
J. Chem. Phys. 152, 204108 (2020); https://doi.org/10.1063/5.0005077 152, 204108

© 2020 Author(s).

Siesta: Recent developments and
applications 

Cite as: J. Chem. Phys. 152, 204108 (2020); https://doi.org/10.1063/5.0005077
Submitted: 18 February 2020 . Accepted: 20 April 2020 . Published Online: 27 May 2020

Alberto García , Nick Papior , Arsalan Akhtar , Emilio Artacho , Volker Blum , Emanuele

Bosoni , Pedro Brandimarte, Mads Brandbyge, J. I. Cerdá, Fabiano Corsetti, Ramón Cuadrado,

Vladimir Dikan, Jaime Ferrer, Julian Gale, Pablo García-Fernández, V. M. García-Suárez , Sandra

García, Georg Huhs, Sergio Illera, Richard Korytár, Peter Koval , Irina Lebedeva, Lin Lin , Pablo

López-Tarifa , Sara G. Mayo, Stephan Mohr , Pablo Ordejón, Andrei Postnikov , Yann Pouillon,

Miguel Pruneda, Roberto Robles, Daniel Sánchez-Portal, Jose M. Soler , Rafi Ullah , Victor Wen-
zhe Yu, and Javier Junquera

COLLECTIONS

Paper published as part of the special topic on Electronic Structure Software

Note: This article is part of the JCP Special Topic on Electronic Structure Software.

 This paper was selected as an Editor’s Pick

https://images.scitation.org/redirect.spark?MID=176720&plid=1085727&setID=378408&channelID=0&CID=358608&banID=519893960&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=994cc3a39dfad055e97600b55d242e72d9bc8924&location=
https://doi.org/10.1063/5.0005077
https://aip.scitation.org/topic/collections/editors-pick?SeriesKey=jcp
https://doi.org/10.1063/5.0005077
https://aip.scitation.org/author/Garc%C3%ADa%2C+Alberto
http://orcid.org/0000-0001-5138-9579
https://aip.scitation.org/author/Papior%2C+Nick
http://orcid.org/0000-0003-3038-1855
https://aip.scitation.org/author/Akhtar%2C+Arsalan
http://orcid.org/0000-0002-4982-5906
https://aip.scitation.org/author/Artacho%2C+Emilio
http://orcid.org/0000-0001-9357-1547
https://aip.scitation.org/author/Blum%2C+Volker
http://orcid.org/0000-0001-8660-7230
https://aip.scitation.org/author/Bosoni%2C+Emanuele
https://aip.scitation.org/author/Bosoni%2C+Emanuele
http://orcid.org/0000-0003-4585-5478
https://aip.scitation.org/author/Brandimarte%2C+Pedro
https://aip.scitation.org/author/Brandbyge%2C+Mads
https://aip.scitation.org/author/Cerd%C3%A1%2C+J+I
https://aip.scitation.org/author/Corsetti%2C+Fabiano
https://aip.scitation.org/author/Cuadrado%2C+Ram%C3%B3n
https://aip.scitation.org/author/Dikan%2C+Vladimir
https://aip.scitation.org/author/Ferrer%2C+Jaime
https://aip.scitation.org/author/Gale%2C+Julian
https://aip.scitation.org/author/Garc%C3%ADa-Fern%C3%A1ndez%2C+Pablo
https://aip.scitation.org/author/Garc%C3%ADa-Su%C3%A1rez%2C+V+M
http://orcid.org/0000-0002-7392-4648
https://aip.scitation.org/author/Garc%C3%ADa%2C+Sandra
https://aip.scitation.org/author/Garc%C3%ADa%2C+Sandra
https://aip.scitation.org/author/Huhs%2C+Georg
https://aip.scitation.org/author/Illera%2C+Sergio
https://aip.scitation.org/author/Koryt%C3%A1r%2C+Richard
https://aip.scitation.org/author/Koval%2C+Peter
http://orcid.org/0000-0002-5461-2278
https://aip.scitation.org/author/Lebedeva%2C+Irina
https://aip.scitation.org/author/Lin%2C+Lin
http://orcid.org/0000-0001-6860-9566
https://aip.scitation.org/author/L%C3%B3pez-Tarifa%2C+Pablo
https://aip.scitation.org/author/L%C3%B3pez-Tarifa%2C+Pablo
http://orcid.org/0000-0002-4136-1860
https://aip.scitation.org/author/Mayo%2C+Sara+G
https://aip.scitation.org/author/Mohr%2C+Stephan
http://orcid.org/0000-0003-2510-5805
https://aip.scitation.org/author/Ordej%C3%B3n%2C+Pablo
https://aip.scitation.org/author/Postnikov%2C+Andrei
http://orcid.org/0000-0001-9203-6235
https://aip.scitation.org/author/Pouillon%2C+Yann
https://aip.scitation.org/author/Pruneda%2C+Miguel
https://aip.scitation.org/author/Robles%2C+Roberto
https://aip.scitation.org/author/S%C3%A1nchez-Portal%2C+Daniel
https://aip.scitation.org/author/Soler%2C+Jose+M
http://orcid.org/0000-0003-1046-7221
https://aip.scitation.org/author/Ullah%2C+Rafi
http://orcid.org/0000-0002-8468-4678
https://aip.scitation.org/author/Yu%2C+Victor+Wen-zhe
https://aip.scitation.org/author/Yu%2C+Victor+Wen-zhe
https://aip.scitation.org/author/Junquera%2C+Javier
/topic/special-collections/ess2020?SeriesKey=jcp
https://aip.scitation.org/topic/collections/editors-pick?SeriesKey=jcp
https://doi.org/10.1063/5.0005077
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0005077
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0005077&domain=aip.scitation.org&date_stamp=2020-05-27


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

SIESTA: Recent developments and applications

Cite as: J. Chem. Phys. 152, 204108 (2020); doi: 10.1063/5.0005077
Submitted: 18 February 2020 • Accepted: 20 April 2020 •
Published Online: 27 May 2020

Alberto García,1,a) Nick Papior,2,b) Arsalan Akhtar,3,c) Emilio Artacho,4,5,6,7,d) Volker Blum,8,9,e)

Emanuele Bosoni,1,f) Pedro Brandimarte,5,g) Mads Brandbyge,10,h) J. I. Cerdá,11,i) Fabiano Corsetti,4,j)

Ramón Cuadrado,3,k) Vladimir Dikan,1,l) Jaime Ferrer,12,13,m) Julian Gale,14,n) Pablo García-Fernández,15,o)

V. M. García-Suárez,12,13,p) Sandra García,3,q) Georg Huhs,16,r) Sergio Illera,3,s) Richard Korytár,17,t)

Peter Koval,18,u) Irina Lebedeva,4,v) Lin Lin,19,20,w) Pablo López-Tarifa,21,x) Sara G. Mayo,22,y)

Stephan Mohr,16,z) Pablo Ordejón,3,aa) Andrei Postnikov,23,ab) Yann Pouillon,15,ac) Miguel Pruneda,3,ad)

Roberto Robles,21,ae) Daniel Sánchez-Portal,5,21,af) Jose M. Soler,22,24,ag) Rafi Ullah,4,25,ah) Victor Wen-zhe Yu,8,ai)

and Javier Junquera15,aj)

AFFILIATIONS
1 Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Bellaterra E-08193, Spain
2 DTU Computing Center, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
3 Catalan Institute of Nanoscience and Nanotechnology - ICN2, CSIC and BIST, Campus UAB, 08193 Bellaterra, Spain
4CIC Nanogune BRTA, Tolosa Hiribidea 76, 20018 San Sebastián, Spain
5 Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastian, Spain
6 Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain
7 Theory of Condensed Matter, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
8Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
9 Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
10DTU Physics, Center for Nanostructured Graphene (CNG), Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
11 Instituto de Ciencia de Materiales de Madrid ICMM-CSIC, Cantoblanco, 28049 Madrid, Spain
12Department of Physics, University of Oviedo, Oviedo 33007, Spain
13Nanomaterials and Nanotechnology Research Center, CSIC - Universidad de Oviedo, Oviedo 33007, Spain
14Curtin Institute for Computation, Institute for Geoscience Research (TIGeR), School of Molecular and Life Sciences,
Curtin University, P.O. Box U1987, Perth, WA 6845, Australia

15Departamento de Ciencias de la Tierra y Física de la Materia Condensada, Universidad de Cantabria,
Cantabria Campus Internacional, Avenida de los Castros s/n, 39005 Santander, Spain

16Barcelona Supercomputing Center, c/Jordi Girona, 29, 08034 Barcelona, Spain
17Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5,
121 16 Praha 2, Czech Republic

18Simune Atomistics S.L., Tolosa Hiribidea, 76, 20018 Donostia-San Sebastian, Spain
19Department of Mathematics, University of California, Berkeley, California 94720, USA
20Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
21Centro de Física de Materiales, Centro Mixto CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018
Donostia-San Sebastian, Spain

22Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
23LCP-A2MC, Université de Lorraine, 1 Bd Arago, F-57078 Metz, France
24Instituto de Física de la Materia Condensada (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
25Departamento de Física de Materiales, UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain

Note: This article is part of the JCP Special Topic on Electronic Structure Software.
a)Author to whom correspondence should be addressed: albertog@icmab.es
b)Electronic mail: nicpa@dtu.dk

J. Chem. Phys. 152, 204108 (2020); doi: 10.1063/5.0005077 152, 204108-1

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/5.0005077
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0005077
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0005077&domain=pdf&date_stamp=2020-May-27
https://doi.org/10.1063/5.0005077
https://orcid.org/0000-0001-5138-9579
https://orcid.org/0000-0003-3038-1855
https://orcid.org/0000-0002-4982-5906
https://orcid.org/0000-0001-9357-1547
https://orcid.org/0000-0001-8660-7230
https://orcid.org/0000-0003-4585-5478
https://orcid.org/0000-0002-7392-4648
https://orcid.org/0000-0002-5461-2278
https://orcid.org/0000-0001-6860-9566
https://orcid.org/0000-0002-4136-1860
https://orcid.org/0000-0003-2510-5805
https://orcid.org/0000-0001-9203-6235
https://orcid.org/0000-0003-1046-7221
https://orcid.org/0000-0002-8468-4678
mailto:albertog@icmab.es
mailto:nicpa@dtu.dk


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

c)Electronic mail: arsalan.akhtar@icn2.cat
d)Electronic mail: ea245@cam.ac.uk
e)Electronic mail: volker.blum@duke.edu
f)Electronic mail: ebosoni@icmab.es
g)Electronic mail: pedro_brandimarte001@ehu.eus
h)Electronic mail: mabr@dtu.dk
i)Electronic mail: jcerda@icmm.csic.es
j)Electronic mail: fabiano.corsetti@gmail.com
k)Electronic mail: ramon.cuadrado@gmail.com
l)Electronic mail: vdikan@icmab.es
m)Electronic mail: ferrer@uniovi.es
n)Electronic mail: J.Gale@curtin.edu.au
o)Electronic mail: garciapa@unican.es
p)Electronic mail: vm.garciasuarez@gmail.com
q)Electronic mail: sandragil@gmail.com
r)Electronic mail: ghuhs@physik.hu-berlin.de
s)Electronic mail: sergiollera22@gmail.com
t)Electronic mail: korytar@karlov.mff.cuni.cz
u)Electronic mail: koval.peter@gmail.com
v)Electronic mail: i.lebedeva@nanogune.eu
w)Electronic mail: linlin@math.berkeley.edu
x)Electronic mail: pablolopeztarifa@gmail.com
y)Electronic mail: sara.garciamayo@uam.es
z)Electronic mail: stephan.mohr@bsc.es
aa)Electronic mail: pablo.ordejon@icn2.cat
ab)Electronic mail: andrei.postnikov@univ-lorraine.fr
ac)Electronic mail: yann.pouillon@unican.es
ad)Electronic mail: miguel.pruneda@icn2.cat
ae)Electronic mail: roberto.robles@ehu.eus
af)Electronic mail: daniel.sanchez@ehu.eus
ag)Electronic mail: jose.soler@uam.es
ah)Electronic mail: ullah1@llnl.gov
ai)Electronic mail: wenzhe.yu@duke.edu
aj)Electronic mail: javier.junquera@unican.es

ABSTRACT
A review of the present status, recent enhancements, and applicability of the SIESTA program is presented. Since its debut in the mid-1990s,
SIESTA’s flexibility, efficiency, and free distribution have given advanced materials simulation capabilities to many groups worldwide. The core
methodological scheme of SIESTA combines finite-support pseudo-atomic orbitals as basis sets, norm-conserving pseudopotentials, and a real-
space grid for the representation of charge density and potentials and the computation of their associated matrix elements. Here, we describe
the more recent implementations on top of that core scheme, which include full spin–orbit interaction, non-repeated and multiple-contact
ballistic electron transport, density functional theory (DFT)+U and hybrid functionals, time-dependent DFT, novel reduced-scaling solvers,
density-functional perturbation theory, efficient van der Waals non-local density functionals, and enhanced molecular-dynamics options. In
addition, a substantial effort has been made in enhancing interoperability and interfacing with other codes and utilities, such as WANNIER90 and
the second-principles modeling it can be used for, an AiiDA plugin for workflow automatization, interface to Lua for steering SIESTA runs, and
various post-processing utilities. SIESTA has also been engaged in the Electronic Structure Library effort from its inception, which has allowed
the sharing of various low-level libraries, as well as data standards and support for them, particularly the PSeudopotential Markup Language
definition and library for transferable pseudopotentials, and the interface to the ELectronic Structure Infrastructure library of solvers. Code
sharing is made easier by the new open-source licensing model of the program. This review also presents examples of application of the
capabilities of the code, as well as a view of on-going and future developments.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0005077., s

I. INTRODUCTION

The possibility of treating large systems with first-principles
electronic structure methods has opened up new research avenues

in many disciplines. The SIESTA method and its implementation have
been key in this development, offering an efficient and flexible simu-
lation paradigm based on the use of strictly localized basis sets. This
approach enables the implementation of reduced scaling algorithms,
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and its accuracy and cost can be tuned in a wide range from quick
exploratory calculations to highly accurate simulations, matching
the quality of other approaches, such as plane-wave (PW) methods.

The SIESTA method has been described in detail in Ref. 1 with
an update in Ref. 2. In this paper, we shall describe its present sta-
tus, highlighting its strengths and documenting the steps that have
recently been taken to improve its capabilities, performance, ease of
use, and visibility in the electronic structure community.

As we shall see, the improvements touch many areas. We
can underline the implementation of new core electronic structure
features [density functional theory (DFT)+U, spin–orbit interac-
tion, and hybrid functionals], modes of operation [improved time-
dependent density functional theory (TD-DFT), density functional
perturbation theory (DFPT)], and analysis methods and procedures
to access new properties. A major effort has been spent in enhanc-
ing the interoperability of the code at various levels [sharing of
pseudopotentials (PPs), a new wannierization interface opening the
way to sophisticated post-processing, and an interface to multiscale
methods]. Very significant performance enhancements have been
made, notably to the TRANSIESTA module through improved algo-
rithms and to the core electronic structure problem through the
development of interfaces to new solvers. These advances have put
SIESTA in a prominent place in the high-performance electronic struc-
ture simulation scene, a role reinforced by its participation in impor-
tant international initiatives and by its new open-source licensing
model.

This manuscript is organized as follows: We provide an
overview of the underlying methodology and the capabilities of
SIESTA in Sec. II, which serves to place the code in the wider ecosystem
of electronic structure materials simulation. Section III presents the
recent developments in and around the code, which are covered in
Subsections III A–III O. To demonstrate SIESTA’s utility in the context
of electronic structure calculations, we briefly present some relevant
applications and survey a few areas in which SIESTA is being profitably
used in Sec. IV. Plans for the future evolution of SIESTA are outlined
in Sec. V.

II. KEY CONCEPTS OF SIESTA

A. Theory background and context
SIESTA appeared as a consequence of the push for linear-scaling

electronic structure methods of the mid-1990s, which has been
reviewed, for example, in Refs. 3 and 4. SIESTA was the first linear-
scaling self-consistent implementation of density functional theory
(DFT).5,6

The SIESTA method relies on atomic-like functions of finite
support as basis sets7,8—of arbitrary number, angular momentum,
radial shape, and centers—combined with a discretization of space
for the computation of the Kohn–Sham (KS) Hamiltonian terms
that involve more than two centers. The electron–ion interaction is
represented by norm-conserving pseudopotentials. These key ingre-
dients, through the optimized handling of sparse matrices, are used
to compute the self-consistent Hamiltonian and overlap matrices
with a computational expense that scales linearly with system size.
The method is completed with a choice of solvers for that Hamilto-
nian, from optimized (but cube-scaling) diagonalization methods to
reduced-scaling solvers of different flavors.

The orbitals in the SIESTA basis set are made of the product of
a real spherical harmonic and a radial function, which is numer-
ically tabulated in a grid. The shape of the radial part is, in prin-
ciple, totally arbitrary, but the experience accumulated has proven
that the numerical solution of the Schrodinger equation for a con-
fined isolated atom with the corresponding pseudopotential is a
very good choice in terms of accuracy vs computational cost. Fuller
descriptions of the mechanisms to generate and optimize these
pseudo-atomic orbitals (PAOs) are given in Refs. 8–10.

The auxiliary real-space grid is an essential ingredient of the
method as it allows the efficient representation of charge densities
and potentials as well as the computation of the matrix elements of
the Hamiltonian that cannot be handled as two-center integrals. This
grid can be seen as the reciprocal space of a set of plane waves, and its
fineness is most conveniently parameterized by an energy cutoff (the
“density” cutoff of plane-wave methods). There are limits to the soft-
ness of the functions that can be described with such a grid, so core
electrons are not considered (although semi-core electrons usually
are), and their effect is incorporated into pseudopotentials. The real-
space grid is also used to solve the Poisson equation involved in the
computation of the electrostatic potential from the charge density
through the use of a fast-Fourier-transform method. This means that
SIESTA uses periodic boundary conditions (PBC). Non-periodic sys-
tems, such as molecules, tubes, or slabs, are treated using appropriate
supercells.

SIESTA is now a mature code with more than 20 years of exis-
tence. In this period, the most important algorithms behind our
implementation have been already fully described and documented
in a series of papers. Readers interested in the details of how the
basic elements defining the method are combined, as well as other
relevant implementation details that make the method practical, can
find them in Ref. 1 and in the update with the new capabilities of the
code in Ref. 2.

We note that the term SIESTA is regularly used to describe both
the method (as outlined in Refs. 5 and 6) and its implementation in
a computer program. The SIESTA method is at the basis of later inde-
pendent implementations, such as OpenMX11 and QuantumATK.12

Other subsequent codes are built on the method by revising some
of the fundamental ingredients. This is the case of FHI-aims,13

which uses a more sophisticated real-space grid (atom-centered),
thus extending the core scheme to all-electron calculations.

In this paper, we describe new additions to the SIESTA code
based on independent methodological advances, either pre-existent
or specifically developed for SIESTA, as specified and cited in the
appropriate sections below.

B. Overview of SIESTA capabilities
As a general purpose implementation, SIESTA can provide the

standard functionality available in mainstream DFT codes (ener-
gies, forces, molecular-dynamics simulations, band structures, and
densities of states) and shares with those codes the basic current
limitations of DFT (notably the description of strongly correlated
systems).

What makes SIESTA different from most other codes is the
atomic-like and strictly localized character of its basis set, which is
at the root of its key strengths. The use of a “good first approxima-
tion” to the full problem implies, first, that a much smaller number of
basis functions are needed. Second, the finite-support of the orbitals
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leads to sparsity and the possibility to use reduced-scaling methods.
Thus, high performance emerges almost by default.

First, consider the basis cardinality: the number of basis orbitals
per atom in a typical SIESTA calculation is of the order of 10–20. This
is to be compared with a few hundred in the typical plane-wave
(PW) calculation. Furthermore, for systems whose description needs
a vacuum region (e.g., slabs for surface calculations and 2D mono-
layers), empty space is essentially “free” for SIESTA, whereas PW codes
still need a basis set determined by the total size of the simulation
cell. SIESTA is then quite capable of dealing with systems composed of
dozens to hundreds of atoms on modest hardware, even when using
cubic-scaling diagonalization solvers, which are the default as they
are universally applicable.

Electronic structure solvers with a more favorable size-scaling
can be applied to suitable systems. For example, one of SIESTA’s earlier
calculations, in 1996, was a linear-scaling run for a strand of DNA
with 650 atoms, performed on a desktop workstation of the era.6

Reduced size-scaling is also a feature of the PEXSI solver described
in Sec. III G 1 and of the NTPoly solver mentioned in Sec. III G 2. In
addition to time-to-solution efficiency, these solvers have a smaller
memory footprint than diagonalization, as the relevant matrices are
kept in a sparse form rather than converting them to a dense format.

Crucially, SIESTA’s baseline efficiency can be scaled up to ever-
larger systems by parallelization. Both distributed [message-passing
(MPI)] and shared-memory (OpenMP) parallelization options are
implemented in the code. As will be shown by some examples
in Sec. IV, non-trivial calculations with thousands of atoms are
used in applications in different contexts from molecular biology to
electronic transport.

Work on the performance aspects of the code is continuous,
mostly on the solvers, which usually consume most of the computer
time due to the very high efficiency of the Hamiltonian setup mod-
ule in SIESTA. This task is facilitated (see Sec. III O) by leveraging
external libraries and developments generated by a number of inter-
national initiatives in which SIESTA participates. The code can still run

efficiently in modest hardware while also being able to exploit
massive levels of parallelism in large supercomputers (see Fig. 1).

It is also worth noting that the atomic character of the basis
set enables the use of a very intuitive suite of analysis tools since
most of the concepts relating to chemical bonding use the language
of atomic orbitals. Hence, SIESTA has a natural advantage in this
area. Partial densities of states and atomic and crystal populations
(COOP/COHP) are routinely used to gain insights into the stability
and other properties of materials. For a recent example, see Ref. 14.
Similarly, an atomic basis provides a very natural and adequate lan-
guage for the first-principles simulation of electronic ballistic trans-
port in nanosized systems via the Green’s function-based Keldysh
formalism implemented in TRANSIESTA,15 a part of the SIESTA package.

A very high number of citations of the SIESTA papers testify
to the successful application of the code to widely different sys-
tems. With regard to specific capabilities and the levels of accuracy
achievable, we can distinguish several levels. First, SIESTA implements
DFT, one of the most versatile materials simulation frameworks.
DFT has its shortcomings, notably in regard to the description
of strongly correlated systems, but these are being addressed (see
Secs. III C and III E). Second, SIESTA uses pseudopotentials to rep-
resent the electron–ion interaction. The pseudopotential approach
is firmly rooted in a sound physical approximation (that bond-
ing effects depend mostly on the valence electrons); however, it
is at a disadvantage when core-electron effects are important (but
see Sec. III N 6). Third, SIESTA employs periodic boundary con-
ditions (PBC) for the solution of the Poisson problem, sharing
with plane-wave codes the need to resort to repeated supercells
for the study of low-dimensional systems and to special techniques
for the treatment of charged systems. However, it is important to
note that, unlike plane-wave codes, SIESTA is only bound to PBC
because of the present treatment of the Hartree term of the single-
particle Hamiltonian. This limitation is addressed by the incorpora-
tion of alternative Poisson solvers, as described in Sec. III O, which
allow for open boundary conditions, as for isolated nano-systems,

FIG. 1. Parallel strong scaling of
SIESTA-PEXSI and the (Scala-
pack) diagonalization approach for
a DNA chain and a graphene–boron
nitride stack, prototypes of large
(hundreds of thousands of orbitals)
quasi-one-dimensional (1D) and quasi-
two-dimensional (2D) systems. “ppp”
stands for the number of MPI processes
used in each pole computation, and “sp”
the sparsity of the Hamiltonian (for more
details, see Sec. III G 1).
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and hybrid open/periodic boundary conditions in different dimen-
sions, as for isolated wires and slabs. It should be remembered
that the three approximations mentioned in this paragraph are very
widely used in the community, shared by some of the most popular
electronic structure codes.

Fourth, with regard to SIESTA-specific approximations, partic-
ularly the basis set, it should be stressed that SIESTA is limited to
basis sets composed of functions that are the product of a radial
part and spherical harmonics, but it does not constrain on how
many, where such functions are centered, and the size of their
finite-support region. Calculations can flexibly range from quick
exploration to very high-quality simulations (one may recall that
accuracy gold standards in the electronic structure are provided by
quantum-chemistry methods based on LCAO).

The use of an atomic-orbital basis set implies however the limi-
tation of non-uniformity of convergence. As opposed to plane-wave
methods in which a single energy cutoff parameter monotonically
determines the quality of the calculation, there is no univocal proce-
dure for the choice of an appropriate basis set. This is a well-known
problem shared by the whole quantum-chemistry community, and
there is widely used and tested know-how. As shown in Fig. 2, it is
possible to attain, in practice, accuracy comparable to that of well-
converged plane-wave calculations. The reader is also referred to
Secs. IV B and IV C 1 for the demonstrated examples of the accuracy
of the code, among many others in the literature.

To close this section, we stress that it has been a traditional and
deliberate attitude by the SIESTA team that, although proposing sen-
sible starting points to users as defaults, the choice of fundamental
approximations and inputs to the program (not only basis sets but
also density functionals and pseudopotentials) is a responsibility of
the users, who retain full control and the flexibility to adapt the code
to their specific needs. Nevertheless, tools for basis optimization are
provided with the program, new curated databases of pseudopoten-
tials are coming online, and new ways to ameliorate the correlation
problem are being implemented. Some of these developments are
described in subsequent sections.

FIG. 2. Basis set convergence for the binding energy (Eb) of a water dimer. Details
can be found in Ref. 16. The horizontal dotted line represents the converged plane-
wave (PW) calculation (1300 eV cutoff) for the same system (dimer geometry and
box), pseudopotentials and density functional, using the ABINIT code.17 Inset:
deviation of Eb vs the PW reference. The deviation for the last point is of 10 μeV.

III. RECENT DEVELOPMENTS IN SIESTA

A. New distribution model and development
infrastructure

A few years ago, in 2016, a decision was made to change the
licensing model for SIESTA: traditionally, it had always been free of
charge to academics, but non-academic use required a special license
and redistribution was not permitted. Now, SIESTA is formally an
open-source program distributed according to the terms of the GNU
General Public License (GPL).18 At the same time, the development
infrastructure was made more transparent and scalable using the
Launchpad platform19 earlier and the Gitlab service now.20 The net
effect of the changes has been a more fertile and dynamic devel-
opment, with more contributors who can have direct access to the
various branches of development and a better experience for users
who can download codes and raise issues in an integrated platform.

These changes have been substantial for the core developers,
and the transitory period is still being felt. The main code base
is gradually gaining new developments that were planned long in
advance, and new ones made possible by the greater openness
and fluidity of the development model. Most of the new features
described below are already part of public releases, but a few are
undergoing the last stages of testing before release. The work-flow
is also moving from long-lived releases, hard to maintain with bug-
fixes, to more frequent releases that will be maintained for a shorter
time.

B. New pseudopotential format for interoperability
PSML (for PSeudopotential Markup Language)21,22 is a file for-

mat for norm-conserving pseudopotential data, which is designed
to encapsulate as much as possible the abstract concepts involved
in the domain and to provide appropriate metadata and provenance
information. This extra level of formalization aims at removing the
interoperability problems associated with bespoke pseudopotential
formats, which usually were designed to serve the needs of specific
generators and client codes and thus contain implicit assumptions
about the meaning of the data or lack information not considered
relevant.

PSML files can be produced by the ONCVPSP
23 and ATOM

24 pseu-
dopotential generator programs and are a download-format option
in the Pseudo-Dojo database of curated pseudopotentials.25,26

The software library libPSML21,22 can be used by electronic
structure codes to transparently extract the information in a PSML
file and incorporate it into their own data structures or to cre-
ate converters for other formats. It is currently used by SIESTA and
ABINIT,17,27 making possible a full pseudopotential interoperability
and facilitating comparisons of calculation results.

The use of this new format opens the door to benefit from
the availability of a Periodic Table of reliable and accurate norm-
conserving pseudopotentials, easing in most cases the task of pseu-
dopotential quality control.

C. DFT+U for correlated systems
The LDA+U method, initially developed by Anisimov and

co-workers28 with the objective to improve the treatment of the
electron–electron interaction for localized electrons within the bare
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LDA description, has been implemented in SIESTA. The idea behind
the LDA+U consists in describing the “strongly correlated” elec-
tronic states of a system (typically, localized d or f orbitals) using
the Hubbard model, whereas the rest of valence electrons are treated
at the level of “standard” approximate DFT functionals.29 In the
current version of SIESTA, the implementation is based on the sim-
plified rotationally invariant functional proposed by Dudarev and
co-workers.30 Here, the corrections are made invariant under rota-
tion of the atomic orbitals used to define the occupation number of
the correlated subspace, at the cost of retaining only the lowest order
Slater integrals in the factorization of the integrals of the Coulomb
kernel of the electron–electron interaction and neglecting the higher
order ones (i.e., taking the exchange interaction J as 0). The expres-
sion of the corrective term as a function of the occupation number
nIσ
ℓm of the localized correlated orbital ℓm with spin σ within the atom

I is given by

EU =∑
Iσℓ

UIℓ

2
[∑

m
nIσ
ℓm(1 − nIσ

ℓm)], (1)

where only one interaction parameter UIℓ is needed to specify the
interaction per atom and ℓ-shell. In the practical SIESTA implementa-
tion, the populations on the correlated orbitals are computed using
non-overlapping (i.e., orthogonal) localized projectors. They can
be generated using either (i) the same algorithm used to produce
the first-ζ orbitals of the basis set, but with a larger energy shift,
or (ii) cutting the exact solution of the pseudoatom with a Fermi
function.

The results of the LDA+U method are sensitively dependent on
the numerical value of the effective on-site electronic interaction, the
Hubbard U. Although, in principle, the value of U can be computed
from first principles using linear response methods,31 a common
practice is to tune it semiempirically, seeking agreement of certain
properties (for instance, bandgaps or magnetic moments) with the
available experimental measurements. Then, the fitted U is used in
subsequent calculations to predict other properties.

The LDA+U corrects localized states for which the self-
interaction correction is expected to be stronger and is an effective
method to improve the description of the (underestimated) bandgap
of insulators, as shown in Fig. 3 for the case of NiO. Once the Hub-
bard correction is switched on, the optical bandgap increases up to

3.08 eV [from the bare Generalized-Gradient-Approximation–
Perdew–Burke–Ernzerhof (GGA-PBE) value of 1.08 eV], very close
to the experimental value for the onset of optical absorption in NiO32

(3.10 eV). The magnetic moment on the Ni atom is also prop-
erly described with a value of 1.67 μB, which lies well within the
experimental range of values (between 1.64 μB

33 and 1.9 μB
34), and

improves on the result of 1.39 μB obtained with a bare GGA–PBE
functional.

D. van der Waals functionals
An efficient calculation of van der Waals (vdW) functionals35,36

was developed and first implemented in SIESTA using a polynomial
expansion in the local variables (q1, q2) of the nonlocal interaction
kernel Φ(q1, q2, r12) and a Fourier expansion in the relative position
r12.37 As a result, the scaling of the vdW computation decreases from
O(N2) to O(N log N), and it becomes marginal within the overall
cost. This scheme was later extended16 to a more complex kernel38

of the form Φ(n1, |∇n1|, n2, |∇n2|, r12), and it has been applied to
a large variety of systems, such as carbon nanotubes,37 hydrogen
adsorption,39,40 or liquid water.41

E. Hybrid functionals
The screened hybrid functional HSE0642–44 has been imple-

mented in SIESTA building on the work of Ref. 45. This functional
is the result of adding nonlocal Hartree–Fock type exact exchange
(HFX) into semilocal density functionals. The Coulomb potential
that appears in the exchange interaction is screened, so it has a
shorter range than 1/r. Here, to reduce the big prefactor involved
in the computation of the HFX potential matrix elements, we fit the
NAO of the basis set with Gaussian-type orbitals, especially suited
to computing the four center electron repulsion integrals (ERIs) in a
straightforward and efficient analytical way. An example of this fit-
ting for the 2s and 2p atomic orbitals basis set of oxygen is shown
in Fig. 4. The LIBINT package46 is required to calculate primitive
ERIs, where recursive schemes of the Obara–Saika47 method and
the Head-Gordon and Pople’s variation48 thereof are implemented.
ERIs are calculated in the first self-consistent-field (SCF) cycle and
then stored on disk. Only the ERIs with non-negligible contributions
are calculated, keeping the HFX Hamiltonian also sparse.

FIG. 3. Band structure of NiO in the
undistorted rock-salt type structure with
rhombohedral symmetry introduced
by a type-II antiferromagnetic order.
The experimental lattice spacing is
used. The bands obtained within
the GGA–Perdew–Burke–Ernzerhof
functional [panel (a)] and with a Hubbard
U correction of 4.6 eV applied on the
d-orbitals of Ni [panel (b)], as in Ref. 31,
are shown. The zero of the energy is set
at the top of the valence band.
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FIG. 4. Gaussian fits of the radial part of oxygen 2s (a) and 2p (b) orbitals using six Gaussian functions. The orbitals to fit are represented by blue dots and the corresponding
Gaussian expansions by green continuous lines. Dashed vertical lines represent the standard deviations of individual Gaussians, and a red continuous line marks their upper
limit. The orbitals are set to zero in the yellow area, marking their cutoff radii.

This HSE06 functional has been used to compute the band
structure of bulk Si [diamond structure, Fig. 5(a)] and BaTiO3 [cubic
structure, Fig. 5(b)] with a double-zeta polarized basis set at the
equilibrium lattice constant of the Perdew–Burke–Ernzerhof func-
tional49 within the generalized gradient approximation (5.499 Å for
Si and 4.033 Å for BaTiO3). In both cases, the gap is opened with
respect to the value obtained with the semilocal functional. In bulk
Si, the bandgap is indirect: the top of the valence band is located
at Γ and the bottom of the conduction band at a point along the
Γ → X high-symmetry line. It increases from 0.64 eV within GGA
to 1.00 eV with the hybrid functional, in good agreement with
the experimental value of 1.17 eV.50 For the case of the perovskite
oxide BaTiO3, the bandgap is also indirect, from R to Γ, and its
value increases from 1.87 eV with the GGA to 3.28 eV with the
HSE06 functional, almost agreeing the experimental value of 3.2 eV
estimated by Wemple in the cubic phase.51

F. Spin–orbit coupling
The capability to include the spin–orbit (SO) interaction in

SIESTA and in the analysis tools is seen as a strategic asset for the
project in view of the recent interest in topological insulators and
quasi-two-dimensional systems with important spin–orbit effects,
such as some of the transition metal dichalcogenides. It also brings
the possibility to obtain the magnetic crystalline anisotropy (MCA)
(change in the total energy of the system upon changing the spin
quantization axis).

In a standard collinear-spin DFT calculation, the total KS
Hamiltonian is represented by two independent spin-blocks, Ĥσσ

μν
[σ = ↑, ↓]. However, when the SO coupling is included, off-diagonal
spin blocks arise (i.e., there are non-zero couplings between the two
spin components). Therefore, similar to the non-collinear spin case,
the Hamiltonian becomes a full 2 × 2 matrix in spin space,

FIG. 5. Band structure of (a) bulk Si
in the diamond structure and (b) bulk
BaTiO3 in the cubic structure obtained
with the Perdew–Burke–Ernzerhof func-
tional (red lines) and with the HSE06
hybrid functional (black lines). The zero
of energies has been set to the valence
band maximum.
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ĤKS
μν =
⎛

⎝

Ĥ↑↑μν Ĥ↑↓μν

Ĥ↓↑μν Ĥ↓↓μν

⎞

⎠
, (2)

where μν subindexes refer to the SIESTA basis orbitals. The fully rel-
ativistic (FR) Hamiltonian ĤKS is expressed as a sum of the kinetic
energy T̂, the scalar-relativistic pseudopotential part in the form of
Kleinman–Bylander projectors V̂KB, the spin–orbit V̂SO term, and
the Hartree V̂H and exchange–correlation V̂XC potentials,

ĤKS
= T̂ + V̂KB + V̂SO + V̂H + V̂XC. (3)

The first three terms of the right-hand side do not depend on
the charge density, ρ(r), and therefore do not change in the self-
consistent cycle, while V̂SO and V̂XC are the only spin-dependent
terms that couple both spin components.

In order to compute the MCAs, different orientations of the
spin quantization axis need to be considered. This may be done by
rotating either V̂SO (as done by Cuadrado and Cerdá52) or the den-
sity matrix, which is the approach currently followed by SIESTA for
compatibility with the non-collinear case.

In the current implementation, the SO term is included non-
perturbatively so that the fully relativistic Hamiltonian is solved
self-consistently after extending the Kohn–Sham wavefunctions to
full spinors. The following two different approaches have been
implemented in SIESTA to account for the SO term, V̂SO:

● on-site approximation:
Based on the work of Fernández-Seivane et al.,53,54 only
the intra-atomic SO contributions within each l-shell of
each atom are considered. In this approach, the SO terms
are obtained from analytically simple expressions for the
angular integrals, while the radial integrals are computed
numerically.

● off-site approach:
Here, V̂SO is built following the Hemstreet formalism52,55

whereby a fully relativistic pseudopotential (FR-PP) opera-
tor is constructed in a fully separable form, i.e., non-local in
the radial part as well as in the angular variables, in order to
substantially reduce the computational cost. The necessary
lj Kleinman–Bylander projectors may be either constructed
by SIESTA itself from relativistic semilocal PPs or directly read
from appropriately generated PSML files, as provided by the
Pseudo-Dojo project.25,26 Moreover, we note that the FR-
PP formalism (as well as the original one implemented in
Ref. 52) uses the correct normalization constants Cl±1/2, in
contrast with what was erroneously stated in Ref. 56.

Although we consider the off-site approach more accurate, as
it includes inter-shell and inter-atomic SO couplings, both approxi-
mations yield very similar results in most of the tested systems with
relevant qualitative differences only found in a few specific cases.
Furthermore, the construction of the VSO

μν matrix is very fast under
both schemes and involves a tiny fraction of the entire self-consistent
calculation.

G. New electronic structure solvers
For most problems, SIESTA spends the largest fraction of CPU-

time in the solver stage (solution of the generalized eigenvalue

problem HΦ = εSΦ). The stage devoted to the calculation of the
Hamiltonian H and overlap S is typically much lighter weight, as
those matrices are intrinsically sparse due to the use of a finite-
support basis set. Accordingly, SIESTA’s performance is almost com-
pletely linked to the use of appropriate external solver libraries.

Over the past few years, we have expanded the choices avail-
able to users and refined the relevant interfaces. Initially, we added
support for new individual solvers as detailed below, but recently
we have consolidated some of the most important functionality
under a new common interface to the ELSI (ELectronic Structure
Infrastructure) library of solvers.57,58

1. Solvers with a native interface
Diagonalization (solution of the generalized eigenproblem

appropriate for non-orthogonal orbitals) is the default method for
obtaining the density-matrix in SIESTA. A number of standard rou-
tines are contained in the SCALAPACK library,59 but more effi-
cient alternatives are possible. In particular, the ELPA library60–62

uses an extra intermediate step in the tridiagonal conversion of the
matrices to obtain better scalability and significant speedups over
SCALAPACK. An interface to ELPA is offered in SIESTA, so this solver
can be used as a drop-in replacement for SCALAPACK throughout
the code.

In addition, SIESTA has implemented interfaces to several meth-
ods not based on diagonalization. In most cases, the use of a finite-
support basis set, leading to the appearance of sparse matrices, is a
significant factor to achieve good performance:

● The Fermi Operator Expansion (FOE) method63 uses the
formal relationship between Hamiltonian and density-
matrix, ρ̂ = fFD(Ĥ − μ), where fFD is the Fermi–Dirac func-
tion. A simple polynomial expansion of fFD can then be used
to obtain ρ̂ without diagonalization. This method is imple-
mented in the CheSS library,64 developed within the BigDFT
project.65

● The PEXSI method66,67 uses a pole expansion of fFD to get ρ̂
in the following form:

ρ̂ = Im(
P

∑
l=1

ωρl
H − (zl + μ)S

), (4)

where ωρl and zl are the weights and poles for the corre-
sponding expansion of the Fermi–Dirac function, respec-
tively. The number of poles needed is significantly smaller
than for the polynomial version of the FOE, as its depen-
dence on the spectrum size is only logarithmic.

It would appear that having to invert matrices would
still render this approach cubic-scaling, but, in fact, only
selected elements of ρ̂ have to be actually computed. This
“pole expansion and selected inversion” method offers a
reduced complexity (at most O(N2

) for dense systems and
O(N) for quasi-one-dimensional systems) and trivial par-
allelization over poles, so it is well-suited for very large
problems on large machines. For example,68 computed the
electronic structure of large (up to 11 700 atoms) graphene
nanoflakes using SIESTA-PEXSI.

● The electronic structure problem can also be cast as a
minimization problem (of an extended functional) without
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orthogonalization. When additional localization constraints
are put in place, the original linear-scaling method in SIESTA

results. Without the extra localization constraints, the cubic-
scaling Orbital Minimization Method (OMM)69 can be com-
petitive with respect to diagonalization, as data can be reused
across SCF-cycle steps.

2. The ELSI interface

We have considerably extended the range of solver choices
and the performance enhancement possibilities of the code with
the integration of the open-source ELSI library (https://elsi-
interchange.org), which provides a unified software interface that
connects electronic structure codes to various high-performance
solver libraries to solve or circumvent eigenproblems encountered
in electronic structure theory.57 ELSI also ships with its own tested
versions of the individual solver libraries, but additionally, linking
against already compiled upstream versions from each solver library
is supported as much as possible.

The ELPA, OMM, and PEXSI solvers, which had their own
ad hoc interfaces as described in Sec. III G 1, are now available
through ELSI, which also supports other conventional dense eigen-
solvers (EigenExa70 and MAGMA71), sparse iterative eigensolvers
(SLEPc72), and linear scaling density matrix purification methods
(NTPoly73). As sketched in Fig. 6, an electronic structure code inter-
facing to ELSI automatically has access to all the eigensolvers and
density matrix solvers supported in ELSI. In addition, the ELSI
interface is able to convert arbitrarily distributed dense and sparse
matrices to the specification expected by the solvers, taking this
burden away from the electronic structure code. A comprehensive
review of the capabilities in the latest version of ELSI, including
parallel solution of problems found in spin-polarized systems (two
spin channels) and periodic systems (multiple k-points), scalable
matrix I/O, density matrix extrapolation, iterative eigensolvers in
a reverse communication interface (RCI) framework, has recently
been completed.58

With the common interface in place, any additions and
enhancements to the supported solvers can be used in SIESTA with
almost no code changes. This is particularly relevant for perfor-
mance enhancements, for example,

● Further levels of parallelization: A feature common, in
principle, to all solvers is that the SIESTA–ELSI interface
can exploit the full parallelization over k-points and spins
mentioned above. This means that these calculations can
use two extra levels of parallelization in the solver step
beyond the standard one of parallelization over orbitals (see
Fig. 7).

● The new version of the PEXSI solver integrated in ELSI can
achieve the same level of precision with fewer poles and
offers an extra level of parallelization over trial points for the
determination of the chemical-potential.

● Mixed-precision support: The ELPA solver can be invoked
in single-precision mode, which can speed up the ini-
tial steps of the electronic self-consistent-field (SCF)
cycle.

● Accelerator offloading: The ELPA library offers Graphical-
Processing-Unit (GPU) support in some kernels,62 and there

FIG. 6. Interaction of the ELSI interface with electronic structure codes. ELSI
serves as a bridge between electronic structure codes and solver libraries.
An electronic structure code has access to various eigensolvers and density
matrix solvers via the ELSI API. Whenever necessary, ELSI handles the con-
version between different units, conventions, matrix formats, and programming
languages.

FIG. 7. Performance improvement from the use of the extra level of parallelization
over k-points in SIESTA using the ELSI interface with the ELPA solver, compared to
the previous diagonalization scheme (using both the standard SCALAPACK solver
and the existing ELPA interface in SIESTA). The system is bulk Si with H impurities,
with 1040 atoms, 13 328 orbitals, and a sampling of 8 k-points. The multi-k scheme
is able to stay closer to ideal scalability for larger numbers of MPI processes.
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is scope for extending it to more kernels. ELSI also offers
an interface to the accelerator-enabled MAGMA library.
Finally, the PEXSI developers are working on adding GPU
support to the solver.

H. Time dependent DFT
Time-dependent density-functional theory (TD-DFT) was first

implemented in SIESTA in its real-time propagating form. It was first
described in Ref. 74 and then briefly in Ref. 2. It was based on
the Crank–Nicolson algorithm by which the effect of the evolution
operator for an infinitesimal time step

Û(t0 + Δt, t0) = exp[−iĤ(t)Δt] (5)

on the wavefunction coefficients matrix at a given time t0, c(t0) is
approximated by

c(t0 + Δt) = [S + iH(t0 + Δt)
Δt
2
]
−1
[S − iH(t0)

Δt
2
]c(t0), (6)

where Δt represents the finite time step resulting from time dis-
cretization, and S and H represent the overlap and Hamilto-
nian matrices, respectively, in the representation given by a non-
orthogonal basis set, as used by SIESTA. That expression is obtained
from equating the first-order evolution of the coefficients forward,
from t0 to t0 + Δt/2, to the backward evolution from t0 + Δt to the
same intermediate step.

It can be further simplified to

c(t0 + Δt) = [S + iH(t0)
Δt
2
]
−1
[S − iH(t0)

Δt
2
]c(t0) (7)

for a smooth-enough variation of the Hamiltonian itself and a small
enough Δt, thereby avoiding the self-consistency implied in prop-
agation using Eq. (6). In Sec. III H 3, recent developments on effi-
cient treatments of Eq. (6) beyond Eq. (7) are presented. Here,
we describe the parallelization and related features in the TD-DFT
implementation now found in standard SIESTA releases.

The implemented propagation is based on Eq. (7) (with the
improvement possibilities described in Sec. III H 3), but proper con-
sideration must be taken of the fact that not only the coefficients
change in time but also the basis set and the Hilbert space spanned by
it when the atoms move. An analysis of the geometrical implications
of this fact is presented in Ref. 75. The time-dependent Kohn–Sham
equation

H∣ψ⟩ = i∂t ∣ψ⟩ (8)

becomes

Hc = i S (∂t + D)c, (9)

where H, S, and c are the Hamiltonian, overlap, and coefficients
matrices, respectively, as before, and the D matrix is the con-
nection in the manifold given by the evolving Hilbert space,75

Dμν = ⟨ϕμ|∂tϕν⟩, for ϕμ and ϕν basis functions.

A way of taking such evolution into account in the discretized
implementation was proposed by Tomfohr and Sankey76 and is
based on a Löwdin orthonormalization. The scheme consists of two
steps. First, the wavefunctions are propagated using both S and H at
time t0 using Eq. (7), but to an auxiliary coefficient matrix c̃,

c̃(t0 + Δt) = [S + iH(t0)
Δt
2
]
−1
[S − iH(t0)

Δt
2
]c(t0). (10)

Then, the propagation is followed by a change of basis operation
(only needed if the ionic positions have changed),

c(t0 + Δt) = S−
1
2 (t0 + Δt) S

1
2 (t0)c̃(t0 + Δt). (11)

This algorithm is unitary by construction, and so the preser-
vation of orthonormality is guaranteed, regardless of the size of Δt.
As discussed in detail in Ref. 75, this algorithm can be shown not
to be entirely consistent with the connection represented by the
D matrix defined above. Nevertheless, the discrepancies due to the
mentioned inconsistency have been shown to be small in a series
of studies using this formalism,77–80 at least for low atomic veloc-
ities. The practical benefit of separating the two procedures is to
perform the change of basis only when necessary, allowing for many
electronic steps per atomic motion step, if the nuclei are still signif-
icantly slower than electrons, for instance. The implementation of
the Crank–Nicolson part is the same for both the fixed and moving
basis.

The square root and inverse square root are calculated by first
computing its eigenvalues and eigenvectors,

S = U E U†, (12)

where E is a diagonal matrix with the eigenvalues of S. U is a square
matrix with the eigenvectors of S as its columns. Then,

S1/2
= U E1/2U† and S−1/2

= U E−1/2U†,

where E1/2 and E−1/2 are obtained by replacing diagonal elements
of E with their square root and inverse square root (in the latter
case, neglecting those eigenvalues below a certain threshold value),
respectively.

The two-stage algorithm has been implemented in SIESTA in par-
allel, allowing for k-point sampling and for collinear spin. The initial
occupied states to be propagated are read from a file. SIESTA is pre-
pared to run a conventional DFT calculation of whatever relevant
initial state and write a wavefunction continuation file that acts as
initialization of the ulterior SIESTA run in real-time TD-DFT mode.
As it stands, SIESTA evolves states defined as fully occupied; partial
occupations are not currently supported.

1. Parallelization
The two-step procedure described above requires matrix–

matrix and matrix–scalar multiplication, matrix addition, and
matrix inversion, plus the diagonalization of the overlap matrix for
the Löwdin step. Since only the occupied states are propagated, the
c matrix is rectangular N × N, that is, the number of propagating
states × the number of basis functions, while S and H are square,
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N × N. The computation of the overlap and Hamiltonian matri-
ces is handled by pre-existing SIESTA routines, which are already
parallelized and well-optimized for High-Performance-Computing
(HPC) environments.69,81

The parallelization of the propagation following Eqs. (10) and
(11) is done simply by exploiting the MatrixSwitch library,82 which
allows for an abstracted manipulation of matrices, the details of
parallelization, data formats, conversions, etc., being taken care
of underneath. In this case, MatrixSwitch is called to use the
BLACS83 and SCALAPACK84 libraries, meaning that this part of
the code is run on the dense-matrix infrastructure, as already
done with conventional diagonalization solvers. As for the lat-
ter, although the H and S matrices are sparse, the c matrix is
dense.

Conversion between storage formats is an important consider-
ation here. The native matrix storage format employed by SIESTA is
a compressed sparse column (CSC) scheme with a one-dimensional
block-cyclic distribution (1D-BCD) over MPI processes. A block-
cyclic distribution is needed by the BLACS and SCALAPACK pack-
age. The matrices can therefore be temporarily converted from
sparse to dense using the same parallel distribution; this is a very
efficient operation, since no MPI communication is necessary. It
should be noted that a two-dimensional (2D) BCD is known to be
more efficient in terms of parallel scaling.69 The conversion from 1D
to 2D does however carry a heavier cost, as MPI communication is
inevitable.

The parallel efficiency of our implementation is therefore
chiefly determined by that of the underlying SCALAPACK drivers.
The matrix inversion in Eq. (10) is performed using LU factor-
ization. For the diagonalization of the overlap matrix, we have
implemented the option of using either a standard diagonalization
approach (tridiagonal reduction followed by the implicit QR algo-
rithm) or a divide-and-conquer algorithm, as described in Ref. 85.
The latter is known to scale better with system size.

The scaling with the number of processors is very similar to the
scaling of a conventional DFT SIESTA run using diagonalization as
the solver option, since both procedures are run on routines of anal-
ogous scaling within the same dense-matrix-algebra library. Figure 8
shows the relative share in the total running time of the three main
procedures involved: the Crank–Nicolson algorithm, the change of
basis, and the calculation of the SCF Hamiltonian plus other minor
processes in SIESTA such as building the density matrix. This was per-
formed for a system of 5000 Ge + 1 He atoms described with a
single-zeta polarized basis set. The Crank–Nicolson algorithm takes
about 18% of the total time on 30 processors, which increases to
25% on 316 processors. Instead, the change of basis procedure takes
about 38% of the total time on 30 processors, which decreases as the
parallelization increases, reflecting its better scaling properties. The
Löwdin step is the most expensive operation on all numbers of pro-
cessors, which affects TD-DFT simulations (and only those steps)
involving atomic motion.

2. TD-DFT beyond the released version
There are many possible (and feasible) improvements on what

has been described above, some of them in the pipeline. From a fun-
damental point of view, the Löwdin step will be replaced by another
basis-changing step in the direction of what was proposed in Ref. 75.
It is needed if atoms move at velocities of around 1 atomic unit or

FIG. 8. The relative share of the total running time for the Crank–Nicolson algo-
rithm, the Löwdin step, and the rest of the program operations (including the
building of the SCF Hamiltonian) for a system of 5000 Ge atoms and one He
projectile using 30–316 processors.

more (1 a.u. ∼ c/137, with c being the speed of light). In that case,
the diagonalization step may be avoided (or replaced by the N × N
diagonalization of the overlap matrix for the evolving states, instead
of the N ×N for the basis set overlap).

For fast moving atoms within Ehrenfest dynamics, there is also
the need to implement correction terms to the forces related to both
the change of basis and the rotation of the time-dependent Hilbert
space (the intrinsic curvature of the manifold). These terms are well
known,86 and their geometrical meaning in terms of the relevant
curvature75 will be the subject of a future publication. They are being
tested and should be incorporated shortly to a visible branch in
the open source repository, to be later merged into the trunk, and
further incorporated into SIESTA releases.

For efficiency, iterative inversion options will be explored
replacing the present LU implementation in SCALAPACK, and quite
a few possibilities exist to incorporate more sophisticated algorithms
to the described operations. What has been described is robust and
quite transparent, but the MatrixSwitch abstraction should allow
easy implementation of other techniques.

3. Improved real-time propagators

Equation (7) represents a fast approach of electronic prop-
agation in real-time TD-DFT, especially suited to study systems
where the perturbation of the electronic density is relatively small
(e.g., optical linear response74). If one is interested in simulat-
ing systems with heavily perturbed electronic densities by exter-
nal forces (such as those exerted by intense laser fields or fast
atom collisions for instance), one should choose a more elabo-
rate propagation scheme that preserves better the time-reversibility
of the propagator operator. Some of the authors introduced in
Ref. 79 an extrapolation algorithm to study the stopping power of
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prototype semiconductors. Briefly, the method uses Eq. (7) with an
extrapolated Hamiltonian,

c(t0 + Δt) = [S + iHext
Δt
2
]
−1
[S − iHext

Δt
2
]c(t0), (13)

where the extrapolated Hamiltonian Hext reads

Hext = H(t0) +
1
2
ΔH (14)

and

ΔH = H(t0) −H(t0 − Δt). (15)

Additionally, the user is given the option to divide each propagation
step Δt into n sub-steps in an effort to increase the accuracy of the
first-order expansion underlying the derivation of Eq. (13). In this
case, the final equation reads

c(t0 + Δt) =
n

∏
j=1
[S + iHj

ext
Δt
2n
]
−1
[S − iHj

ext
Δt
2n
]c(t0), (16)

with

Hj
ext = H(t0) +

1
n
( j −

1
2
)ΔH. (17)

Recently, we introduced a third algorithm for propagation.
Leaving aside in this description the complications associated with
the possible subdivision of each time step, the new algorithm is
based on a two-step scheme where the electronic wavefunction is
first propagated until half of the step, Δt/2, using extrapolation as in
Eq. (13),

c(t0 +
Δt
2
) = [S + iHext

Δt
4
]
−1
[S − iHext

Δt
4
]c(t0), (18)

then an explicit calculation of the half-step Hamiltonian, H(t0
+ Δt/2), is performed using the coefficients c(t0 + Δt/2) obtained
from Eq. (18). In a second step, the coefficients are evolved from
the beginning of the step, c(t0), to the full step, c(t0 + Δt), using the
half-step Hamiltonian,

c(t0 + Δt) = [S + iH(t0 +
Δt
2
)
Δt
2
]
−1
[S − iH(t0 +

Δt
2
)
Δt
2
]c(t0).

(19)

This approach, although increasing the CPU time by around ∼35%,
as compared to the two previous schemes, allows for better energy
conservation for highly perturbed systems where the Kohn–Sham
potential heavily varies in time.

In order to provide a more quantitative comparison between
the three schemes, namely, the default propagation of Eq. (7), the
extrapolation propagation of Eq. (13), and the two-step propaga-
tion of Eqs. (18) and (19), we compare their performance vs the
P-TDDFT implementation87 of the CPMD code88 in the case of a
double ionization of a uracil molecule in the gas phase.89,90 Simula-
tions of this type provide access to the ultrafast electronic dynamics
that occurs at the atto and femto timescales in the ionized genetic
material (DNA and RNA) as a consequence of collisions with proton

or carbon beams.91 This particular simulation addresses the frag-
mentation pattern of a doubly ionized uracil molecule (its deep-
est Kohn–Sham orbital is empty) using the Becke- Lee-Yang-Parr
(BLYP) density functional.92,93 The technical details for the simula-
tion with the CPMD code used as a reference can be found in Refs. 89
and 90. SIESTA calculations using the same density functional and the
integrators described above use a double-zeta-polarized (DZP) basis
set. As shown in Fig. 9, the standard SIESTA implementation cannot
properly deal with such a highly excited system. The extrapolation
scheme in Eq. (13) already provides a large improvement and gives
an energy conservation similar to the CPMD simulations in Refs. 89
and 90. Finally, the two-step algorithm further improves the energy
conservation. For smaller time steps, the improvements given by the
two-step scheme are even more clear, as shown in Fig. 10.

4. Electronic stopping of atomic projectiles
Let us finish the TD-DFT section with a brief mention of its

successful application to the problem of simulating the excitation
of the electrons of a condensed matter system when traversed by a
high-energy atomic projectile (so-called electronic stopping, since
the electrons slow down the projectile). This physical problem is very
relevant to questions of interest to the nuclear and aerospace indus-
tries, as well as to the treatment of cancer. Despite its great relevance
and having been researched since Rutherford’s experiment in 1911,
the understanding of electronic stopping processes has been essen-
tially limited to either weak effects in the linear-response regime or
beyond linear but only for target systems close to the homogeneous
electron liquid (jellium).

An earlier version of the TD-DFT implementation in SIESTA
74

allowed the first explicit first-principles simulation of electronic
stopping for protons and antiprotons in LiF, a wide-bandgap insula-
tor, which was quite successful.94 The difference of sign between pro-
tons and antiprotons produces a significant difference in the stop-
ping power (rate of energy excitation) beyond the linear-response
paradigm (the Barkas effect), and the insulating character of the

FIG. 9. Energy drift in an energy conserving TDDFT simulation of ionized-core
uracil for the three propagation methods described here, as compared with the
CPMD implementation, for a time step of Δt = 0.24 as (0.01 a.u.).
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FIG. 10. Energy drift comparison as in
Fig. 9 for time steps Δt = 0.24 and 1.2
as.

target makes it inaccessible to the jellium paradigm. The success
stimulated further studies along this line77–80 using improved ver-
sions of TD-DFT in SIESTA, as described here. Figure 11 displays
the electron deformation density around a proton displacing in a
bulk Ge target.79 They were also followed by analogous simulations
using plane-wave codes by an increase in the number of groups (for
a review, see Ref. 95), although the latter calculations do demand
considerably larger computational resources.

I. Density functional perturbation theory
The original implementation of density functional perturba-

tion theory, as a post-processing and independent code (LINRES
96),

has been recently merged into SIESTA. It allows us to compute the
phonon dispersions using a supercell approach (Γ-point phonons).
Both LDA and GGA functionals can be used (through LibXC). Cal-
culation of the perturbed Hamiltonian and overlap matrix elements
follows the same methodology as for ground-state calculations with

FIG. 11. Electron deformation density isosurfaces (blue positive and red negative)
for a proton displacing leftwards at a velocity of 1 a.u. in the bulk of a Ge crystal.

similar computational costs, which are comparable to those obtained
with a finite difference approach. Figure 12 shows a comparison
between both methods for model fullerene-type systems of different
sizes.

FIG. 12. (Left panel) Comparison of the performance of the new DFPT approach
with the conventional finite-differences method in SIESTA. The time required to com-
pute a whole row of the dynamical matrix (derivative of the forces on all atoms
when one atom is displaced in x, y, z directions) is plotted as a function of the num-
ber of orbitals in carbon fullerenes of different sizes. (Right panel) Performance of
the alternative algorithm described in the text [based on Eq. (22), blue circles], as
compared to the original implementation based on Eq. (20) (black diamonds). The
initialization (computing Ξ and Ω) is the most time-consuming step, although it
has to be performed only once, and can be used for all perturbations (each atomic
displacement). The new algorithm becomes more efficient for system sizes larger
than the threshold value (green dashed line).
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The solution of the Sternheimer equation and calculation of the
perturbed density matrix are the most demanding step. It requires
the perturbed coefficients of the electronic wavefunctions to be
obtained,

∂ciμ =∑
j
∑
αβ

c∗jα[
∂Hαβ − εi∂Sαβ

εi − εj
]ciβcjμ =∑

j
Aijcjμ, (20)

where Aij = ∑αβ
c∗jαΔ

i
αβciβ

εi−εj
and Δi

αβ = [∂Hαβ − εi∂Sαβ]. The change in
the density matrix is then given by

∂ρμν =
all

∑
i
[ni∂c∗iμciν + nic∗iμ∂ciν + ∂nic∗iμciν]

=
all

∑
i

ni

all

∑
j
[A∗ij c

∗
jμciν + c∗iμAijcjν] +

all

∑
i
∂nic∗iμciν

=
all

∑
i

ni

unocc

∑
j
[A∗ij c

∗
jμciν + c∗iμAijcjν]

−
occ

∑
ij

njc∗iμcjν∑
αβ

c∗jα∂Sαβciβ +
all

∑
i
∂nic∗iμciν, (21)

and a similar expression applies to the change in the energy-density
matrix.

The change in the occupation of the electronic state can be
computed from the change in its eigenenergy εi = ∑αβ ciαΔi

αβciβ, and
it is relevant in metals for states close to the Fermi level. The Fermi
level can also be shifted by the perturbation, and it can be deter-
mined through the conservation of the number of electrons in the
system, Ne.

Obtaining ∂ρμν is the most computationally expensive part of
the code. While the computation of ∂Hμν basically has linear scaling
with the system size, the matrix Aij scales as N2

b ⋅ M, where Nb is
the number of basis functions and M is the maximum number of
neighbor orbitals for any orbital in the system. Equation (20) then
requires N3

b operations for each atomic perturbation, and the change
in the density matrix requires N2

b ⋅M loops. An alternative approach
that offers a better computational scaling for systems with a gap has

also been tested. If we define Ξi
αβ = ∑j

c∗jαcjβ

εi−εj
, we obtain

∂ciμ =∑
β
[∑

α
Ξi
αμΔ

i
αβ]ciβ =∑

β
Λi
μβciβ, (22)

where Λi
μν = ∑η Ξ

i
ημΔi

ην is a smooth function of εi and can be
described by Chebyshev’s expansion with a few selected energy
points and their corresponding weights,

∂ciμ =∑
l
ω̃l,i∑

β
Λ(l)μβ ciβ =∑

l
ω̃l,i∑

αβ
Ξ(l)αμ Δ

(l)
αβ ciβ.

Note that Ξ(l)αβ is perturbation-independent and could be com-
puted only once and used for all the possible atomic displacements
with a cost that scales as N2

b ⋅ Nl, with N l being the number of
Chebyshev’ polynomials. The change in the electronic density is then
given by

+∂ρμν ∼∑
i

c∗iμ∂ciν =∑
lη
Λ(l)νη ∑

i
c∗iμω̃l,iciη

=∑
lη
Λ(l)νη Ω(l)ημ =∑

lηγ
Ξ(l)γν Δ

(l)
γη Ω(l)ημ ,

where only the central term requires self-consistency and Ω(i)αβ
= ∑j c∗jαω̃i,jcjβ. Although computing the change in the density scales
as O(N2

b M), most of the computational cost is required in an initial-
ization step to obtain Ξ and Ω that are perturbation-independent,
enabling the extraction of the whole dynamical matrix with O(N3

b)

operations. A preliminary serial calculation for Cn fullerenes shows
that the threshold system size for the new algorithm to become more
efficient than the original implementation lies at around 650 atoms.
This value can be conveniently reduced by an efficient parallelization
of the initialization step.

J. TRANSIESTA

The transport code TRANSIESTA, initially developed by Brand-
byge and co-workers,15 enables open-boundary condition calcula-
tions by extending periodic regions with bulk electrodes. It is based
on the non-equilibrium Green function formalism, which allows
biased calculations. TRANSIESTA has been completely re-written and
now uses advanced inversion algorithms, enables Ne ≥ 1 electrodes,
allows thermo-electric calculations, performing real-space calcula-
tions (without k-points), and adds phonon transport calculations
using the Hessian,97,98

The non-equilibrium Green function formalism can be sum-
marized in the following equations, which are generalized for Ne ≥ 1
electrodes:

ρ = ρeeq +∑
e′≠e

Δe
e′ ≡ ρ

e
neq, (23)

ρeeq ≡
i

2π∬BZ
dkdε[Gk(ε) −G†

k(ε)]nF,e(ε)e−ik⋅R, (24)

Δe
e′ ≡

1
2π∬BZ

dkdεAe′ ,k(ε)e−ik⋅R
[nF,e′(ε) − nF,e(ε)], (25)

where ρeeq is the equilibrium density matrix for electrode e, G is the
retarded Green’s function matrix, and Δe

e′ is the correction to the
equilibrium part. The spectral function Ae = GΓeG† and carries elec-
trons from the electrode e. Finally, nF,e is the Fermi function with the
chemical potential corresponding to electrode e. It is evident that the
Fermi functions depend on the chemical potential and the electronic
temperature in the associated electrodes. By using different temper-
atures for each electrode, one can calculate thermoelectric effects
due to different reservoirs having separate electronic temperatures
self-consistently.

We note that TRANSIESTA uses a multiple complex energy-
contour algorithm to more accurately describe the total density
ρ. It does this by weighing each ρeneq using a simple scheme97

(Sec. III B). So far, few multi-electrode calculations have been per-
formed, so the importance of the multiple contour algorithm is
currently unknown.99–101 However, for the well-known 2-electrode
problem, it allows smoother convergence properties.15
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In the latest TRANSIESTA, we implement three different inversion
algorithms: (i) a block-tri-diagonal (BTD) algorithm, (ii) a MUMPS
sparse algorithm, and (iii) a dense algorithm (LAPACK). The per-
formance of these (speedup compared to TRANSIESTA 3.1) is sum-
marized in Fig. 13. Since the BTD algorithm is linear scaling for
constant width, it can easily outperform the dense algorithm by a
factor of 100. This performance gain is also important for the mem-
ory footprint, enabling even larger systems. The BTD algorithm
favors long and narrow systems but uses less memory for all types of
systems.

A recent addition to the TRANSIESTA package is the use of real
space self-energy terms.98,102 These self-energies are semi-infinite in
more than one direction and can thus be used as surrounding elec-
trodes for, e.g., single defects in 2D or 3D structures or line defects.
Real space self-energies are superior to BZ integrated quantities since
they correctly describe the infinite bulk by leaving out image cou-
plings and also removing the need for k-point sampling. When
taking into account the complete procedure for a TRANSIESTA calcu-
lation, the real space self-energies provide an increased throughput
since the SCF k-point sampling and the subsequent k-point sampled
transport calculation are completely removed.98

Additionally, TBTRANS enables the calculations of user defined
tight-binding models and also interfaces to phonon transport using
the Hessian matrix (program named PHTRANS). The phonon Green
function is similar to the electron one,

Gq(ω) = [(ω2 + iη2
)I −Dq − Σq(ω)]

−1
, (26)

where D is the Hessian and ω is the phonon frequency. Finally,
inelastic transport involving phonon-excitation can be treated with
perturbation theory in a post-processing step with the INELASTICA

package.103,104

K. Wannierization
The interface between SIESTA and WANNIER90

105,106 (version 3.0.0)
has been implemented, so the latter code can be called directly
from SIESTA as a library or used as a post-processing tool. WAN-

NIER90 is an open-source code for generating maximally localized

Wannier functions (MLWFs)107,108 and using them to compute the
advanced electronic properties of materials with high efficiency and
accuracy.

The Wannier functions can be considered as a unitary transfor-
mation (more precisely, a Fourier transformation) of a set of Bloch
functions associated with a given manifold of bands. We can view
the Bloch and Wannier functions as providing two different basis
sets describing the same manifold of states associated with the elec-
tron band manifold in question. The Wannier functions display a
number of very interesting properties.109 Among them, we can enu-
merate the following: (i) they are localized in real space, each of
them concentrated around a given unit cell (see Fig. 14); (ii) Wan-
nier functions centered on different cells are translational images of
one another; (iii) they form an orthonormal basis set; and (iv) they
span the same subspace of the Hilbert space as is spanned by the
Bloch functions from which they are constructed. Because of the
gauge freedom in the definition of the phases of the Bloch func-
tions, the Wannier functions are not unique. However, the location
of their centers in the home unit cell is unique to within a lattice
vector, i.e., they are gauge invariant.109 The high degree of arbi-
trariness in the definition of the phases can be exploited to produce
unitary transformation matrices between Bloch and Wannier func-
tions in such a way that a localization functional that measures the
sum of the quadratic spreads of the Wannier functions in the home
unit cell around their centers is minimized.107 In a practical pro-
cedure to construct Wannier functions, a set of localized functions
is used to generate an initial guess for the unitary transformations.
These localized functions should be roughly located on sites where
Wannier functions are expected to be centered and have appro-
priate angular character. In our implementation, we can directly
use the localized atomic orbitals of the basis or the hydrogenoid
localized functions (including hybrid orbitals), as suggested
in WANNIER90.

The Wannier functions provide an exact tight-binding rep-
resentation of the dispersion of the Bloch bands. This property
will be exploited to extract in an automatic and user blind way
the parameters required to run multiscale simulations, as described
in Sec. III L.

FIG. 13. Performance characterization of TRANSIESTA using
a pristine graphene cell (24 atoms wide). Speedup for (a)
EGF and (b) NEGF calculations of pristine graphene com-
pared against the dense implementation. The BTD method
exhibits more than 40 times the speed of the LAPACK
implementation for the largest size. MUMPS gains speed
after 5000 orbitals.
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Currently, WANNIER90 can be used as a post-processing tool or
it can be directly called from SIESTA in a library mode. Within
this latter approach, the unitary matrices that transform the Bloch
states into Wannier functions are directly accessible in SIESTA, allow-
ing a clear and straightforward interconnection between the two
alternatives to span the Hilbert space. Besides, the use of Wan-
nier functions opens the door to a wide range of potential appli-
cations. Already implemented in SIESTA is the possibility of per-
forming SCF convergence under the constraint of a rigid shift on
the energy associated with a given Wannier function to be used
to calculate electron–electron interactions for multiscale simula-
tions, as detailed in Sec. III L. The interface with the self-consistent
dynamical mean field theory DMFTWDFT code110 using MLWF has
been already implemented.111 In addition, alternative approaches
to compute the exact Hartree–Fock exchange in extended insulat-
ing systems with a linear scaling computational cost using MLWFs
have been proposed, being another interesting research line for the
future.112

L. Multiscale methods
Density functional theory can be used as the basis for parame-

terized multiscale methods that can be used to carry out simulations
including tens or even hundreds of thousands of atoms.113 First-
principles methods are used to produce detailed models that are
subsequently used to predict properties that require large-scale sim-
ulations. The models are created for specific materials, and their
accuracy can be systematically improved to converge toward DFT
precision. Given the dependence on first-principles, we refer to these
methods as second-principles DFT (SPDFT) and run them on an
independent code called SCALE-UP.113

SPDFT is based on a division of the total electronic density,
n(r⃗), into reference [n0(r⃗)] and deformation [δn(r⃗)] contributions,

n(r⃗) = n0(r⃗) + δn(r⃗), (27)

where δn(r⃗) is considered as a small perturbation with respect
to n0(r⃗) that, in non-magnetic cases, represents the ground state
of the system.113 This division is then used113 to expand the
DFT energy with δn finding that the zeroth order term, E(0),
corresponds to the full DFT energy for the reference density.
The corrections to this reference energy only depend on δn
(and parametrically on n0) which, given its smallness, can be
efficiently calculated leading to a fast and accurate approxima-
tion of the full DFT energy. The expansion is usually taken to
second-order,

E ≈ E(0) + E(1) + E(2) +⋯, (28)

resulting in a stationary problem that is equivalent to Hartree–Fock
with the important distinction that the interactions are screened by
the exchange–correlation potential. In order to keep δn small, the
application of the method is restricted to problems where atomic
bonds are not created or destroyed, i.e., to processes that display an
invariant bond topology.

The E(0) term represents the exact DFT energy for the refer-
ence density. We represent it for a variety of geometries with an

accurate force-field114 that allows for fast evaluation. The E(1) and
E(2) terms account for the changes in the electronic structure that
are represented by geometry-dependent Wannier functions. Under
this basis, E(1) becomes a tight-binding model, while E(2) represents
electron–electron interactions.

The interconnection between the first (SIESTA) and second
(SCALE-UP) principles simulations is carried out through a python
script, MODELMAKER. Taking a few cutoff distances, MODELMAKER

is able to produce a model’s terms and automatically carry out
DFT simulations with SIESTA to determine the force field, a Wan-
nier Hamiltonian to represent the bands, electron-lattice terms to
account for how the bands change with geometry, and electron–
electron interactions to describe, for example, magnetism.

While, so far, few publications with SPDFT methods include
explicit treatment of electronic degrees of freedom, the lattice part
has successfully been used in several applications. One of the main
fields of research has been thermal conductivity in perovskites. In
particular, it was employed to study the electrophononic coupling
in SrTiO3

115 and PbTiO3
116 and the proposal of a thermal switch in

PbTiO3.117 It has also been used to study the competition between
various ferroelectric domain structures in PbTiO3/SrTiO3 super-
lattices as a function of strain.118 As a result, it was found that
tensile strains lead to the appearance of chiral ferroelectric vor-
tices, while ferroelectric skyrmions were predicted and experimen-
tally observed for more compressive strain values.118 The calculated
dielectric properties of these superlattices119 are in very good agree-
ment with measured values and show very large electric suscep-
tibility consistent with regions of negative, static electric permit-
tivity situated at the core of the vortices and the PbTiO3/SrTiO3
interfaces.

M. Scripting and integration in external frameworks
An ongoing trend in many areas of computational science is

to move away from rigid and monolithic codes, favoring instead
a more flexible approach in which the internal functionality of a
program is somehow exposed to the outside world. If done in a
proper and well-documented way, this can serve to enhance the
interoperability of codes with different functionalities, playing to
the relative strengths of each, and/or to implement new function-
alities by combining the available basic blocks. In SIESTA, we have
followed two different but complementary routes to these ends: the
development of an internal scripting framework based on the Lua
language, which enables new functionality without code recompi-
lation, and the implementation of a formal interface to the AiiDA
platform.

1. Lua interface
Lua120 is an easy-to-learn and fast scripting language built for

embedding. It is very lightweight (its memory footprint is less than
300 kB) and provides very simple ways to interface to the data struc-
tures and routines of a host program. A Lua script, interpreted by
the Lua interpreter embedded in the program, can then control the
flow of execution and the data. Different user-level scripts can imple-
ment new functionalities, without recompilation of the host code.
The strategy we have followed in SIESTA is based on handling control
to the Lua interpreter at specific relevant points in the program flow
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FIG. 14. Maximally localized Wannier functions (MLWFs) for graphene. Panel (a) displays the character of σ-bonded combinations of sp2 hybrids. Panel (b) displays the π
character of the bands with weight on the pz orbitals. Isosurfaces of different colors correspond to two opposite values for the amplitudes of the real-valued MLWFs. Yellow
spheres represent the position of the C atoms, while smaller blue spheres mark the center of the bonding.

(e.g., at the beginning of a geometry step and at the end of a
SCF step). Lua scripts implement handlers appropriate to the point
they want to hook into and can request access to specific data
structures. For example, a script intended to implement a better
SCF mixing algorithm would be executed after every SCF step,
inspecting the convergence data and changing mixing parame-
ters or schemes, as appropriate. As another example, convergence
checks over mesh-cutoffs and k-point sampling can be performed
automatically.

The above mixing scenario exemplifies an important area of
usefulness of the approach: the prototyping in Lua (followed even-
tually by a full implementation) of new ideas and algorithms. We
have implemented a number of custom molecular dynamics (MD)
modes, geometry relaxation algorithms, and advanced optimization
schemes in a pure Lua library FLOS.

121 The code in the library can
be re-used or taken as a starting point for other implementations by
users. These user-level scripts can, in turn, be shared, opening the
way to the development of new functionality with faster turnaround
that the traditional approach that needs a careful integration into the
program’s code base.

As a specific demonstration of the power of the Lua embedding,
we have developed a number of variations of the nudged-elastic band
(NEB) method122,123 for transition-state search. Previously proposed
implementations in SIESTA involved significant, hard to maintain
code changes, and did not make into the mainstream version. With
Lua, we have been able to implement, non-intrusively, not only the
standard algorithm, but a Double Nudged Elastic Band (DNEB)124

variation, and also another version that treats atomic coordinates
and lattice variables on an equal footing (the variable-cell NEB or
VC-NEB method125).

The integration of Lua functionality in SIESTA has been made
possible by the development of an intermediate layer, FLOOK

126 (for
“fortran-Lua-hook”), which provides wrappers for access to Fortran
data structures and subroutines.

2. AiiDA plugins and workflows
The AiiDA framework127–129 provides support for high-

throughput computations in materials science, keeping full prove-
nance of the calculations and facilitating data handling and sharing.
The framework is open-source, written in Python, and designed
to support arbitrary codes via a plugin interface. A plugin for
SIESTA has been implemented and is distributed as the open-
source package aiida-siesta.130 The plugin provides the basic

operations of preparing the input files for a calculation using
AiiDA-specific input objects, parsing the results and generating
the AiiDA output objects. The AiiDA data are stored in a graph
database that keeps a permanent record of the inputs and outputs
of the calculation and is fully searchable for, e.g., data analytics
purposes.

AiiDA also provides robust support for the creation of work-
flows that incorporate all the necessary steps in the calculation of
potentially complex properties, including the proper heuristics and
fail-safe features. The aiida-siesta package provides a base work-
flow and a few workflows for standard materials properties, such as
band structures. Figure 15 shows the execution graph of a work-
flow designed to generate a synthetic scanning tunneling microscopy
(STM) image from a given structure. Work is ongoing to implement
more complex ones.

In addition to an interface to the computational capabilities of
the SIESTA code via the plugin and workflows, the aiida-siesta
package also provides an implementation of basic objects represent-
ing pseudopotential files, notably one for PSML. Families of pseu-
dopotentials can be uploaded to an AiiDA database and shared via
the provided mechanisms for data export and import, facilitating the
interoperability of different codes.

N. Utilities for post-processing and supplementary
features

SIESTA offers several features beyond the core functionality of
solving the electronic structure problem and performing optional
geometry relaxations and molecular dynamics runs. It is worth not-
ing, in particular, that the atomic character of the basis set enables
the use of a very intuitive suite of analysis tools, which take advan-
tage of the fact that most of the concepts relating to chemical
bonding use the language of atomic orbitals.

The (partial) density of states, atomic and orbital popula-
tions, and other useful outputs can be obtained directly from
the program. The SIESTA distribution also includes several tools
in the Util directory for band-structure and wavefunction plot-
ting, bonding analysis, etc. Beyond these, special tool packages
that implement a specific feature that extends the functionality
of the main program or that provide extra options for visualiza-
tion or post-processing, in general, are available in alternate dis-
tribution points. We describe in what follows the most relevant
developments.
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FIG. 15. Automatically generated graph for the execution of an AiiDA workflow for the simulation of STM images.

1. Updates to core utilities
A number of improvements, enhancements, and additions have

been made to the core utilities shipped with the SIESTA distribution.
There is now a “fat-bands” feature by which bands can be deco-

rated with information about the relative weight of the given orbitals
in each state. The wavefunction-related analysis tools have been
extended to the non-collinear and spin–orbit cases. This includes
the COOP/COHP bonding analysis, band-structures, and a new
tool for spin-texture calculation. There have also been improve-
ments to band-structure plotting utilities and to the visualization of
charge densities, potentials, and other magnitudes represented in a
real-space grid.

A band unfolding utility has been added. Based on the Fourier
decomposition of the Bloch wavefunctions, it allows us to perform
a “full unfolding” even for non-periodic systems (e.g., liquids) cal-
culated with a large simulation cell. By refolding the fully unfolded
bands from the reciprocal supercell of a perturbed or defective crys-
tal to the reciprocal unit cell of the primitive crystal, one recovers the
conventional “unfolded” bands.131

2. SISL

SISL is a Python toolbox that was initially conceived to handle
and manipulate the SIESTA/TRANSIESTA output.102 It has since been
extended to support other DFT codes with the aim of offering
equivalent operations for them.

By reading the LCAO outputs from SIESTA, one can post process
the Hamiltonian and calculate, e.g., Brillouin zone integrated DOS,
wavefunctions expanded on grids, eigenvalues, and band velocities.
SISL can process nearly all the SIESTA output files. In particular, it is also
able to post process the data on the real-space grid. Its command
line interface allows data format changes, e.g., conversion of SIESTA

XV files to xyz/xsf files or SIESTA binary grid data (VH, VT, etc.) to
cube/xsf files.

As it can process density matrices from SIESTA, one can also
use SISL to prepare an input electronic structure for new calculations,
which may be helpful to reduce initial SCF steps.

SISL also allows the creation of custom tight-binding models
(both orthogonal and non-orthogonal), and since it extracts the DFT
Hamiltonian matrix, one can manipulate the Hamiltonian to retain
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certain band-structure features and thus perform large-scale simu-
lations.132 This allows calculating far-field currents using reduced
basis-sets with a very little loss of accuracy.

The Atomic Simulation Environment (ASE)133 and SISL have a
certain degree of overlap in terms of geometry handling function-
ality. One can easily convert to and from ASE objects in SISL, thus
allowing seamless interaction.

3. Other post-processing and visualization utilities
The body of utilities contributed by non-core developers and

other SIESTA users has continued to expand. In particular, we feature
in this section two suites of utilities: one dealing with alternate visu-
alization tools for some SIESTA results and another one specifically
dealing with lattice dynamics.

For structures, the xv2xsf and xv2vesta converters process
data from the SIESTA .XV file into the native formats of XCrySDen134

and VESTA,135 respectively. Each of these two codes offers many
options of graphical representation of structures, adding trans-
lations, clipping fragments, etc. Three-dimensional spatial func-
tions (e.g., charge density and local density of states integrated
throughout the chosen energy range) are computed by SIESTA on
a real-space grid. Tools are provided for interpolating the data
from the SIESTA output grid (fixed by the unit cell dimensions and
the MeshCutoff parameter) onto an arbitrarily cut (and possibly
rotated or resampled) parallelepipedic box. XCrysDen provides a
number of display options, including contour lines over grid planes
or isosurfaces. A special feature available in XCrySDen is plotting
the Fermi surfaces. A special script, eig2bxsf, serves to analyze
the list of k-points handled by SIESTA, expanding it onto a regular
sequence and writing the respective band energies in the necessary
format.

The tools concerning the lattice dynamics have been devel-
oped having in mind the Γ phonons calculated for a large enough
supercell, that is a typical case in a simulation of molecular crystals
or disordered substitutional alloys. For visualization, vib2xsf and
vib2vesta place arrows at the atoms according to the vibration pat-
tern stored in the eigenvectors file (.vectors), produced by the core
Vibra utility, and can also be used to make animations (sequences
of snapshots) of the selected vibration modes. Both vib2xsf and
vib2vesta tools allow the selection of a part of the system to be
exposed.

The phdos tool is designed for analyzing the zone-center vibra-
tion results. As the system is supposed to be large (e.g., a supercell
chosen for a periodic crystal), the (artificially broadened, for con-
venience) discrete spectrum may serve as a fair approximation to
the total density of modes, and if weighted with (squared) compo-
nents of eigenvectors at different atoms, it provides a decomposition
into contributions of different atoms in the total density of vibration
modes.

A more sophisticated option is the projection of different eigen-
vectors according to various criteria. The typical system under study
is a supercell in which, e.g., an alloying, or some kind of deformation,
breaks the underlying perfect periodicity. Still, some trends related
to the latter can be revealed by appropriate projections. The two
obvious cases are the projections onto (1) q-vectors of the under-
lying lattice and (2) irreducible representations of the space group of
the underlying lattice; the corresponding formulas and some results

can be found in Ref. 136. The first type of projection, if done for a
sequence of q values, helps to reveal “phonon dispersions,” obviously
blurred by the broken periodicity, also making distinction between
transversal and longitudinal modes (see Ref. 137 for an example of
use). To make the trends more pronounced, the supercell needs to
be sufficiently long in the direction concerned (see, e.g., Fig. 16). The
simplest case, a projection onto a single q = 0 value, may also be of
interest, since it enhances the modes that are expected to dominate
the infrared or Raman spectra and thus facilitates their comparison
with the experiment.

The symmetry projection may help to isolate in a possibly
complex spectrum those modes which are expected to dominate
according to a given selection rule, again in view of their verifi-
cation against the experiments. The group-symmetry information
needed for the projections is available, e.g., from the Bilbao Crys-
tallographic Server,138 and the technical details are explained in the
documentation included in the tools.

The vibent tool performs a straightforward calculation (see,
e.g., Sec. II.C in Ref. 139 or Sec. 5.3 in Ref. 140) of temperature-
dependent vibration contributions to the free energy and entropy
(see Fig. 17 as an example). The necessary input information is
the vibration spectrum, originating from the Vibra frozen phonon
calculation on a sufficiently large system.

The velcf tool calculates the velocity autocorrelation func-
tion and its Fourier transform from a (presumably sufficiently long)
molecular dynamics (MD) history, recorded in the .MD or .ANI file.
This technique141 can be used to obtain phonon frequencies and was
applied along with a SIESTA calculation in Ref. 142. An example of
such simulation (1000 MD steps at 600 K) is shown in Fig. 18 in
comparison with frozen phonon results, revealing similarities of the
spectra obtained.

4. Optical properties of finite systems: Linear
response TDDFT starting from SIESTA orbitals

The SIESTA package offers at least two ways of obtaining the
optical properties of finite systems. The first way uses real-time
TD-DFT propagation by applying an external electric field with a
simple time dependence (e.g., a Heaviside step-function).74 The sec-
ond way is by computing the non-interacting dielectric function.1,2

Both methods are implemented in SIESTA and can be employed with-
out any external tools. However, they are limited in different aspects.
The non-interacting dielectric function often underestimates the
HOMO–LUMO gaps and calls for the use of the phenomenolog-
ical scissor-shift operator. Real-time propagation makes cumber-
some the analysis of the optical response properties in the frequency
domain. Furthermore, the frequency resolution scales with the dura-
tion of the real-time simulation. Thus, accurate spectra require long
simulations.

Fortunately, there are two efficient implementations of linear-
response TDDFT that use the Kohn–Sham orbitals from SIESTA as
a starting point and are available for the open-source commu-
nity.143,144 In both packages, the linear density response δn(r, ω) is
obtained directly in the frequency domain, which makes the analysis
of derived properties straightforward. However, there are differences
between both implementations on the construction of the auxiliary
basis necessary to expand the orbital products. These differences can
severely affect the computational cost of the calculation.
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FIG. 16. Left panel: a 192-at. quasirandom supercell repre-
sentative for the Be1/3Zn2/3Se solid solution and right panel:
density of modes within the frequency range of Zn–Se vibra-
tions, extracted with phdos and projected onto different val-
ues of qz and different polarizations, parallel (labeled LO)
and perpendicular (TO) to q. These results were partially
shown in Fig. 4 of Ref. 137 and discussed in that work.

The linear-response TDDFT is built on the concept of the
induced electronic density δn(r, ω) in response to a small per-
turbation of the external potential δVext(r, ω). The integral oper-
ator connecting δn(r, ω) to δVext(r, ω) is the interacting density
response function χ(r, r′,ω). By virtue of the KS equations, χ(r, r′,ω)
can be connected to the non-interacting density response function

χ0(r, r′, ω)145 with a Dyson equation,

χ(ω) = χ0(ω) + χ0(ω)Kχ(ω), (29)

where the interaction kernel K(r, r′) contains the bare Coulomb
interaction and the so-called exchange and correlation kernel Kxc,

FIG. 17. Vibration properties of
Cu2ZnSnS4 (CZTS) with substitutional
impurities used in Ref. 139. Left panel:
densities of modes (extracted with
phdos) and right panel: vibration contri-
butions to the free energy and entropy
(calculated with vibent). Adapted from
Figs. 5.3 and 5.4 of Ref. 140.
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FIG. 18. Vibration properties of “Ni4” molecular magnet [Mo12O30(μ2-OH)10H2{Ni(H2O)3}4]⋅14H2O. Left panel: density of modes from frozen phonon calculation and right
panel: velocity autocorrelation function, its Fourier transform, and the resulting density of vibration modes.

which is a known operator for simple functionals such as LDA and
GGA. The non-interacting response function χ0(r, r′, ω) can be
expressed as a sum over electron–hole excitations within the basis
formed by the KS orbitals Ψn(r),144–146

χ0(r, r′,ω) =∑
nm
( fn − fm)

Ψn(r)Ψm(r)Ψm(r′)Ψn(r′)
ω − Em + En

, (30)

where fn are occupations of the KS orbitals and En are their energies.
The optical polarizability tensor α(ω) is related to the induced

density by α(ω) = ∫rδn(r, ω)dr or, alternatively,

α(ω) =∬ rχ0(r, r′,ω)δVs(r′,ω)drdr′, (31)

where due to Eq. (29) and using the dipole approximation for
the electron–photon coupling, the screened effective perturbation
δV s(r′, ω) satisfies the linear integral equation,

(I − Kχ0(ω))δVs(ω) = r. (32)

The efficiency of the methods presented in Refs. 143 and 144
comes from solving iteratively Eq. (32) for δV s(ω) instead of using
standard matrix inversion to obtain χ(ω) from Eq. (29). Once δV s(ω)
is known, Eqs. (30) and (31) allow the computation of the optical
properties of the system. Furthermore, it is also possible to per-
form different types of analyses. For example, it is easy to partition
the polarizability tensor α(ω) in terms of electron–hole contribu-
tions146,147 due to the existence of the sum over the electron–hole
pairs in Eq. (30). Similarly, one can achieve other types of Mulliken-
like analyses144,146,148 of the optical polarizability tensor α(ω) or the
induced density δn(r, ω).

The Python implementation of linear response TDDFT in the
PySCF-NAO package as described in Ref. 144 is convenient to use

and rather potent. It is capable of computing the optical proper-
ties of compact metallic objects containing up to several hundreds of
atoms.146,149,150 For example, we were able to track down the differ-
ent size-dependences of the plasmon resonance in sodium and silver
clusters due to the screening effect of silver d-orbitals in the latter
case.151 In those calculations, using an optimized version that incor-
porates some additional memory-saving features not present in the
currently distributed version of PySCF-NAO, icosahedral silver and
sodium clusters containing up to 5043 atoms were studied.

In Figs. 19 and 20 we show the photo-absorption cross sec-
tions of a series of compact silver clusters146 and the real part
of the induced density change in the cluster Ag147 close to its
surface-plasmon frequency (3.4 eV), respectively.

5. Thermal transport by the AEMD method
The approach to the equilibrium molecular dynamics (AEMD)

method152 has been implemented to obtain the thermal

FIG. 19. The absorption cross sections of silver clusters of icosahedral shape. One
can recognize sharp surface-plasmon resonances around 3–4 eV and a broad
resonance at 6–7 eV.
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FIG. 20. The isosurfaces of density change Re(δn(r , ω)) of the Ag147 cluster close
to the frequency of the surface-plasmon resonance of the cluster (3.4 eV).

conductivity. In the first stage of the method, the system is decom-
posed into two different regions, each one equilibrated to a differ-
ent initial temperature (canonical run with Bose or Anneal MD).
Then, a microcanonical run (Verlet) is carried out for the whole
system, and the average temperature of each subsystem is moni-
tored. This temperature transient regime is then used to extract the
thermal conductivity from the exact solution of the heat transport
equation.153

6. Core-level shifts
Core-level shifts can serve to analyze changes in the local

and chemical environment of atoms of a given species. Density-
functional-theory calculations have proved to be quite useful in
complementing the experimental information, which is sometimes
hard to interpret. Two schemes have been implemented in SIESTA

for the calculation of core-level shifts within a pseudopotential
approach.154

In the so-called initial-state approximation, the electronic
relaxation in the presence of the core hole is neglected, and the
photo-electron’s binding energy is directly related to the eigenvalue
of the core level. A pseudopotential calculation obviously cannot
compute the latter, but differences in core eigenvalues in different
environments can be estimated by the changes in the expectation
value of the crystal potential using the core state’s atomic wavefunc-
tions ψlm

n at different sites. These can be extracted from the matrix
elements,

Vmm′
= ∫ d3r (ψlm

n (r⃗ − τ⃗))
∗V(r⃗)ψlm′

n (r⃗ − τ⃗) (33)

with a further step of averaging to remove the splittings stemming
from the loss of spherical symmetry.

In the final-state approximation, the relaxation is explicitly
taken into account, and the experimental shifts (measured via
the kinetic energy of an existing electron) are correlated with the

differences in the energy of the crystal with a “core-hole” in different
sites. For this, a special pseudopotential with a missing core electron
has to be generated, and a full SIESTA calculation is needed for each
different site.

The implemented methodology has been used to study, for
example, the shifts induced by hydrogen bonding in organic
molecules.155

O. Software-engineering advances and partnerships

The traditional development model for scientific codes in
academic settings has been typically based on multiple contribu-
tions with various levels of programming competence and with
very little time to plan ahead in the face of pressing scientific
demands. SIESTA has been no exception and has grown in features
and complexity over the years. It is very important to keep com-
plexity under control or else a project becomes un-maintainable
and cannot survive. It is not simple, however, to balance the
need of incorporation of new features and the need to increase
the computing performance in a landscape of constantly evolv-
ing hardware and programming models. One essential route is
modularization, which allows the separation of concerns at var-
ious levels. In the context of a code such as SIESTA, this means
that the scientific ideas and algorithms should be handled at a
high level, calling on lower-level modules for specific functional-
ity (domain-specific libraries, mathematical libraries, communica-
tion protocols, etc.). These lower-level modules can hopefully be
re-used by different codes and, most importantly, can be focused
on by highly skilled programmers for optimization on relevant
architectures.

Another important method of taming complexity involves
the streamlining of the data structures of the code. This is
an ongoing process (see Sec. V) but has already taken a very
significant step by the introduction of reference-counted data
structures. They build on a well-known and not particularly
advanced technique of memory-handling,156 but in SIESTA they
have enabled a much simpler bookkeeping of the data structures
needed for a richer control of molecular-mechanics (MM) and SCF
iterations.

Regarding performance-oriented developments, in the recent
past we have implemented a mixed MPI/OpenMP program-
ming model, which allows, for suitable systems, to better bal-
ance arithmetic intensity and communications needs. The deploy-
ment of this model is more advanced in the TranSiesta mod-
ule, and significant speedups have been obtained for large
systems.

Some of the above software-engineering developments have
been enabled and strengthened by the participation of SIESTA in a
number of international partnerships, notably the MaX (Materials
at the eXascale) EU center of excellence157 and the Electronic Struc-
ture Library initiative.158 The “separation of concerns” described
above in the context of modularization is an example of the so-called
“open-innovation” paradigm, at the foundation of the ESL strategy
for code reusability, and is also a cornerstone of MaX’s efforts to
achieve exascale-readiness for its flagship materials science codes
(with SIESTA among them): performance-enhancement efforts are to
be focused on relevant domain-specific modules.
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A number of modules from SIESTA have been turned into
stand-alone libraries that now feature in the ESL: libGridXC for
exchange and correlation calculations, libPSML as a handler of
PSML files, xmlf90 for general purpose handling of XML files, etc.
Conversely, SIESTA uses some of the libraries offered by the ESL,
notably the ELSI library of electronic structure solvers mentioned in
Sec. III G 2, whose development, including its API design and inter-
nal data organization, has been, in turn, influenced by contribu-
tions and feedback from the SIESTA project, among others. There are
also plans to incorporate the PSolver library159 for the solution of
the Poisson problem, a contribution to the ESL from the BigDFT
project.

We should mention that the renewed dynamism of SIESTA devel-
opment and the advances made possible by the interaction with
community initiatives are both a blessing and a challenge. It is
non-trivial, for example, to handle the building process of a code
that relies on a number of different external libraries, programming
models, and special features such as the embedded Lua interpreter.
Fortunately, as will be discussed in Sec. V, these are issues that are
being addressed in wider contexts, and SIESTA is well placed to take
advantage of it.

IV. APPLICATIONS
We present here a few demonstrated applications that illustrate

the capabilities of SIESTA in breadth, efficiency, and accuracy.

A. 4 terminal NEGF on germanium surface
Breakthrough simulations using the new multi-terminal imple-

mentation in TRANSIESTA were fundamental to elucidate the elec-
tronic transport mechanism on a novel and complex exper-
iment.100 For the first time, two-probe scanning tunneling
microscopy/spectroscopy (STM/STS) with probes operating in tun-
neling conditions over the same atomic-scale system was used to
extract detailed information on in-plane electronic transport. The
addressed system was the reconstructed (001) surface of germanium,
where electrons injected from one STM tip at a position determined
with atomic precision were collected at the same Ge dimer row
at a distance as short as 30 nm. The experiment was theoretically
modeled by a system composed of a 12-layer Ge(001)-c(4 × 2) slab
contacted by Au tips oriented along the (100) direction (Fig. 21).
On this self-consistent 4-terminal treatment, two Ge electrodes were
connected at each slab termination and other two at the Au model
tips. The whole system was defined by 4924 atoms (36 442 atomic
orbitals) in a supercell of dimensions ∼32 × 160 × 80 Å3, where
five different tip-to-sample distances were considered. Besides the
large dimensions of the system, another important challenge of such
simulation was the level alignment between the metallic and semi-
conducting leads and the scattering region for which a method had
to be devised. A remarkable agreement was found between the calcu-
lated transmission function and the experimental transconductance
spectra, allowing the identification and assignment of the observed
resonances to transport channels existing along the surface Ge dimer
rows. Moreover, the simulations elucidated the transport direction-
ality of the injected hot electrons, revealing a transition from the
2D to quasi-1D coherent transport regime as a function of the car-
rier’s energy. This work shows that complex experimental setups

combined with advanced calculations can provide new insights into
transport properties at the nanoscale.

B. Novel topological phases in ferroelectric materials
In material systems with several interacting degrees of freedom

(such as spin, charge, and lattice distortions), the complex inter-
play between these factors can give rise to exotic phases. Prototyp-
ical examples are the superlattices of alternating lead titanate and
strontium titanate layers. Simulations on such PbTiO3/SrTiO3 het-
erostructures, consisting of n unit cells of PbTiO3 and n unit cells
of SrTiO3 stacked along the [001] direction, were carried out with
SIESTA. As a function of the periodicity, the superlattices undergo a
phase transition from a monodomain configuration (small period-
icity, n ≲ 3–4) with a normal component of the polarization that
is preserved throughout the structure, to a multidomain configu-
ration (large periodicity, n ≳ 3–4) with alternating up and down
domains.160 In order to further reduce the electrostatic energy costs,
the local dipoles within the PbTiO3 layer continuously rotate form-
ing a sequence of clock-wise/counter-clockwise array of vortices
along the [100] direction. The theoretical predictions, done with
SIESTA

161 after the relaxation of supercells of up to 1000 atoms, were
experimentally confirmed five years later by atomic-scale mapping
of the polar atomic displacements by scanning transmission electron
microscopy162 (Fig. 22). Moreover, the appearance of an axial com-
ponent of the polarization pointing in the direction of the vortices
makes the systems chiral and optically active, as recently confirmed
by circular dichroism experiments.163

C. 1D and 2D systems
SIESTA is particularly well suited to study low dimensional

nanostructures, such as 1D and 2D systems, where a large vacuum
region is needed within the simulation cell. When, in addition, a
large number of atoms are required to study particular physical
effects, SIESTA could excel with respect to other methods. There is
an extensive literature on simulations of graphene and other exfoli-
ated materials, where the properties of point defects, edges, or grain
boundaries are of much relevance. We list a few examples the mag-
netic properties of impurities164,165 and edges,166 electronic proper-
ties, including transport characteristics, in grain boundaries,167,168

ribbons,169 nanoporous graphene,170 large graphene flakes,68,171 or
the effect of substrates.172 Other materials, such as mono- and multi-
layered dichalcogenides173,174 or phosphorene,175,176 are also being
widely studied, including optical properties in nanoflakes with up to
a few thousand atoms.177

1. CDWs
A number of recent studies on charge density waves (CDW)

in low dimensional materials illustrate the impressive accuracy that
can be obtained with SIESTA for systems with very subtle electronic
structures.178 For example, in 2H–NbSe2, SIESTA calculations were
able to predict the existence of six different atomic structures within
a narrow energy range of a few meV, all of them compatible with
the experimental 3 × 3 CDW modulation. Careful analysis of the-
oretical and experimental STM images for different bias potentials
allowed us to identify two of these structures that can coexist in
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FIG. 21. First-principles transport simulations for the two-probe experiments. Representation of the four-terminal setup. The electrode regions are highlighted by blue boxes,
two of them located at each Ge(001)-c(4 × 2) slab termination (leads: left and right) and the other two at each Au model tip (leads: tip1 and tip2). The 50 Ge atoms closest to
each tip were allowed to fully relax. Adapted from Ref. 100.

the same image.179 In a different work,180 the temperature depen-
dency of the electronic Lindhard response function in blue bronze
K0.3MoO3 was studied. This system has a rather complex mono-
clinic structure with 20 formula units per unit cell where MoO6
octahedra form chains along one direction (b-axis). The Lindhard
function shows well decoupled sharp responses that correspond to
intra- and interband Fermi surface nesting. By fitting these peaks,

one can obtain the coherence length of the fluctuating 1D electron–
hole pair (that determines the length scale of the experimental intra-
chain CDW correlations) and the intrachain modulation of the
response (that determines the shape of the Kohn anomaly mea-
sured in experiments), providing, for the first time, quantitative evi-
dence of the weak electron–phonon coupling scenario for the Peierls
transition.

FIG. 22. Panel (a): local polarization profile of polydomain structures in (PbTiO3)n/(SrTiO3)n with n = 6 obtained from an atomic relaxation with SIESTA. The PbTiO3 and SrTiO3
are depicted as gray and white regions, respectively. Clockwise and counterclockwise vortices within the PbTiO3 are clearly visible. Red dashed square in the SrTiO3 layers
mark the position where antivortices are formed. Reprinted with permission from Aguado-Puente and Junquera, Phys. Rev. B 85, 184105 (2012). Copyright 2012 American
Physical Society. Panel (b): experimental observation of vortex–antivortex structures in a cross-sectional high-resolution scanning transmission electron microscopy image
with an overlay of the polar displacement vectors for a (SrTiO3)10/(PbTiO3)10 superlattice, showing that an array of vortex–antivortex pairs is present in each PbTiO3 layer.
Courtesy of R. Ramesh, adapted from Ref. 162.
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FIG. 23. Color coded electrostatic poten-
tial on a plane cutting along the main axis
of the G. Sulfurreducens pilin molecule
in wet conditions. A perspective ball ren-
dering of the atomic structure of the pro-
tein is superposed. For the meaning and
details of this figure, see Ref. 184 (Figure
courtesy of Gustavo T. Feliciano).

D. SIESTA in biology: Pilin proteins as conductors
SIESTA’s efficiency and the clear bandgaps of biomolecules, in

general, have made molecular biology a very suitable field for SIESTA

since the beginning181 and have stimulated the targeted develop-
ments of the code for the field, such as the hybrid Quantum Mechan-
ics/Molecular Mechanics approach (QM/MM).182,183 An interesting
illustration of its suitability in an all-quantum biological problem
is the study of the electrostatics around the pilin protein in aque-
ous solution.184 The pilin considered here is the main protein in the
pili (external filaments) of the Geobacter sulfurreducens bacterium,
which have been shown to be able to transmit electronic current,
allowing the microbe to feed by remote redox reactions on ferrous
mineral particles in the soil. As a nanowire designed by natural
evolution, understanding the mechanism for charge transport is of
obvious interest.

Peculiar to this protein is the fact that its main alpha helix,
the main feature of this elongated protein, is singly oriented, that
is, there is no back alpha helix (as in a common hairpin configura-
tion) that would counter the polarization of the single alpha helix.
In an alpha helix, all peptide-bond dipoles point in the same direc-
tion along the axis of the helix, which, in solid-state parlance, rep-
resents a polarization with clear electrostatic implications. Indeed,
a DFT calculation of the molecule in vacuum shows a well-defined
electrostatic potential ramp along the protein, which tends to close
the effective bandgap. The question is then, how does an aqueous
environment affect this depolarizing field.

Long molecular mechanics (MM) simulations were performed
for the protein in a suitable solution of NaCl at a concentration
of 0.1M. The protein’s residues had charge states corresponding to
pH = 7, and the MM field was validated with SIESTA calculations in
vacuum (944-atom dynamic relaxation in a 104.43 Å3 box). The wet
system contained 4580 atoms, and the statistical average of the elec-
trostatic potential around the molecule (see Fig. 23) was obtained
from a sample of full SIESTA calculations of statistically independent
snapshots, taken every 50 ps during the last 0.5 ns of the simulation.

Figure 23 shows how the aqueous environment kills the quite
homogeneous potential ramp along the protein axis that appears in
vacuum and replaces it with long wavelength, slow, but quite signifi-
cant fluctuations. The gap remains sizable, and coherent transport is
not likely. However, the frontier orbitals evolve in a very suggestive
way for enhanced diffusive electron transport.184

E. Use of SIESTA in other fields
Although an exhaustive summary of all the recent results

obtained with SIESTA is out of the scope of this work, we would

like to refer the reader to a sample of recent reviews in various
fields in which the program is featured. These cover biological sci-
ences185 (including interaction between organic and inorganic mate-
rials186,187), geology and materials under high-pressure,188 isotopic
fractionation predictions for Martian geochemistry,189 the engineer-
ing of typical core structural materials used in nuclear reactors,190

or even in astrophysical and atmospheric systems.191 The reactivity
of metallic nanoparticles for catalysis was studied by Viñes, Gomes,
and Illas,192 and the role of SIESTA in the computation of the kinetic
and dynamics of the catalytic reaction at surfaces (including adsorp-
tion and desorption of reactants or products) was explored in Chap.
8 of Ref. 193 by Catapan and co-workers.

V. FUTURE EVOLUTION
Work on enhancing SIESTA’s capabilities, performance, and

robustness is continuing, driven by a good number of developers
and collaborators. A mature and flexible development platform and
practices are essential to keep it productive. Our recent platform
changes have forced developers to shift workflows twice in the past
four years. Through the changes, we have learned a lot but also
spent a significant amount of time on ensuring SIESTA’s continuous
development. At the current state, we believe we have stabilized the
development platform on GitLab, while we will add more integrated
development features in the coming years, e.g., continuous integra-
tion (CI) and source code checks. Using CI will also enable easier
code-style checks to conform to coding standards. We hope that
our open-platform initiative will keep external contributions coming
into the program.

Our basic development plans include refactoring, apparently
unexciting but essential to streamline the code base to enable fur-
ther implementations. In addition, we foresee a change in the release
model, moving away from coexisting long-lived release branches
whose maintenance takes up a lot of time and offering instead more
frequent and short-maintenance releases.

We plan to exploit the idea of modularization, continuing the
abstraction of relevant reusable pieces, but also dealing with a higher
level, exposing the core electronic structure capabilities of SIESTA to
other programs. It will be necessary to redesign some of the internal
data structures to remove global variables and encapsulate them into
objects or derived types associated with particular configurations
and stages of the calculations. This encapsulation will be matched
with the streamlining of the input/output operations. This work will
open the door to the creation of complex workflows leveraging the
strengths of various codes.
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Accelerated hybrid architectures (including, for example,
GPUs) are very likely going to feature prominently in the upcoming
exascale machines. In the case of SIESTA, the data indirection associ-
ated with the handling of sparse matrices limits the acceleration pos-
sibilities of the section of the code that builds the Hamiltonian and
overlap matrices, but the solver stage is more amenable to porting,
and in fact, several solver libraries used by SIESTA are being enhanced
to offer the GPU support, as mentioned in Sec. III G 2.

Modularization and the use of new programming models result
in an increase in the complexity of the building and deployment of
the code. We will leverage the ESL bundle created to facilitate the
use of the modules in the ESL collection, to streamline SIESTA’s build-
ing process, and to explore containerization as an option for the
deployment of the code.

The “pseudopotential barrier to entry” has been lowered by
the availability of curated databases supporting the PSML format.
Basis sets are a perennial challenge, but new tools and ideas are
being explored to provide users with appropriate basis sets: high-
throughput workflows for optimization, “tiers” of quality/cost, but
perhaps not just of a simple “Periodic Table” form, as offered by
other codes (e.g., FHI-aims13), but with a possible dependence on an
approximate characterization of the chemical environment in which
a given atom finds itself.

Complementary to the underlying basis set optimization that
focuses on providing an adequate variational freedom, an on-the-fly
contraction of the basis set, which results in a set of lower-cardinality
adapted to the description of the occupied subspace, can be exploited
for increased efficiency. This is particularly relevant for FOE meth-
ods (see Sec. III G 1) in which the number of polynomial terms
depends on the extent of the spectrum.

The original claim to fame of SIESTA was based on its linear-
scaling solver. We are in the process of re-designing the O(N)
code with a new, more efficient backend based on the DBCSR
library for handling distributed block-sparse matrices194,195 with the
MatrixSwitch library82 acting as an intermediary interface between it
and high-level physical ideas and algorithms. A connection between
the internal SIESTA formats and MatrixSwitch itself has been recently
provided, using initially the cubic-scaling libOMM library196 as a
test bed, hence still using a dense coefficient matrix, as it corre-
sponds to the case without localization constraints in the solu-
tion of the electronic structure problem. The implementation of a
sparse coefficient matrix will make it possible to perform efficient
O(N) calculations. The computational effort can be further reduced
through the analysis of sparsity of the Hamiltonian and overlap
matrices and their re-organization in the block-compressed sparse
form.

Other developments in the pipeline are linear-response calcula-
tions for arbitrary distortions, electronic transport calculations with
spin–orbit coupling, thermal transport with the Green–Kubo for-
malism, as described in Ref. 197, a redesign of the molecular dynam-
ics subsystem, and the development of workflows for the generation
of data for SCALE-UP.
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