[
Elog(Ω(p, {rj}))

]
= −(N − 1) log(4) −

p∑
j=1

rj log rj − (N − 1)
p∑

j=1

rj(1 − zj) log(1 − zj)

= −(N − 1) log(4) + rM log rM − 2
M∑
j=1

rj log rj

− (N − 1)
M∑
j=1

rj(1 − zj) log(1 − zj) − (N − 1)
M∑
j=1

rj(1 + zj) log(1 + zj).
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3. The Diamond ensemble

We are now ready to define the construction that leads to Theorem 1.1. It amounts to choose
some r1, . . . , rp such that the energy bound computed in Theorem 2.6 is as low as possible and can
be computed up to order o(N). Our construction is based in the following heuristic argument.

3.1. A heuristic argument

Let us choose z1, . . . , zp in such a way that they define p equidistant parallels on the sphere. In
other words,

zj = cos
jπ

p + 1

The distance between two consecutive parallels is 2 sin(π/(2(p+1))). We would like to choose rj in
such a way that the distance between two consecutive points of the same parallel is approximately
equal to some constant times this distance. Since parallel of height zj is a circumference of radius
sin(jπ/(p + 1)), this goal is attained by setting for example

rj =

K0π sin
(

jπ
p+1

)
sin
(

π
2(p+1)

) , for some constant K0 > 0. (6)

Let us forget for a moment that this gives an impossible construction (since the rj will not be integer
numbers). One can then plug in Proposition 2.4 these values of zj and rj. After a considerable amount
of work the right-hand term in Proposition 2.4 can be proved to have the asymptotic expansion

Wlog(S2)N2
−

1
2
N log(N) +

(
K0π

6
−

1
2
log K0 −

logπ

2

)
N + o(N), (7)

where N = 2 + r1 + · · · + rp is the total number of points in the sphere. The optimal value of K0 is
K0 = 3/π , yielding the asymptotic

Wlog(S2)N2
−

1
2
N log(N) +

1 − log(3)
2

N + o(N),

where 1−log(3)
2 = −0.049306 . . .

Unfortunately, this reasoning does not actually produce collections of points since as pointed out
above the number of points in each parallel must be an integer number. The computation of the
formula (7) is done with techniques similar to the ones used below but we do not include it since
we actually only use it as an inspiration of our true construction below.

3.2. An actual construction

Inspired on the heuristic argument above, we will try to search for sets of the form Ω(p, {rj}) such

that the rj are integer numbers close to
3 sin

(
jπ
p+1

)
sin
(

π
2(p+1)

) . We will then choose the optimal values for the

zj given by Proposition 2.5. Our approach is to consider different piecewise linear approximations
to the formula (6) with K0 = 3/π .

Definition 3.1. Let p,M be two positive integers with p = 2M − 1 odd and let rj = r(j) where
r : [0, 2M] → R is a continuous piecewise linear function satisfying r(x) = r(2M − x) and

r(x) =

⎧⎪⎨⎪⎩
α1 + β1x if 0 = t0 ≤ x ≤ t1,
...

...

αn + βnx if tn−1 ≤ x ≤ tn = M.
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Here, [t0, t1, . . . , tn] is some partition of [0,M] and all the tℓ, αℓ, βℓ are assumed to be integer
numbers.

We assume that α1 = 0, αℓ, βℓ ≥ 0 and β1 > 0. We will later let M vary but we assume that
there exists a constant A ≥ 2 not depending on M such that n ≤ A, αℓ ≤ AM , βℓ ≤ A and t1 ≥ M/A
(although some of these bounds can be refined without affecting the proof). Note that in particular
this implies the following bounds for the total number of points N:

N − 1 ≥

t1∑
j=1

β1j ≥
t1(t1 + 1)

2
≥

M2

2A2 , N ≤ 2 + 2
M∑
j=1

(AM + Aj) ≤ 5AM2. (8)

Let zj be as defined in Proposition 2.5. We call the set of points defined this way the Diamond
ensemble and we denote it by ⋄(N), omitting in the notation the dependence on all the parameters
n, t1, . . . , tn, α1, . . . , αn, β1, . . . , βn. Note that the total number of points is

N = 2 − (αn + βnM) + 2
n∑

ℓ=1

tℓ∑
j=tℓ−1+1

(αℓ + βℓj).

We also denote by Nℓ the total number of points in up to tℓ−1 (without the North Pole), that is

Nℓ =

tℓ−1−1∑
j=1

rj.

Note that if j ∈ [tℓ−1, tℓ] then

zj = 1 −
1 + rj + 2

∑j−1
k=1 rk

N − 1
= 1 −

1 + 2Nl − rj + 2
∑j

k=tℓ−1
(αℓ + βℓk)

N − 1
(9)

= 1 −
1 + 2Nl − (αℓ + βℓj) + 2αℓ(j − tℓ−1 + 1) + βℓ(j + tℓ−1)(j − tℓ−1 + 1)

N − 1
.

We thus consider the function z : [0, 2M] → R, piecewise defined in each interval [tℓ−1, tℓ] ⊆

[0,M] by the degree 2 polynomial

zℓ(x) = 1 −
1 + 2Nl − (αℓ + βℓx) + 2αℓ(x − tℓ−1 + 1) + βℓ(x + tℓ−1)(x − tℓ−1 + 1)

N − 1
(10)

and given in [M, 2M] by z(x) = −z(2M − x). Note that we have zj = z(j).

3.3. An exact formula for the expected logarithmic energy of the Diamond ensemble

From Theorem 2.6, the expected value of the log-energy of ⋄(N) is given by

Eθ1,...,θp∈[0,2π ]p
[
Elog(⋄(N))

]
= −(N − 1) log(4) + r(M) log r(M) − 2

M∑
j=1

r(j) log r(j)

− (N − 1)
M∑
j=1

r(j)(1 − z(j)) log(1 − z(j)) − (N − 1)
M∑
j=1

r(j)(1 + z(j)) log(1 + z(j)).

We write the sums as instances of a trapezoidal composite rule. Recall that for a function f :

[a, b] → R with a < b integers, the composite trapezoidal rule is

T[a,b](f ) =
f (a) + f (b)

2
+

b−1∑
j=a+1

f (j). (11)

We then have
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Corollary 3.2. The expected logarithmic energy of points drawn from the Diamond ensemble equals

Eθ1,...,θp∈[0,2π ]p
[
Elog(⋄(N))

]
= −(N − 1) log(4) − 2

n∑
ℓ=1

T[tℓ−1,tℓ](fℓ)

− (N − 1)
n∑

ℓ=1

T[tℓ−1,tℓ](gℓ) − (N − 1)
n∑

ℓ=1

T[tℓ−1,tℓ](hℓ),

where for 1 ≤ ℓ ≤ n the functions fℓ, gℓ, hℓ are defined in the interval [tℓ−1, tℓ] and satisfy

fℓ(x) =(αℓ + βℓx) log(αℓ + βℓx),
gℓ(x) =(αℓ + βℓx)(1 − zℓ(x)) log(1 − zℓ(x)),
hℓ(x) =(αℓ + βℓx) (1 + zℓ(x)) log(1 + zℓ(x)).

3.4. An asymptotic formula for the expected logarithmic energy of the Diamond ensemble

Since fℓ is a continuous function for 1 ≤ ℓ ≤ n, the trapezoidal rule T[tℓ−1,tℓ](fℓ) approaches the
integral of fℓ. Moreover,

Lemma 3.3. For 1 ≤ ℓ ≤ n we have⏐⏐⏐⏐⏐T[tℓ−1,tℓ](fℓ) −

∫ tℓ

tℓ−1

fℓ(x) dx

⏐⏐⏐⏐⏐ ≤ (tℓ − tℓ−1)3A log(2AM) ≤ 3AM log(2AM).

Proof. Let S be the quantity in the lemma and note that

S ≤

tℓ∑
j=tℓ−1+1

∫ j

j−1

⏐⏐⏐⏐fℓ(x) −
fℓ(j − 1) + fℓ(j)

2

⏐⏐⏐⏐ dx.
Now, for x ∈ [j − 1, j] we have

|fℓ(x) − fℓ(j − 1)| ≤

∫ j

j−1
|f ′

ℓ(t)| dt ≤ A + A log(AM + AM) ≤ 2A log(2AM).

We thus have⏐⏐⏐⏐fℓ(x) −
fℓ(j − 1) + fℓ(j)

2

⏐⏐⏐⏐ ≤

|fℓ(x) − fℓ(j − 1)| +

⏐⏐⏐⏐ fℓ(j − 1) − fℓ(j)
2

⏐⏐⏐⏐ ≤ 3A log(2AM).

The lemma follows. □

We can use the classical Euler–Maclaurin formula (see Lemma A.2) for estimating the difference
between the composite trapezoidal rule and the integral in the cases of gℓ and hℓ. Indeed we have

Lemma 3.4. The following inequality holds for 1 ≤ ℓ ≤ n:⏐⏐⏐⏐⏐T[tℓ−1,tℓ](gℓ) −

∫ tℓ

tℓ−1

gℓ(x) dx −
g ′

ℓ(tℓ) − g ′

ℓ(tℓ−1)
12

⏐⏐⏐⏐⏐ ≤
C logM

M

for some constant C > 0, that depends only on A.

Proof. From Lemma A.2 it suffices to prove that |g ′′′

ℓ (x)| dx ≤
C logM
M2 for some constant C . Now,

gℓ = u(x)v(x)w(x) where u is a linear mapping, v is a quadratic polynomial and w = log v. The
Leibniz rule for the derivative of the product gives

g ′′′

ℓ = uvw′′′
+ 6u′v′w′

+ 3u′v′′w + 3uv′′w′
+ 3u′vw′′

+ 3uv′w′′.
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If ℓ = 1 then g ′′′

ℓ has a simple expression and it is easily verified that

|g ′′′

1 | ≤
C logM
M2

for some constant C > 0. For ℓ > 1 note now that u(x) = αℓ + βℓx satisfies

|u| ≤ CM, |u′
| ≤ C

where C is some constant. Moreover, v(x) = 1 − zℓ(x) in [tℓ−1, tℓ] satisfies
1
C

≤ |v| ≤ 1, |v′
| ≤

C
M

, |v′′
| ≤

C
M2

for some positive constant C , not depending on M . To see this, just note that since ℓ > 1 we have
[tℓ−1, tℓ] ⊆ [t1,M] ⊆ [M/A,M]. Then,

|v| ≥|v1(M/A)| ≥
1 + β1M2/A2

N − 1
(8)
≥

1
C

,

|v′
| =

⏐⏐⏐⏐2βℓx + 2αℓ

N − 1

⏐⏐⏐⏐ (8)
≤

⏐⏐⏐⏐2AM + 2AM
M2/2A2

⏐⏐⏐⏐ ≤
C
M

,

|v′′
| =

⏐⏐⏐⏐ 2βℓ

N − 1

⏐⏐⏐⏐ ≤

⏐⏐⏐⏐ 2A
M2/2A2

⏐⏐⏐⏐ ≤
C
M2 ,

where C is a constant depending on A whose value is not important for us. A similar, yet more
lengthy computation shows that w = log v satisfies

|w| ≤ C, |w′
| ≤

C
M

, |w′′
| ≤

C
M2 |w′′′

| ≤
C
M3 .

The lemma follows. □

Lemma 3.5. The following inequality holds for 1 ≤ ℓ ≤ n:⏐⏐⏐⏐⏐T[tℓ−1,tℓ](hℓ) −

∫ tℓ

tℓ−1

hℓ(x) dx −
h′

ℓ(tℓ) − h′

ℓ(tℓ−1)
12

⏐⏐⏐⏐⏐ ≤
C
M

for some constant C > 0.

Proof. The proof is almost identical to that of Lemma 3.4, so we leave it to the reader. □

We have proved the following.

Theorem 3.6. For the Diamond ensemble we have

Eθ1,...,θp∈[0,2π ]p
[
Elog(⋄(N))

]
= −(N − 1) log(4) − 2

n∑
ℓ=1

∫ tℓ

tℓ−1

fℓ(x) dx

− (N − 1)
n∑

ℓ=1

(∫ tℓ

tℓ−1

gℓ(x) dx +
g ′

ℓ(tℓ) − g ′

ℓ(tℓ−1)
12

)

− (N − 1)
n∑

ℓ=1

(∫ tℓ

tℓ−1

hℓ(x) dx +
h′

ℓ(tℓ) − h′

ℓ(tℓ−1)
12

)
+ O(M logM),

where as before for 1 ≤ ℓ ≤ n the functions fℓ, gℓ, hℓ are as in Corollary 3.2 and the constant hidden
in the O(M logM) term depends only on A. Note that from (8), the term O(M logM) is o(N).

3.4.1. Zonal equal area nodes
In [18] Rakhmanov et al. define a diameter bounded, equal area partition of S2 consisting on two

spherical caps on the South and the North pole and rectilinear cells located on rings of parallels. The
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Fig. 1. A realization of a simple example with K = 4 and N = 1602. Different colors for points correspond to different
linear pieces defining r(x).

resemblance between our model and this model is remarkable, and even if the constructions are
different, the points obtained seem to be really close. Actually, both the authors in [18] and ourselves
try to approximate rj as in Eq. (6) by an integer number. The theoretical bounds we obtain here for
the logarithmic energy are slightly better than the numerical bounds obtained in [11] for the zonal
equal area nodes.

An interesting fact is that among all the algorithmically generated point sets, the generalized
spiral and zonal equal area points perform the best with respect to the logarithmic energy. [11,
Proposition 2.3.] claims that the sequence of zonal equal area configurations is equidistributed and
quasi-uniform. The same kind of result can probably be stated for the Diamond ensemble.

4. Concrete examples of the Diamond ensemble

Throughout this section we are going to explore three different examples of the Diamond
ensemble. Each of them is illustrated with two kinds of figures: a concrete example of points
following the model on S2 (Figs. 1–3) and a comparative between the rj that define the model and
the rj in Eq. (6) with K0 = 3/π , given in Fig. 4. In Figs. 1–3 we have used different colors for points
obtained from the different linear pieces defining r(x).
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Fig. 2. A realization of a more elaborated example with N = 1314. Different colors for points correspond to different
linear pieces defining r(x).

4.1. A simple example

We choose n = 1, rj = Kj with K a positive integer for 1 ≤ j ≤ M . Then, for l ∈ {1, . . . ,M} we
have

zl = 1 −
1 + Kl2

N − 1
.

The number of parallels is 2M − 1 and the number of points of the Diamond ensemble is

N = 2 +

p∑
j=1

rj = 2 − KM + 2
M∑
j=1

Kj = 2 + KM2.

One can then write down the functions in Corollary 3.2 getting

f (x) =Kx log(Kx),

g(x) =Kx
1 + Kx2

N − 1
log
(
1 + Kx2

N − 1

)
,

h(x) =Kx
(
2 −

1 + Kx2

N − 1

)
log
(
2 −

1 + Kx2

N − 1

)
.
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Fig. 3. A realization of a quasioptimal example with N = 958. Different colors for points correspond to different linear
pieces defining r(x).

Then, the formula in Theorem 3.6 reads

Eθ1,...,θp∈[0,2π ]p
[
Elog(⋄(N))

]
= −(N − 1) log(4) − 2

∫ M

0
f (x) dx

− (N − 1)
(∫ M

0
(g(x) + h(x)) dx +

g ′(M) − g(0)
12

+
h′(M) − h′(0)

12

)
+ o(M2).

All these integrals and derivatives can be computed, obtaining the following result.

Theorem 4.1. The expected value of the logarithmic energy of the Diamond ensemble in this section is

Eθ1,...,θp∈[0,2π ]p
[
Elog(⋄(N))

]
= Wlog(S2)N2

−
1
2
N logN

+N
(
log 2
6

K −
1
2

+ log 2 −
log K
2

)
+ o(N).

In particular, if K = 4 we have

Eθ1,...,θp∈[0,2π ]p
[
Elog(⋄(N))

]
= Wlog(S2) −

1
2
N logN + N

(
2 log 2

3
−

1
2

)
+ o(N).
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Fig. 4. Comparison of the number of points in each parallel for the different models for p = 55 parallels.

Note that 2 log 2
3 −

1
2 = −0.037901 . . . Using this simple example we are thus approximately

0.0177 far from the valued conjectured in [3,8].

4.1.1. Octahedral configurations of points
In [12] an area preserving map from the unit sphere to the regular octahedron is defined.

Considering some hierarchical triangular grids on the facets of the octahedron a grid can be mapped
into the sphere obtaining two different sets of points: those coming from the vertex of the grid ΩN

and the centers of the triangles ΛN .
The set ΩN consists on 4M2

+2 points in the sphere that very much resemble our simple example.
In the paper, the authors give some numerical simulations for the logarithmic energy of this set of
points that are confirmed by Theorem 4.1. Also in [11, Figure 2.2] new numerical simulations for
the same set are done obtaining a bound which is very similar to the one we prove here.

4.2. A more elaborated example

The following choice of rj produces much better results. Let p = 2M − 1 where M = 4m with m
a positive integer. Let n = 3 and let rj = r(j) where

r(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

6x 0 ≤ x ≤ 2m
6m + 3x 2m ≤ x ≤ 3m
12m + x 3m ≤ x ≤ 4m
20m − x 4m ≤ x ≤ 5m
30m − 3x 5m ≤ x ≤ 6m
48m − 6x 6m ≤ x ≤ 8m
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that satisfies r(x) = r(p + 1 − x) = r(8m − x). Let zj = z(j) where z(x) is defined by (10), that is,

z(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

82m2
−6x2

82m2+1
0 ≤ x ≤ 2m

94m2
−12mx−3x2

82m2+1
2m ≤ x ≤ 3m

112m2
−24mx−x2

82m2+1
3m ≤ x ≤ 4m

144m2
−40mx+x2

82m2+1
4m ≤ x ≤ 5m

194m2
−60mx+3x2

82m2+1
5m ≤ x ≤ 6m

302m2
−96mx+6x2

82m2+1
6m ≤ x ≤ 8m

We moreover have N = 82m2
+ 2. Again, all the integrals and derivatives in Theorem 3.6 can be

computed, although this time the computer algebra package Maxima has been used, getting the
following result.

Theorem 4.2. The expected value of the logarithmic energy of the Diamond ensemble in this section is

Eθ1,...,θp∈[0,2π ]p
[
Elog(⋄(N))

]
= Wlog(S2)N2

−
N
2

logN + cN + o(N),

where c = −0.048033 . . . satisfies

492c = −113 log 113 − 982 log 82 − 210 log 70 − 51 log 51

+1638 log 41 + 900 log 15 − 36 log 12 − 1536 log 8

+144 log 6 − 492 log 4 + 1968 log 2 − 246.

Using this more elaborated example we are thus approximately 0.0076 far from the value
conjectured in [3,8].

4.3. A quasioptimal Diamond example

We have made a number of tries with different choices of the parameters for the Diamond
ensemble. The best one (i.e. the one with minimal logarithmic energy) that we have found is the
following one: let M = 7m with m a positive integer, let p = 2M − 1 and let

r(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

6x 0 ≤ x ≤ 2m
2m + 5x 2m ≤ x ≤ 3m
5m + 4x 3m ≤ x ≤ 4m
9m + 3x 4m ≤ x ≤ 5m
14m + 2x 5m ≤ x ≤ 6m
20m + x 6m ≤ x ≤ 7m
34m − x 7m ≤ x ≤ 8m
42m − 2x 8m ≤ x ≤ 9m
51m − 3x 9m ≤ x ≤ 10m
61m − 4x 10m ≤ x ≤ 11m
72m − 5x 11m ≤ x ≤ 12m
84m − 6x 12m ≤ x ≤ 14m = p + 1
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that satisfies r(x) = r(p + 1 − x) = r(14m − x). Let zj = z(j) where z(x) is defined by (10), that is,

z(x) =
1

239m2 + 1
×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

239m2
− 6x2 0 ≤ x ≤ 2m

243m2
− 4mx − 5x2 2m ≤ x ≤ 3m

252m2
− 10mx − 4x2 3m ≤ x ≤ 4m

268m2
− 18mx − 3x2 4m ≤ x ≤ 5m

293m2
− 28mx − 2x2 5m ≤ x ≤ 6m

329m2
− 40mx − x2 6m ≤ x ≤ 7m

427m2
− 68mx + x2 7m ≤ x ≤ 8m

491m2
− 84mx + 2x2 8m ≤ x ≤ 9m

572m2
− 102mx + 3x2 9m ≤ x ≤ 10m

672m2
− 122mx + 4x2 10m ≤ x ≤ 11m

793m2
− 144mx + 5x2 11m ≤ x ≤ 12m

937m2
− 168mx + 6x2 12m ≤ x ≤ 14m = p + 1.

We moreover have N = 239m2
+ 2. Again, all the integrals and derivatives of Theorem 3.6 have

been computed using the computer algebra package Maxima, obtaining Theorem 1.1.

5. Proofs of the main results

5.1. Proof of Proposition 2.2

In order to prove Proposition 2.2, we will need the following equality from [10, Formula 4.224],
valid for a ≥ |b| > 0:∫ π

0
log(a + b cos(θ ))dθ = π log

(
a +

√
a2 − b2

2

)
. (12)

Note that

∥x − y∥ =

⏐⏐⏐⏐⏐⏐⏐⏐(√1 − z2i cos θi,

√
1 − z2i sin θi, zi

)
−

(√
1 − z2j cos θj,

√
1 − z2j sin θj, zj

)⏐⏐⏐⏐⏐⏐⏐⏐
=

√
2

√
1 − zizj −

√
1 − z2i

√
1 − z2j cos(θi − θj).

We compute then

Eθi,θj∈[0,2π]2 [− log (∥x − y∥)]

=
1

4π2

∫ 2π

0

∫ 2π

0
− log

(
√
2

√
1 − zizj −

√
1 − z2i

√
1 − z2j cos(θi − θj)

)
dθidθj

=
− log(2)

2
−

1
8π2

∫ 2π

0

∫ 2π

0
log
(
1 − zizj −

√
1 − z2i

√
1 − z2j cos(θi − θj)

)
dθidθj

=
− log(2)

2
−

1
4π

∫ 2π

0
log
(
1 − zizj −

√
1 − z2i

√
1 − z2j cos(θ )

)
dθ

=
− log(2)

2
−

1
2π

∫ π

0
log
(
1 − zizj −

√
1 − z2i

√
1 − z2j cos(θ )

)
dθ.
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From (12) with a = 1 − zizj, b = −

√
1 − z2i

√
1 − z2j and zi ̸= zj we have that

Eθi,θj∈[0,2π ]2 [− log (∥x − y∥)] =
− log(2)

2
−

1
2π

π log
(
1 − zizj + |zi − zj|

2

)
=

− log(2)
2

−
1
2

[
log
(
1 − zizj + |zi − zj|

)
− log(2)

]
= −

log
(
1 − zizj + |zi − zj|

)
2

. □

5.2. Proof of Proposition 2.4

In order to compute the logarithmic energy associated to Ω(p, {rj}, {zj}), we have to sum the
following quantities:

• A : the sum of 2 log ∥xij − N ∥
−1, 1 ≤ j ≤ p and 1 ≤ i ≤ rj and the same expression but

changing the North pole N to the South pole S , plus 2 log ∥N − S ∥
−1

= −2 log 2.
• B: the energy of the scaled roots of unity for every parallel 1 ≤ j ≤ p.
• C : the energy between the points of every pair of parallels, as in Corollary 2.3.

5.2.1. Computation of quantity A

Note that

∥(0, 0, 1) − xij∥ =
√
2
√
1 − zj,

∥(0, 0, −1) − xij∥ =
√
2
√
1 + zj.

Quantity A thus equals

A = − 2 log(2) −

p∑
j=1

rj
(
log(4) + log

(
1 − z2j

))
. (13)

5.2.2. Computation of quantity B

We will use the following result from [7, Pg. 3]: the logarithmic energy associated to N roots
of unity in the unit circumference is −N logN . As a trivial consequence, the logarithmic energy
associated to N points which are equidistributed in a circumference of radius R is −N logN−N(N−

1) log R.
Since the parallel at height zj is a circumference of radius

√
1 − z2j , quantity B equals

B = −

p∑
j=1

rj log rj +
rj(rj − 1)

2
log(1 − z2j ). (14)

5.2.3. Computation of quantity C

This has been done in Corollary 2.3:

C =

p∑
k,j=1;k̸=j

−rjrk
log
(
1 − zjzk + |zj − zk|

)
2

. (15)
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In order to compute the logarithmic energy associated to the set Ω(p, {rj}, {zj}) it only rests to
sum the quantities (13), (14) and (15).

Eθ1,...θp∈[0,2π ]p
[
Elog(Ω(p, {rj}, {zj}))

]
= −2 log(2) −

p∑
j=1

rj
(
log(4) + log

(
1 − z2j

))
−

p∑
j=1

(
rj log rj +

rj(rj − 1)
2

log(1 − z2j )
)

−

p∑
j=1

∑
k̸=j

rjrk
log
(
1 − zjzk + |zj − zk|

)
2

= − 2 log(2) −

p∑
j=1

[
rj log(4) + rj log(1 − z2j ) + rj log rj +

r2j
2

log(1 − z2j )

−
rj
2
log(1 − z2j ) +

∑
k̸=j

rjrk
log
(
1 − zjzk + |zj − zk|

)
2

⎤⎦ ,

and Proposition 2.4 follows. □

5.3. Proof of Proposition 2.5

We derivate the formula from Proposition 2.4 for zl obtaining:

∂Eθ1,...,θp∈[0,2π ]p
[
Elog(Ω(p, {rj}, {zj}))

]
∂zl

=
∂

∂zl

⎛⎝−

p∑
j=1

rj
2
log(1 − z2j ) −

p∑
j=1

p∑
k=1

rjrk
log
(
1 − zjzk + |zj − zk|

)
2

⎞⎠
=

zlrl
1 − z2l

+
zlr2l

1 − z2l
+

l−1∑
j=1

rjrl
1 + zj

(1 − zl)(1 + zj)
−

p∑
j=l+1

rjrl
1 − zj

(1 + zl)(1 − zj)

=
zlrl(1 + rl)
1 − z2l

+

l−1∑
j=1

rjrl
1 − zl

−

p∑
j=l+1

rjrl
1 + zl

=
rl

1 − z2l

⎛⎝(1 + rl)zl + (1 + zl)
l−1∑
j=1

rj − (1 − zl)
p∑

j=l+1

rj

⎞⎠
=

rl
1 − z2l

⎛⎝zl +
l−1∑
j=1

rj −
p∑

j=l+1

rj + zl
p∑

j=1

rj

⎞⎠ .

We have then

∂Eθ1,...,θp∈[0,2π ]p
[
Elog(Ω(p, {rj}, {zj}))

]
∂zl

= 0 ⇐⇒ zl

⎛⎝1 +

p∑
j=1

rj

⎞⎠ =

p∑
j=l+1

rj −
l−1∑
j=1

rj.

In other words,

zl =

p∑
j=l+1

rj −
l−1∑
j=1

rj

1 +

p∑
j=1

rj

. □
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5.4. Proof of Theorem 2.6

To prove Theorem 2.6 the following lemma will be useful.

Lemma 5.1. If rj = rp+1−j and zj are chosen as in Proposition 2.5 we then have

1
2

p∑
j=1

p∑
k=1

rjrk log
(
1 − zjzk + |zj − zk|

)
=(N − 1)

p∑
j=1

rj(1 − zj) log(1 − zj)

−

p∑
j=1

rj log(1 − zj).

Proof. Let

aj,k = rjrk log
(
1 − zjzk + |zj − zk|

)
, bj,k = rjrk log

(
1 + zjzk + |zj + zk|

)
and note that they satisfy:

aj,k = ak,j, aj,p+1−k = bj,k, ap+1−j,k = bj,k, ap+1−j,p+1−k = aj,k, aM,M = 0.

We thus have
p∑

j=1

p∑
k=1

aj,k =

p∑
j=1

aj,j +
p∑

j,k=1
j̸=k

aj,k = 2
M−1∑
j=1

r2j log(1 − z2j ) +

p∑
j,k=1
j̸=k

aj,k.

Moreover, recalling that p = 2M − 1,
p∑

j,k=1
j̸=k

aj,k =

M∑
j,k=1
j̸=k

aj,k +

M∑
j=1

2M−1∑
k=M+1

aj,k +

2M−1∑
j=M+1

M∑
k=1

aj,k +

2M−1∑
j,k=M+1

j̸=k

aj,k. (16)

The two sums in the middle of the right hand term in (16) can be rewritten as
M∑
j=1

M−1∑
k=1

bj,k +

M−1∑
j=1

M∑
k=1

bj,k = 2
M∑
j=1

M−1∑
k=1

bj,k,

and using that zj ≥ 0 for 1 ≤ j ≤ M this last equals

2
M∑
j=1

M−1∑
k=1

bj,k =2
M∑
j=1

M−1∑
k=1

rjrk log(1 + zj) + 2
M∑
j=1

M−1∑
k=1

rjrk log(1 + zk)

=2

(
M−1∑
k=1

rk

)
M∑
j=1

rj log(1 + zj) + 2

⎛⎝ M∑
j=1

rj

⎞⎠ M−1∑
k=1

rk log(1 + zk)

=2

⎛⎝rM + 2
M−1∑
j=1

rj

⎞⎠ M−1∑
k=1

rk log(1 + zk),

where in the last step we have used that zM = 0. From (16) we then have proved that the sum in
the lemma equals

M−1∑
j=1

r2j log(1 − z2j ) +

⎛⎝rM + 2
M−1∑
j=1

rj

⎞⎠ M−1∑
k=1

rk log(1 + zk) +
1
2

M∑
j,k=1
j̸=k

aj,k +
1
2

2M−1∑
j,k=M+1

j̸=k

aj,k =
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M−1∑
j=1

r2j log(1 − z2j ) +

⎛⎝rM + 2
M−1∑
j=1

rj

⎞⎠ M−1∑
k=1

rk log(1 + zk) +
1
2

M∑
j,k=1
j̸=k

aj,k +
1
2

M−1∑
j,k=1
j̸=k

aj,k,

where we have used ap+1−j,p+1−k = aj,k. The two sums in the expression above have many common
terms. We can rearrange them as follows:

1
2

M∑
j,k=1
j̸=k

aj,k +
1
2

M−1∑
j,k=1
j̸=k

aj,k =

M−1∑
j,k=1
j̸=k

aj,k +
1
2

M−1∑
k=1

aM,k +
1
2

M−1∑
j=1

aj,M

=2
M−1∑
j=1

j−1∑
k=1

aj,k +

M−1∑
k=1

aM,k

=2
M−1∑
j=1

j−1∑
k=1

aj,k +

M−1∑
k=1

rMrk log (1 + zk) ,

where again we are using aj,k = ak,j and zM = 0. All in one, we have proved that the sum in the
lemma equals

M−1∑
j=1

r2j log(1 − z2j ) +

⎛⎝rM + 2
M−1∑
j=1

rj

⎞⎠ M−1∑
k=1

rk log(1 + zk)

+2
M−1∑
j=1

j−1∑
k=1

aj,k +

M−1∑
k=1

rMrk log (1 + zk) .

With little algebra we rewrite this expression as:

2
M−1∑
j=1

j−1∑
k=1

rjrk log(1 − zj) + 2
M−1∑
j=1

j−1∑
k=1

rjrk log(1 + zk),

+

M−1∑
j=1

r2j log(1 − z2j ) + 2

⎛⎝ M∑
j=1

rj

⎞⎠ M−1∑
k=1

rk log(1 + zk).

Changing the summation order and the name of the variables, the second term can be rewritten as

2
M−2∑
j=1

rj log(1 + zj)
M−1∑
k=j+1

rk = 2
M−2∑
j=1

rj log(1 + zj)

(
M−1∑
k=1

rk − rj −
j−1∑
k=1

rk

)

= 2
M−1∑
j=1

rj log(1 + zj)

(
N − rM

2
− 1 − rj −

j−1∑
k=1

rk

)

We have then proved that the sum of the lemma equals:

2
M−1∑
j=1

rj log(1 − zj)

( j−1∑
k=1

rk

)
+ 2

M−1∑
j=1

rj log(1 + zj)

(
N − rM

2
− 1 − rj −

j−1∑
k=1

rk

)

+

M−1∑
j=1

r2j log(1 − z2j ) + (N − 2 + rM)

M−1∑
j=1

rj log(1 + zj).
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After simplification, we get the more compact but equivalent expression

M−1∑
j=1

rj

(
rj + 2

j−1∑
k=1

rk

)
log(1 − zj) −

M−1∑
j=1

rj

(
rj + 2

j−1∑
k=1

rk

)
log(1 + zj)

+ (2N − 4)
M−1∑
j=1

rj log(1 + zj).

Now we look at the first two terms recalling that

zj = 1 −
1 + rj + 2

∑j−1
k=1 rk

N − 1
H⇒ rj + 2

j−1∑
k=1

rk = (N − 1)(1 − zj) − 1,

and hence the sum in the lemma equals

(N − 1)
M−1∑
j=1

rj(1 − zj) log(1 − zj) −

M−1∑
j=1

rj log(1 − zj)

− (N − 1)
M−1∑
j=1

rj(1 − zj) log(1 + zj) +

M−1∑
j=1

rj log(1 + zj)

+ (2N − 4)
M−1∑
j=1

rj log(1 + zj),

that is

(N − 1)
M−1∑
j=1

rj(1 − zj) log(1 − zj) −

M−1∑
j=1

rj log(1 − zj)

+ (N − 1)
M−1∑
j=1

rj(1 + zj) log(1 + zj) −

M−1∑
j=1

rj log(1 + zj).

The symmetries rj = rp+1−j and zj = −zp+1−j imply that the last expression equals

(N − 1)
M−1∑
j=1

rj(1 − zj) log(1 − zj) −

M−1∑
j=1

rj log(1 − zj)

+ (N − 1)
p∑

j=M+1

rj(1 − zj) log(1 − zj) −

p∑
j=M+1

rj log(1 − zj).

We thus have proved (using zM = 0) that the sum of the lemma equals

(N − 1)
p∑

j=1

rj(1 − zj) log(1 − zj) −

p∑
j=1

rj log(1 − zj). □

We now finally prove Theorem 2.6. From Proposition 2.4 and Lemma 5.1 we have

Eθ1,...,θp∈[0,2π ]p
[
Elog(Ω(p, {rj}))

]
= −2 log(2) − (N − 2) log(4) −

1
2

p∑
j=1

rj log(1 − z2j )

−

p∑
j=1

rj log rj − (N − 1)
p∑

j=1

rj(1 − zj) log(1 − zj) +

p∑
j=1

rj log(1 − zj).
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Now, using rj = rp+1−j and zj = −zp+1−j we have

1
2

p∑
j=1

rj log(1 − z2j ) =
1
2

p∑
j=1

rj log(1 − zj) +
1
2

p∑
j=1

rj log(1 + zj)

=
1
2

p∑
j=1

rj log(1 − zj) +
1
2

p∑
j=1

rj log(1 − zj) =

p∑
j=1

rj log(1 − zj).

The theorem follows. □
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Appendix. The error in the composite trapezoidal rule

The following result is a well known fact in Fourier analysis.

Lemma A.1. Let f : [n, n + 1] → R be a C1 function with n ∈ Z. Let C > 0 be such that |f ′
| ≤ C.

Then, for all k ≥ 1,⏐⏐⏐⏐∫ n+1

n
cos(2πkx)f (x) dx

⏐⏐⏐⏐ ≤
C

2πk
.

Proof. Integrate by parts. □

Lemma A.2. Let f : [a, b] → R be a C2 function with a < b integers and assume that f is C3 in the
open interval with |f ′′′

| ≤ C. Then,⏐⏐⏐⏐T[a,b](f ) −

∫ b

a
f (x) dx −

f ′(b) − f ′(a)
12

⏐⏐⏐⏐ ≤ C(b − a)
ζ (3)
4π3 ,

where ζ (3) = 1.202056 . . . is Apéry’s constant

Proof. Let S be the quantity in the lemma. From the Euler–Maclaurin identity (see the version
in [13, Theorem 9.26]),

S ≤

∞∑
k=1

1
2π2k2

⏐⏐⏐⏐∫ b

a
cos(2πk(x − a))f ′′(x) dx

⏐⏐⏐⏐ ≤

∞∑
k=1

1
2π2k2

b−1∑
n=a

⏐⏐⏐⏐∫ n+1

n
cos(2πk(x − a))f ′′(x) dx

⏐⏐⏐⏐ .
From Lemma A.1, the integral inside is at most C

2πk . Then,

S ≤

∞∑
k=1

b − a
2π2k2

C
2πk

= C(b − a)
ζ (3)
4π3 ,

as claimed. □
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