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Analysis of Homogeneous Waveguides via the
Meshless Radial Basis Function Generated­Finite

Difference Method
José A. Pereda and Ana Grande

Abstract—The radial basis function generated­finite difference
(RBF­FD) method is applied to the analysis of homogenous
waveguides. To this end, the Helmholtz equation and the bound­
ary conditions are collocated on the waveguide cross section. At
each collocation node, derivatives are locally approximated by
RBF­FD formulas based on polyharmonic splines supplemented
with high­degree polynomials. As a result, a sparse matrix
eigenvalue problem is obtained which allows cutoff wavenumbers
and axial fields to be calculated. To illustrate the accuracy of the
method, we consider a semicircular and an eccentric circular
waveguides.

Index Terms—Meshless methods, radial basis function
generated­finite difference method, homogeneous waveguides,
cutoff wavenumbers

I. INTRODUCTION

The numerical solution of partial differential equations by
classical finite­difference (FD) methods is based on using a
mesh to approximate unknowns and their derivatives. Alter­
natively, in meshless methods the approximation is based on
scattered nodes without any mesh connectivity, which provides
more flexibility and simplicity in complex geometries [1].
During the last decades, meshless methods have been suc­

cessfully applied in many branches of science and engineering.
However they still remain relatively less developed within the
Computational Electromagnetics field [2]­[4].
Among the meshless methods, the radial basis function

generated­finite difference (RBF­FD) method can be viewed
as a generalization of the classical FD method from structured
meshes to scattered node sets. It has been recently shown that
the RBF­FD method allows high­order local FD formulas to be
obtained by using interpolants based on polyharmonic spline
(PHS) RBFs supplemented with high­degree polynomials [5],
[6].
In this letter, the RBF­FD method is applied to the analy­

sis of homogenous waveguides. To this end, the colloca­
tion approach is applied to the Helmholtz equation with
appropriate boundary conditions (BCs). At each collocation
node, derivatives are locally approximated by suitable RBF­FD
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Fig. 1. Two different 12­node RBF­FD stencils in a waveguide with cross
section ­ and boundary ­. One stencil belongs to a collocation node in the
domain ­ and the other one to a collocation node on the boundary ­.

expressions. As a result, a sparse matrix eigenvalue problem
is obtained which allows cutoff wavenumbers and axial fields
to be calculated. To illustrate the accuracy of the method, we
consider a semicircular and an eccentric circular waveguides.
Other meshless methods based on RBFs have recently been

applied to the analysis of homogeneous waveguides (see [7]
and references within). Comparing to them, the RBF­FD
method adopted here does not require optimal shape parameter
calculation. Additionally, polynomials up to a high degree are
appended, which largely control the rate of convergence of the
solution.

II. THEORY

Electromagnetic waves in a homogeneous waveguide with
cross section and perfect electric conductor boundary
are determined by solving the Helmholtz eigenvalue problem:

(1a)

(1b)

where is the Laplacian in the transverse ( ­ ) plane, is the
cutoff wavenumber and for TM and TE modes,
respectively. The boundary operator is related to the type
of mode. TM modes are subjected to Dirichlet BCs,
while TE modes to Neumann BCs,
With the goal of approximating (1) by a matrix eigenvalue

problem, (1a) is collocated at distinct node points in and
(1b) at distinct node points on with As
shown in Fig. 1, at each collocation node , (or ) is
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approximated by an FD formula with a stencil formed by the
closest node points, including the collocation node itself:

(2)

where are the values of at the stencil points,
are the weights and is the stencil size ( ). In (2),

and
The calculation of begins by considering an interpolant

of the form [5], [6]

(3)

where and are coefficients. The functions
are all the bivariate monomials up to de­
gree For instance, for there are
monomials: and The RBFs

are PHS centered at each node of the stencil
and denotes the Euclidean norm. The PHS radial

functions are defined as if is odd, and
if is even. For simplicity, only the odd case is

considered here.
To obtain and , the interpolant (3) is enforced to

be exact at the nodes of the stencil with the additional
constrains for the polynomials:

(4)

This results in the following block linear system

(5)

where is a symmetric RBF interpolation matrix
with elements is a

matrix with and, and are vectors
given by and
Applying the differential operator to the interpolant in (3)

and evaluating at we get

(6)

where

Solving (5) for , substituting the result into (6) and
comparing with (2), the following linear system is obtained

(7)

where contains the sought weights and the coefficients in
are discarded after solving.

Interior nodes
Boundary nodes

Fig. 2. Cross section of a semicircular waveguide of radius .

By solving the linear system (7) times, one for each
collocation node in , a sparse differentiation matrix is
constructed which permits (1a) to be replaced by

(8)

where and are
vectors containing the values of at the collocation nodes
in the domain and on the boundary respectively.
Repeating the same procedure for the nodes on the

Neumman BC is approximated by the homogeneous system

(9)

Incorporating (9) into (8) leads to the following ordinary
eigenvalue problem for TE modes

(10)

For the TM case, the Dirichlet BC can be directly imposed by
simply letting in (8).
The application of the RBF­FD method involves several

parameters which should be carefully selected [5], [6]. The
error of the method is strongly dictated by the highest degree
of the appended polynomials, . This is because the error
associated to (6) is ( ), where is the
internodal distance and is the order of the differential
operator . As mentioned above, for a given , the total
number of appended polynomials is . The stencil
size is then taken as Lastly, the PHS exponent is
commonly chosen as

III. NUMERICAL RESULTS

To illustrate the accuracy of the RBF­FD method, we
consider the calculation of the cutoff wavenumbers of the
first modes of an empty semicircular waveguide of radius
shown in Fig. 2. The exact solutions of this problem can be
found in [8, tables 1,2]. Fig. 3 depicts the relative error in the
cutoff wavenumber for the first six TM and six TE modes
versus the square root of the number of interior nodes,
The used RBF­FD parameters have been ( ),

and It can be seen that the TM modes
exhibit a fourth­order rate of convergence. In the TE case, the
convergence rate reaches fifth­order accuracy. Figs. 4a and 4b
show the relative error in the cutoff wavenumber as a function
of for the the TM mode. In Fig 4a this error is plotted
for several values of the PHS exponent, . It can be seen that
the rate of convergence does not change with In Fig. 4b



3

20 30 40 50 60 70 80 90 100
10-8

10-7

10-6

10-5

10-4

10-3

C
u

to
f f

 w
av

e
nu

m
b

e
r 

re
l. 

e
rr

or
 (

%
) (b)

TE11
TE21
TE01
TE31

TE41
TE12
slope -5

20 30 40 50 60 70 80 90 100
10-8

10-7

10-6

10-5

10-4

10-3
C

ut
o

f f
 w

a
ve

n
u

m
b

e r
 r

el
. 

e
rr

o
r 

(%
) (a)

TM11
TM21
TM31
TM12

TM41
TM22
slope -4

Fig. 3. Relative error in the cutoff wavenumber of TM (a) and TE (b) modes
of a semicircular waveguide versus the square root of the number of interior
nodes.
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Fig. 4. Relative error in the cutoff wavenumber of the TM11 mode of
a semicircular waveguide versus the square root of the number of interior
nodes. (a) = 5 = 45 (b) = 5 = 11

the error is plotted for several values of the stencil size .
Analogously to Fig. 4a, a vertical shifting in the error curves
is only observed by varying .
Secondly, we consider an eccentric circular waveguide with

outer and inner conductors of radius and , respectively The
offset between the centers of both conductors is , as shown in
Fig. 5a. The cross section of this waveguide is symmetric with
respect to the ­axis. Consequently, even and odd modes can
be calculated separately. For the sake of brevity, we will focus
on the even TM modes. To this end, the upper half waveguide
is solved with Dirichlet BCs on the conductors and Neumann
BCs on the ­axis, as illustrated in Fig. 5b.
Fig. 6 depicts the longitudinal field, , and the normalized

cutoff wavenumber, , for the first six even TM modes of an
eccentric circular waveguide with and
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Neumann nodes

Dirichlet nodes

Fig. 5. (a) Cross section of an eccentric circular waveguide. (b) Setup for
the calculation of the even TM modes.

Fig. 6. Longitudinal field and normalized cutoff wavenumber ( )
for the first six even TM modes of an eccentric circular waveguide with
dimensions = 0 5 and = 0 2

The RBF­FD parameters have been , ,
and . As shown in Table I, these results agree up to
the digits shown with those given in [9, table III]. Moreover,
the RBF­FD results outperform those calculated, also in [9],
by the Finite Element Method (FEM) with 3028 degrees of
freedom.

TABLE I. Normalized cutoff wavenumber
for the modes in Fig. 6.

This method Method in [9] FEM [9]

4.8106 4.8106 4.8106
6.1724 6.1724 6.1725
7.3945 7.3945 7.3947
8.4974 8.4974 8.4978
9.3409 9.3409 9.3419
9.4739 9.4739 9.4745

IV. CONCLUSION

A RBF­FD method based on PHSs with supplementary
polynomials has been applied to the analysis of homogeneous
waveguides. It has been shown that this technique is able
to provide high­order rates of convergence in problems with
arbitrary shape domains and smooth solutions. Moreover, the
RBF­FD method does not require the choice of an optimal
shape parameter and its local nature makes it suitable to
be applied to large­scale problems. The efficiency of the
RBF­FD method can be improved by using it in subdomains
with complex shapes while using classical FD stencils in the
remaining part of the waveguide cross section.
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